EP0062248B1 - Méthode de fabrication de rivets de contact à trois métaux - Google Patents
Méthode de fabrication de rivets de contact à trois métaux Download PDFInfo
- Publication number
- EP0062248B1 EP0062248B1 EP82102496A EP82102496A EP0062248B1 EP 0062248 B1 EP0062248 B1 EP 0062248B1 EP 82102496 A EP82102496 A EP 82102496A EP 82102496 A EP82102496 A EP 82102496A EP 0062248 B1 EP0062248 B1 EP 0062248B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- upsetting
- wire
- abutment
- needle
- section
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000000034 method Methods 0.000 title claims description 28
- 238000003466 welding Methods 0.000 claims description 13
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 12
- 229910052709 silver Inorganic materials 0.000 claims description 9
- 239000004332 silver Substances 0.000 claims description 9
- 229910052802 copper Inorganic materials 0.000 claims description 5
- 239000010949 copper Substances 0.000 claims description 5
- 238000007493 shaping process Methods 0.000 claims description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 21
- 229910052751 metal Inorganic materials 0.000 description 16
- 239000002184 metal Substances 0.000 description 16
- 230000006835 compression Effects 0.000 description 13
- 238000007906 compression Methods 0.000 description 13
- 238000005520 cutting process Methods 0.000 description 10
- 229910000510 noble metal Inorganic materials 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000010970 precious metal Substances 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- FGRBYDKOBBBPOI-UHFFFAOYSA-N 10,10-dioxo-2-[4-(N-phenylanilino)phenyl]thioxanthen-9-one Chemical compound O=C1c2ccccc2S(=O)(=O)c2ccc(cc12)-c1ccc(cc1)N(c1ccccc1)c1ccccc1 FGRBYDKOBBBPOI-UHFFFAOYSA-N 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H11/00—Apparatus or processes specially adapted for the manufacture of electric switches
- H01H11/04—Apparatus or processes specially adapted for the manufacture of electric switches of switch contacts
- H01H11/041—Apparatus or processes specially adapted for the manufacture of electric switches of switch contacts by bonding of a contact marking face to a contact body portion
- H01H11/042—Apparatus or processes specially adapted for the manufacture of electric switches of switch contacts by bonding of a contact marking face to a contact body portion by mechanical deformation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21K—MAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
- B21K1/00—Making machine elements
- B21K1/58—Making machine elements rivets
- B21K1/62—Making machine elements rivets special rivets, e.g. with electrical contacts
Definitions
- the starting point of the invention is a method for producing tri-metal contact rivets by cold welding with the features specified in the preamble of claim 1. Such a method is known from US-A-4 073 425.
- three differently composed wire sections with matching cross sections are separated from a wire supply and are aligned in succession in a transversely displaceable guide bush between a compression needle displaceable in the guide bush and an abutment arranged outside the guide bush.
- the middle wire section is usually made of copper, whereas the two outer, mostly shorter wire sections usually consist of silver.
- the annular bead formed by the cold welding is pressed flat and then sheared off by pushing the three wire sections out of the one guide bushing through the upsetting needle and pushing them into an opposite guide bushing in which a further upsetting needle is arranged to be advanced.
- the wire sections are compressed again in a subsequent deformation cut, the two abutting surfaces of the wire sections which were in the guide bush during the first deformation process now lying in the free space and experiencing an increase in cross-section leading to cold welding, while the two abutment surfaces welded together in the first deformation cut now lie in the guide bush in question and are not deformed again.
- the rivet head of the tri-metal rivet is preformed at the same time. In a further step, it is finally shaped into its final shape using a special headmaking tool.
- a major disadvantage of the known method is that in addition to the steps of cutting and positioning the three wire sections, a total of four steps for plastic deformation are required to produce the tri-metal rivet, with new deformation tools sometimes having to be brought into position between these four deformation steps.
- the invention is based on the object of making available a process which is particularly suitable for mass production and which manages with fewer deformation steps than the known process.
- the increase in diameter that occurs during upsetting should be selected so that perfect cold welding is guaranteed.
- v W / vg ⁇ 0; 25 there is only a progressively inadequate welding in the outer area of the abutting surfaces of the wire sections, while with a value of v w / v s above 0.5 the cross-sectional increase becomes too small for a perfect cold welding.
- the abutment lies against the end of the guide bush.
- the upsetting needle which protrudes from the other end into the guide bushing, there are the three wire sections, which face each other in pairs with their mutually facing ends and rest with the two outer ends on the abutment or on the upsetting needle.
- the compression needle is then advanced into the guide bushing at the speed Vs and the abutment is moved back from the bushing at the lower speed Vw in synchronism therewith.
- a compression cannot take place in the interior of the guide bush, since the wall of the guide bush prevents the cross-section of the wire sections from increasing.
- the upset portion of the wires does not necessarily require lateral guidance.
- a further guide bushing is preferably used for this purpose, the clear cross section of which is just F 2 or slightly larger.
- the abutment is then displaceably mounted in this second guide bush.
- the second guide bushing can also advantageously be used to hold the blank while it is being transferred to a headmaking tool, and possibly also during the head molding process itself.
- the rivet head can be formed on the blank in a known manner by one or two deformation shocks.
- the end of the blank in a bushing covered with precious metal is first pre-compressed so far in the free space in front of the bushing that it can no longer buckle during the subsequent second deformation shock.
- the second deformation blow is carried out with a press ram (headmaker), which has a recess whose contour matches the contour of the contact rivet head. If only one deformation blow is carried out, it is carried out with the headmaker and pre-upsetting is not necessary.
- the method according to the invention requires only one deformation step instead of four deformation steps before forming the rivet head. This means that machines that work according to the method according to the invention can produce much more cost-effectively than those that produce according to the known method.
- Another advantage of the invention is that the substantially cylindrical blank is produced by a continuous .flowing process of the material, whereby the metallurgical structure is much cheaper and more homogeneous than with a tri-metal contact rivet produced by the known method.
- trimetal contact rivets with a particularly thin noble metal layer can be produced.
- the invention starts from thinner and correspondingly longer wire sections than the shaft of the finished tri-metal contact rivet because of the formation of the cylindrical blank with an enlarged diameter due to upsetting. If one assumes thinner wire sections than the shaft diameter of the finished tri-metal contact rivet, the volume fraction of the noble metal used per contact rivet can be reduced. It is not possible to cut pieces of wire of any length; therefore, if the length of the noble metal-containing wire section can be chosen to be thinner than before, then the saving of noble metals results from the reduction in cross-section.
- silver wire with a diameter D requires a minimum length of the wire sections of approximately 0.5 D to 0.8 D, the lower value 0.5 D for very thick and the upper value 0.8 D for very thin wires. Shorter wire sections can hardly be handled anymore and no longer have a sufficiently smooth cutting surface suitable for cold welding.
- the required larger shaft diameter of the tri-metal contact rivet is obtained by compressing the wire sections, which also weld them cold together.
- the length of the wire sections is shortened to the same extent as the cross section of the wires increases.
- the length of the noble metal sections of the blank formed by compression and consequently the thickness of the noble metal layer on the fully formed contact rivet head can therefore be smaller than would be possible if one started out with wire sections for the production of a tri-metal contact rivet with the same external dimensions that were already in diameter with the Match the diameter of the shaft of the tri-metal contact rivet.
- a tri-metal contact rivet can be produced from a copper wire section of 9 mm length and 3 mm diameter and from two silver wire sections of 2 mm length and 3 mm diameter using a state of the art cold welding process (e.g. DE-A-2 555 697), which has the following typical dimensions;
- a tri-metal contact rivet with substantially identical external dimensions can be produced from a copper wire section 30 mm long and 1.64 mm long Diameter and two silver wire sections, each 1.5 mm long and 1.64 mm in diameter. By compression, it becomes a blank of 3 mm in diameter and 9.90 mm in length, of which 2 x 0.45 mm are silver.
- FIGS. 1 to 10 schematically show an example of the sequence of the method according to the invention, showing the most important device elements which are required to carry out the method.
- a carrier 1 there are two cutting bushes 2 and 3 parallel to each other with the same internal width, to which a copper wire 5 and a silver wire 6 are fed from a wire supply in the direction of arrow 4 by a loading device (not shown).
- the two wires have matching diameters (Fig. 1).
- the free ends of the two cutting bushings 2 and 3 lie in alignment with a flat surface 10 of the carrier 1, on which a slide 7 can be moved.
- the slide 7 has, parallel to the cutting bushes 2 and 3, a continuous guide bushing 8 with the same inner diameter as that of the cutting bushings 2 and 3.
- a compression needle 9 is arranged displaceably in the guide bushing 8.
- the manufacturing process begins with the slide 7 being moved so that the guide bush 8 is aligned with the cutting bush 3 (FIG. 1); the upsetting needle 9 is positioned so that its front end 9a is at a distance from the surface 10 which corresponds to the length of the first silver wire section 6a to be cut off.
- the silver wire 6 is advanced until it abuts the end 9a of the upsetting needle, and then the slide 7 is moved in the direction of the arrow 11 (FIG. 1), as a result of which the silver wire section 6a inserted in the guide bushing 8 is sheared off.
- the slide 7 is now moved until the guide bush 8 is aligned with the cutting bush 2; at the same time the upsetting needle 9 is withdrawn by a distance which corresponds to the length of the copper wire section 5a to be cut off (FIG. 2).
- the copper wire 5 is advanced in the direction of arrow 4 until it abuts the silver wire section 6a.
- the slide 7 is then moved in the direction of the arrow 12 (FIG. 2), as a result of which the copper wire section 5a is sheared off.
- the slide 7 is now moved further in the direction of the arrow 12 until the guide bush 8 is aligned with a second guide bush 13, which is arranged continuously in a second slide 14, which is parallel to the first slide 7 between the first slide 7 and the carrier 1 in a step-shaped recess 15 of the carrier 1 is displaceable (FIG. 4).
- the second guide bush 13 has a clear cross section, which, for. B. is larger by a factor of 3.5 than the clear cross-section of the first guide bushing 8.
- a plunger 16 mounted in the carrier 1 with a flat end surface is displaceably guided. This plunger 16 is initially at the end of the guide bush 8, so that the three wire sections 5a, 5b and 6a between the compression needle 9 and the plunger 16 are kept largely free of play. are.
- the upsetting needle 9 is pushed into the guide bushing 8 in the direction of the arrow 17 and pulled back in synchronism with it, but at a reduced speed of the tappet 16 in the direction of the arrow 17 by a factor of 3.5 (see above).
- the upsetting needle 9 thus presses the wire sections 5a, 5b and 6a against the slower plunger 16, which serves as an abutment.
- the consequence of this is that the cross section of the wire sections 5a, 5b and 6a widens by a factor of 3.5; the compression occurs when the material enters from the first guide bush 8 into the second guide bush 13.
- the two wire sections 5a and 6a and 5a and 6b weld together and form a cylindrical blank 18.
- the guide bush 20 and the needle 22 are then moved back by a certain preselectable distance L in the direction of the arrow 23. Synchronously with this, the needle 21 is moved in the same direction 23 (FIG. 7). In this way, a free space 24 is created between the slider 14 and the guide bushing 20, in which the rivet head is pre-compressed. This is done by feeding the Needle 21 in the direction of arrow 23 against the stationary needle 22 as an abutment (Fig. 7). By upsetting the head, the end of the blank 18 protruding from the guide bushing 20 does not bend in the subsequent shaping process by which the head is finally shaped.
- FIG. 8 also shows the moment of pre-upsetting, namely in a viewing direction rotated by 90 ° (direction of arrow 29 in FIG. 7).
- the pre-upsetting needle 21 is withdrawn and the slide 14 is moved in the direction of arrow 29.
- a tool slide 25 is moved in the direction of arrow 31, which is arranged parallel to the slide 14.
- the pre-compression needle 21 and a plunger 26 serving as a headmaker are mounted parallel to one another in the tool slide 25.
- the headmaker 26 has in its end face, which is normally at the level of the end face of the guide bush 20 in its starting position (FIGS. 6 and 7), a recess 27 which has the contour of the contact rivet head to be formed.
- the guide bush 20 is now pushed together with the needle 22 inserted therein in the direction of the arrow 28 and strikes the pre-compressed blank 18 against the resting headmaker 26, as a result of which the head 32 obtains its final shape (FIG. 9).
- the tool slide 25 is then moved in the direction of the arrow 28; it moves away from the carrier 1 and takes the headmaker 26 and the pre-compression needle 21 with it, so that the finished tri-metal contact rivet 33 is released.
- the needle 22 is advanced in the direction of the arrow 28 and throws the finished tri-metal contact rivet 33, which until then was still with its shaft 34 in the guide bush 20, out of this (FIG. 10).
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Manufacture Of Switches (AREA)
- Forging (AREA)
Claims (4)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3112452A DE3112452C2 (de) | 1981-03-28 | 1981-03-28 | Verfahren zum Herstellen von Doppelkontaktnieten |
DE3112452 | 1981-03-28 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0062248A1 EP0062248A1 (fr) | 1982-10-13 |
EP0062248B1 true EP0062248B1 (fr) | 1985-01-30 |
EP0062248B2 EP0062248B2 (fr) | 1989-01-18 |
Family
ID=6128657
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP82102496A Expired EP0062248B2 (fr) | 1981-03-28 | 1982-03-25 | Méthode de fabrication de rivets de contact à trois métaux |
Country Status (5)
Country | Link |
---|---|
US (1) | US4744502A (fr) |
EP (1) | EP0062248B2 (fr) |
DE (2) | DE3112452C2 (fr) |
ES (1) | ES8301704A1 (fr) |
YU (1) | YU67682A (fr) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3112452C2 (de) * | 1981-03-28 | 1985-04-25 | Doduco KG Dr. Eugen Dürrwächter, 7530 Pforzheim | Verfahren zum Herstellen von Doppelkontaktnieten |
DE3521670A1 (de) * | 1985-06-18 | 1986-12-18 | Gesenkschmiede Schneider Gmbh, 7080 Aalen | Verfahren und vorrichtung zum anstauchen von stabstahl |
DE4126220A1 (de) * | 1991-08-08 | 1993-02-11 | Duerrwaechter E Dr Doduco | Verfahren zum herstellen von elektrischen kontaktnieten |
CN102842448A (zh) * | 2011-06-24 | 2012-12-26 | 三菱综合材料C.M.I.株式会社 | 复合触点的制造方法 |
WO2013026315A1 (fr) * | 2011-08-19 | 2013-02-28 | 桂林市森工机械技术开发有限公司 | Inverseur et riveteuse à contact électrique composite triple comprenant l'inverseur |
CN113909750A (zh) * | 2021-11-04 | 2022-01-11 | 温州亚美合金科技有限公司 | 一种用于三层复合银触点的冷焊机床 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2739369A (en) * | 1952-03-28 | 1956-03-27 | Metals & Controls Corp | Method of making electrical contacts |
US3311965A (en) * | 1965-02-09 | 1967-04-04 | Talon Inc | Apparatus for forming composite electrical contact elements |
SE313975B (fr) * | 1965-05-15 | 1969-08-25 | Duerrwaechter E Doduco | |
GB1198803A (en) * | 1966-07-26 | 1970-07-15 | Johnson Matthey Co Ltd | Improvements in and relating to Methods of Making Bimetallic Rivet-Type Electrical Contacts |
US3634934A (en) * | 1968-12-26 | 1972-01-18 | Johnson Matthey & Mallory Ltd | Manufacture of composite materials |
DE2555697B2 (de) * | 1975-12-11 | 1978-08-03 | Dr. Eugen Duerrwaechter Doduco, 7530 Pforzheim | Verfahren zum Herstellen von Doppelkontaktnieten |
JPS6038217B2 (ja) * | 1977-07-25 | 1985-08-30 | 中外電気工業株式会社 | 複合電気接点の製造装置 |
JPS5673826A (en) * | 1979-11-22 | 1981-06-18 | Chugai Electric Ind Co Ltd | Method of manufacturing composite electric contact by cold solderless bonding |
DE3112452C2 (de) * | 1981-03-28 | 1985-04-25 | Doduco KG Dr. Eugen Dürrwächter, 7530 Pforzheim | Verfahren zum Herstellen von Doppelkontaktnieten |
-
1981
- 1981-03-28 DE DE3112452A patent/DE3112452C2/de not_active Expired
-
1982
- 1982-03-24 ES ES510766A patent/ES8301704A1/es not_active Expired
- 1982-03-25 DE DE8282102496T patent/DE3262098D1/de not_active Expired
- 1982-03-25 EP EP82102496A patent/EP0062248B2/fr not_active Expired
- 1982-03-26 YU YU00676/82A patent/YU67682A/xx unknown
- 1982-03-26 US US06/362,063 patent/US4744502A/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
DE3112452C2 (de) | 1985-04-25 |
US4744502A (en) | 1988-05-17 |
EP0062248A1 (fr) | 1982-10-13 |
EP0062248B2 (fr) | 1989-01-18 |
DE3262098D1 (en) | 1985-03-14 |
ES510766A0 (es) | 1983-02-01 |
YU67682A (en) | 1987-06-30 |
DE3112452A1 (de) | 1983-04-28 |
ES8301704A1 (es) | 1983-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0223909B1 (fr) | Filière d'extrudeuse pour la fabrication d'une ébauche de foret en métal dur ou en céramique | |
DE2747382C2 (de) | Verfahren zur Herstellung eines einen hohlzylindrischen Teil aufweisenden Flanschstückes und Vorrichtung zur Durchführung des Verfahrens | |
EP0431681A2 (fr) | Procédé et outil d'extrusion pour la fabrication d'une ébauche pourvue d'alésages internes | |
WO2013127425A1 (fr) | Arbre creux de transmission pourvu d'une bride et son procédé de fabrication | |
DE2832063C2 (de) | Vorrichtung zur Herstellung eines drei Metalle umfassenden elektrischen Kontaktes | |
DE1552002A1 (de) | Vorrichtung zum Herstellen von Platinen | |
DE19634723C2 (de) | Verfahren zum Herstellen und Schichten von Bauteilen, sowie eine Vorrichtung dafür | |
EP2263812A1 (fr) | Procédé de fabrication de pièces découpées, notamment d'anneaux synchrones, de corps d'embrayage ou de disques d'embrayage | |
DE1299275B (de) | Mehrstufenpresse zur Herstellung von Vielkantkopfbolzen | |
EP0062248B1 (fr) | Méthode de fabrication de rivets de contact à trois métaux | |
EP0062243B2 (fr) | Méthode de fabrication de rivets de contact bimétalliques | |
DE69305629T2 (de) | Verfahren und vorrichtung zur herstellung eines kopfes auf einem länglichen werkstück | |
EP0682999B1 (fr) | Article moulé, procédé et installation pour sa préparation | |
DE2555697B2 (de) | Verfahren zum Herstellen von Doppelkontaktnieten | |
DE69305630T2 (de) | Verfahren und vorrichtung zur herstellung von schrauben, nieten oder dergleichen | |
DE3020144C2 (de) | Vorrichtung zum Herstellen von Bimetallkontakten insbesondere Bimetall-Aufschweißkontakten, aus Drähten | |
DE1303557B (de) | Verfahren und Vorrichtung zum Herstel len eines elektrischen Kontaktelements | |
EP0103044B1 (fr) | Procédé de fabrication de corps annulaires en particulier d'ébauches d'anneaux de synchronisation | |
DE69305732T2 (de) | Verfahren und vorrichtung zur herstellung eines länglichen gegenstandes | |
DE2357309B2 (de) | Preßform zur pulvermetallurgischen Herstellung von Kontaktdüsen für Schweißmaschinen | |
AT246537B (de) | Vorrichtung zum Herstellen von Hohlkörpern, insbesondere von Hohlnieten | |
DE2839625A1 (de) | Verfahren zum herstellen eines gehaeuseteiles mit einem radialen einlassrohr | |
DE2618908A1 (de) | Verfahren und vorrichtung zur herstellung von scharnierstiften | |
DE1627696B2 (de) | Verfahren zur Herstellung von stumpfgeschweißten Bimetallteilen aus Drähten verschiedenen Metalls, insbesondere von Bimetallkontakten | |
DE2248251A1 (de) | Vorrichtung zur herstellung von fliessgepressten hohlkoerpern |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Designated state(s): DE FR GB IT |
|
17P | Request for examination filed |
Effective date: 19820821 |
|
ITF | It: translation for a ep patent filed | ||
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Designated state(s): DE FR GB IT |
|
REF | Corresponds to: |
Ref document number: 3262098 Country of ref document: DE Date of ref document: 19850314 |
|
ET | Fr: translation filed | ||
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
26 | Opposition filed |
Opponent name: RENZ, WACKER GMBH & CO., MASCHINENFABRIK Effective date: 19850903 |
|
PUAH | Patent maintained in amended form |
Free format text: ORIGINAL CODE: 0009272 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT MAINTAINED AS AMENDED |
|
27A | Patent maintained in amended form |
Effective date: 19890118 |
|
AK | Designated contracting states |
Kind code of ref document: B2 Designated state(s): DE FR GB IT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19890325 |
|
EN3 | Fr: translation not filed ** decision concerning opposition | ||
GBPC | Gb: european patent ceased through non-payment of renewal fee | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19891130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19891201 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |