EP0053753B1 - Procédé de fabrication d'ébauches métalliques - Google Patents

Procédé de fabrication d'ébauches métalliques Download PDF

Info

Publication number
EP0053753B1
EP0053753B1 EP19810109846 EP81109846A EP0053753B1 EP 0053753 B1 EP0053753 B1 EP 0053753B1 EP 19810109846 EP19810109846 EP 19810109846 EP 81109846 A EP81109846 A EP 81109846A EP 0053753 B1 EP0053753 B1 EP 0053753B1
Authority
EP
European Patent Office
Prior art keywords
process according
ceramic
powder
age
ceramic body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP19810109846
Other languages
German (de)
English (en)
Other versions
EP0053753A1 (fr
Inventor
Johannes Jachowski
Rudolf Dr. Mohs
Heinz Dr. Sibum
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fried Krupp AG
Original Assignee
Fried Krupp AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fried Krupp AG filed Critical Fried Krupp AG
Publication of EP0053753A1 publication Critical patent/EP0053753A1/fr
Application granted granted Critical
Publication of EP0053753B1 publication Critical patent/EP0053753B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/1208Containers or coating used therefor
    • B22F3/1216Container composition
    • B22F3/1241Container composition layered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/1208Containers or coating used therefor
    • B22F3/1258Container manufacturing
    • B22F3/1275Container manufacturing by coating a model and eliminating the model before consolidation

Definitions

  • the invention relates to a method for producing semi-finished metal products, in which a metal powder filled in an evacuable, pre-contoured ceramic housing is hot isostatically pressed.
  • metal objects are manufactured by powder metallurgy essentially in such a way that a vacuum-tightly closed container, which encloses the material for the object to be manufactured with the interposition of a secondary pressure medium, is subjected to an isostatic hot pressing in the evacuated state after heating to the compression temperature.
  • the article to be produced can already be present as a prefabricated pre-pressed body or, according to DE-PS 2200066, can be hot isostatically pressed by a powder batch filled with the shape of the article to be produced into the interior of a non-vacuum-tight mold.
  • a secondary pressure medium in powder form is disadvantageously required in order to bring about an isostatic pressure transfer to the metal powder which is actually to be pressed.
  • the secondary pressure medium compresses to form compact ceramic material, so that with increasing compression of the secondary pressure medium, the pressure transfer to the metal powder actually to be compressed finally becomes weaker, since the compressed ceramic supports itself.
  • poured and knock-compacted ceramic powders can have locally very different densities, which counteract the intended uniform isostatic pressure transmission in different ways.
  • pre-contoured metallic capsules used in which the powder is filled, and then degassed, the powder as well as the capsule mbar at pressures of 10- 4 and temperatures up to 450 °. After filling, the capsules are welded in a vacuum-tight manner and the powder is compacted using the hot isostatic pressing known in principle.
  • the precontoured capsules can only be produced in simple geometric shapes, so that the process described here finds a limit with regard to the variety of shapes, since the production of unusual geometric shapes is in most cases uneconomical.
  • the object on which the invention is based is achieved by the method characterized in claim 1, which makes it possible to design any, in particular geometrically complicated, shape.
  • the models are encased with curable materials, essentially with ceramic, and backfilled to such an extent that a large, geometrically simple outer body is created, which has several advantages over the previously contoured capsules.
  • this ceramic body can be easily brought into a metal container for isostatic pressing, the entire ceramic body being tightly enclosed, on the other hand, the isostatic pressure transfer to the metal powder located in the ceramic body can be carried out evenly, since the pressure conditions in the ceramic body due to its shape Can be influenced.
  • a ceramic mass pasted with water glass is applied as a hardenable substance in several layers, which are hardened with C0 2 .
  • An advantageous mixture of the outer casing consists of 50 to 90% by weight of chamotte, 10 to 50% by weight of aluminum oxide and 1 to 15% by weight of water glass, with chamotte having a grain size of 0.5 to 1.25 mm and aluminum oxide Grain size ⁇ 0.1 mm can be used.
  • Such a ceramic consists of a mixture of up to 10 wt.% MgO, 1 to 12 wt.% CaO, up to 16 wt.% Na 2 0, up to 8 wt.% K 2 0, up to 40 wt. -% B Z 0 3 , 1 to 20 wt .-% Al 2 0 3 , balance Si0 2 .
  • a mixture of 3 to 4 wt.% MgO, 6 to 7 wt.% CaO, 3 to 4 wt.% Na 2 .2 to 3 wt.% K 2 0.8 to 9 is preferably used %
  • B 2 O 3 15 to 16% by weight Al 2 O 3 , balance Si0 2 .
  • the mixtures are pasted with water glass and hardened with C0 2 and finally fired at temperatures of approx. 700 ° C.
  • the model consists of wax and / or another organic filler and is melted out during combustion or burned or gasified without residue.
  • the metal powder advantageously a powdered metal alloy
  • the ceramic body which is under vibration, so that it is extremely dense, i. H. is filled while reaching the optimal tap density.
  • a wax model in which the shrinkage allowances of the later powder-metallurgically manufactured component are taken into account and which is additionally provided with a powder filler neck, is coated in layers with ceramics with different densities. Particular care is taken to ensure that the contact layer of the ceramic material with the wax model is as smooth as possible, since the quality of the later component surface depends on it.
  • the model After applying the first ceramic layers, the model is surrounded in a molding box with a mixture of chamotte and water glass.
  • the mixed dough-like mass consists of 75% chamotte with a grain size of 0.5 to 1.25 mm and 25% aluminum oxide with a grain size of ⁇ 0.1 mm, to which 15% of the weight of the pre-mixed ceramic water glass is added and which is mixed intensively.
  • the chamotte-water glass mixture is then cured with C0 2 and the resulting mold block is waxed out of the mold box in an autoclave and finally fired in a furnace at a temperature of approx. 1000 ° C.
  • the burning process expels all volatile components from the mass and creates a body of uniform density.
  • the green mixtures used create a very porous, gas-permeable ceramic body.
  • the ceramic body is easy to stack due to its simple outer structure, largely stable against mechanical influences and, if necessary, easily machined by sawing, drilling or the like.
  • the ceramic body 1 shown in the figure is inserted into a metal container 2 and its cavity 3 is filled with the powder to be compressed, in the present case powder of the titanium alloy TiA16V4. This is preferably done on a vibrating device, as a result of which the ceramic body 1 is filled with the metal powder while the optimum knock density is reached.
  • the rigidity of the ceramic body 1 supports the vibrating process intensively when filling with powder, since the vibration is transmitted directly to the metal powder by the compact ceramic body.
  • the powder filler neck is closed with a metal stopper and the metal container 2 is welded shut and evacuated via a suction port 4.
  • the metal container 2 is now ready to be brought into a hot isostatic press system, where it is compacted at the press parameters required for the metal powder filled. After the hot isostatic pressing, the metal container 2 is opened and the ceramic casing is removed from the finished metallic semi-finished product.
  • a plastic model is assumed which is encased in a mold frame with a mixture of fireclay and Al 2 O 3 , approximately in a ratio of 1: 1 with the addition of 15% by weight of water glass, and is hardened with CO 2 .
  • the mold block is then removed from the frame and placed in a kiln.
  • a temperature of 1,000 ° C is then set in the kiln, at which the plastic model burns without residue and the remaining body is hardened.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Powder Metallurgy (AREA)

Claims (11)

1. Procédé de fabrication d'une ébauche métallique selon lequel une poudre métallique qui remplit une enveloppe en matière céramique monolithe de contour prédéterminé, ayant une forme extérieure simple, est comprimée thermo- isostatiquement, caractérisé en ce qu'un modèle dont le contour correspond, compte tenu du retrait, au contour de l'ébauche métallique à fabriquer et qui est muni d'une tubulure d'introduction de la poudre est enrobé dans des couches de substances durcissables, constituées essentiellement par des matières céramiques, de telle manière que la forme géométrique extérieure obtenue soit simple, et qu'en même temps on en élimine le matériau constituant le modèle, le corps céramique est chauffé d'une manière continue à une température comprise entre 700° et 1 000 °C, le corps céramique étant, après sa cuisson, rempli complètement de poudre métallique et enfermé par soudage dans un récipient métallique soudé qui est soumis à l'action du vide, puis à une compression thermoisostatique.
2. Procédé selon la revendication 1, caractérisé en ce que la substance durcissable est une masse céramique formant pâte avec du verre soluble qui est appliquée en plusieurs couches durcies par du C02.
3. Procédé selon l'une des revendications 1 ou 2, caractérisé en ce que des couches céramiques de densité différente sont appliquées sur le modèle.
4. Procédé selon l'une des revendications 1 ou 2, caractérisé par l'utilisation de chamotte de granulométrie comprise entre 0,5 et 1,25 mm et d'oxyde d'aluminium de granulométrie inférieure à 0,1 mm.
5. Procédé selon l'une des revendications 1, 2 ou 4, caractérisé en ce que l'enrobage extérieur appliqué est constitué par un mélange de 50 à 90 % en poids de chamotte, de 10 à 50 % en poids d'oxyde d'aluminium et de 1 à 15 % en poids de verre soluble.
6. Procédé selon l'une des revendications 1 à 5, caractérisé en ce que la matière céramique est constituée par un mélange contenant jusqu'à 10 % en poids de MgO, de 1 à 12 % en poids de CaO, jusqu'à 16 % en poids de Na20, jusqu'à 8 % en poids de K20, jusqu'à 40 % en poids de B203, de 1 à 20 % en poids de Al2O3, le reste étant du Si02, en ce que ce mélange est transformé en pâte au moyen de verre soluble, durci par C02 et, finalement, cuit à une température d'environ 700 °C.
7. Procédé selon la revendication 6, caractérisé par l'utilisation d'un mélange contenant de 3 à 4 % en poids de MgO, de 6 à 7 % en poids de CaO, de 3 à 4 % en poids de Na20, de 2 à 3 % en poids de K2O, de 8 à 9 % en poids de B2O3, de 15 à 16 % en poids d'Al2O3, le reste étant du SiO2.
8. Procédé selon la revendication 1, caractérisé en ce que plusieurs modèles sont enrobés de manière qu'il n'y ait qu'un seul corps céramique.
9. Procédé selon la revendication 1, caractérisé en ce que le modèle est constitué par de la cire et/ou par un autre matériau de remplissage organique que, lors du chauffage, est éliminé par fusion ou se transforme en gaz sans résidu.
10. Procédé selon la revendication 1, caractérisé en ce que la poudre métallique est versée dans un corps céramique soumis à des vibrations.
11. Procédé selon les revendications 1 et 10, caractérisé par l'utilisation d'un alliage métallique pulvérulent.
EP19810109846 1980-12-05 1981-11-24 Procédé de fabrication d'ébauches métalliques Expired EP0053753B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19803045838 DE3045838C2 (de) 1980-12-05 1980-12-05 Verfahren zur Herstellung metallischen Halbzeuges
DE3045838 1980-12-05

Publications (2)

Publication Number Publication Date
EP0053753A1 EP0053753A1 (fr) 1982-06-16
EP0053753B1 true EP0053753B1 (fr) 1984-08-15

Family

ID=6118361

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19810109846 Expired EP0053753B1 (fr) 1980-12-05 1981-11-24 Procédé de fabrication d'ébauches métalliques

Country Status (2)

Country Link
EP (1) EP0053753B1 (fr)
DE (1) DE3045838C2 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL68071A (en) * 1982-04-28 1985-12-31 Roc Tec Inc Method of consolidating material with a cast pressure transmitter
DE3300357C2 (de) * 1983-01-07 1985-01-10 Christensen, Inc., Salt Lake City, Utah Verfahren und Vorrichtung zur Herstellung von Schneidelementen für Tiefbohrmeißel
SE435272B (sv) * 1983-02-08 1984-09-17 Asea Ab Sett att framstella ett foremal av ett pulverformigt material genom isostatisk pressning
DE3726259C1 (de) * 1987-08-07 1988-12-08 Mtu Muenchen Gmbh Verfahren zur Herstellung von Bauteilen aus metallischem oder nichtmetallischem Pulver
EP0451467B1 (fr) * 1990-03-14 1995-02-08 Asea Brown Boveri Ag Méthode de frittage utilisant un moule déformable en céramique
FI115479B (fi) * 2003-10-30 2005-05-13 Abloy Oy Ohjattavalla painiketoiminnolla varustettu ovenlukko
GB201415190D0 (en) * 2014-08-27 2014-10-08 Castings Technology Internat Ltd A ceramic and metal mould

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB654817A (en) * 1947-12-12 1951-06-27 Vitkovice Zelezarny Methods of making moulding shapes from sand and other powdered, granular, pasty, or fluent material
GB742963A (en) * 1953-05-06 1956-01-04 Utica Drop Forge And Tool Corp Method of forming articles from comminuted material, and articles made therefrom
CA855149A (en) * 1968-02-28 1970-11-03 J. Havel Charles Hot isostatic pressing using a vitreous container
CH504253A (de) * 1969-03-13 1971-03-15 Sulzer Ag Verfahren zur Herstellung einer metallurgisch reaktionsträgen Giessform
GB1557744A (en) * 1976-06-01 1979-12-12 Special Metals Corp Process and apparatus for producing aticles of complex shape

Also Published As

Publication number Publication date
DE3045838C2 (de) 1983-01-05
EP0053753A1 (fr) 1982-06-16
DE3045838A1 (de) 1982-06-09

Similar Documents

Publication Publication Date Title
DE3328954C1 (de) Verfahren zur Herstellung von Formteilen durch kaltisostatisches Pressen
DE2200066A1 (de) Verfahren zum Herstellen von metallkeramischen Gegenstaenden
DE3101236A1 (de) Verfahren zur herstellung trockengepresster formlinge und vorrichtung zur durchfuehrung dieses verfahrens
EP1087720A1 (fr) Procede de production d'elements ceramique medicaux, medico-dentaires, prothetiques dentaires et techniques
DE1233501B (de) Verfahren zur Herstellung eines Kernreaktor-Brennelementes
DE1758845B2 (de) Verfahren zur herstellung von praezisionsgiessformen fuer reaktionsfaehige metalle
DE3205877A1 (de) Sinterkoerper aus hochdichtem borcarbid und verfahren zu deren herstellung
CH650710A5 (de) Verfahren zur herstellung eines metallischen sinterformteils.
EP0053753B1 (fr) Procédé de fabrication d'ébauches métalliques
DE4322084A1 (de) Verfahren zur Herstellung eines Setters
DE2258485A1 (de) Verfahren und vorrichtung zur herstellung von guss- und pressformen
EP4048194B1 (fr) Procédé de réalisation de pièces moulées, notamment de pièces moulées utilisées en médecine dentaire
DE1191280B (de) Verfahren zur Herstellung von zylindrischen Koerpern, insbesondere von Spaltstofftabletten fuer Atomreaktoren, aus pulverfoermigen Stoffen
DE2915831C2 (fr)
DE3015575A1 (de) Verfahren zur herstellung eines gegenstandes aus keramischem oder metallischem material durch isostatisches pressen
CH681516A5 (fr)
DE2916223C2 (fr)
EP0446665A1 (fr) Procédé de préparation d'une ébauche à partir d'une poudre métallique ou céramique
DE2258305A1 (de) Verfahren und einrichtung zum herstellen von formkoerpern aus hartstoffpulvern
DE19600185C2 (de) Vorrichtung zur Herstellung trockengepreßter Formlinge
DE2417589A1 (de) Verfahren und anordnung zum herstellen von verdichteten legierten gegenstaenden mit einem inneren durchtritt
DE3725755A1 (de) Verfahren zur herstellung individueller formen zum abguss von biokompatiblen teilen aus hochreaktiven werkstoffen
DE3517494C2 (fr)
DE69105954T2 (de) Verfahren zur herstellung von formen.
EP0140076A2 (fr) Procédé de fabrication d'un corps en nitrure de silicium

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE FR GB SE

17P Request for examination filed

Effective date: 19820806

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE FR GB SE

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19891012

Year of fee payment: 9

Ref country code: FR

Payment date: 19891012

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19891031

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19891108

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19901124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19901125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19901130

BERE Be: lapsed

Owner name: FRIED. KRUPP G.M.B.H.

Effective date: 19901130

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19910731

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 81109846.6

Effective date: 19910705