EP0060290B1 - Verfahren und vorrichtung zur geregelten wärmeübergabe aus einem primären dampfnetz an einen wärmeverbraucher - Google Patents

Verfahren und vorrichtung zur geregelten wärmeübergabe aus einem primären dampfnetz an einen wärmeverbraucher Download PDF

Info

Publication number
EP0060290B1
EP0060290B1 EP81902649A EP81902649A EP0060290B1 EP 0060290 B1 EP0060290 B1 EP 0060290B1 EP 81902649 A EP81902649 A EP 81902649A EP 81902649 A EP81902649 A EP 81902649A EP 0060290 B1 EP0060290 B1 EP 0060290B1
Authority
EP
European Patent Office
Prior art keywords
heat
condensate
consumer
steam
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP81902649A
Other languages
English (en)
French (fr)
Other versions
EP0060290A1 (de
Inventor
Helmut Bälz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to AT81902649T priority Critical patent/ATE7074T1/de
Publication of EP0060290A1 publication Critical patent/EP0060290A1/de
Application granted granted Critical
Publication of EP0060290B1 publication Critical patent/EP0060290B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K17/00Using steam or condensate extracted or exhausted from steam engine plant
    • F01K17/02Using steam or condensate extracted or exhausted from steam engine plant for heating purposes, e.g. industrial, domestic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K19/00Regenerating or otherwise treating steam exhausted from steam engine plant
    • F01K19/02Regenerating by compression
    • F01K19/08Regenerating by compression compression done by injection apparatus, jet blower, or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems

Definitions

  • the invention is based on a method for regulated heat transfer from a primary steam network to a heat consumer, the flow of which is supplied at a predetermined excess pressure and the return of which is at a relatively low pressure, the heat taken from the steam network as a function of the heat consumption by the consumer Steam is cooled by heat extraction by means of a secondary medium while maintaining a predetermined overpressure in relation to the supply pressure of the heat consumer until it is condensed, and the excess pressure in a jet pump is then reduced to the supply pressure of the heat consumer while generating a corresponding driving energy for the supply and thereby the supply the secondary medium heated to the cooling of the steam is mixed.
  • the invention is based on a device for controlled heat transfer from a primary steam network to a heat consumer, with a heat exchanger controlled by condensate accumulation as a function of the temperature to the heat consumer, which on the steam side with the steam network and on the condensate side with the driving nozzle of one in the flow line of the heat consumer lying jet pump is connected, the driving nozzle of which is pressurized with the predetermined overpressure, the jet pump on the suction side in a secondary circuit of the heat exchanger, in which flows the steam-heated secondary medium, which flows through the jet pump in a predetermined proportion to the flow of the heat consumer is admixable.
  • the heat exchanger is connected to the steam line of the primary steam network via a multi-function valve.
  • the conduits used in the heat exchanger for condensation are connected to the jet nozzle of a jet pump, a line serving as a feed line leading from the jet pump to the heat consumer, the return of which opens via a pressure-maintaining valve to the condensate return line of the primary steam network.
  • a line branches off, with which the secondary medium is branched off from the condensate to be returned, which secondary medium is fed into the associated flow connection of the heat exchanger.
  • the secondary medium in the heat exchanger After the secondary medium in the heat exchanger has been heated by condensation of the steam, it arrives via a further connecting line to the suction side of the jet pump, from where it is then mixed with the condensate flowing out of the heat exchanger for heat transfer to the heat consumer.
  • the temperature of the flow of the heat consumer is regulated via the multi-function valve provided on the steam side, via which the condensate build-up in the heat exchanger is also regulated at the same time.
  • a pressure loss occurs at the multi-function valve, so that under certain operating situations it is necessary to provide a pressure booster pump which is electrically operated in the flow line for the heat consumer, specifically behind the jet pump.
  • the object of the invention is therefore to further develop the above-mentioned method in such a way that no pressure booster pump is required behind the jet pump while at the same time saving fittings.
  • the method is characterized according to the invention by the features of the main claim, while the device for solving the problem is characterized according to the invention by the features of claim 3.
  • the cold secondary medium can expediently be branched off from the cooled return line of the heat consumer.
  • a pressure-maintaining valve can be arranged in terms of flow behind the branching off of the secondary circuit.
  • the pressure-maintaining valve can have a further connection which is connected to the connecting line between the condensate side of the heat exchanger and the jet pump, in the steam line for the heat exchanger is a level controller controlling the pressure control valve, through which the pressure control valve can be reversed in order to remove excess condensate such that the condensate can be discharged directly into the condensate return line of the steam network, bypassing the heat consumer and the jet pump.
  • a hot water heater can be contained in the heat exchanger.
  • the illustrated steam water heating system 1 serves to transfer heat from a primary steam network 010 to a heat consumer designated by 2.
  • the heat consumer 2 can, depending on the design of the system as a heating, ventilation, air conditioning, production or hot water preparation system for radiators or registers or heating devices and the like. Like. Be trained.
  • the system has a heat exchanger 4 connected to the steam network 010 via a line 3, in which a tube coil bundle 5 is arranged, which is connected on the steam side to line 3 and on the condensate side to a connecting line 6.
  • the connecting line 6 leads from the tube coil bundle 5 to the drive nozzle connection 8 of a jet pump 9 with a variable drive nozzle 10, the collecting nozzle or the diffuser 11 of the jet pump 9 being connected to a feed line 12 of the heat consumer 2.
  • a return line 13 leads from the heat consumer 2 via a multi-function valve 14 to the condensate manifold 012 of the steam network.
  • the heat exchanger 4 also has two connections 15 and 16 for the secondary medium, which is passed through the heat exchanger 4 in a countercurrent process and is branched in terms of flow upstream of the multi-function valve 14 from the return line 13 via a line 17 and is fed into the connection 15. After flowing through the heat exchanger 4, the secondary medium flows out of the connecting piece 16 of the heat exchanger 4 and from there reaches the suction side 18 of the jet pump 9.
  • a level sensor 19 is provided above the heat exchanger 4 in the connecting line 3, said level sensor 19 having a magnet 20 of the magnetically controlled multi-function valve 14 controls, which is connected via a further connection 21 to the condensate-carrying line 6.
  • the multi-function valve 14 is designed as a pressure-maintaining valve and is controlled via a pressure transmitter 22 provided in the return line 13 so that a predetermined pressure is maintained in the line 13.
  • a temperature sensor 23 is located in the flow line 12 and is connected to a control device 25 acting on an actuator 24.
  • the actuator 24 serves to regulate the driving nozzle 10, which in the exemplary embodiment is provided with a nozzle needle 26 for changing the nozzle cross section.
  • the arrangement of the actuator 24 and jet pump 9 is such that the condensate flow into the connecting line 6 or in the flow line 12 and the heat consumer 2 is continuously adjustable between the zero flow rate and the maximum flow rate using the adjustable drive nozzle 10.
  • steam flows from the steam network 010 via the line 3 into the coils 5 of the heat exchanger 4, where it condenses while heating the secondary medium washing around the coils 5.
  • the condensate formed is essentially under the pressure of the steam network 010 and flows via line 6 to the adjustable driving nozzle 10 of the jet pump 9.
  • the adjustable driving nozzle 10 of the jet pump 9 Depending on the position of the nozzle needle 26 of the adjustable driving nozzle 10, more or less condensate flows through the jet pump or into the diffuser 11 and thus into the flow line 12 of the heat consumer 2.
  • the connecting piece 16 on the suction side 18 secondary medium heated by the condensing steam is canceled from the heat exchanger 4 and mixed with the condensate flowing into the diffuser 11 in accordance with the position of the adjustable driving nozzle 10, so that the heat consumer 2 is finally supplied with a mixture of condensate and secondary medium.
  • the flow temperature measured in the flow line 12 by the sensor 23 is above or below a predetermined setpoint, so that the control device 25 adjusts the actuator 24 and thus the nozzle needle 26 in the direction of maintaining the setpoint temperature.
  • the adjustable driving nozzle 10 is closed, with the result that more condensate is accumulated in the heat exchanger 4 and less steam is removed from the steam network 010. At the same time, the driving energy behind the driving nozzle 10 is reduced and less secondary medium is pumped out of the heat exchanger 4 and supplied to the heat consumer 2. If the temperature measured in the flow line 12 is below the target temperature, i. H. the heat consumer 2 removes more heat, so in the opposite sense the driving nozzle 10, controlled by the control device 25 and the actuator 24, is turned on and the condensate throughput and the throughput of secondary medium are increased.
  • the level sensor 19 responds, which then releases the connection 21 of the multi-function valve 14 via the magnet 20, so that condensate from the line 6 is discharged directly bypassing the jet pump 9 and the heat consumer 2 into the return line 012 of the steam network with the help of the steam pressure on the condensate.
  • the multi-function valve together with the pressure transmitter 22 serves at the same time to maintain a certain minimum pressure in the return line 13 hold and to prevent possible idling.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Description

  • Die Erfindung geht von einem Verfahren zur geregelten Wärmeübergabe aus einem primären Dampfnetz an einen Wärmeverbraucher aus, dessen Vorlauf unter einem vorbestimmten Überdruck zugeführt wird und dessen Rücklauf unter einem verhältnismäßig niederen Druck steht, wobei der in Abhängigkeit von dem Wärmeverbrauch bei dem Verbraucher aus dem Dampfnetz entnommene Dampf durch Wärmeentzug mittels eines Sekundärmediums unter Aufrechterhaltung eines vorbestimmten Überdruckes gegen- über dem Vorlaufdruck des Wärmeverbrauchers bis zur Kondensation abgekühlt wird und der Überdruck in einer Strahlpumpe sodann unter Erzeugung einer entsprechenden Treibenergie für den Vorlauf auf den Vorlaufdruck des Wärmeverbrauchers abgebaut wird und dabei dem Vorlauf bei der Auskühlung des Dampfes aufgeheiztes Sekundärmedium zugemischt wird.
  • Ferner geht die Erfindung von einer Vorrichtung zur geregelten Wärmeübergabe aus einem primären Dampfnetz an einen Wärmeverbraucher aus, mit einem durch Kondensatanstau in Abhängigkeit von der Temperatur an den Wärmeverbraucher geregelten Wärmetauscher, der dampfseitig mit dem Dampfnetz und kondensatseitig mit der Treibdüse einer in der Vorlaufleitung des Wärmeverbrauchers liegenden Strahlpumpe verbunden ist, deren Treibdüse mit dem unter einem vorbestimmten Überdruck stehenden Kondensat beaufschlagt ist, wobei die Strahlpumpe saugseitig in einem Sekundärkreislauf des Wärmetauschers liegt, in dem von dem Dampf aufgeheiztes Sekundärmedium fließt, das über die Strahlpumpe in einem vorbestimmten Anteil dem Vorlauf des Wärmeverbrauchers zumischbar ist.
  • Bei einem älteren Verfahren beziehungsweise einer entsprechenden älteren Vorrichtung gemäß der W081/03680 (gilt als Stand der Technik nach Art. 54(3) EPÜ) ist der Wärmetauscher über ein Mehrfunktionenventil and die Dampfleitung des primären Dampfnetzes angeschlossen. Die der Kondensation in dem Wärmetauscher dienenden Rohrschlangen sind an die Treibdüse einer Strahlpumpe angeschlossen, wobei von der Strahlpumpe eine als Vorlaufleitung dienende Leitung zu dem Wärmeverbraucher führt, dessen Rücklauf über ein Druckhalteventil an die Kondensatrückführieitung des primären Dampfnetzes mündet. Strömungsmäßig hinter dem Wärmeverbraucher, jedoch vor dem Druckhalteventil, zweigt eine Leitung ab, mit der aus dem zurückzuführenden Kondensat das Sekundärmedium abgezweigt wird, das in den zugehörigen Vorlaufanschluß des Wärmetauschers gespeist wird.
  • Nachdem das Sekundärmedium in dem Wärmetauscher durch Kondensation des Dampfes aufgeheizt ist, gelangt es über eine weitere Verbindungsleitung zu der Saugseite der Strahlpumpe, von wo es dann dem aus dem Wärmetauscher strömenden Kondensat zur Wärmeabgabe an den Wärmeverbraucher zugemischt wird.
  • Die Regelung der Temperatur des Vorlaufs des Wärmeberbrauchers erfolgt über das dampfseitig vorgesehene Mehrfunktionenventil, über das auch gleichzeitig der Kondensatanstau in dem Wärmetauscher geregelt wird.
  • An dem Mehrfunktionenventil tritt ein Druckverlust auf, so daß es unter bestimmten Betriebssituationen notwendig ist, in der Vorlaufleitung für den Wärmeverbraucher, und zwar hinter der Strahlpumpe, eine Druckerhöhungspumpe vorzusehen, die elektrisch betrieben ist.
  • Aufgabe der Erfindung ist es deshalb, das eingangs genannte Verfahren derart weiterzubilden, daß bei gleichzeitiger Einsparung von Armaturen keine Druckerhöhungspumpe hinter der Strahlpumpe erforderlich ist.
  • Zur Lösung dieser Aufgabe ist das Verfahren erfindungsgemäß durch die Merkmale des Hauptanspruchs gekennzeichnet, während die Vorrichtung zur Lösung der Aufgabe erfindungsgemäß durch die Merkmale des Anspruchs 3 gekennzeichnet ist.
  • Hierdurch ergibt sich der Vorteil, daß praktisch der gesamte Dampfdruck des Netzes zur Verfügung streht, um das Kondensat durch die Strahlpumpe zu treiben, so daß ausreichend Treibenergie zur Verfügung steht, um das beigemischte Sekundärmedium und das Kondensat mit entsprechendem Überdruck dem Wärmeverbraucher zuzuführen. Eine Umwälzpumpe ist bei diesem Verfahren bzw. dieser Vorrichtung bei keiner Betriebssituation erforderlich.
  • Zweckmäßigerweise kann dabei das kalte Sekundärmedium von dem ausgekühlten Rücklauf des Wärmeverbrauchers abgezweigt werden.
  • Um zu verhindern, daß bei eventuellen Betriebsstörungen die Anlage leerläuft, kann strömungsmäßig hinter dem Abzweigen des Sekundärkreislaufes ein Druckhalteventil angeordnet sein.
  • Um zu verhindern, daß bei sehr geringer Wärmeentnahme aus dem Wärmetauscher bzw. dem Dampfnetz das Kondensat in die Dampfzuleitung zurückstaut, kann das Druckhalteventil einen weiteren Anschluß aufweisen, der an die Verbindungsleitung zwischen der Kondensatseite des Wärmetauschers und der Strahlpumpe angeschlossen ist, wobei in der Dampfleitung für den Wärmetauscher ein das Druckregelventil steuernden Niveauregler liegt, durch den zur Entfernung von überschüssigem Kondensat das Druckhalteventil derart umsteuerbar ist, daß das Kondensat unter Umgeh des Wärmeverbrauchers und der Strahlpumpe unmittelbar in die Kondensatrückführleitung des Dampfnetzes abführbar ist.
  • Entsprechend den Anforderungen kann in dem Wärmetauscher ein Brauchwasserwärmer enthalten sein.
  • In der einzigen Figur der Zeichnung ist schematisch ein Ausführungsbeispiel des Gegenstandes der Erfindung dargestellt.
  • Die veranschaulichte Dampfwasserheizanlage 1 dient dazu, aus einem primären Dampfnetz 010 Wärme an einen mit 2 bezeichneten Wärmeverbraucher zu übergeben. Der Wärmeverbraucher 2 kann je nach der Ausbildung der Anlage als Heizungs-, Lüftungs-, Klima- Produktions- oder Brauchwasserbereitungsanlage von Heizkörpern oder Registern bzw. Heizeinrichtungen u. dgl. ausgebildet sein.
  • Die Anlage weist einen über eine Leitung 3 an das Dampfnetz 010 angeschlossenen Wärmetauscher 4 auf, in dem ein Rohrschlangenbündel 5 angeordnet ist, das dampfseitig mit der Leitung 3 und kondensatseitig an eine Verbindungsleitung 6 angeschlossen ist. Die Verbindungsleitung 6 führt von dem Rohrschlangenbündel 5 zu dem Treibdüsenanschluß 8 einer Strahlpumpe 9 mit veränderbarer Treibdüse 10, wobei die Auffangsdüse bzw. der Diffusor 11 der Strahlpumpe 9 an eine Vorlaufleitung 12 des Wärmeverbrauchers 2 angeschlossen ist. Von dem Wärmeverbraucher 2 führt eine Rückführungsleitung 13 über ein Mehrfunktionenventil 14 zu der Kondensatsammelleitung 012 des Dampfnetzes.
  • Der Wärmetauscher 4 weist ferner zwei Anschlüsse 15 und 16 für das Sekundärmedium auf, das im Gegenstromverfahren durch den Wärmetauscher 4 geleitet wird und strömungsmäßig vor dem Mehrfunktionenventil 14 aus der Rückführungsleitung 13 über eine Leitung 17 abgezweigt wird und in den Anschluß 15 eingespeist wird. Nach Durchströmen des Wärmetauschers 4 fließt das Sekundärmedium aus dem Anschlußstutzen 16 des Wärmetauschers 4 aus und gelangt von dort in die Saugseite 18 der Strahlpumpe 9.
  • Um zu verhindern, daß bei geringer Wärmeentnahme das Kondensat in dem Wärmetauscher 4 soweit angestaut wird, daß es in das Dampfnetz 010 zurücklaufen würde, ist oberhalb des Wärmetauschers 4 in der Verbindungsleitung 3 ein Niveaugeber 19 vorgesehen, der einen Magneten 20 des magnetisch gesteuerten Mehrfunktionenventils 14 steuert, das über einen weiteren Anschluß 21 mit der kondensatführenden Leitung 6 verbunden ist. Außerdem ist das Mehrfunktionenventil 14 als Druckhalteventil ausgebildet und wird über einen in der Rückführleitung 13 vorgesehenen Druckgeber 22 so gesteuert, daß in der Leitung 13 ein vorbestimmter Druckaufrechterhalten bleibt.
  • Zur Steuerung der Vorlauftemperatur des Wärmeverbrauchers 2 und damit zur Steuerung der in der Anlage 1 übergebenen Wärmemenge sitzt in der Vorlaufleitung 12 ein Temperaturmeßfühler 23, der an eine einen Stellantrieb 24 beaufschlagende Steuereinrichtung 25 angeschlossen ist. Der Stellantrieb 24 dient zur Regelung der Treibdüse 10, die bei dem Ausführungsbeispiel mit einer Düsennadel 26 zur Veränderung des Düsenquerschnittes versehen ist. Die Anordnung aus Stellantrieb 24 und Strahlpumpe 9 ist derart getroffen, daß mit Hilfe der verstellbaren Treibdüse 10 die Kondensatströmung in die Verbindungsleitung 6 bzw. in der Vorlaufleitung 12 und dem Wärmeverbraucher 2 stufenlos zwischen der Durchflußmenge null und der maximalen Durchflußmenge verstellbar ist.
  • Beim Betrieb der Anlage 1 strömt aus dem Dampfnetz 010 über die Leitung 3 Dampf in die Rohrschlangen 5 des Wärmetauschers 4 ein, wo er unter Aufheizung des die Rohrschlangen 5 umspülenden Sekundärmediums kondensiert. Das entstandene Kondensat steht im wesentlichen unter dem Druck des Dampfnetzes 010 und strömt über die Leitung 6 der verstellbaren Treibdüse 10 der Strahlpumpe 9 zu. Je nach Stellung der Düsennadel 26 der verstellbaren Treibdüse 10 strömt mehr oder weniger viel Kondensat durch die Strahlpumpe bzw. in den Diffusor 11 und damit in die Vorlaufleitung 12 des Wärmeverbrauchers 2. Aufgrund der Durchströmung der Strahlpumpe 9 wird an der Saugseite 18 über den Anschlußstutzen 16 von dem kondensierenden Dampf aufgeheiztes Sekundärmedium aus dem Wärmetauscher 4 abgesagt und dem in dem Diffusor 11 einströmenden Kondensat entsprechend der Stellung der verstellbaren Treibdüse 10 beigemischt, so daß dem Wärmeverbraucher 2 schließlich ein Gemisch aus Kondensat und Sekundärmedium zugeführt wird. Je nach Wärmeentnahme durch den Wärmeverbraucher 2 liegt die in der Vorlaufleitung 12 durch den Meßfühler 23 gemessene Vorlauftemperatur über oder unter einem vorgegebenen Sollwert, so daß durch die Steuerungseinrichtung 25 der Stellantrieb 24 und damit die Düsennadel 26 in Richtung auf Einhalten der Solltemperatur nachgeregelt werden. Liegt die Vorlauftemperatur über der Solltemperatur, wird die verstellbare Treibdüse 10 zugefahren, womit in dem Wärmetauscher 4 mehr Kondensat angestaut wird und dem Dampfnetz 010 weniger Dampf entnommen wird. Gleichzeitig verringert sich die Treibenergie hinter der Treibdüse 10 und es wird weniger Sekundärmedium aus dem-Wärmetauscher 4 abgepumpt und dem Wärmeverbraucher 2 zugeführt. Liegt die in der Vorlaufleitung 12 gemessene Temperatur unter der Solltemperatur, d. h. der Wärmeverbraucher 2 entnimmt mehr Wärme, so wird im umgekehrten Sinne die Treibdüse 10, gesteuert durch die Steuereinrichtung 25 und den Stellantrieb 24, aufgesteuert und der Kondensatdurchsatz sowie der Durchsatz an Sekundärmedium erhöht.
  • Wenn bei extrem geringer Wärmeentnahme durch den Wärmeverbraucher 2 das Kondensat in den Rohrschlangen 5 bzw. dem Wärmetauscher 4 unzulässig hoch ansteigt, spricht der Niveaugeber 19 an, der daraufhin über den Magneten 20 den Anschluß 21 des Mehrfunktionenventiles 14 freigibt, so daß Kondensat aus der Leitung 6 unmittelbar unter Umgehung der Strahlpumpe 9 und des Wärmeverbrauchers 2 in die Rückführungsleitung 012 des Dampfnetzes mit Hilfe des auf dem Kondensat lastenden Dampfdrucks abgeführt wird. Hierbei dient das Mehrfunktionenventil zusammen mit dem Druckgeber 22 gleichzeitig dazu, einen bestimmten Mindestdruck in der Rücklaufleitung 13 aufrechtzuerhalten und ein eventuelles Leerlaufen zu verhindern.
  • Weil keine zusätzlichen Regelarmaturen in der Leitung 3, d. h. der Verbindung zwischen dem Dampfnetz 010 und dem Wärmetauscher 4 vorgesehen sind, reicht in allen Betriebseinstellungen die an der verstellbaren Treibdüse 10 zur Verfügung stehende Treibenergie aus, das Kondensat zusammen mit dem aufgeheizten Sekundärmedium durch den Wärmeverbraucher 2 zu pumpen. Je nach Anwendung besteht die Möglichkeit, in dem Wärmetauscher einen nicht veranschaulichten Brauchwasserwärmer vorzusehen.

Claims (7)

1. Verfahren zur geregelten Wärmeübergabe aus einem primären Dampfnetz an einen Wärmeverbraucher, dessen Vorlauf unter einem vorbestimmten Überdruck zugeführt wird und dessen Rücklauf unter einem verhältnismäßig niederen Druck steht, wobei der in Abhängigkeit von dem Wärmeverbrauch bei dem Verbraucher aus dem Dampfnetz entnommene Dampf durch Wärmeentzug mittels eines Sekundärmediums unter Aufrechterhaltung eines vorbestimmten Überdruckes gegenüber dem Vorlaufdruck des Wärmeverbrauchers bis zur Kondensation abgekühlt wird und der Überdruck in einer Strahlpumpe sodann unter Erzeugung einer entsprechenden Treibenergie für den Vorlauf auf den Vorlaufdruck des Wärmeverbrauchers abgebaut wird und dabei dem Vorlauf bei der Auskühlung des Dampfes aufgeheiztes Sekundärmedium zugemischt wird dadurch gekennzeichnet, daß zur Regelung der Temperatur an dem Wärmeverbraucher das Kondensat gestaut wird und der Kondensatanstau lediglich durch Verstellung der Treibdüse der Strahlpumpe geregelt wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Vorlauf des Sekundärmediums aus dem Rücklauf des Wärmeverbrauchers abgezweigt wird.
3. Vorrichtung zur geregelten Wärmeübergabe aus einem primären Dampfnetz (010) an einen Wärmeverbraucher (2), mit einem durch Kondensatanstau in Abhängigkeit von der Temperatur an dem Wärmeverbraucher geregelten Wärmetauscher (4), der dampfseitig mit dem Dampfnetz und kondensatseitig mit der Treibdüse (10) einer in der Vorlaufleitung (12) des Wärmeverbrauchers liegenden Strahlpumpe (9) verbunden ist, deren Treibdüse (10) mit dem unter einem vorbestimmten Überdruck stehenden Kondensat beaufschlagt ist, wobei die Strahlpumpe (9) saugseitig in einem Sekundärkreislauf des Wärmetauschers (4) liegt, in dem von dem Dampf aufgeheiztes Sekundärmedium fließt, das über die Strahlpumpe (9) mit einem vorbestimmten Anteil dem Vorlauf (12) des Wärmeverbrauchers zumischbar ist, dadurch gekennzeichnet, daß der Wärmetauscher (4) unmittelbar an das Dampfnetz (010) angeschlossen ist und die Strahlpumpe (9) zur Regelung der übertragenen Wärmemenge eine regelbare Treibdüse (10) aufweist, die mit einem Stellantrieb (24) gekuppelt ist, der an eine über einen Meßfühler (23) die Temperatur des Vorlaufs des Wärmeverbrauchers (2) messende Steuereinrichtung (25) angeschlossen ist.
4. Vorrichtung nach Anspruch 3, dadurch gekennzeichnet, daß der Sekundärkreislauf (17, 15, 16) des Wärmetauschers (4) strömungsmäßig hinter dem Wärmeverbraucher (2) von der Rücklaufleitung (13) des Wärmeverbrauchers (2) abzweigt.
5. Vorrichtung nach Anspruch 4, dadurch gekennzeichnet, daß strömungsmäßig hinter dem Abzweigen des Sekundärkreislaufes (17, 15, 16) ein Druckhalteventil (14) liegt.
6. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, daß das Druckhalteventil (14) einen weiteren Anschluß (21) aufweist, der an die Verbindungsleitung (6) zwischen der Kondensatseite des Wärmetauschers (4) und der Strahlpumpe (9) angeschlossen ist, und daß in der Verbindungsleitung (3) zwischen dem Dampfnetz (010) und dem Wärmetauscher (4) ein das Druckregelventil (14) steuernder Niveaugeber (19) liegt, durch den zur Entfernung von überschüssigem Kondensat das Druckhalteventil (14) derart umsteuerbar ist, daß das Kondensat unter Umgehung des Wärmeverbrauchers (2) und der Strahlpumpe 9 in die Kondensatrückführleitung (012) des Dampfnetzes (010, 012) abführbar ist.
7. Vorrichtung nach Anspruch 3, dadurch gekennzeichnet, daß in dem Wärmetauscher (4) ein Brauchwassererwärmer enthalten ist.
EP81902649A 1980-09-23 1981-09-21 Verfahren und vorrichtung zur geregelten wärmeübergabe aus einem primären dampfnetz an einen wärmeverbraucher Expired EP0060290B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT81902649T ATE7074T1 (de) 1980-09-23 1981-09-21 Verfahren und vorrichtung zur geregelten waermeuebergabe aus einem primaeren dampfnetz an einen waermeverbraucher.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3035779 1980-09-23
DE19803035779 DE3035779A1 (de) 1980-09-23 1980-09-23 Verfahren und vorichtung zur geregelten waermeuebergabe aus einem primaeren dampfnetz an einen waermeverbraucher

Publications (2)

Publication Number Publication Date
EP0060290A1 EP0060290A1 (de) 1982-09-22
EP0060290B1 true EP0060290B1 (de) 1984-04-11

Family

ID=6112604

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81902649A Expired EP0060290B1 (de) 1980-09-23 1981-09-21 Verfahren und vorrichtung zur geregelten wärmeübergabe aus einem primären dampfnetz an einen wärmeverbraucher

Country Status (10)

Country Link
US (1) US4480785A (de)
EP (1) EP0060290B1 (de)
JP (1) JPS57501541A (de)
BR (1) BR8108804A (de)
DE (1) DE3035779A1 (de)
DK (1) DK196382A (de)
NO (1) NO821470L (de)
RO (1) RO84515B (de)
SU (1) SU1416062A3 (de)
WO (1) WO1982001057A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1023023C2 (nl) * 2003-03-26 2004-09-30 Bravilor Holding Bv Inrichting voor het bereiden van heet water.
US8702013B2 (en) * 2010-02-18 2014-04-22 Igor Zhadanovsky Vapor vacuum heating systems and integration with condensing vacuum boilers
US20110198406A1 (en) * 2010-02-18 2011-08-18 Igor Zhadanovsky Vapor/vacuum heating system
DE102010009081A1 (de) * 2010-02-24 2011-08-25 Helmut Bälz GmbH, 74076 Wärmeerzeugergruppe mit Strahlpumpenregelung
CN106761981A (zh) * 2016-11-28 2017-05-31 中能服能源科技股份有限公司 一种提高热电比的热电解耦系统

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1981003680A1 (fr) * 1980-06-19 1981-12-24 H Baelz Procede et dispositif pour la transmission de chaleur controlee d'un circuit de vapeur primaire vers un consommateur de chaleur

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE431189A (de) *
BE354341A (de) * 1900-01-01
US1065568A (en) * 1911-11-10 1913-06-24 Standard Heat And Ventilation Company Inc Steam-heating system.
US2789770A (en) * 1951-08-23 1957-04-23 Gerdts Gustav F Kg Steam and water conducting systems
DE1184057B (de) * 1962-08-11 1964-12-23 Meyer Fa Rud Otto Einrichtung zum Einhalten eines bestimmten Druckes in an ein Heisswasser-Fernheiznetz unmittelbar angeschlossenen Hausanlagen
DE2225263C3 (de) * 1972-05-24 1983-12-08 Bälz, Helmut, 7100 Heilbronn Rücklaufbeimischeinrichtung für eine Warmwasserheizungsanlage oder eine Brauchwarmwasserbereitungsanlage

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1981003680A1 (fr) * 1980-06-19 1981-12-24 H Baelz Procede et dispositif pour la transmission de chaleur controlee d'un circuit de vapeur primaire vers un consommateur de chaleur

Also Published As

Publication number Publication date
SU1416062A3 (ru) 1988-08-07
WO1982001057A1 (en) 1982-04-01
BR8108804A (pt) 1982-08-24
EP0060290A1 (de) 1982-09-22
NO821470L (no) 1982-05-04
DE3035779A1 (de) 1982-05-06
RO84515A (ro) 1984-06-21
JPS57501541A (de) 1982-08-26
RO84515B (ro) 1984-08-30
DK196382A (da) 1982-04-30
DE3035779C2 (de) 1989-12-21
US4480785A (en) 1984-11-06

Similar Documents

Publication Publication Date Title
DE3112063C2 (de)
DE69634958T2 (de) Vorrichtung und verfahren zur erwärmung eines flüssigen mediums
EP0436536A1 (de) Verfahren und anlage zur abhitzedampferzeugung.
DE102005049052A1 (de) Betriebsverfahren für ein Kühlmittelsystem
EP0060290B1 (de) Verfahren und vorrichtung zur geregelten wärmeübergabe aus einem primären dampfnetz an einen wärmeverbraucher
DE3611773A1 (de) Kondensationsverfahren fuer unter unterdruck stehenden wasserdampf
EP0543285B1 (de) Vorrichtung zur Expansionsübernahme in Flüssigkeitskreislaufsystemen
EP0054050B1 (de) Verfahren und vorrichtung zur geregelten wärmeübergabe aus einem primären dampfnetz an einen wärmeverbraucher
EP2031312A2 (de) Vorrichtung zum Erwärmen von Brauchwasser im Durchlauf
WO1995024600A1 (de) Vakuumtrocknungsverfahren und vorrichtung zu dessen durchführung
DE2235857C3 (de) Heizvorrichtung für das Ansaugsystem einer wassergekühlten Brennkraftmaschine
DE3635707C2 (de)
DE3310852A1 (de) Umlaufwasserheizer
AT527058B1 (de) Heizvorrichtung und Heizverfahren
DE2938631B1 (de) Dampfkraftanlage mit luftgekuehltem Dampfkondensator
DE102018003322A1 (de) Kühlsystem für einen Verbrennungsmotor und ein AR-System
DE1296654C2 (de) Verfahren zum anfahren eines zwanglaufdampferzeugers und zwanglaufdampferzeuger zum durchfuehren des verfahrens
DE102010051868A1 (de) Wärmepumpenanlage, insbesondere zur Klimatisierung eines Gebäudes
DE112017004129B4 (de) Kühlsystem für ein Fahrzeug
DE1551019A1 (de) Fahranordnung fuer einen Einstrom-Dampfgenerator
EP0161289B1 (de) Verfahren zur thermischen behandlung von flüssigkeiten bzw. flüssigkeit-feststoffgemischen zur konzentration der flüssigkeitsinhaltsstoffe und anlage zur durchführung des verfahrens
DE3413743A1 (de) Vorrichtung zur dekontamination von gegenstaenden, insbesondere bekleidungsstuecken
DE2006410B2 (de) Verfahren und vorrichtung zum aussteuern von kurzen last spitzen bei dampferzeugern
DE10052766A1 (de) Wärmeübertragungssystem und -Verfahren mit verbesserter Energieausnutzung
DE595332C (de) Verfahren und Vorrichtung zur Raffination fluessiger Kohlenwasserstoffe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT CH FR GB NL SE

17P Request for examination filed

Effective date: 19820927

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT CH FR GB LI NL SE

REF Corresponds to:

Ref document number: 7074

Country of ref document: AT

Date of ref document: 19840415

Kind code of ref document: T

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19840930

Year of fee payment: 4

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19860922

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19870930

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19880922

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19890317

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19890322

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19890921

Ref country code: AT

Effective date: 19890921

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19890930

Ref country code: CH

Effective date: 19890930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19900401

GBPC Gb: european patent ceased through non-payment of renewal fee
NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19900531

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 81902649.3

Effective date: 19890614