EP0088756B1 - Verfahren und anlage zur verringerung der an- und abfahrverluste, zur erhöhung der nutzbaren leistung und zur verbesserung der regelfähigkeit eines wärmekraftwerkes - Google Patents

Verfahren und anlage zur verringerung der an- und abfahrverluste, zur erhöhung der nutzbaren leistung und zur verbesserung der regelfähigkeit eines wärmekraftwerkes Download PDF

Info

Publication number
EP0088756B1
EP0088756B1 EP82900106A EP82900106A EP0088756B1 EP 0088756 B1 EP0088756 B1 EP 0088756B1 EP 82900106 A EP82900106 A EP 82900106A EP 82900106 A EP82900106 A EP 82900106A EP 0088756 B1 EP0088756 B1 EP 0088756B1
Authority
EP
European Patent Office
Prior art keywords
pressure
steam
power plant
pct
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP82900106A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP0088756A1 (de
Inventor
Heinz Spliethoff
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saarbergwerke AG
Original Assignee
Saarbergwerke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6142158&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0088756(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Saarbergwerke AG filed Critical Saarbergwerke AG
Priority to AT82900106T priority Critical patent/ATE18931T1/de
Publication of EP0088756A1 publication Critical patent/EP0088756A1/de
Application granted granted Critical
Publication of EP0088756B1 publication Critical patent/EP0088756B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K3/00Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
    • F01K3/004Accumulation in the liquid branch of the circuit

Definitions

  • the invention relates to a system for reducing the start-up and shutdown losses, for increasing the usable power and for improving the controllability of a thermal power plant using one or more pressurized heat stores, the input side with steam lines for introducing start-up and shutdown steam or excess steam accumulating during operation are connected.
  • start-up and shutdown times are up to 1 hour or more depending on the state of the plant.
  • many conventional power plant units have to be switched off regularly at weekends and at night, so that the amount of heat emitted unused during these start-up and shutdown periods makes up a significant proportion of the total thermal energy converted.
  • the compensation of control deviations of the electrical power of a conventional power plant block from the power setpoint can only be done with the timing of the steam generation and the limited storage capacity of the steam generator, which decisively determines the control capacity of the power plant block.
  • GB-A No. 709888 describes a system in which, in addition to the feed water tank, a second, closed feed water tank is provided, the initially cold condensate filling of which is heated up to operating temperature exclusively during the start-up period by introducing start-up steam while continuously circulating the condensate. After the power plant has started up, the now hot condensate filling of the tank is discharged into the feed water tank and replaced again with cold condensate.
  • the discharge current is returned in the feed water tank, ie at a point with a significantly lower pressure level. This requires a very complex, three-stage relaxation in DE-B No. 1128437. This has poor thermodynamic efficiency.
  • the storage medium is first pressurized and stored, when it is unloaded it is first relaxed again and then has to be pressurized again. This results - in addition to the poor thermodynamic efficiency - for the high-pressure pump, a higher required output with a larger pressure flow quantity.
  • the excess heat extracted from the medium-pressure withdrawals is first transferred from the extraction steam to the condensate in the high-pressure preheaters, which then flows first into the feed water tank and from there through the high-pressure preheater, where it is heated up again against further extraction steam, into the storage tank. This means a further increase in the flow rate for the high-pressure pump and losses due to the double heat exchange.
  • the object of the present invention is to provide a system which avoids these disadvantages and which makes it possible in a simple manner to reduce the start-up and shutdown losses of a thermal power plant and, at the same time, to increase the usable power during operation and to improve the controllability of the thermal power plant.
  • pressure heat accumulators are connected on the water side behind a last medium-pressure low-pressure preheater via a charging line to a condensate line leading to the feed water tank and via a discharge line and a pump to the condensate line or the feed water tank.
  • the pressure level of the heat accumulator can be freely selected within wide limits and only needs to be insignificant Lich above the pressure level of the feed water tank.
  • the high-pressure pump and high-pressure preheater are not touched directly by the storage system. Extraction steam as well as start-up and shutdown steam are immediately, ie. H. Heat and heat transfer medium, introduced into the storage, without intermediate heat exchange.
  • the storage of hot condensate is discharged forward in the direction of flow of the steam cycle and in particular without substantial relaxation and the associated thermodynamic losses.
  • the pressure heat accumulators are charged with start-up steam or shutdown steam of the power plant during the start-up and shutdown processes. During periods of high load or periods of increased power demand, they return their charging energy to the steam cycle of the power plant.
  • control deviations in the electrical power can be compensated, at least in part.
  • the power reserve of a power plant block that is necessarily to be maintained can be reduced by the regulating capacity of the pressure heat accumulator and the nominal block power can be increased accordingly.
  • a pressure relief vessel is advantageously connected between the pressure heat accumulator and the feed water container, in which, if the heat accumulator is operated at a higher pressure than the feed water container, the storage medium is expanded to the pressure of the feed water container and the same thermodynamic states of discharge current and feed water container content are set.
  • the discharge current with the enthalpy of the storage content is introduced directly into the feed water tank or into the condensate line leading to it, then the discharge current and thus the improvement of the control capacity of the power plant are limited due to the different thermodynamic states of the discharge current and the feed water tank content.
  • the steam flows successively through a high-pressure turbine 31, an intermediate superheater 34, a medium-pressure turbine 32 and a double-flow low-pressure turbine 33 passed and from there via a feed water pump 7 back into the steam generator.
  • 3 designates a shunt-type condensate store.
  • a pressure heat accumulator 21 is connected to the condensate system on the water side via lines 23, 26 and a pump 22 in a shunt.
  • a pressure line after the discharge pump 22 opens into a condensate line 30 between the last medium-pressure low-pressure preheater 4n and upstream of the feed water tank 6.
  • the pressure line can, however, also lead directly into the feed water tank 6.
  • the pressure heat accumulator 21 is once via a line 27 with the medium pressure or reheater network of the power plant block and / or with other, economically suitable steam networks and steam systems with a higher steam pressure than that prevailing in the pressure heat accumulator 21, e.g. B. with a removal 28, which also supplies the feed water tank 6 with steam.
  • steam from the medium-pressure reheater network is introduced via line 27, possibly with the interposition of a reducing station, into the pressure heat accumulator 21, which is pre-filled with cold condensate, and the condensate filling is heated.
  • the pressure heat accumulator 21 In the power range, in low or partial load periods, the pressure heat accumulator 21 is charged with hot condensate via the low-pressure medium-pressure preheaters 4a to 4n, and the hot condensate stream from the same withdrawal 28, which also supplies the feed water tank 6 with steam, in a mixed preheating unit, not shown in the figure. and degassing stage immediately before the pressure heat accumulator 21 warmed up.
  • the hot accumulator discharge current in the expansion vessel 24 can be expanded to the pressure in the feed water container 6 and introduced into the condensate line 30.
  • the flash steam is led via a line 35 directly into the feed water tank 6 or into a steam line 25 leading to the feed water tank 6.
  • thermodynamic states of discharge current and feed water tank content are achieved.
  • the expansion vessel 24 and the line 35 can be omitted, and the discharge current can be conducted directly into the condensate line 30 with the enthalpy of the pressure heat storage content.
  • a control safety circuit is therefore necessary which prevents evaporation in the condensate line 30 and at the feed water tank inlet.
  • the lei control operation of the power plant occurring control deviations of the electrical power from the power setpoint in the power control range offered can be easily and quickly corrected.
EP82900106A 1981-09-19 1981-12-23 Verfahren und anlage zur verringerung der an- und abfahrverluste, zur erhöhung der nutzbaren leistung und zur verbesserung der regelfähigkeit eines wärmekraftwerkes Expired EP0088756B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT82900106T ATE18931T1 (de) 1981-09-19 1981-12-23 Verfahren und anlage zur verringerung der anund abfahrverluste, zur erhoehung der nutzbaren leistung und zur verbesserung der regelfaehigkeit eines waermekraftwerkes.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3137371 1981-09-19
DE3137371A DE3137371C2 (de) 1981-09-19 1981-09-19 Anlage zur Verringerung der An- und Abfahrverluste, zur Erhöhung der nutzbaren Leistung und zur Verbesserung der Regelfähigkeit eines Wärmekraftwerkes

Publications (2)

Publication Number Publication Date
EP0088756A1 EP0088756A1 (de) 1983-09-21
EP0088756B1 true EP0088756B1 (de) 1986-04-02

Family

ID=6142158

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82900106A Expired EP0088756B1 (de) 1981-09-19 1981-12-23 Verfahren und anlage zur verringerung der an- und abfahrverluste, zur erhöhung der nutzbaren leistung und zur verbesserung der regelfähigkeit eines wärmekraftwerkes

Country Status (6)

Country Link
US (1) US4549401A (ko)
EP (1) EP0088756B1 (ko)
JP (1) JPS58501473A (ko)
AT (1) ATE18931T1 (ko)
DE (1) DE3137371C2 (ko)
WO (1) WO1983001090A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10159553B2 (en) 2008-01-29 2018-12-25 Insightra Medical, Inc. Fortified mesh for tissue repair

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4124678A1 (de) * 1990-08-21 1992-02-27 Abb Patent Gmbh Verfahren und einrichtung zur wiederherstellung der turbinenstellreserve nach dem ausregeln einer leistungs-sollwertaenderung in einem dampfkraftwerksblock
JP2006233931A (ja) * 2005-02-28 2006-09-07 Miura Co Ltd ボイラ駆動電力供給システム
US8616323B1 (en) 2009-03-11 2013-12-31 Echogen Power Systems Hybrid power systems
WO2010121255A1 (en) 2009-04-17 2010-10-21 Echogen Power Systems System and method for managing thermal issues in gas turbine engines
JP5681711B2 (ja) 2009-06-22 2015-03-11 エコージェン パワー システムズ インコーポレイテッドEchogen Power Systems Inc. 1または2以上の工業プロセスでの熱流出物処理方法および装置
US9316404B2 (en) 2009-08-04 2016-04-19 Echogen Power Systems, Llc Heat pump with integral solar collector
US8613195B2 (en) 2009-09-17 2013-12-24 Echogen Power Systems, Llc Heat engine and heat to electricity systems and methods with working fluid mass management control
US8813497B2 (en) 2009-09-17 2014-08-26 Echogen Power Systems, Llc Automated mass management control
US8096128B2 (en) 2009-09-17 2012-01-17 Echogen Power Systems Heat engine and heat to electricity systems and methods
US8869531B2 (en) 2009-09-17 2014-10-28 Echogen Power Systems, Llc Heat engines with cascade cycles
US8857186B2 (en) 2010-11-29 2014-10-14 Echogen Power Systems, L.L.C. Heat engine cycles for high ambient conditions
US8783034B2 (en) 2011-11-07 2014-07-22 Echogen Power Systems, Llc Hot day cycle
US8616001B2 (en) 2010-11-29 2013-12-31 Echogen Power Systems, Llc Driven starter pump and start sequence
WO2013055391A1 (en) 2011-10-03 2013-04-18 Echogen Power Systems, Llc Carbon dioxide refrigeration cycle
EP2589761B1 (en) * 2011-11-03 2017-05-10 General Electric Technology GmbH Steam power plant with heat reservoir and method for operating a steam power plant
JP6069359B2 (ja) 2012-01-19 2017-02-01 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft 発電所用補助蒸気発生器システム
BR112015003646A2 (pt) 2012-08-20 2017-07-04 Echogen Power Systems Llc circuito de fluido de trabalho supercrítico com uma bomba de turbo e uma bomba de arranque em séries de configuração
US9118226B2 (en) 2012-10-12 2015-08-25 Echogen Power Systems, Llc Heat engine system with a supercritical working fluid and processes thereof
US9341084B2 (en) 2012-10-12 2016-05-17 Echogen Power Systems, Llc Supercritical carbon dioxide power cycle for waste heat recovery
US9322295B2 (en) 2012-10-17 2016-04-26 General Electric Company Thermal energy storage unit with steam and gas turbine system
US9376962B2 (en) 2012-12-14 2016-06-28 General Electric Company Fuel gas heating with thermal energy storage
US9638065B2 (en) 2013-01-28 2017-05-02 Echogen Power Systems, Llc Methods for reducing wear on components of a heat engine system at startup
CA2899163C (en) 2013-01-28 2021-08-10 Echogen Power Systems, L.L.C. Process for controlling a power turbine throttle valve during a supercritical carbon dioxide rankine cycle
CA2903784C (en) 2013-03-04 2021-03-16 Echogen Power Systems, L.L.C. Heat engine systems with high net power supercritical carbon dioxide circuits
US10570777B2 (en) 2014-11-03 2020-02-25 Echogen Power Systems, Llc Active thrust management of a turbopump within a supercritical working fluid circuit in a heat engine system
US11187112B2 (en) 2018-06-27 2021-11-30 Echogen Power Systems Llc Systems and methods for generating electricity via a pumped thermal energy storage system
US11435120B2 (en) 2020-05-05 2022-09-06 Echogen Power Systems (Delaware), Inc. Split expansion heat pump cycle
JP2024500375A (ja) 2020-12-09 2024-01-09 スーパークリティカル ストレージ カンパニー,インコーポレイティド 3貯蔵器式電気的熱エネルギー貯蔵システム

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1770256A (en) * 1924-12-31 1930-07-08 Smekal Josef Steam-accumulator plant
DE628717C (de) * 1926-10-13 1936-04-15 Christian Christians Dampfanlage zum Ausgleich von Schwankungen
GB446061A (en) * 1935-08-22 1936-04-23 Ruths Arca Accumulators Ltd Improvements in or relating to steam plants including hot-water accumulators
CH204975A (de) * 1938-01-21 1939-05-31 Sulzer Ag Verfahren und Vorrichtung zum Betreiben einer Hochdruck-Dampfkraftanlage.
NL78792C (ko) * 1952-01-05
GB887274A (en) * 1957-03-02 1962-01-17 Siemens Schuckertwerkd Ag A steam boiler and turbine installation
DE1128437B (de) * 1960-05-13 1962-04-26 Siemens Ag Dampfkraftanlage, insbesondere Blockanlage mit Zwangdurchlaufkessel
US3564677A (en) * 1967-11-06 1971-02-23 Johnson & Johnson Method and apparatus of treating material to change its configuration
JPS4711600U (ko) * 1971-03-01 1972-10-11
DE2609622A1 (de) * 1976-03-09 1977-09-15 Babcock Ag Verfahren und vorrichtung zur speicherung von energie in kraftwerken
DE2620023A1 (de) * 1976-05-06 1977-11-17 Babcock Ag Verfahren und vorrichtung zur speicherung von energie in kraftwerken
DE2907068C2 (de) * 1978-05-09 1983-09-15 BBC Aktiengesellschaft Brown, Boveri & Cie., 5401 Baden, Aargau Dampfkraftanlage für Grundlastbetrieb mit Einrichtung zur Deckung von Lastspitzen

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10159553B2 (en) 2008-01-29 2018-12-25 Insightra Medical, Inc. Fortified mesh for tissue repair

Also Published As

Publication number Publication date
DE3137371A1 (de) 1983-04-14
EP0088756A1 (de) 1983-09-21
JPS58501473A (ja) 1983-09-01
ATE18931T1 (de) 1986-04-15
US4549401A (en) 1985-10-29
WO1983001090A1 (en) 1983-03-31
DE3137371C2 (de) 1984-06-20

Similar Documents

Publication Publication Date Title
EP0088756B1 (de) Verfahren und anlage zur verringerung der an- und abfahrverluste, zur erhöhung der nutzbaren leistung und zur verbesserung der regelfähigkeit eines wärmekraftwerkes
EP2812542B1 (de) Energiespeicherkraftwerk und verfahren zum betreiben eines solchen kraftwerks
US4164848A (en) Method and apparatus for peak-load coverage and stop-gap reserve in steam power plants
EP0819209B1 (de) Verfahren zum betreiben eines abhitzedampferzeugers sowie danach arbeitender abhitzedampferzeuger
DE2632777C2 (de) Dampfkraftanlage mit Einrichtung zur Spitzenlastdeckung
EP3025031B1 (de) Verfahren zum betreiben einer dampfturbinenanlage
DE2824321A1 (de) Kombiniertes gas/dampfturbinenkraftwerk mit gegendruckturbine, insbesondere fuer industriezwecke
DE2907068C2 (de) Dampfkraftanlage für Grundlastbetrieb mit Einrichtung zur Deckung von Lastspitzen
EP1584798B1 (de) Verfahren und Einrichtung zur Erzeugung von Kraft und Wärme
DE2620023A1 (de) Verfahren und vorrichtung zur speicherung von energie in kraftwerken
EP3269948B1 (de) Verfahren zur anpassung der leistung einer dampfturbinen-kraftwerksanlage und dampfturbinen-kraftwerksanlage
EP1801363A1 (de) Kraftwerksanlage
DE4447044C1 (de) Verfahren zur Verminderung der Anfahrverluste eines Kraftwerksblockes
EP3080407B1 (de) Dampfspeicherung mit latentwärmespeicher und dampf-thermokompressor
DE10155508C2 (de) Verfahren und Vorrichtung zur Erzeugung von elektrischer Energie
EP0067841B1 (de) Verfahren zur versorgung von fernwärmenetzen mit wärme aus einem wärmekraftwerk
EP3511534A1 (de) Dampfkraftwerk und verfahren zum betreiben eines dampfkraftwerks
DE1214701B (de) Anordnung einer Dampfkraftanlage
DE1288614B (de) Verfahren und Vorrichtung zum Abbau von Dampfspitzen aus Prozessabfallwaermeverwertern mit variabler Dampferzeugung
EP3467378B1 (de) Abhitzeanlage für heisswassererzeugung und verfahren zum betreiben einer abhitzeanlage für heisswassererzeugung
DE488158C (de) Dampfkraftanlage mit Heizdampfverwertung und Einrichtung fuer den Ausgleich der Schwankungen von Kraftleistung und Heizdampfverbrauch
AT377577B (de) Einrichtung zur spitzenlast- oder ueberlasterzeugung aus einem dampfkraftwerk
AT234730B (de) Verfahren und Vorrichtung zum Abbau von Dampfspitzen aus Prozeßabfallwärmeverwertern mit variabler Dampferzeugung
DE1196668B (de) Dampfkraftanlage mit Zwangdurchlaufkessel und Zwischenueberhitzer fuer einen Betrieb mit steilen Laststossspielen
CH640033A5 (en) Peak load cover by heat energy storage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19830510

AK Designated contracting states

Designated state(s): AT BE CH FR GB LI NL SE

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH FR GB LI NL SE

REF Corresponds to:

Ref document number: 18931

Country of ref document: AT

Date of ref document: 19860415

Kind code of ref document: T

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19861022

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19861231

Year of fee payment: 6

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: BBC AKTIENGESELLSCHAFT BROWN,BOVERI & CIE.

Effective date: 19861227

NLR1 Nl: opposition has been filed with the epo

Opponent name: BBC AKTIENGESELLSCHAFT BROWN,BOVERI & CIE

BERE Be: lapsed

Owner name: SAARBERGWERKE A.G.

Effective date: 19861231

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

27W Patent revoked

Effective date: 19871004

NLR2 Nl: decision of opposition
GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state
REG Reference to a national code

Ref country code: GB

Ref legal event code: 7102

EUG Se: european patent has lapsed

Ref document number: 82900106.4

Effective date: 19880913