EP0080690B1 - Verfahren zum Löschen des Lichtbogens in Hochspannungs-Hochleistungsschaltern - Google Patents

Verfahren zum Löschen des Lichtbogens in Hochspannungs-Hochleistungsschaltern Download PDF

Info

Publication number
EP0080690B1
EP0080690B1 EP19820110829 EP82110829A EP0080690B1 EP 0080690 B1 EP0080690 B1 EP 0080690B1 EP 19820110829 EP19820110829 EP 19820110829 EP 82110829 A EP82110829 A EP 82110829A EP 0080690 B1 EP0080690 B1 EP 0080690B1
Authority
EP
European Patent Office
Prior art keywords
switching
arc
extinguishing
plasma
shock wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP19820110829
Other languages
English (en)
French (fr)
Other versions
EP0080690A2 (de
EP0080690A3 (en
Inventor
Helmut Dr. Sc. Nat. Hess
Hold Dr. Rer. Nat. Dienemann
Ekkehard Dr.-Ing. Anke
Heinz Dr.-Ing. Hänisch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
VEB ELEKTROPROJEKT UND ANLAGENBAU BERLIN
Original Assignee
VEB Elektroprojekt und Anlagenbau Berlin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DD23528981A external-priority patent/DD206859A1/de
Priority claimed from DD24126482A external-priority patent/DD225259A2/de
Application filed by VEB Elektroprojekt und Anlagenbau Berlin filed Critical VEB Elektroprojekt und Anlagenbau Berlin
Publication of EP0080690A2 publication Critical patent/EP0080690A2/de
Publication of EP0080690A3 publication Critical patent/EP0080690A3/de
Application granted granted Critical
Publication of EP0080690B1 publication Critical patent/EP0080690B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/70Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid
    • H01H33/88Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts
    • H01H33/90Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts this movement being effected by or in conjunction with the contact-operating mechanism
    • H01H33/91Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts this movement being effected by or in conjunction with the contact-operating mechanism the arc-extinguishing fluid being air or gas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H39/00Switching devices actuated by an explosion produced within the device and initiated by an electric current

Definitions

  • the invention relates to a method for extinguishing the arc in high-voltage high-performance switches, in which higher pressures are used at least at the time when the switching contacts are disconnected in the switching chamber of the high-voltage high-performance switch.
  • the pressurized extinguishing gas required for this is either taken from a container filled with pressurized gas, or the extinguishing gas flow is caused by the with a movable switch contact Switching distance connected pistons generated within the high-voltage circuit breaker itself.
  • the flowing quenching gas absorbs energy from the arc and dissipates it.
  • only a fraction of the total energy dissipated remains in the switching chamber at the time of the voltage recovery. Nevertheless, at higher voltages the switching path re-ignites due to insufficient dielectric solidification of the medium, which limits the switching voltage.
  • High-voltage circuit breakers are also known, in which the extinguishing agent flow is generated by means of the energy content of the arc itself, by liquid or solid substances being decomposed, but it has been shown that it has not been possible with these or with all other known high-voltage circuit breakers to turn off the current within a half wave. Furthermore, these known high-voltage circuit breakers also have the disadvantage that the voltage that can be switched off per switching chamber is too low.
  • the invention has for its object to provide methods for extinguishing the arc in high-voltage high-performance switches in which, using higher pressures in the switching chamber, a more effective cooling of the switching arc plasma and a faster dielectric solidification of the switching path is achieved and the current can be switched off within a half-wave without re-ignition is.
  • An effective extinguishing of the arc without re-ignition in a high-voltage high-performance switch with a movable and a fixed switching contact when synchronously switching off alternating currents can advantageously be achieved in that the piston is axially at the time of zero current crossing with respect to the switching contacts by igniting a cartridge in the compression tube shot in, the connection between the switching contacts is interrupted at this time and then the switching arc plasma is removed via a controllable valve from the discharge space of the switching chamber. The still existing plasma is strongly compressed by the piston, so that the piston reverses after its energy has been released. Upon return of the piston, cold insulating gas is also advantageously sucked into the switching path via the controllable valve and the piston is pushed back into its starting position, explosion gases being simultaneously removed from the compression tube.
  • An increase in the cooling rate of the high-pressure plasma can be achieved in that when a certain pressure is exceeded or as a function of a control signal in the switching chamber, a membrane or a valve is opened and expansion into an expansion chamber located at approximately normal pressure is made possible.
  • a cold gas of high dielectric strength is advantageously let into the switching chamber after falling below a predetermined pressure in the expansion phase.
  • the piston flying freely in the compression tube is expediently provided with insulating material against thermal and radiation loads.
  • the electrically highly conductive high-pressure plasma is generated by means of a shock wave
  • this is preferably caused by blasting a membrane in front of the propellant tank of a switching chamber designed as a membrane push tube, after passing it past the switching contacts with the arrival of the rear contact surface of the shock wave plasma, its temperature and so that its conductivity also drops suddenly.
  • the temperature drops below room temperature.
  • the arc burning between the opening switching contacts can also be extinguished very effectively in this way.
  • an electrically highly conductive high-pressure plasma is generated in a switching chamber 1 a few ms after receiving a control signal by rapid compression of the gas in the switching chamber with the aid of a pressure-driven piston 2 which is freely flying within a compression tube 3 takes over the current when opening the switch contacts 4, with a lower current density than in the case of independent discharge.
  • the free-flying piston 2 reverses.
  • the electrically highly conductive high pressure plasma in the switching chamber 1 relaxes and cools down. An increase in the cooling rate is achieved if, for example when a certain pressure in the switching chamber 1 is exceeded, a membrane 5 is opened which allows expansion into an expansion chamber 6 which is at normal pressure.
  • a cold gas of high dielectric strength is admitted into the switching chamber 1 via the pipeline 7 after falling below a predetermined pressure in the expansion phase.
  • the drive for the free-flying piston 2 can be filled with powder by a high-pressure gas surge from a propellant gas tank 8 or by igniting one (not shown) cartridge.
  • a shock wave 9 is sent a few ms after receiving a control signal through the switching chamber 1, which is generated by blowing up the membrane 10 in front of the propellant tank 8 of the switching chamber 1.
  • the switching chamber 1 is designed as a membrane shock tube through which the shock wave 9, which generates the high pressure plasma, passes.
  • an electrically highly conductive high-pressure plasma is guided past the switching contacts 4 for a certain time, namely until the rear contact surface 11 of the shock wave 9 and thus the high-pressure plasma arrive.
  • the temperature of the electrically highly conductive high-pressure plasma as can be seen from the temperature distribution, and thus also its conductivity, jumps, in such a way that the temperature falls below room temperature.
  • the damping vessel 13 provided at one end 12 of the switching chamber 1 designed as a membrane push tube prevents a reflected shock wave from returning to the switching chamber 1.
  • the duration of the high conductivity phase can be determined by selecting the pressures and the types of gas for the propellant gas and the test gas and by selecting the distance of the switching chamber 1 from the membrane 10.
  • the high pressure required for the propellant gas tank 8 is either maintained continuously or generated by strong, brief electrical discharge.
  • a piston 2 made of insulating material is injected axially to the arrangement of the switching contacts 4 by igniting a cartridge 14 (a) in such a way that it reaches the discharge gap at the time of zero current crossing (b).
  • the switching arc plasma 15 is then discharged from the discharge space via a controllable inlet and outlet valve 16 (c).
  • a controllable inlet and outlet valve 16 c
  • the gap between the piston 2 and the tube wall of the compression tube 3 must be sufficiently small and the length of the piston 2 must be dimensioned such that the dielectric load can be borne.
  • the compression tube 3 consists of electrically non-conductive material.
  • the plasma remaining in a certain residual volume is strongly compressed (d) so that the piston 2 reverses after its energy has been completely released. He sucks in cold gas via the controllable inlet and outlet valve 16 and thus leaves a sufficiently well-insulating medium in the switching path.
  • the cold gas returns the piston 2 to its initial position and locks it there; at the same time, explosion gases are discharged from the compression tube 3 via a controllable outlet valve 17 (e).
  • the magazine which contains the cartridges 14 for the piston drive is advanced.
  • the side of the piston 2 facing the switching arc plasma 15 must have a protective layer against thermal and radiation influences.
  • the piston movement can be used to shift the movable switching contact of the switching contacts 4 or support the shift.

Description

  • Die Erfindung betrifft ein Verfahren zum Löschen des Lichtbogens in Hochspannungs-Hochleistungsschaltern, bei dem zumindest zum Zeitpunkt der Trennung der Schaltkontakte in der Schaltkammer des Hochspannungs-Hochleistungsschalters mit höheren Drücken gearbeitet wird.
  • Zum Löschen des beim Ausschalten hoher Ströme entstehenden Lichtbogens sind Verfahren bekannt, die simultan zum Trennvorgang der Schaltkontakte eine mit einer Strömung verbundene Druckerhöhung in der Schaltkammer des Hochspannungsleistungsschalters bewirken, die zu einer effektiven Abkühlung des Lichtbogenplasmas, zum Verlöschen des Lichtbogens beim Nulldurchgang des Stromes sowie zu einer dielektrischen Verfestigung der Schaltstrecke führen soll. Dabei wird der Lichtbogen mit einem Gas oder einem Gasgemisch wie z. B. Luft oder Schwefelhexafluorid, beströmt bzw. beblasen. Unabhängig davon, ob nun bei den bekannten Hochspannungsleistungsschaltern die Beblasung der Schaltstrecke vor oder nach der Trennung der Schaltkontakte einsetzt, wird das dazu erforderliche, unter Druck stehende Löschgas entweder einem mit Druckgas gefüllten Behälter entnommen, oder die Löschgasströmung wird durch die mit einem beweglichen Schaltkontakt der Schaltstrecke verbundenen Kolben innerhalb des Hochspannungsleistungsschalters selbst erzeugt. Dabei nimmt das strömende Löschgas Energie aus dem Lichtbogen auf und führt sie ab. Infolge der Strömung ist zum Zeitpunkt der Spannungswiederkehr nur noch ein Bruchteil der insgesamt abgeführten Energie in der Schaltkammer vorhanden. Dennoch kommt es bei höheren Spannungen zum Wiederzünden der Schaltstrecke aufgrund einer ungenügenden dielektrischen Verfestigung des Mediums, wodurch die Schaltspannung begrenzt ist. Es sind zwar auch Hochspannungsleistungsschalter bekannt, bei denen die Löschmittelströmung mittels des Energieinhaltes des Lichtbogens selbst erzeugt wird, indem flüssige oder feste Stoffe dabei zersetzt werden, aber es hat sich gezeigt, daß auch bei diesen sowie bei allen anderen bekannten Hochspannungsleistungsschaltern es bisher nicht möglich ist, den Strom innerhalb einer Halbwelle abzuschalten. Weiterhin sind auch diese bekannten Hochspannungsleistungsschalter mit dem Nachteil behaftet, daß die pro Schaltkammer abschaltbare Spannung zu gering ist.
  • Obwohl es nach DD-C79061 auch schon bekannt ist, bei Hochspannungsleistungsschaltern mit höheren statischen Drücken in der Schaltkammer zu arbeiten, wobei Expansionseffekte ebenfalls berücksichtigt werden, sind auch diese . Hochspannungsleistungsschalter nicht dazu geeignet, den Strom innerhalb einer Halbwelle abzuschalten, da nur mit hohen Drücken zur Erhöhung der Durchschlagfestigkeit in der Schaltkammer gearbeitet wird und eine Expansion über eine verschließbare Öffnung lediglich zum schnellen Abtransport der ionisierten Teilchen genutzt werden soll. Auch hier ist die pro Schaltkammer abschaltbare Spannung zu gering.
  • Aus EP-A-57 371, die nach Art. 54 (3) -EPÜ als Stand der Technik gilt, ist ein Verfahren zum Löschen des Schaltlichtbogens in einer gasgefüllten Löschkammer von elektrischen Schaltern bekannt, bei dem vor und/oder während eines Schaltvorgangs durch innere oder äußere Mittel und/oder durch die freie Energie des brennenden Schaltlichtbogens in der Löschkammer ein Druckanstieg bis auf einen oberhalb des Instabilitätsbereichs eines nichtidealen Plasmas liegenden Wert herbeigeführt und nach Erreichen der dazu erforderlichen Druck- und Temperaturwerte während des Schaltvorgangs ein negativer, vom jeweils verwendeten Gas abhängiger Druckimpuls auf das nichtideale Plasma aufgebracht wird, so daß ein Phasenübergang von einem Plasma mit hoher Elektronendichte oberhalb des Instabilitätsbereichs zu einem Plasma mit niedriger, unterhalb des Instabilitätsbereichs liegender Elektronendichte eintritt. Bei diesem Verfahren übernimmt entsprechend das elektrisch gut leitende Hochddruckplasma in der Schaltkammer den Strom bei Öffnen der Schaltkontakte, worauf das Schaltlichtbogenplasma durch Entspannen des Hochdruckplasmas wirksam gelöscht wird.
  • Der Erfindung liegt die Aufgabe zugrunde, Verfahren zum Löschen des Lichtbogens in Hochspannungs-Hochleistungsschaltern anzugeben, bei denen unter Anwendung höherer Drücke in der Schaltkammer eine effektivere Abkühlung des Schaltlichtbogenplasmas und eine schnellere dielektrische Verfestigung der Schaltstrecke erreicht wird und der Strom innerhalb einer Halbwelle ohne Wiederzündung abschaltbar ist.
  • Die Aufgabe wird gemäß den Ansprüchen 1 und 2 gelöst. Die abhängigen Ansprüche betreffen vorteilhafte Weiterbildungen der Erfindung.
  • Das erste erfindungsgemäße Verfahren zum Löschen des Lichtbogens in Hochspannungs-Hochleistungsschaltern umfaßt folgende Schritte :
    • A) Kurzzeitiges Erzeugen eines elektrisch gut leitenden Hochdruckplasmas mittels eines in einem Kompressionsrohr frei fliegenden Kolbens,
    • B) Öffnen der Schaltkontakte unter Übernahme des Stroms durch das Hochdruckplasma und
    • C) Löschen des Schaltlichtbogens durch Entspannung des Hochdruckplasmas durch Umkehrung der Bewegungsrichtung des frei fliegenden Kolbens.
  • Das zweite Verfahren gemäß der Erfindung umfaßt folgende Schritte :
    • A') Kurzzeitiges Erzeugen eines elektrisch gut leitenden Hochdruckplasmas mittels einer Stoßwelle,
    • B') Öffnen der Schaltkontakte unter Übernahme des Stroms durch das Hochdruckplasma und
    • C') Löschen des Schaltlichtbogens nach Vorbeiführen der hinteren Kontaktfläche des Stoßwellenplasmas infolge sprunghafter Abnahme der Temperatur und damit der Leitfähigkeit des Stoßwellenplasmas.
  • Durch die Umkehrung der Bewegungsrichtung des frei fliegenden Kolbens nach Erreichen der maximalen Kompression wird das elektrisch gut leitende Hochdruckplasma in der Schaltkammer entspannt und dabei abgekühlt.
  • Vorteilhaft läßt sich ein wirksames Löschen des Lichtbogens ohne Wiederzünden in einem Hochspannungs-Hochleistungsschalter mit einem beweglichen und einem feststehenden Schaltkontakt beim synchronen Abschalten von Wechselströmen dadurch erreichen, daß der Kolben zum Zeitpunkt des Stromnulldurchgangs axial in Bezug auf die Schaltkontakte durch Zünden einer Kartusche in das Kompressionsrohr eingeschossen, die Verbindung zwischen den Schaltkontakten zu diesem Zeitpunkt unterbrochen und anschließend das Schaltlichtbogenplasma über ein steuerbares Ventil aus dem Entladungsraum der Schaltkammer entfernt wird. Das noch vorhandene Plasma wird dabei durch den Kolben stark komprimiert, so daß der Kolben nach Abgabe seiner Energie umkehrt. Beim Rücklauf des Kolbens wird ferner günstigerweise über das steuerbare Ventil kaltes Isoliergas in die Schaltstrecke gesaugt und der Kolben in seine Ausgangsposition zurückgeschoben, wobei gleichzeitig Explosionsgase aus dem Kompressionsrohr abgeführt werden.
  • Eine Steigerung der Abkühlrate des Hochdruckplasmas kann dadurch erreicht werden, daß bei Überschreiten eines bestimmten Druckes oder in Abhängigkeit von einem Steuersignal in der Schaltkammer eine Membran oder ein Ventil geöffnet und eine Expansion in eine etwa auf Normaldruck befindliche Expansionskammer ermöglicht wird. Um die Durchschlagsfestigkeit der Schaltstrecke zu erhöhen, wird vorteilhaft nach Unterschreiten eines vorgegebenen Druckes in der Expansionsphase ein kaltes Gas hoher dielektrischer Festigkeit in die Schaltkammer eingelassen.
  • Der im Kompressionsrohr frei fliegende Kolben ist zweckmäßigerweise mit isolierendem Material gegen thermische und Strahlungsbelastung versehen.
  • Ein Vorteil des oben erläuterten erfindungsgemäßen Verfahrens ist darin zu sehen, daß die Spannungsfestigkeit mit einem im Kompressionsrohr frei beweglichen Schaltkontakt gegenüber einem im Kompressionsrohr beweglich angeordneten Schaltkontakt in herkömmlicher Ausführung wesentlich günstiger ist, da selbst bei kleinem Rohrdurchmesser der nunmehr frei bewegliche Schaltkontakt praktisch beliebig weit ausgefahren werden kann, was im anderen Falle nur durch größeren Rohrdurchmesser zu erreichen wäre.
  • Wird gemäß dem zweiten erfindungsgemäßen Verfahren das elektrisch gut leitende Hochdruckplasma mittels einer Stoßwelle erzeugt, wird diese vorzugsweise durch Sprengen einer Membran vor dem Treibgastank einer als Membranstoßrohr ausgebildeten Schaltkammer verursacht, nach deren Vorbeiführung an den Schaltkontakten mit dem Eintreffen der hinteren Kontaktfläche des Stoßwellenplasmas seine Temperatur und damit auch seine Leitfähigkeit sprunghaft abnimmt. Dabei fällt die Temperatur unter Raumtemperatur. Das bedeutet für die elektrische Leitfähigkeit eine Abnahme um mindestens acht Größenordnungen. Der zwischen den sich öffnenden Schaltkontakten brennende Lichtbogen kann auf diese Weise ebenfalls sehr wirkungsvoll gelöscht werden.
  • Im folgenden wird die Erfindung anhand von drei Ausführungsbeispielen unter Bezug auf die Zeichnungen näher erläutert.
  • Es zeigen :
    • Figur 1 : Eine schematische Darstellung eines Hochspannungs-Hochleistungsschalters, bei dem gemäß der Erfindung das elektrisch gut leitende Hochdruckplasma durch einen frei fliegenden Kolben erzeugt wird :
    • Figur 2 : eine schematische Darstellung eines Hochspannungs-Hochleistungsschalters, bei dem gemäß der Erfindung das elektrisch gut leitende Hochdruckplasma durch eine Stoßwelle erzeugt wird, die durch Sprengen einer Membran vor dem Treibgastank verursacht wird, wobei gleichzeitig die örtliche Temperaturverteilung schematisch dargestellt ist, und
    • Figur 3 : eine weitere schematische Darstellung eines Hochspannungs-Hochleistungsschalters im Schnitt in verschiedenen Arbeitszuständen a-e, die den Verfahrensablauf zur Löschung des Lichtbogenplasmas durch einen frei fliegenden Kolben im Kompressionsrohr bei einer beweglichen Anordnung eines der Schaltkontakte erläutern.
  • Bei dem in Fig. 1 dargestellten Hochspannungs-Hochleistungsschalter wird in einer Schaltkammer 1 wenige ms nach Erhalt eines Steuersignals durch schnelle Kompression des Gases in der Schaltkammer mit Hilfe eines druckgetriebenen, innerhalb eines Kompressionsrohres 3 frei fliegenden Kolbens 2 ein elektrisch gut leitendes Hochdruckplasma erzeugt, das den Strom beim Öffnen der Schaltkontakte 4 übernimmt, und zwar mit einer geringeren Stromdichte als im Falle der selbständigen Entladung. Nach Erreichen der maximalen Kompression kehrt der frei fliegende Kolben 2 um. Das elektrisch gut leitende Hochdruckplasma in der Schaltkammer 1 entspannt'sich und kühlt dabei ab. Eine Steigerung der Abkühlrate wird erreicht, wenn beispielsweise bei Überschreiten eines bestimmten Druckes in der Schaltkammer 1 eine Membran 5 geöffnet wird, die eine Expansion in eine Expansionskammer 6 erlaubt, die sich auf Normaldruck befindet. Soll die Durchschlagfestigkeit der Schaltstrecke erhöht werden, so wird nach Unterschreiten eines vorgegebenen Druckes in der Expansionsphase ein kaltes Gas hoher dielektrischer Festigkeit über die Rohrleitung 7 in die Schaltkammer 1 eingelassen. Der Antrieb für den frei fliegenden Kolben 2 kann durch einen Hochdruckgasstoß aus einem Treibgastank 8 oder aber durch Zündung einer (nicht dargestellten) mit Pulver gefüllten Kartusche bewirkt werden.
  • Bei dem Hochspannungs-Hochleistungsschalter nach Fig. 2 wird wenige ms nach Erhalt eines Steuersignals eine Stoßwelle 9 durch die Schaltkammer 1 geschickt, die durch Sprengen der Membran 10 vor dem Treibgastank 8 der Schaltkammer 1 erzeugt wird. Dabei ist die Schaltkammer 1 als Membranstoßrohr ausgebildet, durch das die Stoßwelle 9, die das Hochdruckplasma erzeugt, hindurchläuft. Dadurch wird für eine bestimmte Zeit, und zwar bis zum Eintreffen der hinteren Kontaktfläche 11 der Stoßwelle 9 und damit des Hochdruckplasmas, ein elektrisch gut leitendes Hochdruckplasma an den Schaltkontakten 4 vorbeigeführt. Mit dem Eintreffen der hinteren Kontaktfläche 11 nimmt die Temperatur des elektrisch gut leitenden Hochdruckplasmas, wie der Temperaturverteilung zu entnehmen ist, und damit auch seine Leitfähigkeit sprunghaft ab, und zwar derart, daß die Temperatur unter Raumtemperatur fällt. Durch das am einen Ende 12 der als Membranstoßrohr ausgebildeten Schaltkammer 1 vorgesehene Dämpfungsgefäß 13 wird verhindert, daß eine reflektierte Stoßwelle zur Schaltkammer 1 zurückkehrt. Die Dauer der Phase hoher Leitfähigkeit kann durch Wahl der Drücke und der Gasarten für das Treibgas und das Testgas sowie durch Wahl der Entfernung der Schaltkammer 1 von der Membran 10 bestimmt werden. Der für den Treibgastank 8 benötigte hohe Druck wird entweder ständig aufrechterhalten oder durch starke, kurzzeitige elektrische Entladung erzeugt. Gemäß Fig. 3 wird nach Erhalt eines Steuersignals ein Kolben 2 aus isolierendem Material axial zur Anordnung der Schaltkontakte 4 durch Zündung einer Kartusche 14 so eingeschossen (a), daß er zum Zeitpunkt des Stromnulldurchgangs die Entladungsstrecke erreicht (b). Danach wird das Schaltlichtbogenplasma 15 über ein steuerbares Ein- und Auslaßventil 16 aus dem Entladungsraum abgelassen (c). Dazu müssen der Spalt zwischen dem Kolben 2 und der Rohrwand des Kompressionsrohrs 3 hinreichend klein und die Länge des Kolbens 2 so bemessen sein, daß die dielektrische Belastung getragen werden kann.
  • Dazu ist es erforderlich, daß das Kompressionsrohr 3 aus elektrisch nicht leitendem Material besteht. Das in einem bestimmten Restvolumen verbleibende Plasma wird stark komprimiert (d), so daß der Kolben 2 nach vollständiger Abgabe seiner Energie umkehrt. Dabei saugt er kaltes Gas über das steuerbare Ein- und Auslaßventil 16 an und hinterläßt so in der Schaltstrecke ein hinreichend gut isolierendes Medium. Durch das kalte Gas wird der Kolben 2 wieder in seine Ausgangslage gebracht und dort arretiert ; gleichzeitig werden Explosionsgase aus dem Kompressionsrohr 3 über ein steuerbares Auslaßventil 17 abgeführt (e). Zugleich wird das Magazin weitergestellt, das die Kartuschen 14 zum Kolbenantrieb enthält. Die dem Schaltlichtbogenplasma 15 zugewandte Seite des Kolbens 2 muß eine Schutzschicht gegen thermische und Strahlungseinflüsse tragen. In der hier erläuterten Variante mit axialem Einschuß kann die Kolbenbewegung zur Verschiebung des beweglichen Schaltkontaktes der Schaltkontakte 4 ausgenutzt werden bzw. die Verschiebung unterstützen.

Claims (8)

1. Verfahren zum Löschen des Lichtbogens in Hochspannungs-Hochleistungsschaltern mit folgenden Schritten :
A) Kurzzeitiges Erzeugen eines elektrisch gut leitenden Hochdruckplasmas mittels eines in einem Kompressionsrohr (3) frei fliegenden Kolbens (2),
B) Öffnen der Schaltkontakte unter Übernahme des Stroms durch das Hochdruckplasma und
C) Löschen des Schaltlichtbogens durch Entspannung des Hochdruckplasmas durch Umkehrung der Bewegungsrichtung des frei fliegenden Kolbens (2) (Fig. 1, 3).
2. Verfahren zum Löschen des Lichtbogens in Hochspannungs-Hochleistungsschaltern mit folgenden Schritten :
A') Kurzzeitiges Erzeugen eines elektrisch gut leitenden Hochdruckplasmas mittels einer Stoßwelle,
B') Öffnen der Schaltkontakte unter Übernahme des Stroms durch das Hochdruckplasma und
C') Löschen des Schaltlichtbogens nach Vorbeiführen der hinteren Kontaktfläche (11) des Stoßwellenplasmas (9) infolge sprunghafter Abnahme der Temperatur und damit der Leitfähigkeit des Stoßwellenplasmas (9).
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß die Stoßwelle in Schritt A') durch das Bersten einer Membran (10) erzeugt wird.
4. Verfahren nach Anspruch 2 oder 3, dadurch gekennzeichnet, daß eine Reflexion der Stoßwelle in die Schaltkammer (1) durch ein an ihrem Ende vorgesehenes Dämpfungsgefäß (13) verhindert wird.
5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß in Schritt C) bei Überschreiten eines bestimmten Drucks oder in Abhängigkeit von einem Steuersignal in der Schaltkammer (1) eine Membran (5) oder ein Ventil geöffnet wird, wodurch eine Expansion in eine etwa auf Normaldruck befindliche Expansionskammer (6) hervorgerufen wird.
6. Verfahren nach Anspruch 1 oder 5, dadurch gekennzeichnet, daß in Schritt C) nach Unterschreiten eines vorgegebenen Drucks in der Entspannungsphase ein kaltes Isoliergas hoher dielektrischer Festigkeit in die Schaltkammer (1) eingelassen wird.
7. Verfahren nach einem der Ansprüche 1, 5 oder 6, dadurch gekennzeichnet, daß in Schritt A) der frei fliegende Kolben (2) unmittelbar beim Stromnulldurchgang durch Zünden einer Kartusche (14) in die Schaltstrecke des Kompressionsrohrs (3) eingeschossen wird.
8. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß der frei fliegende Kolben (2) durch das kalte Isoliergas in seine Ausgangsposition gebracht wird.
EP19820110829 1981-12-01 1982-11-23 Verfahren zum Löschen des Lichtbogens in Hochspannungs-Hochleistungsschaltern Expired EP0080690B1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DD235289 1981-12-01
DD23528981A DD206859A1 (de) 1981-12-01 1981-12-01 Verfahren zum loeschen des lichtbogens in hochspannungs-hochleistungsschaltern
DD241264 1982-06-30
DD24126482A DD225259A2 (de) 1982-06-30 1982-06-30 Verfahren zum loeschen eines lichtbogens in hochspannungs-hochleistungsschaltern

Publications (3)

Publication Number Publication Date
EP0080690A2 EP0080690A2 (de) 1983-06-08
EP0080690A3 EP0080690A3 (en) 1985-05-15
EP0080690B1 true EP0080690B1 (de) 1988-07-06

Family

ID=25747751

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19820110829 Expired EP0080690B1 (de) 1981-12-01 1982-11-23 Verfahren zum Löschen des Lichtbogens in Hochspannungs-Hochleistungsschaltern

Country Status (2)

Country Link
EP (1) EP0080690B1 (de)
DE (1) DE3278747D1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2644624B1 (fr) * 1989-03-17 1996-03-22 Merlin Gerin Disjoncteur electrique a autoexpansion et a gaz isolant
US5016475A (en) * 1989-09-20 1991-05-21 Kabushiki Kaisha Kobe Seiko Sho Wiredrawing apparatus including an ultrasonic flaw detector

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1490021B2 (de) * 1964-04-02 1971-06-16 Marx, Erwin, Prof Dr Ing Dr Ing E h, 3300 Braunschweig Elektrischer fluessigkeitsschalter
SU736374A1 (ru) * 1977-06-06 1980-05-25 Предприятие П/Я Р-6517 Способ отключени посто нного тока и устройство дл его осуществлени
US4250365A (en) * 1978-03-22 1981-02-10 Electric Power Research Institute, Inc. Current interrupter for fault current limiter and method
EP0057371B1 (de) * 1981-01-30 1986-04-16 Institut "Prüffeld für elektrische Hochleistungstechnik" Verfahren zum Löschen von Schaltlichtbögen und Hochspannungs-Leistungschalter

Also Published As

Publication number Publication date
EP0080690A2 (de) 1983-06-08
EP0080690A3 (en) 1985-05-15
DE3278747D1 (en) 1988-08-11

Similar Documents

Publication Publication Date Title
DE3920890A1 (de) Lichtbogen-strahl-schuberzeuger mit verbesserter lichtbogenanhaftung zur verbesserung der leistungsfaehigkeit
DE2058670A1 (de) Elektrisches Schaltgeraet
DE102007043955B4 (de) Vorrichtung zur Verminderung der Beaufschlagung eines Flächenabschnitts durch positiv geladene Ionen und Ionenbeschleunigeranordnung
DE1615019A1 (de) Druckgasschalter
EP0016983A1 (de) Autopneumatischer Druckgasschalter
DE3613259C2 (de)
EP0080690B1 (de) Verfahren zum Löschen des Lichtbogens in Hochspannungs-Hochleistungsschaltern
EP0744759B1 (de) Hochspannungs-Leistungsschalter mit einem feststehenden Heizvolumen
EP0042456B1 (de) Hochspannungsleistungsschalter
DE2704434A1 (de) Elektronenstrahlgesteuerte entladungsschaltvorrichtung niedriger impedanz
WO1991015025A1 (de) Druckgasleistungsschalter mit antreibbarem kompressionskolben
CH640977A5 (de) Stromkreisunterbrecher.
WO2014161737A1 (de) Trennschalteinrichtung
DE2217874A1 (de) Stoßspannungsableiter
EP0290950A1 (de) Druckgasschalter
DE3344094A1 (de) Elektrischer druckgasschalter
DD226441A1 (de) Verfahren und einrichtung zur stromkommutierung, insbesondere von kurzschlussstroemen
EP0057371B1 (de) Verfahren zum Löschen von Schaltlichtbögen und Hochspannungs-Leistungschalter
CH629332A5 (de) Stromunterbrecher mit lichtbogenloeschkammer.
DE2759265C3 (de) Druckgasschalter
CH637503A5 (de) Verfahren zur gleichstromunterbrechung und anordnung zur durchfuehrung des verfahrens.
EP0046174B1 (de) Autopneumatischer Druckgasschalter
DD206859A1 (de) Verfahren zum loeschen des lichtbogens in hochspannungs-hochleistungsschaltern
DE2909270C2 (de) Autopneumatischer Druckgasschalter
DE1665254B2 (de) Elektrischer Preßgasschalter

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19821125

AK Designated contracting states

Designated state(s): CH DE FR GB IT LI NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): CH DE FR GB IT LI NL

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: VEB ELEKTROPROJEKT UND ANLAGENBAU BERLIN

17Q First examination report despatched

Effective date: 19870305

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19880706

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 19880706

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19880706

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19880706

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19880714

REF Corresponds to:

Ref document number: 3278747

Country of ref document: DE

Date of ref document: 19880811

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19881130

Ref country code: CH

Effective date: 19881130

EN Fr: translation not filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL