EP0101429B1 - Procédé pour revêtement électrolytique par une couche métallique et éventuellement traitement électrolytique d'une bande métallique - Google Patents

Procédé pour revêtement électrolytique par une couche métallique et éventuellement traitement électrolytique d'une bande métallique Download PDF

Info

Publication number
EP0101429B1
EP0101429B1 EP83890122A EP83890122A EP0101429B1 EP 0101429 B1 EP0101429 B1 EP 0101429B1 EP 83890122 A EP83890122 A EP 83890122A EP 83890122 A EP83890122 A EP 83890122A EP 0101429 B1 EP0101429 B1 EP 0101429B1
Authority
EP
European Patent Office
Prior art keywords
electrolyte
metal strip
electrode
strip
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP83890122A
Other languages
German (de)
English (en)
Other versions
EP0101429A1 (fr
Inventor
Josef Hampel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Andritz AG
Original Assignee
Andritz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AT0301482A external-priority patent/AT373922B/de
Priority claimed from AT243883A external-priority patent/AT377791B/de
Application filed by Andritz AG filed Critical Andritz AG
Publication of EP0101429A1 publication Critical patent/EP0101429A1/fr
Application granted granted Critical
Publication of EP0101429B1 publication Critical patent/EP0101429B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • C25D5/12Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils

Definitions

  • the invention relates to a method for electrolytic coating with a metal layer and optionally electrolytic treatment of a metal strip which is guided in a direction deviating from the horizontal, the electrolyte running in at the top, flowing between at least one plate-shaped electrode and the metal strip and with a coating the metal strip is cathodic and the electrode is anodic and in the case of an electrolytic treatment the metal strip is connected cathodically or anodically and the electrode is anodically or cathodically.
  • a metal band can be one-sided, e.g. galvanized, tinned, brass, etc. With a corresponding design of the method, it is also possible to carry out such conditions on both sides in one pass, u. also with different print runs.
  • the exact position of the anode for example, must be determined precisely for each particular application and depends on several parameters, such as the distance from the anode to the cathode, the type of electrolyte, the thickness of the coating, the belt speed, etc. If the anode is positioned too high or too low relative to the electrolyte level, the flow rate will decrease on the one hand, which means that the electrolyte is depleted in terms of its metal salt content, which leads to poor top coats, and on the other hand the desired lifting effect will not result because the gas bubbles rise and exit directly.
  • the belt speeds and current densities used in the above device are far too low for a high-performance electroplating system.
  • a device for the electrolytic treatment of a metal strip consists of a container for defining an electrolytic treatment space for the metal strip, a plurality of conductive rollers, which run along a transport path extending through the treatment space Metal strips are arranged, at least one pair of electrode cushions, each pair being arranged between the conductive rollers, spaced from the transport path of the metal strip and the electrode cushions facing each other, each electrode cushion being provided with at least one slot through which the electrolyte to the surface of the metal strip is pressed out so that a sufficiently high static pressure of the pressed-out electrolyte forms to hold the metal strip on the transport path in the space between the electrode pad, a device for supplying the electrolyte to everyone em slot and means for applying a voltage between at least one of the conductive rollers and the electrode pads.
  • the electrolyte emerging from the slots in the electrode pads strikes the strip at an angle of 60 to 120 ° and is sharply deflected upwards, downwards and laterally, so that an unfavorable turbulent flow arises which leads to the formation of gas bubbles.
  • the object of the invention is to provide a new method for single-sided or double-sided high-performance coating of a metal strip, avoiding the above disadvantages, wherein in particular an essentially closed liquid column from the electrolyte between the strip and the electrode is desired.
  • the solution found is characterized in that the electrolyte runs freely in the upper region of the electrode in the manner of an upper run and, under the influence of gravity, flows downward in the space between the electrode and the metal strip and forms a closed liquid column, the space being constantly replenished with electrolyte. In this way, an intensive bath movement on the electrode surfaces is ensured by the electrolyte flowing downwards in free fall.
  • Another feature of the invention provides that the metal strip is inclined at an angle to the vertical, in which the closed flow volume in the space between the anode and the metal strip is still maintained by the electrolyte flowing downwards, the angle of the metal strip to the vertical being a maximum of 30 ° can be.
  • At least part of the electrolyte flowing down in the space between the anode and the metal strip is filled through a plurality of bores or slits which form the Penetrate anode, abandoned in the space between anode and metal tape.
  • the distance between the electrodes and the strip is adjustable, the distance between the electrode and the metal strip being selected in the working position 2 to 20 mm.
  • the distance between the upper edge of the electrode and the metal strip and the distance between the lower edge of the electrode and the metal strip can advantageously be set individually or together. It can be an advantage here, e.g. at high current densities, compensate for small voltage drops along the anode (away from the power connection) by setting the distance between the metal strip and the anode somewhat less at the end which is further away from the power connection.
  • the polarity, the voltage or the current intensity can be set separately when electrodes are arranged on both sides of the band.
  • This not only enables the strip to be coated to different degrees on both sides, but also to cathodically switch the electrodes on one side of the strip.
  • the advantage of cleaning, roughening the side of the strip that is not coated with metal, etc. which is known to be advantageous in many cases for further processing (painting, soldering, etc.).
  • An anode extension in the direction of the strip ie in the direction of the strip guide, is initially appropriate.
  • the anodes only tolerate a limited amount of current supplied, the supply itself at one point on the anodes becomes bulky and complicated in terms of heat dissipation, the heavy anodes cause static problems due to their weight etc. etc.
  • the belt can be easily moved up or down ten, twenty meters or more.
  • a surprisingly simple and inexpensive solution according to the invention is that at least two electrodes are arranged one above the other in the metal strip, the electrolyte flowing into the space between the top electrode and the strip being collected under the electrode and then freely into the space flows between the underlying electrode and the band.
  • a special process example for coating a steel strip provides that the running direction of the steel strip changes to the flow direction of the electrolyte one or more times (ascending or descending) and the electroplating takes place at a current density of 20 to 150 amperes / dm 2 by means of an electrolyte, whereby is worked with insoluble anodes and the metal content removed from the electrolytes is returned by dissolving metals, metal salts, metal alloys, metal oxides or hydroxides.
  • Another major advantage is that the electrolyte only wets the front of the metal strip, thereby preventing the back from being galvanized, however small it may be;
  • the flow volume filling the gap between the electrodes is also cut off and torn abruptly at the edge of the strip, which means that there is practically no or no appreciable increase in current density at the edge of the strip - but this makes it possible to do without masking masks. In this way, strong saber, i.e. When pulling laterally deflecting bands can be used without further ado if only the anodes are sufficiently wide.
  • the chemical or anodic dissolving cells known per se can be used for this purpose. It is also possible for the metal strip to be wetted with the electrolyte without current, preferably by spraying or dipping, so that the growth of germs is improved.
  • a metal strip 1 is drawn continuously (ascending or descending) over the deflecting rollers 2, 3 in an inclined position to an anode 5 which is likewise inclined;
  • a certain potential or a certain current flow between anode 5 and metal strip 1 is maintained by means of current connections 4, 6.
  • the electrolyte is pumped from an electrolyte collecting vessel 7 by means of a pump 8 and the associated pipeline, continuously via a vessel 9 provided with a longitudinal slot into the space between the metal band 1 and anode 5, from where the electrolyte fills the space, flows downwards and flows back into the collecting vessel.
  • Fig. 3 shows an anode box 5 'closed at the top, which according to the different hydrostatic pressures is provided at different heights at different heights, at the bottom thinner with larger holes at the top and smaller holes at the bottom.
  • a wide slot 15 at the top assumes the function of an overflow.
  • FIG. 4a shows an example with an anode box
  • the example 4b shows how one and the same strip side twice (once on - and descending once) past the same anode box and the effective anode area thereof can be doubled;
  • the box must be provided with holes or slots and an upper run on two opposite walls.
  • FIG. 4c an additional (one-sided) anode box is installed opposite the other strip side, one has a system which is particularly suitable for very different metal supports on the two strip sides; this can be expanded by a further anode according to FIG. 4d, as a result of which the anode area available for each strip side is again of the same size.
  • FIG. 4e shows superimposed anodes
  • FIG. 4f shows a dense packing, mostly double-sided, of effective anode boxes in the manner of a "high-performance system".
  • the inclined electrodes according to FIGS. 5a to 5d allow the system height to be reduced.
  • hydrostatic and hydrodynamic effects that are related to the inclined position can also be exploited.
  • FIGS. 5a and 5b serves for one-sided coating, while the arrangement according to FIGS. 5c and 5d enables coating on both sides.
  • Fig. 6, 1 denotes the metal strip which is guided over two upper deflection rollers 3 and a lower deflection roller 2.
  • the upper deflection rollers 3 are provided with power supplies (not shown).
  • Anodes 5 are arranged on both sides of the metal strip 1, each of which is connected to a support 5 ".
  • the support 5" is around the horizontal axis (arrow A) and at a distance from the metal strip 1 (arrow B ) adjustable.
  • the carrier 5 " is preferably connected in the center to the anode 5.
  • the anodes 5 drawn in with dashed lines show that the distance and the inclination of the anodes 5 to the metal strip can be set as desired.
  • the carrier is 5 "electrically conductive, insulated, and provided with power connections (not shown).
  • the anodes 5 and the deflection roller 2 are arranged within a housing or a cell 16, the electrolyte flowing out of the anodes 5 being collected at the bottom of the cell 16 and being pumped up by means of the pump 8 to the upper region or edge of the anodes 5, so that the Cycle is closed.
  • only one side is coated, e.g. the electrolyte is only supplied to the external anodes 5, which are arranged between the metal strip 1 and the wall of the cell 16.
  • the anode 5 is connected at the upper and lower edge thereof to supports which are mounted such that they can be adjusted independently of one another at a distance from the metal strip 1, at least one support being mounted in an electrically conductive, insulated manner and having power supply connections .
  • FIG. 10 shows an embodiment of the invention in which two anodes 5 are arranged one above the other. It goes without saying that a plurality of anodes 5 can also be arranged one above the other.
  • the electrolyte flows freely from a slot of a feed line 18 into the upper anode 5 and flows out of the upper anode into a collecting trough 19. When this collecting trough 19 is filled with electrolyte, the electrolyte flows over the edge of the collecting trough 19 and becomes caught by a deflection trough 10 and passed to the lower anode in order to flow freely into it.
  • the electrolyte flowing out of the lower anode 5 is collected in the collecting vessel 7, which is provided with a discharge line 22, and pumped to the supply line 18 via a pump (not shown).
  • the remaining electrolyte adhering to the metal strip 1 is by means of a squeeze roller 23 removed and also flows to the collecting vessel 7.
  • additional current supply rollers 24 are provided, which are each arranged between two successive anodes 5.
  • the electrolyte emerging from the upper anode 5 is deflected into a collecting trough 19 'by means of a deflecting trough 10', the electrolyte then flowing in via the edge of the collecting trough 19 'into the space between the lower anode 5 and the metal strip 1 .
  • a collecting and deflecting device for the electrolyte which consists of a flat-shaped collecting funnel 25, the larger opening 26 of which receives the electrolyte from the upper anode 5, and whose smaller opening 27 the electrolyte via a tube to the lower one Anode 5 conducts.
  • Guide bars 28 and impact bars 29 are arranged in the collecting funnel 25, on the one hand to guide the electrolyte in the direction of the smaller opening, and on the other hand to slow the flow rate of the electrolyte.
  • FIG. 14 shows a variant 25 'of the collecting funnel 25 according to FIG. 13, which in this case is semicircular and is also provided with guide and impact bars 28', 29 '.
  • FIGS. 15 to 17 show a practical embodiment according to the invention, according to which the pump 8 is integrated with the cell 16.
  • the parts that are the same as in FIG. 6 are provided with the same reference symbols.
  • two upper deflection rollers 3 and one lower deflection roller 2 are provided.
  • the anodes 5 are in turn arranged in the space between the upper deflecting rollers 3 and the lower deflecting roller 2 on one or both sides of the metal strip 1, the anodes 5 and the lower deflecting roller 2 being surrounded by the cell 16 open at the top, in the bottom of which the electrolyte is collected and by means of the pump 8, which is arranged directly at the level of the base and to the side of the cell, is pumped via lateral channels on the cell to the anodes.
  • the side walls of the cell 16 are double-walled to form the side channels 20.
  • the bottom part of the cell 16 is connected via lines to a release station for the electrolyte (not shown).
  • the running direction of the steel strip is changed one or more times to the flow direction of the electrolyte, and the electroplating is carried out at a current density of 20 to 150, preferably 40 to 100 amperes / dm 2 by means of an electrolyte, which at least 80g / 1 NiSO 4 ⁇ 7H 2 O, 150 g / 1 ZnSO 4 .7H z O and 2 g / 1 H 3 BO 3, max corresponding in aqueous solution at 40 to 70 ° C, preferably 45 to 60 ° C contains the Solubilities of these substances in the solution mentioned.
  • a nickel: zinc ratio of 4:10 to 10:10 (preferably 5:10 to 8:10) is maintained in the electrolyte, which results in a nickel content of the deposited layer of 8-15% by weight. preferably results from 9-13 wt .-%.
  • an acidic sulfate electrolyte is used to distinguish it from all electrolytes containing chloride ions that would develop chlorine if insoluble anodes were used.
  • Sulfate electrolytes are also known, zinc and nickel or layers of low and high nickel content being applied alternately, the corrosion resistance etc. of course being correspondingly reduced.
  • US Pat. No. 4,313,802 works in countercurrent to a pure sulfate electrolyte, etc.
  • strontium sulfate in amounts of 0.05 to 10 g / 1 was recommended as a brightener, but this also has disadvantages because of the extremely low solubility of strontium sulfate and its relatively high cost.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating Methods And Accessories (AREA)

Claims (11)

1. Procédé d'enduction électrolytioue avec une couche métallique et éventuellement traitement électrolytique d'une bande metallique, qui est conduite dans une direction s'écartant de l'horizontale, l'électrolyte pénétrant dans la zone supérieure, affluant entre au moins une électrode en forme de plaque et la bande métallique et, durant une enduction, la bande métallique étant branchée cathodiquement et l'électrode anodiquement et, pendant un traitement électrolytique, la bande métallique étant branchée cathodiquement ou anodiquement et l'électrode, anodiquement ou cathodiquement, caractérisé en ce que l'électrolyte pénètre librement dans la zone supérieure de l'électrode à la manière d'un trop-plein et forme, sous l'influence de la pesanteur, par écoulement vers le bas dans l'espace compris entre l'électrode et la bande métallique, une colonne liquide sans fin, l'espace étant rempli constamment d'électrolyse.
2. Procédé selon la revendication 1, caractérisé en ce que l'angle de la bande métallique par rapport à la verticale s'élève au maximum à 30°.
3. Procedé selon la revendication 1, caractérisé en ce qu'une partie de l'électrolyte est introduite supplémentairement dans l'espace compris entre l'anode et la bande métallique par plusieurs ouvertures ou fentes qui traversent l'anode, en vue de remplir d'électrolyte affluant vers le bas l'espace compris entre l'anode et la bande metallique.
4. Procédé selon la revendication 1, caractérisé en ce que la distance de l'électrode à la bande est réglable.
5. Procédé selon la revendication 3, caractérisé en ce que la distance entre l'électrode et la bande métallique est de l'ordre de 2 à 20 mm dans la position de travail.
6. Procédé selon la revendication 4, caractérisé en ce que la distance entre le bord supérieur de l'électrode et la bande métallique, comme aussi la distance entre le bord inférieur de l'électrode et la bande métallique sont réglables individuellement ou en commun.
7- Procédé selon la revendication 4, caractérisé en ce que la polarité, la tension et l'intensité de courant sont réglables séparément lorsque les électrodes sont disposées des deux côtés de la bande.
8. Procédé selon la revendication 4, caractérisé en ce que la distance ensre la bande métallique et l'électrode diminue vers le bas conformément a l'équation d = k/Fs, où d est la distance, s, est la voie de l'électrolyte vers le bas et k est une constante.
9. Procédé selon l'une quelconque des revendications 1 à 8, caractérisé en ce qu'au moins deux électrodes sont disposées l'une au-dessus de l'autre auprès de la bande métallique, l'électrolyte pénétrant dans l'espace compris entre l'électrode supérieure es la bande étant recueilli en dessous de l'électrode et ensuite introduit librement dans l'espce compris entre la bande et l'électrode se situant en dessous.
10. Procédé selon l'une quelconque des revendications 1 à 9, caractérisé en ce qu'au cours de l'enduction d'une bande d'acier, le sens de déplacement de cette dernière se modifie une ou plusieurs fois (en montant ou en descendant) par rapport au sens de l'écoulement de l'électrolyte et la galvanisation s'effectue au moyen d'un électrolyse à une densité de courant de 20 à 150 Ampères/dm2.
11. Procède selon la revendication 9, caractérisé en ce qu'on travaille avec des anodes insolubles et en ce que la teneur en métal prélevée de l'électrolyse est recomplétée par la solubilisation de métaux, de sels de métaux d'alliages de métaux, d'oxydes ou d'hydroxydes de métaux.
EP83890122A 1982-08-05 1983-07-25 Procédé pour revêtement électrolytique par une couche métallique et éventuellement traitement électrolytique d'une bande métallique Expired EP0101429B1 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
AT0301482A AT373922B (de) 1982-08-05 1982-08-05 Verfahren und vorrichtung zur ein- oder beidseitigen kontinuierlichen beschichtung eines metallbandes
AT3014/82 1982-08-05
AT243883A AT377791B (de) 1983-07-04 1983-07-04 Verfahren und vorrichtung zur ein- oder beidseitigen kontinuierlichen beschichtung eines metallbandes
AT2438/83 1983-07-04

Publications (2)

Publication Number Publication Date
EP0101429A1 EP0101429A1 (fr) 1984-02-22
EP0101429B1 true EP0101429B1 (fr) 1987-02-25

Family

ID=25598460

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83890122A Expired EP0101429B1 (fr) 1982-08-05 1983-07-25 Procédé pour revêtement électrolytique par une couche métallique et éventuellement traitement électrolytique d'une bande métallique

Country Status (7)

Country Link
US (1) US4469565A (fr)
EP (1) EP0101429B1 (fr)
KR (1) KR890002839B1 (fr)
BR (1) BR8304178A (fr)
CA (1) CA1223840A (fr)
DE (1) DE3369861D1 (fr)
ES (1) ES524738A0 (fr)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4652346A (en) * 1984-12-31 1987-03-24 Olin Corporation Apparatus and process for the continuous plating of wide delicate metal foil
DE3816419C1 (fr) * 1988-05-13 1989-04-06 Rasselstein Ag, 5450 Neuwied, De
AT394215B (de) * 1988-11-15 1992-02-25 Andritz Ag Maschf Verfahren zur elektrolytischen herstellung einer metallfolie
US5188721A (en) * 1989-02-10 1993-02-23 Eltech Systems Corporation Plate anode having bias cut edges
US4915797A (en) * 1989-05-24 1990-04-10 Yates Industries, Inc. Continuous process for coating printed circuit grade copper foil with a protective resin
US5476578A (en) * 1994-01-10 1995-12-19 Electroplating Technologies, Ltd. Apparatus for electroplating
AT405194B (de) * 1996-04-15 1999-06-25 Andritz Patentverwaltung Vorrichtung zum galvanischen abscheiden eines ein- oder beidseitigen metall- oder legierungsüberzuges auf einem metallband
US6096183A (en) * 1997-12-05 2000-08-01 Ak Steel Corporation Method of reducing defects caused by conductor roll surface anomalies using high volume bottom sprays
TW570856B (en) * 2001-01-18 2004-01-11 Fujitsu Ltd Solder jointing system, solder jointing method, semiconductor device manufacturing method, and semiconductor device manufacturing system
US8133374B2 (en) * 2006-09-21 2012-03-13 Panasonic Corporation Method and apparatus for manufacturing negative electrode for non-aqueous electrolyte secondary battery
CN104213179A (zh) * 2014-09-18 2014-12-17 中色奥博特铜铝业有限公司 一种铜箔电镀槽及解决铜箔电镀工序阴阳极短路的方法
KR101786378B1 (ko) * 2016-08-23 2017-10-18 주식회사 포스코 수직형 전해장치
KR101908815B1 (ko) * 2016-12-23 2018-10-16 주식회사 포스코 내식성과 가공성이 우수한 Zn-Ni 전기도금강판 및 그 제조방법
CN106637366A (zh) * 2017-01-18 2017-05-10 武汉光谷创元电子有限公司 电镀装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3692640A (en) * 1969-09-18 1972-09-19 Matsushita Electric Ind Co Ltd Continuous anodic oxidation method for aluminum and alloys thereof
US4313802A (en) * 1979-02-15 1982-02-02 Sumitomo Metal Industries, Ltd. Method of plating steel strip with nickel-zinc alloy
US4367125A (en) * 1979-03-21 1983-01-04 Republic Steel Corporation Apparatus and method for plating metallic strip
AU525633B2 (en) * 1980-03-07 1982-11-18 Nippon Steel Corporation Metal strip treated by moving electrolyte
IT1149699B (it) * 1981-03-17 1986-12-03 Rasselstein Ag Apparecchio per la deposizione galvanica di un rivestimento metallico unilaterale su un nastro metallico,in particolare nastro di acciaio

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN, unexamined applications, C Field, Vol. 6, No. 35, March 3, 1982,THE PATENT OFFICE JAPANESE GOVERNMENT,page 120 C 93 *

Also Published As

Publication number Publication date
KR840005753A (ko) 1984-11-15
CA1223840A (fr) 1987-07-07
EP0101429A1 (fr) 1984-02-22
ES8505737A1 (es) 1985-06-01
KR890002839B1 (ko) 1989-08-04
US4469565A (en) 1984-09-04
ES524738A0 (es) 1985-06-01
BR8304178A (pt) 1984-03-13
DE3369861D1 (en) 1987-04-02

Similar Documents

Publication Publication Date Title
EP0101429B1 (fr) Procédé pour revêtement électrolytique par une couche métallique et éventuellement traitement électrolytique d'une bande métallique
DE3108615C2 (de) Vorrichtung und Verfahren zum elektrolytischen Behandeln eines Metallbandes
DE19983254C2 (de) Vorrichtung und Verfahren zur Herstellung einer dünnen Folie aus einer Ni-Fe-Legierung
DE3236545A1 (de) Verfahren zum elektroplattieren und vorrichtung zur durchfuehrung des verfahrens
DE2508094A1 (de) Verfahren und vorrichtung zum elektrolytischen abscheiden von metallen
DE3149519A1 (de) Verfahren und vorrichtung zur galvanisierung /verzinkung) von metallband
DE3233010A1 (de) Verfahren und vorrichtung zum elektroplattieren
DE4225961C5 (de) Vorrichtung zur Galvanisierung, insbesondere Verkupferung, flacher platten- oder bogenförmiger Gegenstände
DE3432821A1 (de) Verfahren und vorrichtung zur kontinuierlichen galvanischen legierungsabscheidung
EP0167790A2 (fr) Electrode en métal-soupape revêtue pour le zingage électrolytique
DE3317564A1 (de) Vorrichtung und verfahren zur metallbandbeschichtung
EP1230441A1 (fr) Procede et dispositif de traitement electrolytique de structures electroconductrices electriquement isolees l'une de l'autre et placees sur les surfaces de films electriquement isolants et application de ce procede
DE1928062C3 (de) Galvanisierzelle
AT411906B (de) Verfahren zum galvanischen beschichten einer sich im wesentlichen über einen halbkreis erstreckenden, zylindrischen innenfläche eines werkstückes
DE69923956T2 (de) Anodenstruktur zur Herstellung von Metallfolien
DE2534028C2 (de) Verfahren zur anodischen Oxidation einer Aluminiumbahn und elektrolytischen Einfärbung der Oxidschicht
EP0142010B1 (fr) Procédé et appareil pour le dépôt électrolytique de métaux
DE3603770C2 (fr)
DE60104107T2 (de) Verfahren und vorrichtung zur elektrolytischen beschichtung eines metallbandes
DE3011005A1 (de) Vorrichtung und verfahren zum aufbringen eines galvanischen ueberzugs auf eine oder auf beide seiten eines metallischen streifens
EP0115791A1 (fr) Procédé et appareil pour la régénération d'une solution de décapage contenant du cuivre
EP0183034B1 (fr) Procédé de galvanisation
AT377791B (de) Verfahren und vorrichtung zur ein- oder beidseitigen kontinuierlichen beschichtung eines metallbandes
DE60302560T2 (de) Durchlaufmetallisierungsanlage und verfahren zum elektrolytischen metallisieren von werkstücken
DE2522926A1 (de) Verfahren zur herstellung metallplattierten langgestreckten aluminiummaterials

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19831031

AK Designated contracting states

Designated state(s): BE DE FR GB IT SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MASCHINENFABRIK ANDRITZ ACTIENGESELLSCHAFT

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB IT SE

REF Corresponds to:

Ref document number: 3369861

Country of ref document: DE

Date of ref document: 19870402

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO TORTA SOCIETA' SEMPLICE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
EAL Se: european patent in force in sweden

Ref document number: 83890122.1

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20020625

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20020628

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20020711

Year of fee payment: 20

Ref country code: DE

Payment date: 20020711

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20020724

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20030724

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

EUG Se: european patent has lapsed