EP0094308A2 - Procédé et appareil de préparation de métal par électrolyse, notamment de plomb - Google Patents

Procédé et appareil de préparation de métal par électrolyse, notamment de plomb Download PDF

Info

Publication number
EP0094308A2
EP0094308A2 EP83400915A EP83400915A EP0094308A2 EP 0094308 A2 EP0094308 A2 EP 0094308A2 EP 83400915 A EP83400915 A EP 83400915A EP 83400915 A EP83400915 A EP 83400915A EP 0094308 A2 EP0094308 A2 EP 0094308A2
Authority
EP
European Patent Office
Prior art keywords
electrolyte
chloride
lead
particles
cathodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP83400915A
Other languages
German (de)
English (en)
Other versions
EP0094308B1 (fr
EP0094308A3 (en
Inventor
Claude Palvadeau
Claude Scheidt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Societe Miniere et Metallurgique de Penarroya
Original Assignee
Societe Miniere et Metallurgique de Penarroya
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Societe Miniere et Metallurgique de Penarroya filed Critical Societe Miniere et Metallurgique de Penarroya
Priority to AT83400915T priority Critical patent/ATE36013T1/de
Publication of EP0094308A2 publication Critical patent/EP0094308A2/fr
Publication of EP0094308A3 publication Critical patent/EP0094308A3/fr
Application granted granted Critical
Publication of EP0094308B1 publication Critical patent/EP0094308B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C1/00Electrolytic production, recovery or refining of metals by electrolysis of solutions
    • C25C1/18Electrolytic production, recovery or refining of metals by electrolysis of solutions of lead
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C5/00Electrolytic production, recovery or refining of metal powders or porous metal masses
    • C25C5/02Electrolytic production, recovery or refining of metal powders or porous metal masses from solutions

Definitions

  • the present invention relates to the preparation of a metal by electrolysis, and in particular the preparation of lead from metal chloride. It relates in particular to the electrolysis of very pure solutions of lead chloride.
  • French Patent No. 73-30.657 describes a process for depositing metallic lead from aqueous solutions of lead chloride. More precisely, this patent describes the electrolysis of such a solution in a diaphragm cell, in the presence of ferrous chloride which oxidizes to ferric chloride during the operation; in example 1 of this patent, the concentration of lead in the electrolyte is reduced to a value between 25 and 11 grams per liter, in a 3M solution of ferrous chloride, with a current density of 323 A / m 2 and a faradic yield of 70%.
  • the patent does not indicate the properties of metallic lead deposition such as its density, its adhesion to the cathodic support (lead sheet), its compact or pulverulent nature or its purity, nor the mode of extraction of lead.
  • French patent n ° 79-12.867 describes a process for recovering lead from sulphide ores. This process ensures the regeneration of the reagent, ferric chloride, at the anode of an electrolyser comprising neither a diaphragm nor a membrane.
  • Lead is deposited on a cathode formed by an assembly of rods mounted in special supports so that shocks can be applied to the rods due to their rotation or their mounting device. The lead formed is detached under the action of shocks and falls to the bottom of the tank. It is then evacuated.
  • This patent does not describe the effects of the electrolysis current in the vicinity of the electrode and neither describes the recovery of the lead fragments, nor the treatment of the latter before fusion.
  • French Patent No. 2,386,349 describes a process and an apparatus for recovering metallic particles by electrolysis.
  • This patent essentially concerns copper and, incidentally, transition metals, those which are indicated as preferable being two of groups VIII, 1b and 2b of the Periodic Table of Elements. This patent therefore does not concern the treatment of lead.
  • the metal essentially copper, forms, on the cathodes, particles which are torn off by using vigorous stirring ensured by mechanical agitators moved in front of the cathodes.
  • the powders must be washed before being extracted from the electrolysis cell.
  • the faradic yields obtained are most often less than 90%.
  • the anodic reaction is not described in general and it is not indicated if the chlorine is released at the anode or if on the contrary this release is avoided; and how. Î
  • the invention relates to the preparation by electrolysis of a very pure metal, preferably lead.
  • the subject of the invention is the preparation by electrolysis of a metal present in the electrolyte in a non-cationic and in particular anionic form.
  • It relates to such a method which implements a continuous detachment of the metal which forms on the cathodes.
  • the electrolyte circulates parallel to the cathodes which are placed vertically with a speed such that its flow is of the laminar or slightly turbulent type, so that this current, in cooperation with the apparent weight of the particles, ensures the detachment of these from the cathodes and, simultaneously, the renewal of the nearby electrolyte of the electrode surfaces.
  • the invention relates to a process for the preparation of a metal, preferably lead, by electrolysis in a diaphragm cell, of the type which comprises the formation of an electrolyte containing a chloride of the metal to be prepared and a chloride of an alkali or alkaline earth metal, and the circulation of the electrolyte between the electrodes and parallel to the surface of the cathodes.
  • the cathode surface is arranged in a substantially vertical direction and has a sufficiently low density of nucleation sites so that the metallic particles which form from these sites keep their individuality with respect to the adjacent particles, up to 'that they reach a dimension of at least 100 micrometers;
  • the flow of electrolyte along the cathode surface is of the laminar type or slightly turbulent, so that, under the action of their weight and the drag forces exerted by the electrolyte current, the metal particles get detach and fall into the electrolyte; the method further comprises removing the metallic particles collected at the bottom of the cell.
  • the metal of the electrolysis is lead, it is present, in the form of chloride, in an amount of between approximately 5 and 50 grams per liter, preferably between 15 and 25 grams per liter in the electrolyte.
  • the alkali or alkaline earth metal chloride is preferably sodium chloride. Its concentration in the electrolyte is preferably between 230 and 300 grams per liter.
  • the density of the electrolysis current is between 500 and 1500 A / m 2 , preferably between 700 and 1000 A / m 2 . It is better that this current density gradually increases since the start of electrolysis.
  • the temperature of the electrolyte is advantageously between 70 and 95 ° C.
  • the cathode surface having a low density of nucleation sites is preferably formed of titanium, stainless steel or graphite.
  • the electrolyte also contains iron in the form of chloride.
  • concentration of iron is then advantageously greater than 10 grams per liter and preferably between 20 and 60 grams per liter.
  • the laminar or slightly turbulent flow of the electrolyte along the cathode surface is obtained when the electrolyte current flows near the cathodes at a speed of between 0.01 and 0.15 meters per second.
  • the removal of the particles collected at the bottom of the cell is advantageously carried out by transporting the particles out of the cell, then by densification of the particles by compression.
  • the densified particles can undergo a rolling intended to drive out the electrolyte inclusions.
  • the densified particles can also undergo fusion in the presence of soda.
  • the invention also relates to an apparatus for preparing a metal by electrolysis, in particular lead, in which the cathodes and anodes are arranged vertically.
  • the cathodes are formed from a material chosen from the group which comprises titanium, stainless steel and graphite
  • the apparatus comprises at least one pump intended to circulate a current of electrolyte of the type laminar or weakly turbulent along the cathodes, and a transport device for removing divided solids which may fall to the bottom of the cell.
  • the electrodes are bipolar.
  • the device advantageously includes a recovery hood when chlorine gas is released at the anodes.
  • the anodes are advantageously formed from a metal which cannot be attacked by the electrolyte and in deployed form.
  • the transport device can advantageously be a worm, a bucket elevator or a conveyor belt and preferably the gooseneck system described below.
  • the apparatus may also include an extruder for receiving the particles and for densifying them.
  • the invention also relates to a semi-finished product of lead, prepared by the above-mentioned process and containing less than 0.2% of electrolyte in the form of inclusions.
  • the method and the apparatus according to the invention have all the advantages of apparatuses in which the metal detaches automatically from the cathodes.
  • the main advantage is the almost total elimination of manipulations of the electrodes. This reduction in handling increases the useful service time of the electrolysers so that the number of electrolysis cells can be reduced, with corresponding reduction in investments.
  • the solution which constitutes the electrolyte contains chlorides of lead, alkali or alkaline-earth metals, iron and possibly other metals, for example zinc.
  • the lead chloride solution is advantageously formed from a concentrate of lead sulphide ore which, in addition to lead, contains small amounts of zinc, copper, iron, calcium and magnesium. sium. After purification, for example according to the techniques described in French patents No. 2,323,766, 2,359,211 and 2,387,293 and in European patent application No. 0024987, the solution contains practically only lead and iron, the other metals being in negligible quantity. Said patents or patent applications are deemed to form part of this description.
  • the amount of lead in chloride form, present in the electrolyte is preferably greater than 5 grams per liter but it does not preferably exceed 50 grams per liter. These two values are determined from the current densities used during the electrolysis and the circulation speeds of the electrolyte in the vicinity of the electrodes, so that the faradaic yield and the production capacity are optimal.
  • the electrolyte also contains in high concentration an alkaline or alkaline-earth chloride.
  • the most advantageous is sodium chloride, for reasons of cost and availability.
  • the amount of this chloride in solution is advantageously chosen so that the concentration of chloride ion is greater than 3 equivalent-grams (that is to say in the case of sodium chloride at 200 grams per liter approximately), preferably between 4 and 5 gram equivalent (i.e. for sodium chloride between 230 and 300 grams per liter).
  • the role of this chloride is to increase the concentration of chloride ions in the electrolyte, which makes it possible to dissolve the metals whose chlorinated complexes are soluble, and to reduce the losses by Joule effect.
  • the electrolyte also contains iron in the chloride form.
  • the chloride ions oxidize at the anode to chlorine gas at an electrode potential of 1.2 V compared to the saturated calomel electrode (DHW).
  • the apparatus must then include a suitable collecting system.
  • the electrolyte advantageously contains iron so that, at the anode, the ferrous ion oxidizes to ferric ion at a po potential close to 0.6 V / DHW. It is therefore necessary that the electrolyte contains iron in the form of ferrous iron. Not only is the chlorine no longer released at the anode, but also the energy efficiency is clearly increased.
  • the ferric chloride formed at the anode is recovered and can be used again for the treatment of lead sulphide ores and the transformation of galena into elemental sulfur and lead chloride.
  • the concentration of iron in the electrolyte, in the chloride form is preferably between 20 and 60 grams per liter, and advantageously it is of the order of 40 grams per liter. It is important that this concentration is at least equal to 20 grams per liter in the anolyte, that is to say near the anodes.
  • the nature of the electrodes used and in particular of the cathodes is important for the implementation of the invention. It is found in fact that many materials are too “active", that is to say they form too many nucleation sites. As a result, lead particles begin to form at too many locations on the surface of the cathodes and can not not gain weight individually. For this reason, it is essential according to the invention that the density of the nucleation sites, under the electrolysis conditions used, is sufficiently low so that the particles can reach a dimension of at least 100 micrometers without joining with the particles. adjacent. Preferably, the particles retain their individuality until they reach a dimension of at least 600 micrometers and preferably one millimeter.
  • the particles individually have a large enough surface so that, when the electrolyte moves along the surface of the cathode, it exerts a tearing force which, in combination with the force of gravity, is sufficient for detachment particles when they have a dimension of a few hundred micrometers.
  • This density of sites is important according to the invention because, if the number of sites is too large, the particles formed are small and numerous and, when they are subsequently placed in the air, they oxidize easily because they form a pyrophoric powder. On the contrary, if the density of nucleation sites is too low, the production capacity is reduced.
  • a suitable density of nucleation sites is obtained by the use of cathodes whose surface is formed of smooth titanium. Stainless steel or graphite surfaces can also be used. Of course, other materials can also be used, when these have the appropriate density of nucleation sites. This density can be obtained by an activation treatment or, more often, deactivation according to techniques known to those skilled in the art.
  • the anodes can be formed from graphite. However, as it is desirable that the transport of material is favored, it is preferable that the anodes be formed from an expanded metal, for example ruthenized titanium. However, the nature of the anode is much less important for the implementation of the method of the invention as that of the cathode.
  • the phenomena of transport of materials during electrolysis are of primary importance on the morphology of the particles formed and on the faradaic yield obtained. It has already been noted that it was advantageous for the anodes to be formed from an expanded metal, allowing good transport of the materials, by an effect analogous to that of the turbulence promoters. However, this phenomenon of increased turbulence is advantageously used only at the anodes. It is preferable, for obtaining particles of suitable morphology, that the electrolyte current along the cathodes is of the laminar type or at least only slightly turbulent, while ensuring sufficient renewal of the electrolyte at the cathodes. It is indeed important that the concentration of lead varies only slightly throughout the electrolyte.
  • Obtaining a laminar or slightly turbulent flow at the cathode depends not only on the nature of the surface of the cathodes but also on the speed of the liquid along the cathodes. It is thus desirable, according to the invention, for the linear speed of the catholyte, parallel to the cathodes, to be at least 0.01 meter per second and preferably between 0.01 and 0.15 meter per second.
  • the speed of circulation of the solution which may be zero, is preferably at least 0.01 meter per second; the maximum value can be moderate, for example 0.05 meters per second, given the shape of the anodes which promote the creation of turbulence.
  • the temperature of the electrolyte is advantageously between 70 and 95 ° C, preferably between 70 and 90 ° C. No heating is necessary because the normal losses by Joule effect are sufficient to maintain the temperature in the aforementioned range.
  • the implementation of the method of the invention allows the use of very high current densities. They can be between 500 and 1,500 A / m 2 . Preferably, they are between 700 and 1000 A / m 2 .
  • the electrolysis begins at a low current density, lower than the values indicated above, and gradually increases to the chosen value, included in the aforementioned range .
  • the solution contains ferrous chloride
  • iron can deposit at the same time as lead, on the cathodes, when the current density is initially very high. The metal then adheres to the entire surface of the cathodes, so that the latter no longer have a suitable density of nucleation sites.
  • the initial use of a high current density can cause the evolution of hydrogen whose bubbles tend to cling to the metal particles so that these, instead of falling to the bottom of the electrolysis cell, tend to float.
  • the period during which the current density increases progressively or in stages, up to the desired final value, is advantageously a few hours.
  • the product obtained was in the form of individual particles having a dimension of a few hundred micrometers, for example from 300 to 600 micrometers.
  • Their shape can be branched and relatively flat, but their surface is relatively small for their volume. It is this characteristic which gives the particles formed their non-pyrophoric nature.
  • the particles are formed from very pure lead.
  • metals such as zinc, copper, cadmium, magnesium, etc. are present in an amount less than 1 ppm by weight.
  • the amount of iron is less than a few ppm by weight. It is therefore lead which does not subsequently require any refining for most applications.
  • the examples which follow give the purity of the lead obtained under different conditions.
  • the lead particles which deposit at the bottom of the cell are then extracted, using a suitable mechanism, as indicated in the remainder of this specification with reference to an apparatus intended for carrying out the method according to the invention.
  • the lead particles, when removed, are associated with occluded electrolyte, present in an amount between about 20 and 30% by weight. It is therefore desirable that the material undergoes compaction or rolling. It is in particular desirable that the particles be densified by extrusion, in a piston or roller press, exerting pressures greater than about 70 MPa. Filtration of the product is undesirable since the smallest particles may partially oxidize in air.
  • the semi-finished product of lead obtained for example in the form of a strip, is stable with respect to oxidation in air. It can be used as is in some applications.
  • lead can undergo fusion in the presence of sodium hydroxide, according to a well known technique.
  • the current density can then have an increased value, between 800 and 2,000 A / m 2 , preferably between 800 and 1,200 A / m 2 .
  • the pH of the electrolyte is at an equi free between 1.2 and 1.7, at a temperature of 70 to 80 ° C. This pH depends on the concentration of sulfate ions and the current density. However, it may be advantageous to work at a pH of between 2 and 3 so as to avoid the proton electrolysis reactions to give hydrogen. In this case, a pH regulation system must then be provided by adding a base which is preferably chosen so as not to add foreign ions to the electrolytes.
  • the basic sodium compounds sodium hydroxide, soda ash, or even basic lead compounds, lead hydroxide, litharge, basic lead carbonate, etc.
  • Another object of the present invention is to provide a device comprising a very large number of anode-cathode pairs placed in a non-isopotential manner.
  • the process which has just been explained above involves the use of numerous pumps for recirculation. These numerous pumps lead to investment costs which can be significant. This is why we have sought to develop an electrolysis device which makes it possible to reduce the number of electrolyte recirculation pumps and which generally reduces the investment costs of the devices 'electrolysis.
  • the above electrolytic cell commonly called “pool cell” is equipped with a series of substantially parallel rows of electrolytic cells between them.
  • Each cell is made up of the couple formed by an anode surface and a cathode surface.
  • all the cells are mounted in parallel, in a comb (or rake), that is to say that all the anodes in the same row have the same potential, however, as all the cathodes in the same row are also at the same potential.
  • the rows of said electrolytic-pool tank are mounted in electrical series; there is therefore a potential gradient in the tank-pool.
  • the present device which can be called “tank-channel” in order to implement the invention is constituted by a series of rows of anodes and cathodes mounted in parallel, the anodes of each row being then offset in parallel themselves by a value of between 5 and 20 centimeters in the direction of the decreasing potentials in the electrolysis cell, the distance between two rows being between 0.8 and 2 meters.
  • Cathodes of different rows and located on the same plane are joined together by partitions made of insulating material so as to limit stray or leakage currents. Although this is less important, the anodes of different rows and located in the same anode channel can be joined together by partitions made of insulating material so as to limit parasitic and / or leakage currents.
  • the assembly forms a juxtaposition of channels parallel to each other and perpendicular to the rows of electrodes.
  • Pump systems similar to those described in the present application require a circulation of the catholyte and the anolyte, while between each cathode and each anode there is the diaphragm which was mentioned during the description of the process.
  • the device can be of the monopolar or bipolar type.
  • Bipolar mounting has advantages because it reduces energy losses (by reducing ohmic drops in the electrodes and related structures), it reduces the cost of the electrodes since they have a double role, and it simplifies the mounting of sets of electrodes, while allowing better energy efficiency.
  • This advantageous assembly poses certain configuration problems at the ends of the electrodes, in particular to avoid leakage currents, as those skilled in the art know.
  • FIG. 1 is a diagram of an example of an apparatus for implementing the method according to the invention.
  • the reference 1 designates a tank of electrolysis containing an anode box 2.
  • the diaphragm is schematically identified by the reference 3.
  • the catholyte circulation circuit comprises a reservoir 4 and a circulation pump 5.
  • the catholyte circulates parallel to the plane of the cathodes which are mounted in the tank 1.
  • the anolyte circuit includes a reservoir 6 and a pump 7 which circulates the anolyte.
  • Reference 8 designates a pump intended to extract part of the anolyte which has concentrated in ferric chloride and is suitable for the treatment of lead sulphide ores.
  • Reference 9 designates the feed solution which restores the catholyte to the appropriate composition in the reservoir 4.
  • the particles which detach from the cathodes fall to the bottom of the cell and are taken up by an endless screw 10 mounted on a shaft 11 driven in rotation by a motor 12.
  • the particles arriving at the end of the screw arrive at a recipe 13 and are then treated as described above.
  • the nature of the electrodes and their mounting are as described above.
  • the diaphragm and anodes also have the properties indicated above.
  • a collecting hood must be mounted above the anodes so that it collects the chlorine which is released.
  • the adjustment of the weir makes it possible to maintain a difference in level between the catholyte and the anolyte, as indicated previously.
  • the flow rates of pumps 5 and 7 are adjusted so that the speeds of the anolyte and the catholyte, along the anodes and cathodes, have the values indicated above, that is to say at least equal to 0.01 meter per second.
  • the flow through the diaphragm is almost equal to the flow of the feed solution. In this way, the ferric iron can hardly pass into the catholyte.
  • the additional feed solution flow rates pass by overflow from the catholyte tank 4 to the tank anolyte 6.
  • the cell preferably has a trapezoidal or rounded bottom so that the falling particles are guided towards the worm.
  • a worm driven by a motor has been shown, other mechanisms are suitable.
  • bucket elevators or conveyor belts can also be advantageously used.
  • the product can also pass through an extruder which makes it undergo a prior densification, up to an apparent density of 3 to 6.
  • the extruder can be provided with a die long enough for it to seal the liquid.
  • the metallic particles formed are recovered using a gooseneck operating in batch mode.
  • the bottom of the cell is given a pyramid-like shape in order to direct the lead particles towards a swan neck which rises vertically along the cell.
  • the liquid level in the gooseneck is in hydrostatic equilibrium with that of the electrolysis cell, that is to say that the point of rejection of the swan neck is located from 2 to 20 centimeters above the level of the surface of the catholyte: lead aggregates accumulate in the lower part of the swan neck, constituting a real plug; intermittently one or more ejectors, which can be produced by nozzles, are supplied by catholyte without solid at a rate sufficient to create a suction effect at the bottom of the cell and to reach a linear speed of flow of the liquid in the. gooseneck of at least 0.5 meters per second.
  • the lead is entrained and recovered after separation of the liquid in a suitable system which is hydraulically disconnected from the electrolysis cell.
  • Lead agglomerates can also be entrained by air entrainment (air-lift).
  • the ejector (s) are disposed under the swan neck at the appropriate locations known to those skilled in the art to obtain a good "suction” or "air-lift”.
  • a sulfurized raw material consisting of a galena concentrate, containing 75.5% lead, 0.70% zinc, 0.85% copper, 1.40% iron, is treated with a solution of ferric chloride and sodium. , 1.0% calcium and 0.6% magnesium.
  • the electrolyzer supply solution and the electrolyte have the following compositions:
  • the electrolysis is carried out in an installation of the type shown in the figure; the circulation speed of the catholyte is 0.06 meters per second and that of the anolyte is 0.01 meters per second.
  • the cathodes are made of smooth titanium.
  • the current density, in steady state, is 550 A / m 2 .
  • the distance between the electrodes is 70 millimeters.
  • the lead obtained is in the form of particles having a length of the order of 300 to 600 micrometers and does not adhere to the cathodes.
  • the faradaic efficiency observed is 95%, and the energy yield is 0.57 kWh per kilo of lead.
  • Example 1 The same installation is used and an electrolyte of the same composition as in Example 1.
  • the circulation speed of the catholyte is 0.10 meters per second and that of the anolyte of 0.02 meters per second.
  • the current density used is 850 A / m 2 and the distance between the electrodes is the same as in Example 1.
  • the lead produced is similar to that described in Example 1.
  • the energy efficiency of electrolysis is 0.74 kWh per kilo.
  • Example 2 An installation similar to that of Example 1 is used.
  • the cathodes are formed from smooth titanium and the anodes from expanded titanium covered with ruthenium oxide. The distance between them is 70 millimeters.
  • the anodes are placed in an anode box in which the anolyte does not circulate.
  • the pressure difference between the anolyte and the catholyte is 20 millimeters of water column.
  • the installation is intended to allow the recovery of chlorine.
  • the lead content of the electrolyte is maintained by continuous introduction of crystallized lead chloride.
  • the crystals contain the following impurities, expressed in grams per tonne:
  • the energy efficiency of electrolysis is 1 kWh per kilo of lead.
  • the lead particles form a powder with an apparent density of between 1.5 and 2.5 and contain 20 to 30% by weight of occluded electrolyte. After densification with a rolling mill, this electrolyte is extracted from the powder.
  • the following table indicates not only the composition of the electrolyte but also the purity of the products obtained, on the one hand after rolling and on the other hand after shaping an ingot.
  • Example 3 The operating conditions are identical to those of Example 3, but the electrolyte contains 10 grams per liter of sulfate. At this concentration, the electrolysis is not disturbed by the sulfate ions and the energy yield remains substantially equal to 1 kWh per kilo of lead deposited.
  • the lead particles obtained have the same purity and the same level of occluded electrolyte as in Example 3.
  • the energy efficiency reaches 1.24 kWh per kilo of lead deposited.
  • the purity of the lead particles obtained and the characteristics before densification remain the same as in the previous example.
  • each cell consists of an anode and a cathode.
  • the electrolysis of copper sulphate was chosen to facilitate the measurements which essentially relate to the evolution of the leakage currents and the distribution of the current density at the surface of the cathodes.
  • the copper deposits are compact and the faradaic yield of the deposits very close to unity in a current density range of 200 to 300 amperes per square meter. Under these conditions, it is possible, by cutting the deposit into strips of equal width, to determine from the weight of each, the average current density of electrolysis on each surface element and thus to know the distribution profile of the average current density at the surface of the cathodes.
  • FIG. 2 represents the experimental device used.
  • the copper sulphate solution is kept in circulation between the tank 4, heated 5 and the channel type electrolysis tank 1 by the centrifugal pump 6.
  • Each cell 2 consists of a lead anode and a steel cathode stainless, spaced 1.6 cm apart.
  • one, two or three cells 2 can be mounted in electrical series and the spacing L between each cell can vary.
  • the diagram mainly represents the electrical connections between the anodes 7 and the cathodes 8.
  • Each cell 2 is connected externally by a conductor 9. Between each cell 2 there is a leakage current I F which decreases the overall energy efficiency of the electrolyser and which disturbs the distribution of the current density on the edges of the electrodes, mainly between the anode of one cell and the cathode of the neighboring cell.
  • the following table shows the main results obtained with an electrolyte containing 40 grams per liter of copper and 165 grams per liter of sulfuric acid. All the experiments were carried out at a temperature of 40 ° C for 15 to 20 hours.
  • the leakage currents are an important relative value with respect to the intensity of the current supplied by the rectifier 3. This relative importance will be considerably attenuated on a larger scale.
  • the graph below gives by way of example the average density profile obtained on the cathodes 8 for test 2.
  • the overcurrent on the edges of the cathodes is not acceptable due to the increase in the local electrode overvoltage which may cause the appearance of parasitic reactions.
  • the following figures show the distribution profiles of the true current density for the cathodes with or without offset.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Engineering & Computer Science (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Color Television Systems (AREA)
  • Television Signal Processing For Recording (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
  • Chemically Coating (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

L'invention concerne l'électrolyse continue de solutions de chlorure de plomb. Elles se rapporte à un procédé selon lequel les cathodes sont formées d'une matière présentant une faible densité de sites de nucléation, par exemple de titane lisse, et l'électrolyte circule le long des cathodes sous forme d'un courant laminaire. Les particules qui se forment sur les cathodes se détachent lorsqu'elles atteignent une dimension de quelques centaines de micromètres, et se rasemblent au fond de la cellule où elles sont récupérées. Application à la préparation du plomb par électrolyse.

Description

  • La présente invention concerne la préparation d'un métal par électrolyse, et notamment la préparation du plomb à partir de chlorure métallique. Elle concerne en particulier l'électrolyse de solutions très pures de chlorure de plomb.
  • Les procédés courants de traitement métallurgique des minerais de plomb permettent la préparation de solutions de chlorure de plomb qui sont très pures, par exemple après purification par un solvant ou cristallisation. L'invention concerne la préparation du plomb à partir de telles solutions.
  • Le brevet français n° 73-30.657 décrit un procédé de dépôt de plomb métallique à partir de solutions aqueuses de chlorure de plomb. Plus précisément ce brevet décrit l'électrolyse d'une telle solution dans une cellule a diaphragme, en présence de chlorure ferreux qui s'oxyde en chlorure ferrique pendant l'opération ; dans l'exemple 1 de ce brevet, la concentration du plomb dans l'électrolyte est réduite à une valeur comprise entre 25 et 11 grammes par litre, dans une solution 3M en chlorure ferreux, avec une densité de courant de 323 A/m2 et un rendement faradique de 70 %. Le brevet n'indique pas les propriétés du dépôt de plomb métallique telles que sa densité, son adhérence au support cathodique (feuille de plomb), sa nature compacte ou pulvérulente ou sa pureté, ni le mode d'extraction du plomb.
  • L'ouvrage "Electrometallurgy of Chloride Solutions" de V.V. Stender, Consultants Bureau, New-York, (1965) indique qu'un dépôt de plomb non compact, cristallisation grossière et présentant un éclat métallique, peut être obtenu à partir d'une saumure concentrée de chlorure de sodium contenant du plomb. La concentration du plomb diminue de 40 à 10 grammes par litre au cours d'une électrolyse réalisée avec une densité de courant comprise entre 500 et 1 000 A/m2. L'ouvrage ne donne pas de précision sur les propriétés du plomb telles que sa pureté, sa densité, son adhérence à la cathode qui est constituée d'une feuille de plomb, ni sur le mode d'extraction du dépôt. Le rendement faradique obtenu serait compris entre 85 et 90 %. Le même ouvrage indique par ailleurs qu'une poudre de plomb peut être obtenue à partir de solutions contenant 300 grammes par litre de NaCl et 10 grammes par litre de plomb sous forme de chlorure, avec un rendement faradique de 80 % environ.
  • Le rapport "Aqueous electrolysis of lead chloride" de F.P. Haver, D.L. Bixby et M.M. Wong, USBM Report of Investigations, 8276 (1978) décrit l'électrolyse de chlorure de plomb cristallisé sur une cathode horizontale placée en fond de cellule, si bien que la concentration de plomb en solution reste constante. Ce document indique que, dès que le dernier cristal de chlorure de plomb disparaît, le dépôt devient spongieux, d'aspect non métallique et adhérent. En présence de cristaux, le rendement faradique obtenu est de 96 % pour une densité de courant de 150 A/m2, dans une solution à 20 % de HCl à 25°C.
  • Le brevet français n° 79-12.867 décrit un procédé de valorisation de plomb à partir de minerais sulfurés. Ce procédé assure la régénération du réactif, le chlorure ferrique, à l'anode d'un électrolyseur ne comportant ni diaphragme, ni membrane. Le plomb se dépose.sur une cathode formée d'un assemblage de tiges montées dans des supports spéciaux afin que des chocs puissent être appliqués aux tiges du fait de la rotation de celles-ci ou de leur dispositif de montage. Le plomb formé se détache sous l'action des chocs et tombe au fond de la cuve. Il est ensuite évacué. Ce brevet ne décrit pas les effets du courant d'électrolyse au voisinage de l'électrode et ne décrit ni la récupération des fragments de plomb, ni le traitement de celui-ci avant fusion.
  • Le brevet français n° 2.386.349 décrit un procédé et un appareil de récupération de particules métalliques par électrolyse. Ce brevet concerne essentiellement le cuivre et accessoirement les métaux de transition, ceux qui sont indiqués comme préférables étant deux des groupes VIII, 1b et 2b de la Classification Périodique des Elé- ments. Ce brevet ne concerne donc pas le traitement du plomb. Selon ce brevet, le métal, le cuivre essentiellement, forme, sur les cathodes, des particules qui sont arrachées par utilisation d'un brassage vigoureux assuré par des agitateurs mécaniques déplacés devant les cathodes. Selon une caractéristique essentielle du procédé décrit dans ce brevet, les poudres doivent subir un lavage avant d'être extraites de la cellule d'électrolyse.
  • Ainsi, les procédés décrits présentent des inconvénients et les documents précités possèdent des lacunes. En particulier, on ne sait pas quelle est la qualité de la poudre obtenue, notamment sa pureté, sa densité, ses propriétés d'oxydation par l'air, toutes propriétés essentielles dans l'exploitation industrielle d'une telle poudre.
  • Ces documents n'indiquent aucun procédé d'extraction du plomb formé, pouvant être utlisé dans un électrolyseur industriel.
  • Les rendements faradiques obtenus sont le plus souvent inférieurs à 90 %. La réaction anodique n'est pas décrite en général et il n'est pas indiqué si le chlore se dégage a l'anode ou si au contraire ce dégagement est évi- ; té, et de quelle manière. Î
  • L'invention concerne la préparation par électrolyse d'un métal très pur, de préférence le plomb.
  • L'invention a pour objet la préparation par électrolyse d'un métal présent dans l'électrolyte sous une forme non cationique et notamment anionique.
  • Elle concerne un tel procédé qui met en oeuvre un détachement continu du métal qui se forme sur les cathodes.
  • Elle concerne un tel procédé qui permet la préparation d'un métal particulaire, notamment de plomb particulaire qui n'est pas pyrophorique et qui peut être facilement mis sous forme d'un demi-produit intéressant.
  • Elle concerne aussi un tel procédé qui permet l'obtention d'un rendement faradique très élevé.
  • Selon l'invention, l'électrolyte circule parallèlement aux cathodes qui sont placées verticalement avec une vitesse telle que son écoulement est de type laminaire ou faiblement turbulent, si bien que ce courant, en coopération avec le poids apparent des particules, assure le détachement de celles-ci des cathodes et, simultanément, le renouvellement de l'électrolyte à proximité des surfaces des électrodes.
  • Plus précisément, l'invention concerne un procédé de préparation d'un métal, de préférence de plomb, par électrolyse dans une cellule à diaphragme, du type qui comprend la formation d'un électrolyte contenant un chlorure du métal à préparer et un chlorure d'un métal alcalin ou alcalino-terreux, et la circulation de l'électrolyte entre les électrodes et parallèlement à la surface des cathodes. Selon l'invention, la surface cathodique est disposée en direction sensiblement verticale et a une densité suffisamment faible de sites de nucléation pour que les particules métalliques qui se forment à partir de ces sites gardent leur individualité vis-à-vis des particules adjacentes, jusqu'à ce qu'elles atteignent une dimension d'au moins 100 micromètres ; l'écoulement de l'électrolyte le long de la surface cathodique est de type laminaire ou faiblement turbulent, si bien que, sous l'action de leur poids et des forces de traînée exercées par le courant d'électrolyte, les particules de métal se détachent et tombent dans l'électrolyte ; le procédé comprend en outre le prélèvement des particules métalliques rassemblées au fond de la cellule.
  • Lorsque le métal de l'électrolyse est le plomb, il est présent, sous forme de chlorure, en quantité comprise entre environ 5 et 50 grammes par litre, de préférence entre 15 et 25 grammes par litre dans l'électrolyte.
  • Le chlorure de métal alcalin ou alcalino-terreux est de préférence le chlorure de sodium. Sa concentration dans l'électrolyte est de préférence comprise entre 230 et 300 grammes par litre.
  • Au cours de l'électrolyse, la densité du courant d'électrolyse est comprise entre 500 et 1 500 A/m2, de préférence entre 700 et 1 000 A/m2. Il est préférable que cette densité de courant augmente progressivement depuis la mise en route de l'électrolyse.
  • Pendant l'électrolyse, la température de l'électrolyte est avantageusement comprise entre 70 et 95°C.
  • La surface cathodique ayant une faible densité de sites de nucléation est de préférence formée de titane, d'acier inoxydable ou de graphite.
  • Il est avantageux que l'électrolyte contienne aussi du fer sous forme de chlorure. La concentration du fer est alors avantageusement supérieure à 10 grammes par litre et de préférence comprise entre 20 et 60 grammes par litre.
  • L'écoulement de type laminaire ou faiblement turbulent de l'électrolyte le long de la surface cathodique est obtenu lorsque le courant d'électrolyte circule à proximité des cathodes a une vitesse comprise entre 0,01 et 0,15 mètre par seconde.
  • Le prélèvement des particules rassemblées au fond de la cellule est avantageusement réalisé par transport des particules hors de la cellule, puis par densification des particules par compression. En outre, les particules densifiées peuvent subir un laminage destiné à chasser les inclusions d'électrolyte. Les particules densifiées peuvent aussi subir une fusion en présence de soude.
  • L'invention concerne aussi un appareil de préparation d'un métal par électrolyse, notamment du plomb, dans lequel les cathodes et les anodes sont disposées verticalement. Selon l'invention, les cathodes sont formées d'une matière choisie dans le groupe qui comprend le titane, l'acier inoxydable et le graphite, et l'appareil comporte au moins une pompe destinée à faire circuler un courant d'électrolyte de type laminaire ou faiblement turbulent le long des cathodes, et un dispositif de transport destiné à retirer les matières solides divisées qui peuvent tomber au fond de la cellule.
  • Dans un mode de réalisation avantageux, les électrodes sont bipolaires.
  • L'appareil comporte avantageusement une hotte de récupération lorsque du chlore gazeux se dégage aux anodes.
  • Les anodes sont avantageusement formées d'un métal inattaquable par l'électrolyte et sous forme déployée.
  • Le dispositif de transport peut être avantageusement une vis sans fin, un élévateur à godets ou une bande transporteuse et de préférence le système de col de cygne décrit ci-après.
  • L'appareil peut aussi comprendre une extrudeuse destinée à recevoir les particules extraites et à les densifier.
  • L'invention concerne aussi un demi-produit de plomb, préparé par le procédé précité et contenant moins de 0,2 % d'électrolyte sous forme d'inclusions.
  • Le procédé et l'appareil selon l'invention présentent tous les avantages des appareils dans lesquels le métal se détache automatiquement des cathodes. Le principal avantage est la suppression presque totale des manipulations des électrodes. Cette réduction de la manipulation augmente le temps de service utile des électrolyseurs si bien que le nombre de cellules d'électrolyse peut être réduit, avec réduction correspondante des investissements.
  • En outre, grâce au rendement faradique très élevé assuré par l'invention, supérieur à 90 % et souvent à 95 %, les pertes d'énergie sont réduites.
  • On considère maintenant plus en détail les différents paramètres qui influent sur la mise en oeuvre du procédé, d'abord dans le cas où la solution de départ contient du fer sous forme chlorure, en plus du plomb.
  • La solution qui constitue l'électrolyte contient des chlorures de plomb, de métaux alcalins ou alcalino-terreux, de fer et éventuellement d'autres métaux, par exemple de zinc.
  • La solution de chlorure de plomb est avantageusement formée à partir d'un concentré de minerai sulfuré de plomb qui, en plus du plomb, contient de petites quantités de zinc, de cuivre, de fer, de calcium et de magnésium. Après purification, par exemple selon les techniques décrites dans les brevets français n° 2.323.766, 2.359.211 et 2.387.293 et dans la demande de brevet européen n° 0024987, la solution ne contient pratiquement plus que du plomb et du fer, les autres métaux étant en quantité négligeable. Lesdits brevets ou demande de brevet sont réputés faire partie de la présente description.
  • La quantité de plomb sous forme chlorure, présente dans l'électrolyte, est de préférence supérieure à 5 grammes par litre mais elle ne dépasse pas de préférence 50 grammes par litre. Ces deux valeurs sont déterminées d'après les densités de courant utilisées au cours de l'électrolyse et les vitesses de circulation de l'électrolyte au voisinage des électrodes, afin que le rendement faradique et la capacité de production soient optimaux.
  • L'électrolyte contient aussi en forte concentration un chlorure alcalin ou alcalino-terreux. Le plus avantageux est le chlorure de sodium, pour des raisons de coût et de disponibilité. La quantité de ce chlorure en solution est avantageusement choisie de manière que la concentration en ion chlorure soit supérieure à 3 équivalent-grammes (c'est-à-dire dans le cas du chlorure de.sodium à 200 grammes par litre environ), de préférence comprise entre 4 et 5 équivalent-grammes (c'est-à-dire pour le chlorure de sodium entre 230 et 300 grammes par litre). Le rôle de ce chlorure est d'augmenter la concentration des ions chlorure dans l'électrolyte, ce qui permet de solubiliser les métaux dont les complexes chlorurés sont solubles, et de réduire les pertes par effet Joule.
  • Dans le mode de réalisation considéré, l'électrolyte contient aussi du fer sous forme chlorure. En l'absence de fer, les ions chlorure s'oxydent à l'anode en chlore gazeux à un potentiel d'électrode de 1,2 V par rapport à l'électrode au calomel saturé (ECS). L'appareil doit comporter alors un système collecteur convenable. Lorsqu'il n'est pas souhaitable que du chlore se dégage, l'électrolyte contient avantageusement du fer si bien que, a l'anode, l'ion ferreux s'oxyde en ion ferrique à a un potentiel voisin de 0,6 V/ECS. Il est donc nécessaire que l'électrolyte contienne du fer sous forme de fer ferreux. Non seulement le chlore ne se dégage plus à l'anode, mais encore le rendement énergétique est nettement accru. En outre, le chlorure ferrique formé à l'anode est récupéré et peut être utilisé nouveau pour le traitement des minerais sulfurés de plomb et la transformation de la galène en soufre élémentaire et en chlorure de plomb.
  • La concentration du fer dans l'électrolyte, sous forme chlorure, est de préférence comprise entre 20 et 60 grammes par litre, et avantageusement elle est de l'ordre de 40 grammes par litre. Il est important que cette concentration soit au moins égale à 20 grammes par litre dans l'anolyte, c'est-à-dire à proximité des anodes.
  • Le tableau I qui suit indique le principales caractéristiques de la composition de l'électrolyte.
    Figure imgb0001
  • La nature des électrodes utilisées et notamment des cathodes est importante pour la mise en oeuvre de l'invention. On constate en effet que de nombreuses matières sont trop "actives" c'est-à-dire forment des sites de nucléation en trop grand nombre. En conséquence, des particules de plomb commencent à se former à un trop grand nombre d'emplacements à la surface des cathodes et ne peuvent pas grossir individuellement. Pour cette raison, il est essentiel selon l'invention que la densité des sites de nucléation, dans les conditions d'électrolyse utilisées, soit suffisamment faible pour que les particules puissent atteindre une dimension d'au moins 100 micromètres sans se solidariser avec les particules adjacentes. De préférence, les particules gardent leur individualité jusqu'à ce qu'elles atteignent une dimension d'au moins 600 micromètres et de préférence un millimètre. Dans ces conditions, les particules ont individuellement une surface suffisamment grande pour que, lorsque l'électrolyte se déplace le long de la surface de la cathode, il exerce une force d'arrachement qui, en combinaison avec la force de pesanteur, suffit au détachement des particules lorsqu'elles ont une dimension de quelques centaines de micromètres.
  • Cette densité de sites est importante selon l'invention car, si le nombre de sites est trop grand, les particules formées sont petites et nombreuses et, lorsqu'elles sont mises ultérieurement à l'air, elles s'oxydent facilement car elles forment une poudre pyrophorique. Au contraire, si la densité de sites de nucléations est trop faible, la capacité de production est réduite.
  • On constate qu'on obtient une densité convenable de sites de nucléation par utilisation de cathodes dont la surface est formée de titane lisse. On peut aussi utiliser des surfaces d'acier inoxydable ou de graphite. Bien entendu, on peut aussi utiliser d'autres matières, lorsque celles-ci ont la densité convenable de sites de nucléation. Cette densité peut être obtenue par un traitement d'activation ou, le plus souvent, de désactivation selon des techniques connues de l'homme de l'art.
  • Les anodes peuvent être formées de graphite. Cependant, comme il est souhaitable que le transport de matière soit favorisé, il est préférable que les anodes soient formées d'un métal déployé, par exemple de titane ruthénisé. Cependant, la nature de l'anode a beaucoup moins d'importance pour la mise en oeuvre du procédé de l'invention que celle de la cathode.
  • L'obtention de rendements faradiques élevés nécessite la maîtrise du transport de fer ferrique formé à l'anode vers le catholyte. Le choix d'un diaphragme convenable, ayant une faible perméabilité, l'utilisation d'une densité élevée de courant et le maintien d'une différence de pressions hydrostatiques entre le catholyte et l'anoly- te, cette différence de pression étant d'au moins 20 millimètres de colonne liquide, permettent d'éviter le passage du Fe III vers le catholyte. De cette manière, la totalité en pratique du débit d'alimentation de la cellule passe à travers le diaphragme. Celui-ci est avantageusement formé de fibres textiles chimiquement inertes dans l'électrolyte. Des matières qui conviennent sont le polyester revêtu d'une silicone, les fibres de verre téflon- nées, et de préférence des fibres synthétiques à base de polymères fluorés.
  • Les phénomènes de transport de matières au cours de l'électrolyse ont une importance primordiale sur la morphologie des particules formées et sur le rendement faradique obtenu. On a déjà noté qu'il était avantageux que les anodes soient formées d'un métal déployé, permettant un bon transport des matières, par un effet analogue à celui des promoteurs de turbulences. Cependant, ce phénomène d'accentuation des turbulences n'est avantageusement utilisé qu'au niveau des anodes. Il est préférable, pour l'obtention de particules de morphologie convenable, que le courant d'électrolyte le long des cathodes soit de type laminaire ou au moins faiblement turbulent seulement, tout en assurant un renouvellement suffisant de l'électrolyte au niveau des cathodes. Il est en effet important que la concentration du plomb ne varie que faiblement dans tout l'électrolyte. L'obtention d'un écoulement laminaire ou faiblement turbulent au niveau de la cathode dépend non seulement de la nature de la surface des cathodes mais aussi de la vitesse du liquide le long des cathodes. Il est ainsi souhaitable, selon l'invention, que la vitesse linéaire du catholyte, parallèlement aux cathodes, soit d'au moins 0,01 mètre par seconde et de préférence comprise entre 0,01 et 0,15 mètre par seconde. Au niveau des anodes, la vitesse de circulation de la solution qui peut être nulle, est de préférence d'au moins 0,01 mètre par seconde ; la valeur maximale peut être modérée, par exemple de 0,05 mètre par seconde, étant donné la forme des anodes qui favorisent la création de turbulences.
  • La température de l'électrolyte est avantageusement comprise entre 70 et 95°C, de préférence entre 70 et 90°C. Aucun chauffage n'est nécessaire car les pertes normales par effet Joule suffisent au maintien de la température dans la plage précitée.
  • La mise en oeuvre du procédé de l'invention permet l'utilisation de densités de courant très élevées. Elles peuvent être comprises entre 500 et 1 500 A/m2. De préférence, elles sont comprises entre 700 et 1 000 A/m2.
  • Le tableau II résume les diverses conditions précitées.
    Figure imgb0002
  • Il est souhaitable, lors de la mise en oeuvre du procédé selon l'invention, que l'électrolyse commence à une faible densité de courant, inférieure aux valeurs indiquées précédemment, et croisse progressivement jusqu'à la valeur choisie, comprise dans la plage précitée. En effet, lorsque la solution contient du chlorure ferreux, le fer peut se déposer en même temps que le plomb, sur les cathodes, lorsque la densité de courant est initialement très élevée. Le métal adhère alors sur toute la surface des cathodes, si bien que celles-ci ne possèdent plus une densité convenable de sites de nucléation.
  • Lorsque l'électrolyte ne contient pratiquement pas de chlorure de fer, l'utilisation initiale d'une densité élevée de courant peut provoquer le dégagement d'hydrogène dont les bulles ont tendance à s'accrocher aux particules métalliques si bien que celles-ci, au lieu de tomber au fond de la cellule d'électrolyse, ont tendance à flotter.
  • La période pendant laquelle la densité de courant augmente progressivement ou par paliers, jusqu'à la valeur finale voulue, est avantageusement de quelques heures.
  • Comme indiqué précédemment, on a vu qu'il était souhaitable que le produit obtenu soit sous forme de particules individuelles ayant une dimension de quelques centaines de micromètres, par exemple de 300 à 600 micromètres. Leur forme peut être ramifiée et relativement aplatie, mais leur surface est relativement faible pour leur volume. C'est cette caractéristique qui donne aux particules formées leur caractère non pyrophore.
  • Les particules sont formées de plomb très pur. Par exemple, les métaux tels que le zinc, 1e cuivre, le cadmium, le magnésium, etc... sont présents en quantité inférieure à 1 ppm en poids. La quantité de fer est inférieure à quelques ppm en poids. Il s'agit donc de plomb qui ne nécessite ultérieurement aucun affinage pour la plupart des applications. Les exemples qui suivent donnent la pureté du plomb obtenu dans différentes conditions.
  • Un paramètre important pour la mise en oeuvre d'une électrolyse est le rendement faradique obtenu puisque celui-ci indique l'importance des pertes électriques. Selon l'invention, ce rendement faradique est au moins égal à 90 % et il atteint et dépasse en général 95 %. Bien entendu, ces rendements ne sont obtenus que lorsque les différents paramètres ont les valeurs voulues, correspondant par exemple aux tableaux précités I et II.
  • Les particules de plomb qui se déposent au fond de la cellule sont ensuite extraites, à l'aide d'un mécanisme convenable, comme indiqué dans la suite du présent mémoire en référence à un appareil destiné à la mise en oeuvre du procédé selon l'invention. Les particules de plomb, lorsqu'elles sont retirées, sont associées à de l'électrolyte occlus, présent en quantité comprise entre 20 et 30 % en poids environ. Il est donc souhaitable que la matière subisse un compactage ou un laminage. Il est en particulier souhaitable que les particules soient densifiées par extrusion, dans une presse à pistons ou à rouleaux, exerçant des pressions supérieures à environ 70 MPa. La filtration du produit est peu souhaitable étant donné que les plus petites particules risquent de s'oxyder partiellement à l'air.
  • Lorsque les particules sont prélevées au fond de la cuve, elles présentent une densité apparente de l'ordre de 1,5 à 2,0. Après extrusion, cette densité dépasse 10,5. Le demi-produit de plomb obtenu, par exemple sous forme d'un feuillard, est stable vis-à-vis de l'oxydation à l'air. Il peut être utilisé tel quel dans certaines applications.
  • Dans une variante, le plomb peut subir une fusion en présence de soude, selon une technique bien connue.
  • La description qui précède concerne l'électrolyse d'une solution concentant du chlorure ferreux. Cette caractéristique n'est pas indispensable. Lorsque le procédé est mis en oeuvre sans chlorure ferreux dans l'électrolyte, il se dégage du chlore au niveau des anodes. L'appareil utilisé doit donc comporter un système collecteur de chlore. De tels systèmes sont bien connus dans les industries électrochimiques et on ne les décrit donc pas en détail.
  • La densité de courant peut alors avoir une valeur accrue, comprise entre 800 et 2 000 A/m2, de préférence entre 800 et 1 200 A/m2.
  • Le pH de l'électrolyte est à une valeur d'équilibre comprise entre 1,2 et 1,7, à une température de 70 à 80°C. Ce pH dépend de la concentration des ions sulfate et de la densité de courant. Toutefois, il peut être avantageux de travailler à un pH compris entre 2 et 3 de manière à éviter les réactions d'électrolyse du proton pour donner de l'hydrogène. Dans ce cas, il faut alors prévoir un système de régulation du pH par addition d'une base qui est de préférence choisie de manière à ne pas ajouter dans les électrolytes des ions étrangers. On utiliserait de préférence les composés basiques du sodium (soude, carbonate de soude, voire composés basiques du plomb, hydroxyde de plomb, litharge, carbonate basique de plomb, etc...).
  • Par ailleurs, les différents paramètres considérés précédemment doivent avoir sensiblement les mêmes valeurs. On ne les décrit donc pas à nouveau en détail.
  • Bien qu'on ait décrit le procédé en référence au dépôt de plomb, il n'est pas limité à ce seul métal. En effet, le procédé permet aussi la formation de particules de cuivre, dans des conditions similaires et ce notamment à partir de chlorure cuivreux.
  • Un autre objet de la présente invention est de fournir un dispositif comportant de très nombreux couples anodes-cathodes placés de manière non isopotentielle. En effet, le procédé qui vient d'être exposé ci-dessus implique l'utilisation de nombreuses pompes pour la recircula- tion. Ces nombreuses pompes conduisent à des frais d'investissement qui peuvent être importants. C'est pourquoi on a cherché à mettre au point un dispositif d'électrolyse qui permette de réduire le nombre de pompes de recircula- tion d'électrolyte et qui d'une manière générale réduise de façon importante les frais d'investissement des dispositifs d'électrolyse.
  • Il s'agit de dispositifs non isopotentiels dérivés de ceux dont la mise en oeuvre a déjà été réalisée pour l'électro-raffinage du cuivre en milieu sulfate. On peut se reporter à "Mining Annual Review" 1982, page 282 ainsi qu'à l'article "Technoloqically advanced smelter in- corporates latest design concepts", Journal of Metals, July 1978, pages 16 - 26.
  • La cuve électrolytique ci-dessus, communément appelée "cuve-piscine", est équipée d'une série de rangées sensiblement parallèles entre elles de cellules électrolytiques. Chaque cellule est constituée du couple formé par une surface anodique et une surface cathodique. Chaque anode et chaque cathode, sauf à l'extrémité de chaque rangée, appartiennent à deux cellules. Dans une même rangée toutes les cellules sont montées en parallèle, en peigne (ou en rateau), c'est-à-dire que toutes les anodes d'une même rangée sont à un même potentiel cependant que toutes les cathodes d'une même rangée sont également à un même potentiel. Les rangées de ladite cuve électrolytique-piscine sont montées en série électrique ; il y a donc un gradient de potentiel dans la cuve-piscine.
  • Une telle technologie toutefois ne peut être utilisée pour l'électro-raffinage du cuivre qu'en raison de la très faible différence de potentiel entre anode et cathode, de l'ordre de 0,25 volt, et même ainsi, il est nécessaire que la distance séparant deux rangées d'électrodes soit de 0,5 mètre environ, faute de quoi les pertes énergétiques dues au courant parasite et/ou de fuite de cellule à cellule deviennent considérables.
  • C'est pourquoi ces dispositifs décrits dans les articles ci-dessus devaient être profondément modifiés pour être adaptés au procédé selon la présente invention afin de minimiser les courants de fuite et les différentes pertes énergétiques provoquées par ces courants de fuite.
  • Selon l'invention, il a été constaté que lorsque l'on reliait les cathodes de deux rangées différentes situées dans un même plan par des cloisons isolantes en matériau non conducteur et lorsque l'on constituait des "chenaux anodiques" en reliant les boîtes anodiques entre elles au moyen de matériau non conducteur de manière a isoler l'anolyte du catholyte, il est possible de réaliser ces dispositifs non équipotentiels sans que les pertes énergétiques deviennent trop grandes dès lors que la distance séparant deux rangés d'électrodes était comprise entre 0,8 et 2 mètres et de préférence entre 1 et 1,5 mètres. Ces cloisons isolantes présentent sensiblement la même hauteur que les électrodes.
  • Il convient ici de noter que les fortes densités de courant permettent de diminuer de manière importante la proportion des courants parasites ou de fuite. Toutefois, lors de la mise en oeuvre de tels dispositifs, on a constaté des phénomènes susceptibles d'altérer la qualité des électrodes car la densité de courant cessait d'être homogène sur toute la surface des électrodes. Cette inhomogé- néïté conduit à des phénomènes de surtension sur les bords des cathodes, ce qui se traduit par des réactions parasites telles que par exemple dégagement d'hydrogène et dépôt de fer, ce qui conduit à modifier les structures des cathodes dont il a été écrit plus haut combien elles étaient importantes pour le procédé selon la présente invention.
  • C'est pourquoi une étude a été nécessaire pour pallier ces phénomènes nuisibles lors de la réalisation de ce dispositif non isopotentiel. Cette étude a montré qu'il était possible d'éliminer ou à tout le moins de pallier le phénomène en décalant les anodes par rapport aux cathodes d'une distance comprise entre 5 et 20 centimètres, de préférence aux alentours de 20 centimètres, ce décalage étant réalisé`dans le sens des potentiels décroissants dans la cuve d'électrolyse.
  • Ces conditions, ainsi que cela est décrit dans les exemples 6 et 7, permettent d'obtenir d'excellents résultats.
  • Ainsi, le présent dispositif, que l'on peut appeler "cuve-canal", en vue de mettre en oeuvre l'invention est constitué par une série de rangées d'anodes et de cathodes montées en parallèles, les anodes de chaque rangée étant alors décalées parallèlement elles-mêmes d'une valeur comprise entre 5 et 20 centimètres dans le sens des potentiels décroissants dans la cuve d'électrolyse, la distance entre deux rangées étant comprise entre 0,8 et 2 mètres.
  • Les cathodes des rangées différentes et situées sur un même plan sont réunies entre elles par des cloisons réalisées en matériau isolant de manière à limiter les courants parasites ou de fuite. Quoique cela soit moins important, les anodes des rangées différentes et situées dans un même chenal anodique peuvent être réunies entre elles par des cloisons réalisées en matériau isolant de manière à limiter les courants parasites et/ou de fuite.
  • L'ensemble forme une juxtaposition de chenaux parallèles entre eux et perpendiculaires aux rangées d'électrodes. Des systèmes de pompes semblables à ceux qui sont décrits dans la présente demande impose une circulation du catholyte et de l'anolyte, cependant qu'entre chaque cathode et chaque anode on retrouve le diaphragme qui a été évoqué lors de la description du procédé.
  • Il va de soi qu'un tel dispositif peut être utilisé non seulement pour la mise en oeuvre de la présente invention mais aussi dans tout dispositif d'électrolyse dans lequel on désire réaliser un circulation forcée des électrolytes.
  • On considère maintenant plus précisément les caractéristiques d'un appareil destiné à la mise en oeuvre du procédé de l'invention. On ne considère pas à nouveau les caractéristiques des cathodes et des anodes qui ont déjà été précisées. L'appareil peut être de type monopo- laire ou bipolaire. Le montage bipolaire présente des avantages car il réduit les pertes d'énergie (par réduction des chutes ohmiques dans les électrodes et les structures afférentes), il réduit le coût des électrodes puisque celles-ci ont un double rôle, et il simplifie le montage des ensembles d'électrodes, tout en permettant l'obtention d'un meilleur rendement énergétique. Ce montage avantageux pose cependant certains problèmes de configuration aux extrémités des électrodes, notamment pour éviter des courants de fuite, comme le savent les hommes du métier.
  • La figure 1 est un schéma d'un exemple d'appareil pour la mise en oeuvre du procédé selon l'invention.
  • Sur les figures, la référence 1 désigne une cuve d'électrolyse contenant une boîte anodique 2. Le diaphragme est schématiquement repéré par la référence 3.
  • Le circuit de circulation de catholyte comporte un réservoir 4 et une pompe 5 de circulation. Le catholyte circule parallèlement au plan des cathodes qui sont montées dans la cuve 1.
  • Le circuit d'anolyte comprend un réservoir 6 et une pompe 7 qui fait circuler l'anolyte.
  • La référence 8 désigne une pompe destinée à extraire une partie de l'anolyte qui s'est concentré en chlorure ferrique et convient au traitement de minerais sulfurés de plomb. La référence 9 désigne la solution d'alimentation qui redonne au catholyte la composition convenable dans le réservoir 4. Les particules qui se détachent des cathodes tombent au fond de la cellule et sont reprises par une vis sans fin 10 montée sur un arbre 11 entraîné en rotation par un moteur 12. Les particules arrivant à l'extrémité de la vis parviennent à une recette 13 et sont ensuite traitées comme décrit précédemment.
  • Dans l'appareil schématiquement représenté sur la figure unique, la nature des électrodes et leur montage sont tels que décrits précédemment. Le diaphragme et les anodes ont aussi des propriétés indiqués précédemment. Lorsque la solution ne contient pas de chlorure ferreux, un capot collecteur doit être monté au-dessus des anodes afin qu'il recueille le chlore qui se dégage.
  • Le réglage du déversoir permet de maintenir une différence de niveau entre le catholyte et l'anolyte, comme indiqué précédemment. Les débits des pompes 5 et 7 sont réglés de manière que les vitesses de l'anolyte et du catholyte, le long des anodes et des cathodes, aient les valeurs indiquées précédemment, c'est-à-dire au moins égales à 0,01 mètre par seconde. Le débit qui traverse le diaphragme est pratiquement égal au débit de la solution d'alimentation. De cette manière, le fer ferrique ne peut pratiquement pas passer dans le catholyte. Le complément des débits de solution d'alimentation transite par débordement du réservoir du catholyte 4 vers le réservoir d'anolyte 6.
  • La cellule a de préférence un fond trapézoïdal ou arrondi de façon que les particules qui tombent soient guidées vers la vis sans fin.
  • Bien qu'on ait représenté une vis sans fin entraînée par un moteur, d'autres mécanismes conviennent. Par exemple, des élévateurs à godets ou des bandes transporteuses peuvent aussi être avantageusement utilisés. Le produit peut aussi passer dans une extrudeuse qui lui fait subir une densification préalable, jusqu'à une densité apparente de 3 à 6. L'extrudeuse peut être munie d'une filière suffisamment longue pour qu'elle assure l'étanchéité au liquide.
  • Selon une mise en oeuvre préférée de l'invention, on récupère les particules métalliques formées à l'aide d'un col de cygne fonctionnant en discontinu. Dans ce cas, on donne au fond de la cellule une forme de type pyramidal afin de diriger les particules de plomb vers un col de cygne qui remonte verticalement le long de la cellule. Le niveau liquide dans le col de cygne est en équilibre hydrostatique avec celui de la cellule d'électrolyse, c'est-à-dire que le point de rejet du col de cygne est situé de 2 à 20 centimètres au-dessus du niveau de la surface du catholyte : les agrégats de plomb s'accumulent dans la partie inférieure du col de cygne, constituant un véritable bouchon ; par intermittance un ou plusieurs éjecteurs, qui peuvent être réalisés par des ajutages, sont alimentés par du catholyte sans solide à un débit suffisant pour créer un effet de succion en fond de cellule et pour atteindre une vitesse linéaire d'écoulement du liquide dans le.col de cygne d'au moins 0,5 mètre par seconde. Le plomb est entraîné et récupéré après séparation du liquide dans un système approprié qui est déconnecté hydrauliquement de la cellule d'électrolyse.
  • On peut aussi entraîner les agglomérats de plomb par entraînement à l'air (air-lift). Le ou les éjecteurs sont disposés sous le col de cygne aux endroits appropriés connus de l'homme de l'art pour obtenir un bon effet de "succion" ou d"'air-lift".
  • Les exemples de réalisation de la présente invention, non limitatifs, suivants ont pour but de mettre les spécialistes à même de déterminer aisément les conditions opératoires qu'il convient d'utiliser dans chaque cas particulier.
  • Exemple 1
  • On traite par une solution de chlorure ferrique et de sodium une matière première sulfurée constituée par un concentré de galène, contenant 75,5 % de plomb, 0,70 % de zinc, 0,85 % de cuivre, 1,40 % de fer, 1,0 % de calcium et 0,6 % de magnésium.
  • Après purification, la solution d'alimentation de l'électrolyseur et l'électrolyte ont les compositions suivantes :
    Figure imgb0003
  • L'électrolyse est effectuée dans une installation du type représenté sur la figure ; la vitesse de circulation du catholyte est de 0,06 mètre par seconde et celle de l'anolyte de 0,01 mètre par seconde. Les cathodes sont formées de titane lisse. La densité de courant, en régime permanent, est de 550 A/m2. La distance séparant les électrodes est de 70 millimètres.
  • On constate que le plomb obtenu est sous forme de particules ayant une longueur de l'ordre de 300 à 600 micromètres et n'adhère pas aux cathodes. Le rendement faradique observé est de 95 %, et le rendement énergétique de 0,57 kWh par kilo de plomb.
  • La pureté du plomb obtenu d'une part sous forme simplement laminée et d'autre part sous forme d'un lingot est la suivante :
    Figure imgb0004
  • Exemple 2
  • On utilise la même installation et un électrolyte de même composition que dans l'exemple 1. La vitesse de circulation du catholyte est de 0,10 mètre par seconde et celle de l'anolyte de 0,02 mètre par seconde. La densité de courant utilisée est de 850 A/m2 et la distance entre les électrodes est la même que dans l'exemple 1.
  • Le plomb produit est analogue à celui décrit dans l'exemple 1. Le rendement énergétique de l'électrolyse est de 0,74 kWh par kilo.
  • Exemple 3
  • On utilise une installation analogue à celle de l'exemple 1. Les cathodes sont formées de titane lisse et les anodes de titane déployé recouvert d'oxyde de ruthénium. La distance qui les sépare est égale à 70 millimètres. Les anodes sont disposées dans une boîte anodique dans laquelle l'anolyte ne circule pas. La différence de pressions entre l'anolyte et le catholyte est de 20 millimètres de colonne d'eau. L'installation est destinée à permettre la récupération du chlore.
  • Dans cet exemple, la teneur en plomb de l'électrolyte est maintenue par introduction continue de chlorure de plomb cristallisé. Les cristaux contiennent les impuretés suivantes, exprimées en grammes par tonne :
    Figure imgb0005
  • Les conditions d'électrolyse sont les suivantes :
    • densité de courant : 1 000 A/m2
    • température : 75°C
    • vitesse linéaire du catholyte : 0,04 mètre par seconde.
  • Le rendement énergétique de l'électrolyse est de 1 kWh par kilo de plomb. Les particules de plomb forment une poudre de densité apparente comprise entre 1,5 et 2,5 et contiennent 20 à 30 % en poids d'électrolyte occlus. Après densification au laminoir, cet électrolyte est extrait de la poudre.
  • Le tableau qui suit indique non seulement la composition de l'électrolyte mais aussi la pureté des produits obtenus, d'une part après laminage et d'autre part après mise en forme d'un lingot.
    Figure imgb0006
  • Exemple 4
  • Les conditions opératoires sont identiques à celles de l'exemple 3, mais l'électrolyte contient 10 grammes par litre de sulfate. A cette concentration, l'électrolyse n'est pas perturbée par les ions sulfate et le rendement énergétique reste sensiblement égal à 1 kWh par kilo de plomb déposé.
  • Les particules de plomb obtenues ont une même pureté et un même taux d'électrolyte occlus que dans l'exemple 3.
  • Exemple 5
  • On utilise des conditions opératoires identiques à cèl2e de l'exemple 4, mais on porte la densité de courant à 1 500 A/m2
  • Le rendement énergétique atteint 1,24 kWh par kilo de plomb déposé. La pureté des particules de plomb obtenues et les caractéristiques avant densification restent les mêmes que dans l'exemple précédent.
  • Exemple 6 : Montage d'électrodes de même nature de série électrique dans la même cuve
  • Dans une cellule d'électrolyse de laboratoire de 2 mètres de long, 0,15 mètre de haut et 0,03 mètre de large, on a évalué l'importance des courants de fuite entre deux cellules. Chaque cellule est constituée d'une anode et d'une cathode. On a choisi l'électrolyse du sulfate de cuivre pour faciliter les mesures qui portent essentiellement sur l'évolution des courants de fuite et la répartition de la densité de courant à la surface des cathodes. En effet, en milieu sulfate, les dépôts de cuivre sont compacts et le rendement faradique des dépôts très voisin de l'unité dans une plage de densité de courant de 200 à 300 ampères par mètre carré. Dans ces conditions, il est possible, en découpant le dépôt en bandes d'égale largeur, de déterminer à partir du poids de chacune, la densité de courant moyenne d'électrolyse sur chaque élément de surface et de connaître ainsi le profil de répartition de la densité de courant moyenne à la surface des cathodes.
  • La figure 2 représente le dispositif expérimental utilisé. La solution de sulfate de cuivre est maintenue en circulation entre le réservoir 4, chauffé 5 et la cuve d'électrolyse type chenal 1 par la pompe centrifuge 6. Chaque cellule 2 est constituée d'une anode en plomb et d'une cathode en acier inoxydable, espacées de 1,6 centimètres. Dans la cuve 1, une, deux ou trois cellules 2 peuvent être montées en série électrique et l'écartement L entre chaque cellule peut varier.
  • Dans la figure 3, le schéma représente principalement les connections électriques entre les anodes 7 et les cathodes 8. Chaque cellule 2 est reliée extérieurement par un conducteur 9. Entre chaque cellule 2 il existe un courant de fuite IF qui diminue le rendement énergétique global de l'électrolyseur et qui perturbe la répartition de la densité de courant sur les bords des électrodes, principalement entre l'anode d'une cellule et la cathode de la cellule voisine.
  • Dans le tableau suivant on trouve les principaux résultats obtenus avec un électrolyte contenant 40 grammes par litre de cuivre et 165 grammes par litre d'acide sulfurique. Toutes les expériences ont été conduite à une température de 40°C pendant 15 à 20 heures.
    Figure imgb0007
  • A petite échelle les courants de fuite sont une valeur relative importante vis-à-vis de l'intensité du courant fournie par le redresseur 3. Cette importance relative sera considérablement atténuée à plus grande échelle.
  • Le graphique ci-après donne a titre d'exemple le profil de densité moyenne obtenu sur les cathodes 8 pour l'essai 2.
    Figure imgb0008
  • Exemple 7
  • La surdensité de courant sur les bords des cathodes n'est pas acceptable en raison de l'accroissement de la surtension locale d'électrode qui risque de provoquer l'apparation de réactions parasites.
  • On a palié cet inconvénient majeur en décalant les axes verticaux des anodes et des cathodes de chaque cellule et en imposant une intensité calculée en tenant compte de la densité de courant choisie et des surfaces d'électrode en regard. L'objectif est de pouvoir assurer une densité de courant vraie à la surface des cathodes, inférieure à la densité de courant choisie.
  • Ce type de montage a été expérimenté avec le dispositif expérimental décrit précédemment. Dans le tableau suivant on a fait figurer les résultats comparatifs entre deux montages électriques de trois cellules espacées de 0,63 mètre, l'un avec les électrodes décalées et l'autre avec les électrodes non décalées dans chaque cellule.
  • Les figures suivantes représentent les profils de répartition de la densité de courant vraie pour les cathodes avec ou sans décalage.
  • Figure imgb0009
    Figure imgb0010
    Figure imgb0011

Claims (24)

1. Procédé de préparation d'un métal par électrolyse dans une cellule à diaphragme, du type qui comprend :
- la formation d'un électrolyte contenant un chlorure du métal à préparer et au moins un chlorure d'un métal alcalin ou alcalino-terreux, et
- la circulation de l'électrolyte entre les électrodes, parallèlement à la surface d'une cathode,
caractérisé en ce que :
- la surface de cathode est disposée en direction sensiblement verticale et a une densité suffisamment faible de sites de nucléation pour que les particules métalliques qui se forment à partir de ces sites gardent leur individualité vis-à-vis des particules adjacentes, jusqu'à ce qu'elles atteignent une dimension d'au moins 100 micromètres environ,
- l'écoulement de l'électrolyte le long de la surface de cathode est de type laminaire ou faiblement turbulent,
- si bien que, sous l'action de leur poids et des forces de traînée exercées par le courant d'électrolyte, les particules de métal se détachent et tombent dans l'électrolyte, et
- le procédé comprend le prélèvement des particules métalliques rassemblées au fond de la cellule.
2. Procédé selon la revendication 1, caractérisé en ce que le métal à préparer est le plomb.
3. Procédé selon la revendication 2, caractérisé en ce que le plomb est présent dans l'électrolyte sous forme de chlorure en quantité comprise entre environ 5 et 50 grammes par litre, de préférence entre environ 15 et 25 grammes par litre.
4. Procédé selon l'une des revendications 2 et 3, caractérisé en ce que la surface de la cathode est formée de titane, d'acier inoxydable ou de graphite.
5. Procédé selon l'une quelconque des revendications 2 à 4, caractérisé en ce que l'électrolyte contient en outre du fer sous forme de chlorure, essentiellement de chlorure ferreux.
6. Procédé selon la revendication 5, caractérisé en ce que la concentration du fer sous forme de chlorure dans l'électrolyte est comprise entre 20 et 60 grammes par litre.
7. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la concentration en au moins un chlorure de métal alcalin ou alcalino-terreux est comprise entre 4 et 5 équivalent-grammes par litre.
8. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que ledit chlorure de métal alcalin ou alcalino-terreux est le chlorure de sodium.
9. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la densité du courant électrique d'électrolyte est comprise entre 500 et 1 500 A/m2 et de préférence entre 700 et 1 000 A/m2.
10. Procédé selon la revendication 9, caractérisé en ce qu'il comprend l'augmentation progressive ou par paliers de la densité de courant jusqu'à une valeur de régime permanent.
11. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'électrolyte circule le long de la surface cathodique avec une vitesse comprise entre 0,01 et 0,15 mètre par seconde.
12. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le prélèvement des particules rassemblées au fond de la cellule comprend le transport des particules hors de la cellule et leur densification par compression.
13. Procédé selon la revendication 12, caractérisé en ce qu'il comprend en outre, après densification, le laminage des particules afin que la plus grande partie des inclusions d'électrolyte soit chassée.
14. Procédé selon l'une des revendications 12 et 13, caractérisé en ce que'il comprend la fusion des particules densifiées, en présence de soude.
15. Appareil de préparation de métal par électrolyse, du type qui comporte une cellule à diaphragme, caractérisé en ce que :
- les cathodes et les anodes sont disposées verticalement,
- les cathodes sont formées d'une matière choisie dans le groupe qui comprend le titane, l'acier inoxydable et le graphite, et
- l'appareil comporte au moins une pompe destinée à faire circuler un courant d'électrolyte de type laminaire ou faiblement turbulent le long des cathodes, et
- un dispositif de transport destiné à retirer les matières solides divisées qui peuvent tomber au fond de la cellule.
16. Appareil selon la revendication 15, caractérisé en ce qu'il comprend des électrodes bipolaires.
17. Appareil selon la revendication 15, caractérisé en ce que les anodes sont formées de métal déployé.
18. Appareil selon l'une quelconque des revendications 15 à 17, caractérisé en ce qu'il comporte en outre une hotte de récupération de chlore gazeux.
19. Appareil selon l'une quelconque des revendications 15 à 18, caractérisé en ce que le dispositif de transport est choisi dans le groupe qui comprend un col de cygne, une vis sans fin, un élévateur à godets et une bande transporteuse.
20. Appareil selon la revendication 19, caractérisé en ce qu'il comporte en outre une extrudeuse destinée à densifier les matières solides divisées déplacées par le dispositif de transport.
21. Demi-produit de plomb, caractérisé en ce qu'il est préparé par un procédé selon l'une quelconque des revendications 1 à 14.
22. Demi-produit de plomb selon la revendication 21, caractérisé en ce qu'il contient au maximum 0,2 % en poids d'inclusions d'un électrolyte contenant des ions chlorure.
23. Dispositif non isopotentiel constitué par une série de rangées d'anodes et de cathodes connectées à la même alimentation de courant, caractérisé par le fait que les électrodes de deux rangées différentes situées dans un même plan sont reliées par des cloisons en matériau non conducteur, la distance séparant deux rangées d'électrodes étant comprise entre 0,8 et 2 mètres.
24. Dispositif selon la revendication 23, caractérisé par le fait que les anodes sont décalées par rapport aux cathodes d'une distance comprise entre 5 et 20 centimètres, de préférence aux alentours de 20 centimètres, ce décalage étant réalisé dans le sens des potentiels décroissants dans la cuve d'électrolyse.
EP83400915A 1982-05-06 1983-05-05 Procédé et appareil de préparation de métal par électrolyse, notamment de plomb Expired EP0094308B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT83400915T ATE36013T1 (de) 1982-05-06 1983-05-05 Verfahren und vorrichtung zur elektrolytischen herstellung von metallen, insbesondere blei.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8207940A FR2526446B1 (fr) 1982-05-06 1982-05-06 Procede et appareil de preparation de metal par electrolyse, notamment de plomb, et demi-produit obtenu par leur mise en oeuvre
FR8207940 1982-05-06

Publications (3)

Publication Number Publication Date
EP0094308A2 true EP0094308A2 (fr) 1983-11-16
EP0094308A3 EP0094308A3 (en) 1984-05-23
EP0094308B1 EP0094308B1 (fr) 1988-07-27

Family

ID=9273819

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83400915A Expired EP0094308B1 (fr) 1982-05-06 1983-05-05 Procédé et appareil de préparation de métal par électrolyse, notamment de plomb

Country Status (18)

Country Link
US (2) US4507182A (fr)
EP (1) EP0094308B1 (fr)
JP (1) JPS5931879A (fr)
AT (1) ATE36013T1 (fr)
AU (1) AU572455B2 (fr)
BR (1) BR8302379A (fr)
CA (1) CA1234070A (fr)
DE (1) DE3377507D1 (fr)
DK (1) DK201183A (fr)
ES (1) ES522128A0 (fr)
FI (1) FI74306C (fr)
FR (1) FR2526446B1 (fr)
GR (1) GR78859B (fr)
MX (1) MX158327A (fr)
NO (1) NO165033C (fr)
PL (1) PL241834A1 (fr)
PT (1) PT76645B (fr)
ZA (1) ZA833237B (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102560559A (zh) * 2012-01-04 2012-07-11 金川集团有限公司 一种生产电解镍粉方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4220849C1 (fr) * 1992-06-25 1993-03-18 Schott Glaswerke, 6500 Mainz, De
US5559035A (en) * 1992-08-24 1996-09-24 Umpqua Research Company Solid phase calibration standards
DE19837641C2 (de) * 1998-08-19 2000-11-02 Siemens Ag Verfahren zum Routen von Verbindungen über ein paketorientiertes Kommunikationsnetz
US20040055873A1 (en) * 2002-09-24 2004-03-25 Digital Matrix Corporation Apparatus and method for improved electroforming
JP5632340B2 (ja) * 2011-08-05 2014-11-26 Jx日鉱日石金属株式会社 水酸化インジウム及び水酸化インジウムを含む化合物の電解製造装置及び製造方法
TWI539032B (zh) * 2013-08-01 2016-06-21 Chang Chun Petrochemical Co Electrolytic copper foil, cleaning fluid composition and cleaning copper foil method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3419901A (en) * 1966-02-18 1968-12-31 Esb Inc Method for producing flakes of nickel
DE1900055A1 (de) * 1969-01-02 1970-08-20 Goldschmidt Ag Th Verfahren zur kontinuierlichen Abscheidung von technisch bleifreiem Kupfer
US3785950A (en) * 1972-05-19 1974-01-15 E Newton Regeneration of spent etchant
FR2218396A1 (fr) * 1973-02-20 1974-09-13 Envirotech Corp
FR2386349A1 (fr) * 1977-04-07 1978-11-03 Duval Corp Procede et appareil de recuperation du produit cristallin en particules d'un dispositif d'electrolyse
FR2427401A1 (fr) * 1978-05-31 1979-12-28 Goetzelmann Ind Abwasser Procede electrolytique pour isoler le plomb de matieres contenant du sulfure de plomb
US4181588A (en) * 1979-01-04 1980-01-01 The United States Of America As Represented By The Secretary Of The Interior Method of recovering lead through the direct reduction of lead chloride by aqueous electrolysis
EP0061392A1 (fr) * 1981-03-19 1982-09-29 Centre National De La Recherche Scientifique (Cnrs) Procédé et dispositif pour l'électrotraitement de matériaux composites pulvérulents

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1312756A (en) * 1919-08-12 Electrolyzer
US1051060A (en) * 1912-09-24 1913-01-21 Siemens Ag Apparatus for electrolyzing liquids.
US1448923A (en) * 1919-10-29 1923-03-20 Francis N Flynn Electrolytic process
US3577334A (en) * 1967-12-14 1971-05-04 Eastman Kodak Co Apparatus for electrolytic recovery of a metal from a solution
BG22251A1 (en) * 1974-10-04 1979-12-12 Petrov Method and installation for non-ferros elektrolysis
IT1064586B (it) * 1975-07-11 1985-02-18 Univ Bruxelles Cella elettrolitica per il trattamento di materiali olverulenti o spezzettati e procedimento di utilizzazione di tale cella
AU493275B2 (en) * 1977-03-31 1978-06-08 Duval Corporation Process and apparatus forthe recovery of particulate crystalline product froman electrolysis system
US4492621A (en) * 1982-09-29 1985-01-08 Stubb Paul R Method and apparatus for electrodeposition of materials

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3419901A (en) * 1966-02-18 1968-12-31 Esb Inc Method for producing flakes of nickel
DE1900055A1 (de) * 1969-01-02 1970-08-20 Goldschmidt Ag Th Verfahren zur kontinuierlichen Abscheidung von technisch bleifreiem Kupfer
US3785950A (en) * 1972-05-19 1974-01-15 E Newton Regeneration of spent etchant
FR2218396A1 (fr) * 1973-02-20 1974-09-13 Envirotech Corp
FR2386349A1 (fr) * 1977-04-07 1978-11-03 Duval Corp Procede et appareil de recuperation du produit cristallin en particules d'un dispositif d'electrolyse
FR2427401A1 (fr) * 1978-05-31 1979-12-28 Goetzelmann Ind Abwasser Procede electrolytique pour isoler le plomb de matieres contenant du sulfure de plomb
US4181588A (en) * 1979-01-04 1980-01-01 The United States Of America As Represented By The Secretary Of The Interior Method of recovering lead through the direct reduction of lead chloride by aqueous electrolysis
EP0061392A1 (fr) * 1981-03-19 1982-09-29 Centre National De La Recherche Scientifique (Cnrs) Procédé et dispositif pour l'électrotraitement de matériaux composites pulvérulents

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
L'Analyse qualitative et les Réactions en Solution", G.Charlot, Massen et Cie. Editeurs (1983), pages 127, 220 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102560559A (zh) * 2012-01-04 2012-07-11 金川集团有限公司 一种生产电解镍粉方法

Also Published As

Publication number Publication date
ES8402626A1 (es) 1984-02-01
DK201183A (da) 1983-11-07
EP0094308B1 (fr) 1988-07-27
FI74306C (fi) 1988-01-11
NO831606L (no) 1983-11-07
GR78859B (fr) 1984-10-02
EP0094308A3 (en) 1984-05-23
FR2526446A1 (fr) 1983-11-10
PL241834A1 (en) 1984-06-18
US4601805A (en) 1986-07-22
US4507182A (en) 1985-03-26
FR2526446B1 (fr) 1986-02-21
FI74306B (fi) 1987-09-30
DE3377507D1 (en) 1988-09-01
AU572455B2 (en) 1988-05-12
FI831530A0 (fi) 1983-05-04
CA1234070A (fr) 1988-03-15
DK201183D0 (da) 1983-05-05
NO165033B (no) 1990-09-03
ES522128A0 (es) 1984-02-01
ATE36013T1 (de) 1988-08-15
JPS5931879A (ja) 1984-02-21
BR8302379A (pt) 1984-01-10
AU1427283A (en) 1983-11-10
NO165033C (no) 1990-12-12
ZA833237B (en) 1984-10-31
FI831530L (fi) 1983-11-07
PT76645B (fr) 1986-02-26
PT76645A (fr) 1983-06-01
MX158327A (es) 1989-01-25

Similar Documents

Publication Publication Date Title
US20190267681A1 (en) Devices and Method for Smelterless Recycling of Lead Acid Batteries
CA3121766C (fr) Dispositifs et procede ameliores pour le recyclage sans fonderie d'accu ulateurs au plomb
EA021918B1 (ru) Способ и устройство для получения металлического порошка
EP0094308B1 (fr) Procédé et appareil de préparation de métal par électrolyse, notamment de plomb
JPH11506808A (ja) 銅マットの電解採取方法
WO1993020262A1 (fr) Systeme electrochimique pour l'extraction des metaux a partir de leurs composes.
EP0014111B1 (fr) Procédé de fabrication de composés oxhydrylés de nickel et composés ainsi obtenus
JP6983083B2 (ja) 銀とSiO2を含むスラリーからSiO2を除去する方法及び銀の精製方法
FR2691980A1 (fr) Procédé de raffinage électrochimique direct de déchets de cuivre.
EP0253749B1 (fr) Procédé de séparation en continu par électrophorèse et électro-osmose de matières solides pulvérulentes électriquement chargées
CA1236792A (fr) Procede de traitement d'une solution de purge notamment destinee a un procede d'extraction de zinc par voie electrolytique
EP3555345B1 (fr) Procede electrolytique pour extraire de l'etain ou à la fois de l'etain et du plomb compris dans un melange électriquement conducteur
EP0061392A1 (fr) Procédé et dispositif pour l'électrotraitement de matériaux composites pulvérulents
NO773127L (no) Fremgangsmaate til gjenvinning av sink og elektrolyseinnretning for bruk ved fremgangsmaaten
JP3380262B2 (ja) 廃触媒の処理方法
US532209A (en) Beenaed moebius
WO2001020062A1 (fr) Procede de decomposition electrolytique a densite de courant elevee de cuivre
EP0105896B1 (fr) Installation pour la production continue de tole electrozinguee
JP3055821B2 (ja) 高電流密度電解の方法および装置
US3175965A (en) Electrolysis of pig iron containing copper
Gelstharp Electrolytic preparation of tin paste
BE449561A (fr)
OA19078A (en) Improved devices and method for smelterless recycling of lead acid batteries.
BE537706A (fr)
CH381435A (fr) Procédé de fabrication électrolytique du tantale

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19831027

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

ITF It: translation for a ep patent filed
AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 36013

Country of ref document: AT

Date of ref document: 19880815

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3377507

Country of ref document: DE

Date of ref document: 19880901

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19910424

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19910517

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19910521

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19910528

Year of fee payment: 9

EPTA Lu: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19920505

Ref country code: AT

Effective date: 19920505

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19920531

Ref country code: CH

Effective date: 19920531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19930129

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19930531

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19941201

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
EAL Se: european patent in force in sweden

Ref document number: 83400915.1

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19970429

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19970521

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19970529

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19970613

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980505

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980531

BERE Be: lapsed

Owner name: SOC. MINIERE ET METALLURGIQUE DE PENARROYA

Effective date: 19980531

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19980505

EUG Se: european patent has lapsed

Ref document number: 83400915.1

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990302