EP0051335B1 - Méthode de fabrication d'un disque anodique pour un tube à rayons X à anode tournante - Google Patents

Méthode de fabrication d'un disque anodique pour un tube à rayons X à anode tournante Download PDF

Info

Publication number
EP0051335B1
EP0051335B1 EP81201193A EP81201193A EP0051335B1 EP 0051335 B1 EP0051335 B1 EP 0051335B1 EP 81201193 A EP81201193 A EP 81201193A EP 81201193 A EP81201193 A EP 81201193A EP 0051335 B1 EP0051335 B1 EP 0051335B1
Authority
EP
European Patent Office
Prior art keywords
ridges
basic body
graphite
pyrographite
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP81201193A
Other languages
German (de)
English (en)
Other versions
EP0051335A1 (fr
Inventor
Horst Dr. Hübner
Bernhard Dr. Lersmacher
Hans Dr. Lydtin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Philips Intellectual Property and Standards GmbH
Koninklijke Philips NV
Original Assignee
Philips Patentverwaltung GmbH
Philips Gloeilampenfabrieken NV
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Philips Patentverwaltung GmbH, Philips Gloeilampenfabrieken NV, Koninklijke Philips Electronics NV filed Critical Philips Patentverwaltung GmbH
Publication of EP0051335A1 publication Critical patent/EP0051335A1/fr
Application granted granted Critical
Publication of EP0051335B1 publication Critical patent/EP0051335B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/08Anodes; Anti cathodes
    • H01J35/10Rotary anodes; Arrangements for rotating anodes; Cooling rotary anodes
    • H01J35/108Substrates for and bonding of emissive target, e.g. composite structures

Definitions

  • the invention relates to a method for producing an anode disk according to the preamble of the main claim.
  • an anode disk for a rotating anode X-ray tube which contains a part made of pyrographite in the area of the focal spot path, which part can quickly dissipate the heat generated in the focal spot path.
  • the pyrographite part is oriented according to this thermal conductivity anisotope.
  • the pyrographite ring in the area of the focal spot path described in the prior publication must have dimensions in the order of approximately 10 mm in the axial and radial directions. Therefore, the ring is composed of individual segments, which are produced by sawing and / or grinding from pyrographite bodies.
  • Such pyrographite rings can either be produced by direct continuous deposition of carbon from the gas phase or can be composed of individual segments, which in turn are produced by continuous deposition of carbon from the gas phase.
  • a deposition rate of approximately 2 ⁇ m / min that can be achieved today that is, layers of pyrographite grow by only 2 gm per minute
  • coating times of up to 100 hours which results in considerable costs and the high-temperature equipment used is very heavily used.
  • This problem generally arises in the manufacture of bodies which are at least partially made of pyrographite when the pyrographite layer is relatively thick.
  • the object of the present invention is to provide a simpler production method for an anode disk of the type mentioned at the outset.
  • the surface on which the pyrographite can be deposited can be increased by using webs. This alone reduces the coating time considerably.
  • only the relatively narrow space between two bars has to be filled with pyrographite. In the case of a 1 mm wide gap, this is the case if a 0.5 mm thick layer of pyrographite is applied to both sides of adjacent webs, which is the case after a deposition rate of 2 gm / min after about 4 hours. The coating time is thus reduced considerably.
  • the gaps should be designed so that the increased overgrowth at the entrance corners is compensated for by a corresponding widening of the opening in the initial state. This is achieved, for example, by removing all corners of the webs by mechanical or chemical methods.
  • a ring-shaped or circular base body which is provided with webs that extend concentrically to its central axis and extend in the axial direction, is coated with pyrographite at least until the spaces between the webs disappear and that subsequently the one connecting the webs Part of the body is removed by mechanical processing, after which a heavy metal layer serving as a focal spot track can be applied. Removal of the part of the base body connecting the webs is necessary in order to better dissipate the heat generated in the focal spot path to the outside.
  • Another embodiment of the invention provides that the pyrographite part on the side of the base body on which the focal spot web is to be applied is partially removed before the heavy metal layer is applied.
  • the reason for this measure is that poor heat conduction would result if the heavy metal layer were applied to the pyrographite part without pretreatment, because the direction of greater thermal conductivity in the pyrographite part would then run parallel to the interface of the heavy metal layer.
  • the base body 1 shows a disk-shaped base body 1 which is symmetrical to the axis of rotation 2.
  • This base body 1 has in the region of the focal spot path to be applied a conical surface 3, the shape of which roughly corresponds to the shape of the focal spot path to be applied later and which intersects the axis of rotation 2 at an angle between preferably 70 and 80 °. In principle, however, a circular disc body could not be substituted cylinder surfaces are used.
  • the base body 1 is provided with a number of grooves 4 which are concentric with the axis of rotation 2 and between which there are concentric webs 5 which extend approximately parallel to the axis of rotation.
  • the grooves can be made, for example, by turning.
  • the grooves 4 thus produced are then filled with pyrographite by separating carbon from the gas phase.
  • Such deposition processes are known and z. B. in Philips Technische Rundschau 37 (1977/78) No. 8, pages 205 to 213.
  • the hot-wall method described therein is preferably used, since there is optimum heating in all phases of the coating, i. H. a homogeneous temperature distribution, guaranteed in the base body.
  • it is also possible to use the cold-wall method described in the prior publication because, due to the rotationally symmetrical shape of the base body, an at least approximately homogeneous temperature distribution (for example in the case of inductive heating) can be achieved.
  • Fig. 2 shows a section of the cross section shown in Fig. 1 through the base body 1 after the deposition of pyrographite.
  • the interfaces of the individual pyrographite layers 6 of the pyrographite part in the individual phases of the deposition process are denoted by thin lines. It can be seen that these lines follow the contours of the base body the more closely the closer they are to it. This means that at the beginning of the deposition process, the contours of the base body are hardly changed (only enlarged) by the coating, while in the final phase, i.e. H. after filling the interstices with pyrographite, proceed very differently; the upper boundary 7 of the pyrographite part is only slightly curved and runs approximately at the same distance from the end faces of the webs 5.
  • the thermal conductivity perpendicular to the direction of growth is maximal and parallel to it minimal.
  • the thin lines therefore also represent the directions in which the heat can be optimally dissipated.
  • the end surface 7 if necessary after mechanical processing, such as. B. face grinding, with a heavy metal layer z. B. from tungsten or a tungsten alloy, which can be applied either by deposition from the gas phase or by soldering a thicker layer (as described in DE-OS 2910138), then the heat generated when using this heavy metal layer as a focal track would hardly dissipated, because the direction of the greatest thermal conductivity in the pyrographite part would then run approximately parallel to the interface of the heavy metal layer. Therefore, the pyrographite coating has to be ground down much more strongly, as indicated by line 8. If the heavy metal layer is applied to the surface that has been ground off in this way, the heat dissipation is significantly better.
  • the grinding plane 8 should lie in the plane of the end faces of the webs 5. In the case of web thicknesses of approximately 100 ⁇ m or in the case of webs with pointed or rounded end faces, as shown in FIGS. 3 and 4, it is sufficient for good heat dissipation if the distance between the grinding plane 8 and the end face of the webs is 10 to 20% of Distance between the webs is.
  • the webs should be arranged at a millimeter distance (0.1 to a maximum of 4 mm) from one another. The smaller the distance, the shorter the deposition process can take.
  • the webs themselves should be as thin as possible (0.1 mm to 3 mm), preferably thinner than the distance between the webs. The thinner the webs compared to their distance, the greater the proportion of pyrographite in the area of the focal spot web (which improves the thermal conductivity) and the less pyrographite has to be ground off to achieve good thermal contact with the focal spot web.
  • Fig. 2 also shows that the areas of greatest thermal conductivity at the bottom of the groove run approximately parallel to it. This means that the heat can only be transported very poorly into the base body and released to the outside. As indicated by the line 9, it is therefore advantageous to grind off the part of the base body 1 connecting the webs 5 and a small part of the webs themselves. A resulting lack of mechanical strength can, if necessary, for. B. can be eliminated by a suitable bracket enclosing the anode disk.
  • the body processed in this way forms (after the application of the heavy metal layer on the end face 8) the anode disk.
  • the heat is dissipated mainly in the pyrographite part between the webs.
  • the interlocking of the pyrographite parts and the webs results in good mechanical strength.
  • FIG. 3 and 4 a section corresponding to FIG. 2 is shown from a base body coated with pyrographite, but the webs taper to a point (FIG. 3) or are rounded (FIG. 4) and in each case the same distance from the base body Protrude 1.
  • the same reference numerals are used again as in FIG. 2.
  • the grinding plane for applying the heavy metal web must be inclined in accordance with the position of the focal spot web. This has the additional advantage that the direction of greatest thermal conductivity in the pyrographite layer 6 is always cut at an angle other than zero. It can also be seen from FIGS.
  • FIG. 5 shows a base body consisting of several parts, which is particularly easy to manufacture.
  • This base body is produced by winding two graphite foils of different widths, which, for. B. under the name “Sigraflex” from Sigri and under the name “Papyex” from Irish Carbone AG on the market. The winding takes place in such a way that the two graphite foils come exactly to cover with their lower longitudinal edge.
  • Coating with pyrographite is carried out as described in connection with FIG. 1.
  • the webs run concentrically to the axis of rotation 2, they run radially in the embodiment shown in FIG. 6 in plan view and in FIG. H. they lie in the planes containing the axis of rotation.
  • the webs could be produced by milling out a circular body, but this would result in a considerable amount of work.
  • the webs 5 are flat plates which are attached to the outer circumference of a circular body 14 in an evenly distributed manner. The webs can be clamped in grooves 15 of shallow depth provided on the circumference of the circular body 14. The following pyrographite coating. then ensures further solidification of the overall system.
  • the webs can be made of electrographite, pyrographite, graphite foils, metal or metal carbide foils.
  • the coating with pyrographite would also have to be partially removed again, specifically, as indicated in the drawing, along lines 9 and 8 and expediently also on the outer circumference of the pane.
  • the focal spot path can be arranged on the one hand on the outer periphery of the pane, but also on a (cone-shaped) end face of the pane body coated with pyrographite.
  • the cut e.g. along line 8 must not run perpendicular to the plane of the drawing, but at an angle along a conical surface that would intersect the growth direction of the pyrographite coating at an angle other than 90 °.

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Ceramic Products (AREA)
  • Continuous Casting (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Claims (12)

1. Procédé pour fabriquer un disque d'anode pour un tube à rayons X à anode tournante qui est formé au moins en partie de pyrographite, caractérisé en ce que dans les intervalles (4) entre des nervures (5) d'un corps de base (1) espacées de courte distance l'une de l'autre, du carbone est déposé à partir de la phase gazeuse, la couche de pyrographite ainsi formée pour améliorer la conduction thermique sur une face du corps de base est partiellement éliminée et une couche de métal lourd servant de piste de tache cathodique est appliquée sur la surface en pyrographite ainsi traitée.
2. Procédé suivant la revendication 1, caractérisé en ce qu'un corps de base annulaire ou circulaire, qui est pourvu de nervures s'étendant dans le sens axial concentriquement à son axe de rotation (2), est recouvert de pyrographite au moins jusqu'à ce que les intervalles entre les nervures (5) disparaissent, puis la partie du corps de base reliant les nervures est éliminée par un usinage mécanique.
3. Procédé suivant la revendication 2, caractérisé en ce que le corps de base est fabriqué de sorte qu'un côté (3), d'un corps en forme de disque (1) correspondant du point de vue forme à peu près au côté à tache cathodique du disque d'anode, est pourvu par usinage mécanique de gorges (4) s'étendant dans le sens axial.
4. Procédé suivant la revendication 3, caractérisé en ce qu'un corps de base (1) en électrographite est utilisé.
5. Procédé suivant la revendication 1, caractérisé en ce que le corps de base est fabriqué à partir de deux bandes de pellicule de largeurs différentes (11, 12) dont un bord longitudinal est maintenu en coïncidence et qui sont ensuite envidées ensemble, les bords longitudinaux qui coïncident se situant au moins à peu près dans un plan.
6. Procédé suivant la revendication 1, caractérisé en ce qu'un corps de base circulaire (14) est pourvu de nervures (5) qui sont disposées dans des plans passant par l'axe de rotation (2) et au moins les nervures (5) sont ensuite recouvertes de pyrographite.
7. Procédé suivant la revendication 6, caractérisé en ce que le corps de base est en électrographite et de minces nervures (5) en forme de plaques sont fixées au corps de base.
8. Procédé suivant la revendication 7, caractérisé en ce que les nervures (5) sont en pyrographite.
9. Procédé suivant la revendication 7, caractérisé en ce que les nervures (5) sont fabriquées en électrographite.
10. Procédé suivant la revendication 7, caractérisé en ce que les nervures (5) sont en carbone vitreux.
11. Procédé suivant la revendication 7, caractérisé en ce que les nervures sont faites de pellicules de graphite.
12. Procédé suivant la revendication 7, caractérisé en ce que les nervures sont faites de pellicules de métaux ou de pellicules de carbures métalliques résistant aux hautes températures.
EP81201193A 1980-11-03 1981-10-28 Méthode de fabrication d'un disque anodique pour un tube à rayons X à anode tournante Expired EP0051335B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3041249 1980-11-03
DE19803041249 DE3041249A1 (de) 1980-11-03 1980-11-03 Koerper, der wenigstens teilweise aus pyrolytischem graphit besteht, insbesondere anodenscheibe fuer eine drehanoden-roentgenroehre und verfahren zu seiner herstellung

Publications (2)

Publication Number Publication Date
EP0051335A1 EP0051335A1 (fr) 1982-05-12
EP0051335B1 true EP0051335B1 (fr) 1985-07-03

Family

ID=6115757

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81201193A Expired EP0051335B1 (fr) 1980-11-03 1981-10-28 Méthode de fabrication d'un disque anodique pour un tube à rayons X à anode tournante

Country Status (4)

Country Link
US (1) US4741011A (fr)
EP (1) EP0051335B1 (fr)
JP (1) JPS57107545A (fr)
DE (2) DE3041249A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7858384B2 (en) * 2005-04-29 2010-12-28 Kimberly-Clark Worldwide, Inc. Flow control technique for assay devices
US8948344B2 (en) 2009-06-29 2015-02-03 Koninklijke Philips N.V. Anode disk element comprising a conductive coating

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2910138A1 (de) * 1979-03-15 1980-09-25 Philips Patentverwaltung Anodenscheibe fuer eine drehanoden- roentgenroehre

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1951383C3 (de) * 1969-10-11 1974-08-29 Siemens Ag, 1000 Berlin Und 8000 Muenchen Röntgenröhren-Drehanode mit einem Verbundkörper aus einem Schwermetallteil und wenigstens einem Graphitteil und Verfahren zu ihrer Herstellung
US3819971A (en) * 1972-03-22 1974-06-25 Ultramet Improved composite anode for rotating-anode x-ray tubes thereof
FR2242775A1 (en) * 1973-08-31 1975-03-28 Radiologie Cie Gle Rotary anode for X-ray tubes - using pseudo-monocrystalline graphite for better heat conduction
US4335327A (en) * 1978-12-04 1982-06-15 The Machlett Laboratories, Incorporated X-Ray tube target having pyrolytic amorphous carbon coating

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2910138A1 (de) * 1979-03-15 1980-09-25 Philips Patentverwaltung Anodenscheibe fuer eine drehanoden- roentgenroehre

Also Published As

Publication number Publication date
EP0051335A1 (fr) 1982-05-12
US4741011A (en) 1988-04-26
JPS57107545A (en) 1982-07-05
DE3041249A1 (de) 1982-06-09
DE3171251D1 (en) 1985-08-08

Similar Documents

Publication Publication Date Title
DE1951383C3 (de) Röntgenröhren-Drehanode mit einem Verbundkörper aus einem Schwermetallteil und wenigstens einem Graphitteil und Verfahren zu ihrer Herstellung
DE2443354C3 (de) Drehanodenscheibe für eine Röntgenröhre und Verfahren zu ihrer Herstellung
EP0016485B1 (fr) Anode en forme de disque pour tube à rayons X avec anode tournante
EP0254941A2 (fr) Outil de dressage pour meules de rectification
DE2928993C2 (de) Verfahren zur Herstellung einer Röntgenröhren-Drehanode
DE3426201A1 (de) Verfahren zum aufbringen von schutzschichten
EP0062764A2 (fr) Procédé pour la fabrication d'une plaque comprenant un film mince métallique magnétique
DE3145648A1 (de) Halbleiteranordnung
DE69301070T2 (de) Drehanoden-Röntgenröhre und Herstellungsverfahren dafür
EP0111728A2 (fr) Procédé et dispositif pour la fabrication de produits en forme de bandes ou de feuilles
AT14991U1 (de) Röntgenanode
DE3142792A1 (de) Schleifscheibe
DE2350807B2 (de) Röntgenröhre mit einer flüssigkeitsgekühlten Anode
EP0051335B1 (fr) Méthode de fabrication d'un disque anodique pour un tube à rayons X à anode tournante
DE1194988B (de) Gitterelektrode fuer Elektronenroehren
DE3338740A1 (de) Verfahren zur selektiven abscheidung einer schicht eines hochschmelzenden metalls auf einem werkstueck aus graphit
DE2358583A1 (de) Gitterelektrode fuer elektronenroehre und verfahren zu deren herstellung
DE4424544C2 (de) Target für Kathodenzerstäubungsanlagen und seine Verwendung
DE3013441C2 (de) Anodenteller für eine Drehanoden-Röntgenröhre und Verfahren zu seiner Herstellung
DE2646454C2 (de) Röntgenröhren-Drehanode
DE2237855B2 (de) Röntgenröhrendrehanode
DE2166949C3 (de) Reibklotz für eine elektromagnetisch betätigte Bremse oder Kupplung
DE3503914A1 (de) Abrichtwerkzeug
EP0050893B1 (fr) Anode tournante pour tube à rayons-X
DE102021115602A1 (de) Verdampferschiffchen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19820726

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: N.V. PHILIPS' GLOEILAMPENFABRIEKEN

Owner name: PHILIPS PATENTVERWALTUNG GMBH

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE FR GB IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 19850703

REF Corresponds to:

Ref document number: 3171251

Country of ref document: DE

Date of ref document: 19850808

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19860630

26N No opposition filed
REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19881118

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19881220

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19900703