EP0072059B1 - Aufgeladene Brennkraftmaschine mit Abgaspartikelfilter - Google Patents

Aufgeladene Brennkraftmaschine mit Abgaspartikelfilter Download PDF

Info

Publication number
EP0072059B1
EP0072059B1 EP82200907A EP82200907A EP0072059B1 EP 0072059 B1 EP0072059 B1 EP 0072059B1 EP 82200907 A EP82200907 A EP 82200907A EP 82200907 A EP82200907 A EP 82200907A EP 0072059 B1 EP0072059 B1 EP 0072059B1
Authority
EP
European Patent Office
Prior art keywords
exhaust gas
filter
pressure
wave machine
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP82200907A
Other languages
English (en)
French (fr)
Other versions
EP0072059A1 (de
Inventor
Andreas Mayer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BBC Brown Boveri AG Switzerland
Original Assignee
BBC Brown Boveri AG Switzerland
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BBC Brown Boveri AG Switzerland filed Critical BBC Brown Boveri AG Switzerland
Priority to AT82200907T priority Critical patent/ATE19676T1/de
Publication of EP0072059A1 publication Critical patent/EP0072059A1/de
Application granted granted Critical
Publication of EP0072059B1 publication Critical patent/EP0072059B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/0236Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using turbine waste gate valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/18Construction facilitating manufacture, assembly, or disassembly
    • F01N13/1888Construction facilitating manufacture, assembly, or disassembly the housing of the assembly consisting of two or more parts, e.g. two half-shells
    • F01N13/1894Construction facilitating manufacture, assembly, or disassembly the housing of the assembly consisting of two or more parts, e.g. two half-shells the parts being assembled in longitudinal direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • F01N3/0222Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous the structure being monolithic, e.g. honeycombs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B33/00Engines characterised by provision of pumps for charging or scavenging
    • F02B33/32Engines with pumps other than of reciprocating-piston type
    • F02B33/42Engines with pumps other than of reciprocating-piston type with driven apparatus for immediate conversion of combustion gas pressure into pressure of fresh charge, e.g. with cell-type pressure exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/029Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a particulate filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2260/00Exhaust treating devices having provisions not otherwise provided for
    • F01N2260/14Exhaust treating devices having provisions not otherwise provided for for modifying or adapting flow area or back-pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2350/00Arrangements for fitting catalyst support or particle filter element in the housing
    • F01N2350/02Fitting ceramic monoliths in a metallic housing
    • F01N2350/04Fitting ceramic monoliths in a metallic housing with means compensating thermal expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2350/00Arrangements for fitting catalyst support or particle filter element in the housing
    • F01N2350/02Fitting ceramic monoliths in a metallic housing
    • F01N2350/06Fitting ceramic monoliths in a metallic housing with means preventing gas flow by-pass or leakage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2430/00Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics
    • F01N2430/06Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics by varying fuel-air ratio, e.g. by enriching fuel-air mixture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2450/00Methods or apparatus for fitting, inserting or repairing different elements
    • F01N2450/24Methods or apparatus for fitting, inserting or repairing different elements by bolts, screws, rivets or the like

Definitions

  • the present invention relates to a device for limiting the emission of exhaust gas particles in an internal combustion engine according to the preamble of claim 1.
  • EP-A-0 010 384 a device for limiting the exhaust gas particle emission is known.
  • the uncharged internal combustion engine shown here is equipped with an exhaust gas particle filter placed in the exhaust system.
  • By increasing the exhaust gas temperature of the filter its regeneration is initiated by burning the soot deposit on the surface of the filter.
  • the exhaust gas temperature upstream of the filter is increased by increasing the fuel-air ratio, i.e. the air intake quantity is throttled.
  • the circuit resulting from this document has a flap placed after the exhaust gas particle filter, through which part of the exhaust gases can be returned to the engine.
  • a device for limiting the exhaust gas particle emission is also known from US Pat. No. 3,937,015.
  • the regeneration of the filter is aimed at by burning the soot deposit on its surface.
  • the exhaust gas particle filter can be bypassed via a flap.
  • the desired particle combustion temperature can be adjusted, this means that a relative exhaust gas particle filter is accepted.
  • a catalytic converter has open, continuous cells and fulfills the task of enabling the conversion of incompletely burned exhaust gases.
  • the reactor is a precursor to the catalyst.
  • the incompletely burned exhaust gases are led into a pot, where their combustion takes place with the addition of fuel and oxygen.
  • Exhaust particles are not filtered out either in the catalytic converter or in the reactor.
  • the exhaust gas relief valve fulfills the task of the catalyst. Protect the reactor from excessive pressures or high temperatures.
  • the invention seeks to remedy this.
  • the invention has for its object to achieve a filtering of the exhaust gases in a device of the type mentioned during operation, the exhaust gas particle filter being arranged in the high pressure part of the exhaust system in front of the pressure wave machine.
  • Another advantage of the invention is the fact that the gas temperature before the exhaust gas part kelfilter can be increased by briefly closing the recirculation flap and / or by briefly opening the exhaust gas bypass valve. Both when the recirculation flap is closed and when the exhaust gas bypass valve is opened, the excess air in the system becomes smaller. Although the gas temperature rises with the same fuel supply, it is far from increasing to compensate for the performance losses that are traded as a result. In a further driving phase, the power is increased again by increasing the fuel supply; and with it the gas temperature increases even further. Because the recirculation flap is placed in the low-pressure intake of the pressure wave machine, the prevailing pressure difference with respect to the exhaust gas flow does not determine any restriction of the amount of recirculation.
  • the filter is arranged in the exhaust gas receiver itself.
  • the advantage of this arrangement can be seen in the fact that the hot exhaust gases flowing out of the internal combustion engine can be used for soot combustion without losses.
  • the filter is arranged in a separate section from the actual exhaust gas receiver in the exhaust gas direction immediately before the pressure wave machine.
  • the filter is designed as an interchangeable unit.
  • the filter consists of a monolithic porous and heat-resistant core.
  • the particles present in the exhaust gas hit the surfaces of the exhaust gas particle filter and agglomerate there to form larger particles, the surface quality and the porosity of the exhaust gas particle filter material playing a crucial role for the accumulation and agglomeration processes of the soot particles and for their combustion.
  • the core of the filter is surrounded by a fibrous mat-like and heat-resistant covering.
  • the core of the filter together with the casing is arranged in a cylindrical support tube which is held at one end by the retaining ring provided in the exhaust gas receiver and at the other end by the holding cam provided in the exhaust gas receiver.
  • the cylindrical support tube is fixed between the flange of the exhaust gas receiver and the flange of the section.
  • the core of the filter is rigidly integrated with the interposition of the fibrous mat-like covering through the cylindrical support tube and its position is precisely fixed in the axial and radial directions.
  • the support tube is made of heat-resistant sheet metal and an elastic, heat-resistant layer is arranged between it and the solid jacket of the section of the exhaust gas receiver.
  • the monolithic porous core of the filter consists of a ceramic material with high thermal shock resistance or steel wool. With these two materials, optimal filter properties are achieved at higher temperatures, taking into account the temperature change.
  • the charge air flap in the charge air line is briefly closed and operated again after the filter has been regenerated.
  • FIG. 1 shows a cylinder head 1 with six cylinders 2.
  • an inlet / suction channel 3 is arranged for each cylinder, which open into a manifold 4.
  • the manifold 4 is connected to the pressure wave machine 7 through the charge air line 5, in which the charge air flap 6 is located.
  • the exhaust housing 13 of the pressure wave machine 7 is connected to the exhaust gas receiver 10 through the intermediate piece 11 connected.
  • the charge air line 5 opens into the pressure wave machine 7, and the fresh air intake line 14 with recirculation flap 37 and the exhaust line 15 are also connected.
  • the exhaust gas bypass valve 36 is located in a bypass 35 between the exhaust gas housing 13 and the exhaust line 15. The mode of operation of the charge air flap 6, the recirculation flap 37 and the exhaust gas bypass valve 36 is subsequently described in more detail in connection with the description of FIG. 4 in connection with the mode of operation of the filter 18 during driving operation explained.
  • the pressure wave machine 7 is driven via a pulley 16 by the motor shaft 17, the connection of V-belts 16 'between the pulley 16 and the motor shaft 17 or the motor pulley 17' being shown only schematically in the drawing for reasons of better clarity.
  • the exhaust gas particle filter 18 is arranged in the exhaust gas receiver 10 itself.
  • the particle filter 18 is only indicated in FIG. 1, but is shown and explained in detail in FIG. 3.
  • the end plate 27 by means of a screw bolt 29, washer 30 and nut 31 with the flange 22 of the exhaust gas receiver 10 and on the other hand the flange 21 of the exhaust gas receiver 10 is also screwed to the flange 19 of the intermediate piece 11 releasably connected.
  • the intermediate piece 11 in turn connects the exhaust gas receiver 10 to the exhaust gas housing 13 of the pressure wave machine 7 and is arranged such that it can be removed by the flange connection 19, 21 and the flange connection 20, 23.
  • FIG. 2 shows a schematic illustration of a second variant of the exhaust gas particle filter arrangement.
  • the filter 18 is arranged in a section 12 separated from the actual exhaust gas receiver 10 in the exhaust gas direction directly in front of the pressure wave machine 7.
  • the exhaust gas receiver 10 has a smaller diameter than the first variant (FIG. 1) and extends to the section 12.
  • the intermediate piece 11 is omitted in this arrangement.
  • the section 12 is also arranged to be removable.
  • the flange 12 'of the section 12 is detachably connected to one another by a screw connection with the flange 21 of the exhaust gas receiver 10 and, on the other hand, the flange 12 "is also connected to the flange 23 of the exhaust gas housing 13 of the pressure wave machine 7 with a screw connection.
  • Fig. 3 - here the same reference numerals apply as in Fig. 1 - a section through the exhaust gas particle filter arrangement according to the first variant in Fig. 1 is shown. For the sake of clarity, however, only the exhaust gas receiver ends and part of the exhaust gas receiver 10 and part of the filter 18 are shown.
  • the filter 18 consists of a monolithic, porous, heat-resistant and cylindrical core made of ceramic material cf. e.g. B. SAE Paper No. 810114 of February 23, 1981 "Cellufar Ceramic Diesel Particulate Filters by John S. Howitt et al., And is provided with a fibrous and heat-resistant mat-like covering 24 made of ceramic or mineral fiber material, the ends 24 'of the mat-like covering 24 having the cylindrical filter 18 in protrude axially and are inclined inwards towards the axis, whereby the position of the filter 18 is fixed in the longitudinal direction.
  • the filter 18 together with the cover 24 is fastened in a support tube 25, which consists of heat-resistant sheet metal, which encloses the filter 18 together with the cover 24 under contact pressure, the ends of the support tube 25 being welded along a surface line.
  • the annular exhaust gas inflow space 39 is located between the support tube 25 and the solid casing of the exhaust gas receiver 10. According to the direction of the arrows with the reference number 40, the exhaust gas flows from the exhaust gas channels 8 into the exhaust gas inflow space 39 and from there into the filter antechamber 41.
  • the exhaust gas inflow space 39 and the filter anteroom 41 are connected to one another. After the exhaust gas has passed through the filter 18, it reaches the intermediate piece 11 and is fed from there to the exhaust gas housing 13 of the pressure wave machine 7.
  • a retaining ring 26 is arranged at the downstream end of the exhaust gas receiver 10 and at least four retaining cams 28 are each arranged concentrically at the other end of the exhaust gas receiver 10.
  • An asbestos seal 33 is located between the holding ring 26 and the support tube 25 in order to prevent exhaust gas from getting directly into the intermediate piece 11 bypassing the filter 18, while the asbestos seals 33 ′ take over the sealing against the environment.
  • Fig. 4 here the essentially the same reference numerals as in Fig. 3 apply - a section through the exhaust gas particle filter arrangement according to the variant in Fig. 2 is shown.
  • the construction of the filter 18 is the same as described in detail in FIG. 3.
  • a flange 25 ' is provided, which is clamped between the flange 21 of the exhaust gas receiver 10 and the flange 12' of the section 12 and is fastened by screw connections 29, 30, 31.
  • An elastic heat-resistant layer 34 made of wire mesh is located between the support tube 25 and the solid jacket of the section 12.
  • the one-sided fastening of the support tube 25 and the lining with the elastic, heat-resistant layer 34 was chosen in order to dampen any vibrations of the machine that might occur and to allow vibrations already transmitted to the support tube 25 to subside more quickly.
  • the different thermal expansions of the different materials caused by thermal influence must be taken into account sufficiently. If the support tube 25 were fixed on both sides, thermal stresses would possibly destroy the Guide attachment of the support tube 25.
  • the flange 12 ′′ of the section 12 is connected to the flange 23 of the exhaust gas housing 13 of the pressure wave machine 7 by means of a screw connection 29, 30, 31 with the interposition of a seal 33 ′.
  • An increase in the gas temperature also takes place if, with a predetermined degree of occupancy of the exhaust gas particle filter, the recirculation flap 37 and / or the charge air flap 6 close briefly. With this measure, it is clear that with a constant fuel supply quantity, the excess air becomes smaller because there is less charge air in the system. If the charge air flap 6 and the recirculation flap 37 close, then the engine is only supplied with air via the snifting valve: this is equivalent to a suction operation. If there is less charge air, the performance of the engine generally drops. Although the gas temperature rises somewhat here, the increase is far from being so marked that it can compensate for the loss in performance. In the subsequent driving phase, the driver then takes care of the increase in performance himself, by trying to compensate for the loss in performance through more accelerator pressure.
  • the pressure wave machine 7 tolerates the high temperature peaks because the rotor is flushed with fresh air.
  • the shock wave machine 7's own exhaust gas recirculation capacity can be increased by temperature surges without risk of contamination of the rotor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Supercharger (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Filtering Materials (AREA)

Description

  • Die vorliegende Erfindung betrifft eine Vorrichtung zur Begrenzung der Abgaspartikelemission bei einer Brennkraftmaschine gemäss Oberbegriff des Anspruchs 1.
  • Die Partikelemission von Brennkraftmaschinen ist bereits in einigen Ländern gesetzlich limitiert, andere Länder werden sich einer verschärften restriktiven Handhabung über die Emission zulässiger Grenzwerte von Abgaspartikeln anschliessen.
  • Bei der Partikelemission von Brennkraftmaschinen handelt es sich im wesentlichen um folgende Bestandteile:
    • - Freischwebender Russ.
    • - Im Russ angelagerte Kohlenwasserstoffverbindungen und andere organische Substanzen.
    • - Sulfatverbindungen.
    • - Bleiverbindungen (bei Ottomotoren).
  • Aus EP-A-0 010 384 ist eine Vorrichtung zur Begrenzung der Abgaspartikelemission bekannt. Die hier gezeigte nicht aufgeladene Brennkraftmaschine ist mit einem im Abgassystem plazierten Abgaspartikelfilter bestückt. Durch Erhöhung der Abgastemperatur von dem Filter wird dessen Regenerierung eingeleitet, indem eine Verbrennung der Russablagerung auf der Oberfläche des Filters erfolgt. Die Erhöhung der Abgastemperatur vor dem Filter geschieht durch Erhöhung des Brennstoff-Luft-Verhältnisses, d.h., die Lufteinlassmenge erfährt eine Drosselung. Um die Abgastemperatur zu erhöhen, nimmt man hier bewusst eine negative Beeinflussung der Ladungswechselschleife, d. h. des Wirkungsgrades, mit einer entsprechenden Verschlechterung des Brennstoffverbrauches in Kauf. Zwar weist die aus dieser Schrift hervorgehende Schaltung eine nach dem Abgaspartikelfilter plazierte Klappe auf, durch welche ein Teil der Abgase in den Motor rückgeleitet werden können. Eine nennenswerte Temperaturerhöhung vor dem Abgaspartikelfilter-lässt sich indessen mit dieser Klappe nicht erzielen, well die in dieser Leitung gegenüber der Abgasströmung nach dem Filter vorherrschende Druckdifferenz minim ist. Wohl liesse sich diese Gasrezirkulation durch Regelung der Klappe in der Lufteinlassleitung erhöhen, allein würde dies aber die Ladungswechselschleife zusätzlich negativ beeinflussen.
  • Aus US-3 937 015 ist ebenfalls eine Vorrichtung zur Begrenzung der Abgaspartikelemission bekannt. Auch hier wird die Regenerierung des Filters durch eine Verbrennung der Russablagerung auf dessen Oberfläche angestrebt. Dabei kann hier der Abgaspartikelfilter über eine Klappe bypasst werden. Zwar lässt sich damit die angestrebte Partikelbrenntemperatur einregeln, dadurch nimmt man aber eine relative Abgaspartikelfilterung in Kauf.
  • Aus DE-A-23 26 989 ist eine Schaltung eines Otto-Motors mit einem Turbolader, einer Entgiftungsanlage (Katalysator oder Reaktor) und einem zwischen Abgasrohr und Entgiftungsanlage angeordneten Abgasabblaseventil bekannt.
  • Die Austauschbarkeit zwischen Turbolader und Druckwellen maschine ist nicht ohne weiters gegeben. Während vor und nach dem Turbolader die gleiche Sauerstoffmenge herrscht, wird der Druckwellenmaschine über die Niederdruck-Ansaugung noch Spülluft zugemischt. Ein Katalysator hat offene durchgängige Zellen und erfüllt die Aufgabe, die Umwandlung von unvollständig verbrannten Abgasen zu ermöglichen. Beim Reaktor handelt es sich um einen Vorläufer des Katalysators. Hier werden die unvollständig verbrannten Abgase in einen Topf geleitet, wo deren Verbrennung unter Zugabe von Brennstoff und Sauerstoff abläuft. Weder beim Katalysator noch beim Reaktor werden Abgaspartikel ausfiltriert. Das Abgasabblaseventil erfüllt die Aufgabe, den Katalysator resp. Reaktor vor zu hohen Drücken oder zu hohen Temperaturen zu schützen.
  • Hier will die Erfindung Abhilfe schaffen. Der Erfindung, wie sie in den Ansprüchen gekennzeichnet ist, liegt die Aufgabe zugrunde, bei einer Vorrichtung der eingangs genannten Art während des ganzen Betriebes eine Filtrierung der Abgase zu erzielen, wobei der Abgaspartikelfilter im Hochdruckteil des Abgassystems vor der Druckwellenmaschine angeordnet ist. Darüber hinaus ist es Aufgabe der Erfindung, das Abbrennen des ausgefilterten Russes, im Sinne einer dauernden Regenerierung des Abgaspartikelfilters, zu ermöglichen.
  • Diese Anordnung des Abgaspartikelfilters weist folgende Vorteile auf :
    • - Die Ansprechbarkeit der Druckwellenmaschine ist gewährleistet.
    • - Vorrichtung für die Zufuhr von Fremdenergie und Russ-Abbrenneinrichtungen für das Verbrennen der Russablagerungen an den Oberflächen der Abgaspartikelfilter mittels Fremdenergie entfallen.
    • - Regeleinrichtungen, die die Auslösung des Zündvorganges der Fremdenergie in Abhängigkeit des Abgasgegendruckes steuern, entfallen ebenfalls.
    • - Das der Druckwellenmaschine eigene Abgasrezirkulationsvermögen wird gesteigert, ohne Verschmutzungsgefahr für den Rotor der Druckwellenmaschine.
    • - Nach dem Entzünden der Russablagerungen steigt die Ladeluftdichte sofort wieder an, die Abgastemperatur sinkt, und der Motor wird nicht überhitzt.
    • - Trotz herabgesetzter Abgastemperatur, wird wegen der exothermen Reaktion der Russverbrennung dieselbe unvermindert fortgesetzt.
  • Ein weiterer Vorteil der Erfindung ist darin zu sehen, dass die Gastemperatur vor dem Abgaspartikelfilter durch kurzfristiges Schliessen der Rezirkulationsklappe und/oder durch kurzfristiges Oeffnen des Abgasbypassventils erhöht werden kann. Sowohl beim Schliessen der Rezirkulationsklappe als auch beim Oeffnen des Abgasbypassventils wird der Luftüberschuss im System kleiner. Zwar steigt bei gleicher Brennstoffzuführung die Gastemperatur an, bei weitem aber nicht in dem Masse, um die hierdurch eingehandelte Leistungseinbusse kompensieren zu können. In einer weiteren Fahrphase wird daher durch vermehrte Brennstoffzufuhr die Leistung wieder angehoben ; und mit ihr nimmt die Gastemperatur noch weiter zu. Weil die Rezirkulationsklappe in der Niederdruck-Ansaugung der Druckwe.llenmaschine plaziert ist, bestimmt die vorherrschende Druckdifferenz gegenüber der Abgasströmung keine Einschränkung der Rezirkulationsmenge.
  • Nach Anspruch 2 ist das Filter im Abgasreceiver selbst angeordnet. Der Vorteil dieser Anordnung ist darin zu sehen, dass die aus der Brennkraftmaschinen strömenden heissen Abgase ohne Verluste für die Russverbrennung nutzbar gemacht werden können.
  • Nach Anspruch 3 ist das Filter in einem vom eigentlichen Abgasreceiver getrennten Teilstück in Abgasrichtung unmittelbar vor der Druckwellenmaschine angeordnet.
  • Entsprechend Anspruch 4 ist das Filter als austauschbare Baueinheit ausgebildet.
  • Durch die Anordnungen gemäss den Ansprüchen 3 und 4 kann das Filter einfach und schnell ausgewechselt werden.
  • Gemäss Anspruch 5 besteht das Filter aus einem monolithischen porösen und hitzebeständigen Kern.
  • Die im Abgas vorhandenen Partikeln treffen auf die Oberflächen des Abgaspartikelfilters auf und agglomerieren dort zu grösseren Partikeln, wobei die Oberflächenbeschaffenheit und die Porosität des Abgaspartikelfilterwerkstoffes für die Anlagerungs- und Agglomerationsvorgänge der Russpartikeln sowie für deren Verbrennung eine ausschlaggebende Rolle spielen.
  • Entsprechend Anspruch 6 ist der Kern des Filters von einer faserigen mattenartigen und hitzebeständigen Umhüllung umgeben.
  • Nach Anspruch 7 ist der Kern des Filters samt der Umhüllung in einem zylindrischen Tragrohr angeordnet, das an einem Ende von dem im Abgasreceiver vorgesehenen Haltering und am anderen Ende von dem im Abgasreceiver vorgesehenen Haltenocken gehalten wird.
  • Gemäss Anpruch 8 ist das zylindrische Tragrohr zwischen dem Flansch des Abgasreceivers und dem Flansch des Teilstückes befestigt.
  • Durch die Anordnung gemäss den Ansprüchen 6-8 ist der Kern des Filters unter Zwischenschaltung der faserigen mattenartigen Umhüllung durch das zylindrische Tragrohr starr eingebunden und seine Lage in axialer und radialer Richtung genau fixiert.
  • Gemäss den Ansprüchen 9-11 besteht das Tragrohr aus hitzebeständigem Blech und zwischen diesem und dem massiven Mantel des Teilstückes des Abgasreceivers ist eine elastische hitzebeständige Schicht angeordnet.
  • Hierdurch ist gewährleistet, dass das Tragrohr sich bei höherer Temperatur nicht verzieht und einen grossen Verzunderungswiderstand aufweist, und dass durch die elastische hitzebeständige Schicht eventuell auftretende Vibrationen von der Maschine abgedämpft und somit nicht unmittelbar auf den Kern des Filters übertragen werden.
  • Nach Anspruch 12 und 13 besteht der monolithische poröse Kern des Filters aus einem keramischen Material mit hoher Temperaturwechselbeständigkeit oder aus Stahlwolle. Mit diesen beiden Materialien werden optimale Filtereigenschaften bei höheren Temperaturen, unter Berücksichtigung des Temperaturwechsels, erreicht.
  • Gemäss Anspruch 14 wird zwecks Erhöhung der Abgastemperatur vor dem Filter die Ladeluftklappe in der Ladeluftleitung kurzfristig geschlossen und nach erfolgter Regeneration des Filters wieder normal betätigt.
  • Die Erfindung wird nachstehend anhand von in der Zeichnung dargestellten Ausführungsbeispiele näher erläutert.
  • In der Zeichnung zeigt :
    • Figur 1 eine schematische Darstellung einer ersten Variante der Abgaspartikelfilteranordnung bei der Aufladung einer Brennkraftmaschine mittels Druckwellenmaschine.
    • Figur 2 eine schematische Darstellung einer zweiten Variante der Abgaspartikelfilteranordnung bei der Aufladung einer Brennkraftmaschine mitteis Druckweiienmaschine.
    • Figur 3 einen Schnitt durch die Abgaspartikelfilteranordnung gemäss der beispielsweisen Ausführungsform der ersten Variante in Fig. 1.
    • Figur 4 einen Schnitt durch eine Abgaspartikelfilteranordnung gemäss der beispielsweisen Ausführungsform der zweiten Variante in Fig. 2.
  • In Fig. 1 ist ein Zylinderkopf 1 mit sechs Zylindern 2 gezeigt. Im Zylinderkopf 1 sind für jeden Zylinder je ein Einlass/Saugkanal 3 angeordnet, die in ein Sammelrohr 4 münden. Das Sammelrohr 4 ist durch die Ladeluftleitung 5, in der sich die Ladeluftklappe 6 befindet mit der Druckwellenmaschine 7 verbunden.
  • Im Zylinderkopf 1 sind auch für jeden Zylinder je ein Abgaskanal 8 angeordnet, an die sich die AbgasKrümmer 9 anschliessen und die in einen Abgasreceiver 10 münden. In an sich bekannter Weise ist an den Abgasreceiver 10 durch das Zwischenstück 11 das Abgasgehäuse 13 der Druckwellenmaschine 7 verbunden. In die Druckwellenmaschine 7 mündet, wie bereits erwähnt, die Ladeluftleitung 5, und weiterhin sind die Frischluftansaugleitung 14 mit Rezirkulationsklappe 37 und die Auspuffleitung 15 angeschlossen. In einem Bypass 35 zwischen Abgasgehäuse 13 und Auspuffleitung 15 befindet sich das Abgasbypassventil 36. Die Wirkungsweise der Ladeluftklappe 6, der Rezirkulationsklappe 37 und des Abgasbypassventils 36 wird anschliessend an die Beschreibung von Fig. 4 im Zusammenhang mit der Wirkungsweise des Filters 18 während des Fahrbetriebes näher erläutert. Die Druckwellenmaschine 7 wird über eine Riemenscheibe 16 von der Motorwelle 17 angetrieben, wobei aus Gründen besserer Uebersicht in der Zeichnung die Verbindung von Keilriemen 16' zwischen Riemenscheibe 16 und Motorwelle 17 bzw. Motorriemenscheibe 17' nur schematisch dargestellt ist.
  • In dieser ersten Variante ist das Abgaspartikelfilter 18 im Abgasreceiver 10 selbst angeordnet. Das Partikelfilter 18 ist in Fig. 1 nur angedeutet, wird aber in Fig. 3 ausführlich dargestellt und erläutert.
  • Zwecks einfacherer Handhabung und besserer Zugänglichkeit beim Auswechseln des Filters 18 ist einerseits die Abschlussplatte 27 durch Schraubbolzen 29, Unterlegscheibe 30 und Mutter 31 mit dem Flansch 22 des Abgasreceivers 10 und andererseits der Flansch 21 des Abgasreceivers 10 ebenfalls mit Schraubverbindung mit dem Flansch 19 des Zwischenstückes 11 lösbar miteinander verbunden.
  • Das Zwischenstück 11 wiederum verbindet den Abgasreceiver 10 mit dem Abgasgehaüse 13 der Druckwellenmaschine 7 und ist ausnehmbar durch die Flanschverbindung 19, 21 und die Flanschverbindung 20, 23 angeordnet.
  • Fig. 2 zeigt eine schematische Darstellung einer zweiten Variante der Abgaspartikelfilteranordnung. Hierbei ist das Filter 18 in einem von eigentlichen Abgasreceiver 10 getrennten Teilstück 12 in Abgasrichtung unmittelbar vor der Druckwellenmaschine 7 angeordnet.
  • In der beispielsweisen Darstellung gemäss Fig. 2 weist der Abgasreceiver 10 einen gegenüber der ersten Variante (Fig. 1) geringeren Durchmesser auf und erstreckt sich bis hin zum Teilstück 12. Das Zwischenstück 11 entfällt bei dieser Anordnung.
  • Zwecks einfacher Handhabung und besserer Zugänglichkeit beim Auswechseln des Filters 18 ist das Teilstück 12 ebenfalls ausnehmbar angeordnet. Einerseits ist der Flansch 12' des Teilstückes 12 durch Schraubverbindung mit dem Flansch 21 des Abgasreceivers 10 und andererseits der Flansch 12" ebenfalls mit Schraubverbindung mit dem Flansch 23 des Abgasgehäuses 13 der Druckwellenmaschine 7, lösbar miteinander verbunden.
  • In Fig. 3 - hier gelten die gleichen Bezugsziffern wie in Fig. 1 - ist ein Schnitt durch die Abgaspartikelfilteranordnung gemäss der ersten Variante in Fig. 1 dargestellt. Wegen besserer Uebersichtlichkeit sind jedoch lediglich die Abgasreceiverenden und ein Teil des Abgasreceivers 10 sowie ein Teil des Filters 18 dargestellt.
  • Das Filter 18 besteht aus einem monolithischen, porösen, hitzebeständigen und walzenförmigen Kernstück aus keramischen Material vgl. z. B. SAE-Paper No. 810114 vom 23.2.81 « Cellufar Ceramic Diesel Particulate Filters von John S. Howitt et al, und ist mit einer faserigen und hitzebeständigen mattenartigen Umhüllung 24 aus keramischen oder mineralischem Faserstoff versehen, wobei die Enden 24' der mattenartigen Umhüllung 24 das walzenförmige Filter 18 in axialer Richtung überragen und nach innen zur Achse hin geneigt sind, wodurch die Lage des Filters 18 in Längsrichtung fixiert ist. Das Filter 18 samt Umhüllung 24 ist in einem Tragrohr 25 befestigt, das aus hitzebeständigem Blech besteht, welches das Filter 18 samt Umhüllung 24 unter Anpressdruck umschliesst, wobei die Enden des Tragrohres 25 längs einer Mantellinie verschweisst sind. Zwischen dem Tragrohr 25 und dem massiven Mantel des Abgasreceivers 10 befindet sich der ringförmige Abgaszuströmraum 39. Entsprechend der Richtung der Pfeile mit der Bezugsziffer 40 strömt das Abgas aus den Abgaskanälen 8 in den Abgaszuströmraum 39 und von dort in den Filtervorraum 41. Der Abgaszuströmraum 39 und der Filtervorraum 41 sind miteinander verbunden. Nach Durchtritt des Abgases durch das Filter 18 gelangt es in das Zwischenstück 11 und wird von dort dem Abgasgehäuse 13 der Druckwellenmaschine 7 zugeleitet.
  • Zur Befestigung des Tragrohres 25 sind am abströmseitigen Ende des Abgasreceivers 10 ein Haltering 26 und an dem anderen Ende des Abgasreceivers 10 wenigstens vier Haltenocken 28 jeweils konzentrisch angeordnet. Zwischen dem Haltering 26 und dem Tragrohr 25 befindet sich eine Asbestdichtung 33 um zu vermeiden, dass Abgas unter Umgehung des Filters 18 direkt in das Zwischenstück 11 gelangt, während die Asbestdichtungen 33' die Abdichtung gegen die Umgebung übernehmen.
  • In Fig. 4 - hier gelten die im wesentlichen gleichen Bezugsziffern wie in Fig. 3 - ist ein Schnitt durch die Abgaspartikelfilteranordnung gemäss der Variante in Fig. 2 dargestellt. Der Aufbau des Filters 18 ist der gleiche wie in Fig. 3 ausführlich beschrieben. An einem Ende des Tragrohres 25 ist ein Flansch 25' vorgesehen, der zwischen dem Flansch 21 des Abgasreceivers 10 und dem Flansch 12' des Teilstückes 12 eingeklemmt und durch Schraubverbindung 29, 30, 31 befestigt ist. Zwischen dem Tragrohr 25 und dem massiven Mantel des Teilstückes 12 befindet sich eine elastische hitzebeständige Schicht 34 aus Drahtgeflecht. Die einseitige Befestigung des Tragrohres 25 und die Auskleidung mit der elastischen hitzebeständigen Schicht 34 wurde gewählt, um eventuelle auftretende Vibrationen der Maschine abzudämpfen und bereits auf das Tragrohr 25 übertragene Schwingungen rascher abklingen zu lassen. Darüber hinaus muss den durch thermischen Einfluss hervorgerufenen unterschiedlichen Wärmeausdehnungen der verschiedenen Materialien genügend Rechnung getragen werden. Bei beidseitiger Fixierung des Tragrohres 25 würden thermische Spannungen zur eventuellen Zerstörung der Befestigung des Tragrohres 25 führen. Der Flansch 12" des Teilstückes 12 ist unter Zwischenschaltung einer Dichtung 33' mit dem Flansch 23 des Abgasgehäuses 13 der Druckwellenmaschine 7 durch Schraubverbindung 29, 30, 31 verbunden.
  • Die Wirkungsweise des Filters 18 während des Fahrbetriebes wird nachfolgend beschrieben :
    • Tritt bei Teillast eine Verstopfung des Filters 18 auf, dann bewirkt der Druckverlust des Filters 18 primär eine Behinderung des Gaswechsels des Motors, was eine Reduktion der Nutzleistung zur Folge hat. Die Leistungseinbusse wird der Fahrer durch mehr Brennstoff wettmachen ; dadurch steigt die Gastemperatur stark an. Fordert der Fahrer dem Fahrzeug genügend Leistung ab, kommt es automatisch zum Abbrennen des Russes. Die Entflammtemperatur von Russ beträgt ca. 650 °C.
  • Eine Erhöhung der Gastemperatur findet auch statt, wenn, bei einem vorgegebenen Belegungsgrad des Abgaspartikelfilters, die Rezirkulationsklappe 37 und/oder die Ladeluftklappe 6 kurzfristig schliessen. Mit dieser Massnahme ist es klar, dass, bei gleichbleibender Brennstoffzufuhrmenge, der Luftüberschuss kleiner wird, weil weniger Ladeluft im System vorhanden ist. Gehen die Ladeluftklappe 6 und die Rezirkulationsklappe 37 zu, dann wird der Motor nur über das Schnüffelventil mit Luft gespeist : Dies kommt einem Saugbetrieb gleich. Ist weniger Ladeluft vorhanden, dann sinkt allgemein die Leistung des Motors. Zwar steigt hier die Gastemperatur etwas an, die Zunahme ist aber bei weitem nicht so markant, dass damit die Leistungseinbusse kompensiert werden könnte. Die Leistungssteigerung besorgt dann in der drauffolgenden Fahrphase der Fahrer selbst, indem er durch mehr Gaspedaldruck danach trachtet, die Leistungseinbusse wettzumachen.
  • Dasselbe erfüllt sich, wenn das Abgasbypassventil 36, sei es individuell oder im Zusammenhang mit Ladeluftklappe 6 und/oder Rezirkulationsklappe 37, kurzfristig öffnet. Auch hier nimmt die Ladeluft im System ab. Die Leistungseinbusse wird wieder über die Zufuhr einer grösseren Brennstoffmenge wettgemacht.
  • Die Druckwellenmaschine 7 toleriert die hohen Temperaturspitzen, weil der Rotor mit Frischluft gespült wird. Durch Temperaturstösse kann das der Druckwellenmaschine 7 eigene Abgasrezirkulationsvermögen gesteigert werden, ohne Verschmutzungsgefahr für den Rotor.
    Figure imgb0001
    Figure imgb0002

Claims (14)

1. Vorrichtung zur Begrenzung der Abgaspartikelemission bei einer Brennkraftmaschine mit einem Abgaspartikelfilter im Abgassystem, wobei die Filterregenerierung durch eine Erhöhung der Abgastemperatur vor dem Filter infolge Erhöhung des Brennstoff-Luft-Verhältnisses und somit durch eine Verbrennung der Russablagerung auf der Oberfläche des Filters erfolgt, dadurch gekennzeichnet, dass eine gasdynamische Druckwellenmaschine (7) im Abgassystem der Brennkraftmaschine vorgesehen ist, wobei der Abgaspartikelfilter (18) im Hochdruckteil des Abgassystems vor der Druckwellenmaschine (7) angeordnet ist und wobei zur Erhöhung der Abgastemperatur vor dem Filter (18)
- in der Niederdruck-Ansaugleitung (14) der Druckwellenmaschine (7) eine kurzfristig schliessbare Rezirkulationsklappe (37) plaziert ist,
- und/oder in einem Bypass (35) stromabwärts des Filters (18) - wie an sich bekannt - zwischen Abgasgehäuse (13) und Auspuffleitung (15) ein kurzfristig zu öffnendes Abgasbypassventil (36) vorgesehen ist.
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass das Filter (18) im Abgasreceiver (10) selbst angeordnet ist.
3. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass das Filter (18) in einem vom eigentlichen Abgasreceiver (10) getrennten Teilstück (12) in Abgasrichtung unmittelbar vor der Druckwellenmaschine (7) angeordnet ist.
4. Vorrichtung nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, dass das Filter (18) als austauschbare Baueinheit ausgebildet ist.
5. Vorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Filter (18) aus einem monolithischen porösen und hitzebeständigen Kern besteht.
6. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, dass der Kern des Filters (18) von einer faserigen mattenartigen und hitzebeständigen Umhüllung (24) umgeben ist.
7. Vorrichtung nach Anspruch 1 bis 6, dadurch gekennzeichnet, dass der Kern des Filters (18) samt der Umhüllung (24) in einem zylindrischen Tragrohr (25) angeordnet ist, das an einem Ende von dem im Abgasreceiver (10) vorgesehenen Haltering (26) und am anderen Ende von den im Abgasreceiver (10) vorgesehenen Haltenocken (28) gehalten wird.
8. Vorrichtung nach Anspruch 1 bis 6, dadurch gekennzeichnet, dass der Kern des Filters (18) samt der Umhüllung (24) in einem zylindrischen Tragrohr (25) angeordnet sind, das zwischen dem Flansch (21) des Abgasreceivers (10) und dem Flansch (12') des Teilstückes (12) befestigt ist.
9. Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, dass das Tragrohr (25) aus hitzebeständigem Blech besteht.
10. Vorrichtung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass zwischen dem Tragrohr (25) und dem massiven Mantel des Teilstückes (12) des Abgasreceivers (10) eine elastische hitzebeständige Schicht (34) angeordnet ist.
11. Vorrichtung nach Anspruch 10, dadurch gekennzeichnet, dass die Schicht (34) durch ein elastisches hitzebeständiges Drahtgeflecht gebildet ist.
12. Vorrichtung nach Anspruch 5 bis 8, dadurch gekennzeichnet, dass der monolithische poröse Kern des Filters (18) aus einem keramischen Material mit hoher Temperaturwechselbeständigkeit besteht.
13. Vorrichtung nach Anspruch 2 bis 4, dadurch gekennzeichnet, dass der monolithische poröse Kern des Filters (18) aus Stahlwolle besteht.
14. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass in der Ladeluftleitung (5) zur Brennkraftmaschine eine kurzfristig schliessbare Ladeluftklappe (6) vorgesehen ist.
EP82200907A 1981-08-11 1982-07-15 Aufgeladene Brennkraftmaschine mit Abgaspartikelfilter Expired EP0072059B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT82200907T ATE19676T1 (de) 1981-08-11 1982-07-15 Aufgeladene brennkraftmaschine mit abgaspartikelfilter.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH515581 1981-08-11
CH5155/81 1981-08-11

Publications (2)

Publication Number Publication Date
EP0072059A1 EP0072059A1 (de) 1983-02-16
EP0072059B1 true EP0072059B1 (de) 1986-05-07

Family

ID=4288852

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82200907A Expired EP0072059B1 (de) 1981-08-11 1982-07-15 Aufgeladene Brennkraftmaschine mit Abgaspartikelfilter

Country Status (7)

Country Link
US (1) US4553387A (de)
EP (1) EP0072059B1 (de)
JP (1) JPS5838312A (de)
AT (1) ATE19676T1 (de)
CA (1) CA1185538A (de)
DE (1) DE3270986D1 (de)
ES (1) ES514858A0 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011118765A1 (de) 2011-11-17 2013-05-23 Benteler Automobiltechnik Gmbh Ottomotor mit Druckwellenlader und Dreiwegekatalysator
DE102012101204A1 (de) * 2012-02-15 2013-08-22 Benteler Automobiltechnik Gmbh Druckwellenladeranordnung mit Abgasnachbehandlungseinheit

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3361269D1 (en) * 1982-06-02 1986-01-02 Bbc Brown Boveri & Cie Process and installation for the control of exhaust gas recirculation in a pressure wave supercharger for an internal-combustion engine
EP0152870A3 (de) * 1984-02-21 1985-10-09 Comprex Ag Verfahren zur Regenerierung des Abgaspartikelfilters bei Verbrennungsmotoren
JPS6127926U (ja) * 1984-07-24 1986-02-19 マツダ株式会社 過給機付エンジン
JPS6136132U (ja) * 1984-08-08 1986-03-06 マツダ株式会社 過給機付エンジン
CH665002A5 (de) * 1984-11-09 1988-04-15 Bbc Brown Boveri & Cie Verfahren und einrichtung zum betrieb eines dieselmotors mit einer abgasfiltriereinrichtung.
JPH0240269Y2 (de) * 1985-02-19 1990-10-26
GB8516420D0 (en) * 1985-06-28 1985-07-31 Ontario Research Foundation Diesel particulate traps
DE3529542A1 (de) * 1985-08-17 1987-02-26 Daimler Benz Ag Anordnung eines russfilters im abgassystem einer brennkraftmaschine mit einem abgasturbolader
EP0252316B1 (de) * 1986-07-08 1990-12-27 Comprex Ag Brennkraftmaschine mit Druckwellenlader und Lamda-Sonde
US4835963A (en) * 1986-08-28 1989-06-06 Allied-Signal Inc. Diesel engine particulate trap regeneration system
JPS6348930U (de) * 1986-09-17 1988-04-02
CH677814A5 (de) * 1989-01-27 1991-06-28 Asea Brown Boveri
US5082479A (en) * 1990-07-16 1992-01-21 Cummins Engine Company, Inc. Diesel particulate trap mounting system
US5679249A (en) * 1991-12-24 1997-10-21 Pall Corporation Dynamic filter system
FR2686652B1 (fr) * 1992-01-29 1994-04-29 Shell Petroles Procede et dispositif pour l'elimination en continu par postcombustion de particules solides imbrulees.
US6117322A (en) * 1993-06-23 2000-09-12 Pall Corporation Dynamic filter system
US6089211A (en) * 1996-03-05 2000-07-18 Swissauto Engineering S.A. Spark ignition engine with pressure-wave supercharger
JP3456348B2 (ja) * 1996-09-19 2003-10-14 トヨタ自動車株式会社 ディーゼル機関の排気浄化装置
JP3427685B2 (ja) * 1997-07-31 2003-07-22 トヨタ自動車株式会社 内燃機関の排気浄化装置
ES2190798T3 (es) 1997-08-29 2003-08-16 Swissauto Eng Sa Maquina de combustion con maquina de onda de presion.
SE519922C2 (sv) * 1998-12-07 2003-04-29 Stt Emtec Ab Anordning och förfarande för avgasrening samt användning av anordningen
DE29916158U1 (de) * 1999-09-14 1999-12-09 Emitec Emissionstechnologie Katalytischer Konverter zum Reinigen von Abgas und Abgasreinigungsanordnung mit einem katalytischen Konverter
US6314735B1 (en) 2000-02-23 2001-11-13 Ford Global Technologies, Inc. Control of exhaust temperature in lean burn engines
US6745568B1 (en) 2003-03-27 2004-06-08 Richard K. Squires Turbo system and method of installing
DE102006020522A1 (de) 2006-05-03 2007-11-08 Robert Bosch Gmbh Verfahren zum Betreiben einer Brennkraftmaschine
US20070289293A1 (en) * 2006-06-15 2007-12-20 Gm Global Technology Operations, Inc. Diesel Exhaust System Reversible Particulate Filter
DE102008052113A1 (de) * 2008-10-20 2010-04-22 Benteler Automobiltechnik Gmbh Verbrennungskraftmaschine mit einem Druckwellenlader und Verfahren zum Betreiben von Nebenaggregaten einer Verbrennungskraftmaschine
GB2492428B (en) * 2011-06-29 2014-05-14 Perkins Engines Co Ltd Method and apparatus for controlling the operation of a turbocharged internal combustion engine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3937015A (en) * 1973-05-03 1976-02-10 Nippondenso Co., Ltd. Pleated filter in the exhaust manifold
EP0010384A1 (de) * 1978-10-19 1980-04-30 General Motors Corporation Filter für feste Bestandteile der Abgase von Dieselmotoren mit kontrolliertem Abbrand des Filtrats durch Drosselung der Einlassluft

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2800120A (en) * 1953-11-30 1957-07-23 Jendrassik Developments Ltd Pressure exchangers
GB781659A (en) * 1955-04-01 1957-08-21 Dudley Brian Spalding Improvements relating to pressure exchanger apparatus
US3011487A (en) * 1958-06-17 1961-12-05 Ite Circuit Breaker Ltd Adjustable stator plate for variable speed aero-dynamic wave machine
GB895808A (en) * 1960-03-11 1962-05-09 Power Jets Res & Dev Ltd Improvements in or relating to supercharging reciprocating internal-combustion engines
DE2027883A1 (de) * 1970-06-06 1971-12-16 Daimler-Benz Ag, 7000 Stuttgart Brennkraftmaschine
CH552135A (de) * 1972-11-29 1974-07-31 Bbc Brown Boveri & Cie Verfahren zur verminderung der schadstoffemission von verbrennungsmotoren und einrichtung zur durchfuehrung des verfahrens.
DE2326989A1 (de) * 1973-05-26 1974-12-12 Daimler Benz Ag Otto-motor mit einem turbolader und einer entgiftungsanlage
US3951626A (en) * 1974-10-04 1976-04-20 Kreisler Manufacturing Corporation High temperature filter
JPS5244324A (en) * 1975-10-07 1977-04-07 Ishikawajima Harima Heavy Ind Co Ltd Denitric acid device used for a diesel engine
CH593421A5 (de) * 1976-06-29 1977-11-30 Bbc Brown Boveri & Cie
DE2655932A1 (de) * 1976-12-10 1978-06-15 Daimler Benz Ag Luftverdichtende einspritzbrennkraftmaschine
US4329162A (en) * 1980-07-03 1982-05-11 Corning Glass Works Diesel particulate trap

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3937015A (en) * 1973-05-03 1976-02-10 Nippondenso Co., Ltd. Pleated filter in the exhaust manifold
EP0010384A1 (de) * 1978-10-19 1980-04-30 General Motors Corporation Filter für feste Bestandteile der Abgase von Dieselmotoren mit kontrolliertem Abbrand des Filtrats durch Drosselung der Einlassluft

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011118765A1 (de) 2011-11-17 2013-05-23 Benteler Automobiltechnik Gmbh Ottomotor mit Druckwellenlader und Dreiwegekatalysator
DE102012101204A1 (de) * 2012-02-15 2013-08-22 Benteler Automobiltechnik Gmbh Druckwellenladeranordnung mit Abgasnachbehandlungseinheit
DE102012101204B4 (de) * 2012-02-15 2016-05-12 Benteler Automobiltechnik Gmbh Druckwellenladeranordnung mit Abgasnachbehandlungseinheit

Also Published As

Publication number Publication date
CA1185538A (en) 1985-04-16
ATE19676T1 (de) 1986-05-15
DE3270986D1 (en) 1986-06-12
EP0072059A1 (de) 1983-02-16
US4553387A (en) 1985-11-19
JPS6229608B2 (de) 1987-06-26
ES8307987A1 (es) 1983-08-16
ES514858A0 (es) 1983-08-16
JPS5838312A (ja) 1983-03-05

Similar Documents

Publication Publication Date Title
EP0072059B1 (de) Aufgeladene Brennkraftmaschine mit Abgaspartikelfilter
DE60218082T2 (de) Abgasreinigungsanlage für eine Dieselbrennkraftmaschine
DE69732534T2 (de) Abgasrückführung in verbrennungsmotoren
DE4007516C2 (de) Dieselmotor
DE102005062475A1 (de) Filterservicesystem und -verfahren
DE4439940A1 (de) Verfahren zur Verminderung der NO¶x¶-Emission einer aufgeladenen Kolbenbrennkraftmaschine sowie Kolbenbrennkraftmaschine zur Durchführung des Verfahrens
DE102014118813A1 (de) AGR-System mit Partikelfilter für Ottomotor
DE102005040526A1 (de) Kurbelgehäuseventilationssystem
EP1405995B1 (de) Motorsystem mit Abgasturbolader und Abgasrückführung sowie Verfahren zu dessen Betrieb
DE102006000785A1 (de) Filterservicesystem und -verfahren
DE102005062473A1 (de) Filterservicesystem und -verfahren
DE2756570A1 (de) Kontrollierbar beheizbarer rauchfilter fuer brennkraftmaschine
DE10162383A1 (de) Anordnung und Verfahren zur Nachbehandlung von Abgasen
EP2157309B1 (de) Brennkraftmaschine
DE4331509C1 (de) Vorrichtung zur Schadstoffminderung beim Betrieb mehrzylindriger Brennkraftmaschinen
DE4222162C2 (de) Verfahren zum raschen Erzielen der Zündtemperatur der Schadstoffe in den Abgasen einer Brennkraftmaschine und Vorrichtung hierzu
DE102018220824A1 (de) System zum zwangsweisen regenerieren eines benzinpartikelfilters
DE112007000787T5 (de) Düsenanordnung
DE102011008495A1 (de) Motorabgassystem und Betriebsverfahren
WO2009115405A1 (de) Verfahren zur regeneration eines dieselpartikelfilters einer brennkraftmaschine sowie entsprechende vorrichtung
WO2010070100A1 (de) Abgasreinigungsanlage sowie verfahren zum betrieb einer abgasreinigungsanlage
DE4038169A1 (de) Brennkraftmaschine mit einem aus zylinderkopf und kurbelgehaeuse bestehenden motorgehaeuse
DE10202005B4 (de) Filtereinrichtung
DE102017102874A1 (de) Abgasnachbehandlungsanlage eines Verbrennungsmotors und Verfahren zur Beladung und/oder Regeneration von Partikelfiltern
EP1882831A1 (de) Abgasanlage eines Dieselmotors

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19830321

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19860507

Ref country code: BE

Effective date: 19860507

REF Corresponds to:

Ref document number: 19676

Country of ref document: AT

Date of ref document: 19860515

Kind code of ref document: T

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19860531

REF Corresponds to:

Ref document number: 3270986

Country of ref document: DE

Date of ref document: 19860612

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19880731

Ref country code: CH

Effective date: 19880731

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19900615

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19900618

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19900628

Year of fee payment: 9

ITTA It: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19910715

Ref country code: AT

Effective date: 19910715

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19920331

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19960801

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980401