EP0049324B1 - Verfahren und Vorrichtung zum Schwelen von Ölschiefer - Google Patents

Verfahren und Vorrichtung zum Schwelen von Ölschiefer Download PDF

Info

Publication number
EP0049324B1
EP0049324B1 EP81104562A EP81104562A EP0049324B1 EP 0049324 B1 EP0049324 B1 EP 0049324B1 EP 81104562 A EP81104562 A EP 81104562A EP 81104562 A EP81104562 A EP 81104562A EP 0049324 B1 EP0049324 B1 EP 0049324B1
Authority
EP
European Patent Office
Prior art keywords
distillation
gas
reactor
oil shale
smoldering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP81104562A
Other languages
English (en)
French (fr)
Other versions
EP0049324A1 (de
Inventor
Gerd Dr. Escher
Heinz Frohnert
Hans-Peter Wenning
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Veba Oel Technologie und Automatisierung GmbH
Original Assignee
Veba Oel Technologie und Automatisierung GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Veba Oel Technologie und Automatisierung GmbH filed Critical Veba Oel Technologie und Automatisierung GmbH
Publication of EP0049324A1 publication Critical patent/EP0049324A1/de
Application granted granted Critical
Publication of EP0049324B1 publication Critical patent/EP0049324B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/02Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal by distillation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B49/00Destructive distillation of solid carbonaceous materials by direct heating with heat-carrying agents including the partial combustion of the solid material to be treated
    • C10B49/02Destructive distillation of solid carbonaceous materials by direct heating with heat-carrying agents including the partial combustion of the solid material to be treated with hot gases or vapours, e.g. hot gases obtained by partial combustion of the charge
    • C10B49/04Destructive distillation of solid carbonaceous materials by direct heating with heat-carrying agents including the partial combustion of the solid material to be treated with hot gases or vapours, e.g. hot gases obtained by partial combustion of the charge while moving the solid material to be treated
    • C10B49/08Destructive distillation of solid carbonaceous materials by direct heating with heat-carrying agents including the partial combustion of the solid material to be treated with hot gases or vapours, e.g. hot gases obtained by partial combustion of the charge while moving the solid material to be treated in dispersed form
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • C10B53/06Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form of oil shale and/or or bituminous rocks

Definitions

  • GB-A 668 808 describes a process for smoldering oil shale with a hot gas in a shaft furnace, the condensable constituents being separated from the smoldering gas, a proportion of the smoldering gas corresponding to the increase in the gas quantity being removed and the rest after heating up in the smoldering reactor is returned.
  • the solid, still carbon-containing smoldering residue introduces an oxygen-containing gas, in particular air, into another part of the shaft furnace separated from the smoldering part in order to burn part of the carbon and to increase the temperature of the residue.
  • the cooled, de-condensable gas is passed through the residue heated in this way, in order to heat it up again, whereupon it flows in countercurrent through the smoldering part of the smoldering furnace, where it causes the oil shale to smolder, and is then passed through fresh oil shale so that the oil contained in it after condensation at least partially condenses.
  • the shaft furnace principle can no longer be used for finely shredded goods.
  • Other methods using fines such as US-A 3 844 930 work with solids as heat carriers.
  • the amount of solids to be handled is further increased by the amount of heat transfer medium which is a multiple of the amount of shale used.
  • the carbonization gas mixed with the carrier gases is separated from the solids - heat transfer particles and carbonization residue.
  • the smoldering gases are produced in dilution by the carrier gases, which makes their work-up more difficult.
  • the smoldering residue leaves the cyclone in a mixture with the solid heat transfer media, so that larger amounts of ballast must also be carried along during its further processing.
  • the smoldering temperatures are generally above 450 ° C and should not exceed 650 ° C, otherwise the reduction in yield due to cracking reactions cannot be avoided despite the short smoldering times. Temperatures between 470 and 550 ° C. are preferred.
  • the attached Fig. 1 shows the yields in the cyclone swelling of a Schandelah oil shale compared to the yields according to the Fischer test.
  • the oil shale used contained 10.3% by weight of organic carbon and had the following Fischer test yields:
  • the carbonization gas is preheated to temperatures which are 150 to 250 K above the carbonization temperature.
  • This overheating depends on the ratio of carbonization gas to oil shale, which is usually between 0.8 and 1.4 Nm 3 / kg, preferably between 1.0 and 1.2 Nm 3 / kg lies on the temperature of the slate used, on the residual moisture, on the carbonate decomposition of the carbonates contained, and on the heat losses of the system.
  • coarser feed material can be used in the method according to the invention than in the known method. Oil shale with a grain size of up to 3 mm, even up to 5 mm, can be used. These coarse-grained slates have the advantage of containing less dust, which considerably facilitates both the processing of the carbonization gas and the further treatment of the carbonization residue.
  • the condensable components are separated from the carbonization gas by cooling it directly with cold oil, possibly with subsequent electrostatic precipitation of the oil mist.
  • deposition by means of electrofiltration has proven to be particularly expedient. This is quite surprising, because it was not to be expected that the high temperatures of more than 450 ° C would allow electrofiltration of the carbonization gases, since the electrical field would collapse in a reducing atmosphere without the presence of sulfuric vapors.
  • the smoldering residue is withdrawn from the cyclone reactor; its carbon is expediently burned with oxygen-containing gases, in particular air, it being possible for the hot combustion gas to be used for preheating the circulating carbonization gas.
  • the carbon of the carbonization residue is expediently burned with oxygen-containing gases in a fluidized bed.
  • the combustion conditions must be set so that S0 2 produced during combustion is integrated into the residue due to dolomite and calcite which may be found in the shale.
  • the smoldering residue discharged from the smoldering cyclone reactor can first be degassed in a container before its carbon is burned with oxygen-containing gases.
  • smoldering gas can be passed through for faster removal of the gases still present, it being expedient to loosen up the smoldering residue with stirrers or to shift it in a rotating drum.
  • the known device in which the gas discharge of the smoldering reactor is connected to an oil separator and the inlet connector of the smoldering reactor is connected to the oil separator via a blower, has a cyclone reactor with a tangential inlet connector and a heat exchanger between the blower and the tangential inlet connector of the smoldering cyclone reactor for carrying out the method according to the invention .
  • a preheater for the oil shale to be smoldered is preferably provided in front of the tangential inlet connection of the smoldering cyclone reactor.
  • a dust separator operating at temperatures of the dew point of the carbonization gases in particular an electrostatic filter, is arranged between the carbonization cyclone reactor and the oil separator.
  • the solids discharge of the smoldering cyclone reactor is connected to a combustion furnace and its hot gas outlet is connected to the heat exchanger provided for heating the smoldering gas serving as carrier gas. It has also proven to be expedient to provide a post-carbonization drum on the solid discharge port of the smoldering cyclone reactor or between this discharge port and the combustion device for smoldering residue.
  • a device according to the invention is shown schematically in the attached FIG. 3.
  • the method according to the invention is explained on the basis of this:
  • the oil shale 1 is comminuted to a grain size of less than 3 mm.
  • the comminution and screening is expediently carried out together with the drying and preheating in a mill dryer 2, for which purpose the flue gases 3 are used after the cycle gas preheater 4.
  • the cooled flue gas is discharged via line 5.
  • the crushed, dried and preheated oil shale 6 to approx. 110 ° C is mixed in the riser 7 with circulating hot gas 8, a substantial part of the heat being transferred from the heating gas to the slate in the riser pipe, and this mixture via the tangential feed 9 in led the smoldering cyclone 10.
  • the oil and dust-containing carbonization gases leave the carbonization cyclone 10 via line 11, while the carbonization residue is fed via line 12 into a re-carbonation drum 13.
  • part of the hot recycle gas is passed through line 14 into the re-carbonation drum 13.
  • the smoldering and cycle gas 15 from the after-carbonization 13 is led together with the smoldering gases 11 from the smoldering cyclone into a dedusting system 16.
  • the separated dust is fed via line 17 into the post-carbon drum 13.
  • the dedusted gas passes through the pipeline 18 into the oil separator 19, where it is freed of the condensable fractions which are supplied as product via the line 20 to the further processing.
  • From the oil separation 19, a part of the smoldering gas corresponding to the amount of gas obtained during the pre-carbonization is likewise produced as a product via the line 21 dissipated.
  • the remaining carbonization gas is fed via line 22 to the compressor 23 and, after compression through line 24, reaches the cycle gas preheater 4.
  • the hot smoldering residue 25 behind the post-carbonization drum 13 is fed to a fluidized bed incinerator 26, in which the residual carbon is burned off.
  • the temperature control for setting the optimal SO 2 integration is carried out by the heat exchanger 27 in the fluidized bed, which is designed as a steam generator.
  • the hot flue gas leaves the fluidized bed furnace via line 28.
  • the heat content of this gas is used in the cycle gas heat exchanger 4 for smoldering and in mill drying 2 for drying and preheating the oil shale.
  • the burned-off oil shale from the fluidized bed furnace is fed through line 29 to a cooler 30 and leaves the cooler via line 31.
  • the combustion air 32 which is compressed in the compressor 33, is led via line 34 to the cooler 30 and via the line 35 reaches the fluidized bed furnace 26.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

  • Zur Schwelung von Ölschiefer sind viele Verfahren bekannt. Dabei wird der Ölschiefer erhitzt, wobei sich das im Schiefer enthaltene Kerogen zersetzt und in Form gasförmiger und flüssiger Kohlenwasserstoffe gewonnen werden kann. Je nach dem Wasserstoffgehalt des Ölschiefers kann ein mehr oder weniger grosser Anteil der organischen Substanz gewonnen werden, ein Teil verbleibt stets als Restkohlenstoff auf dem Schiefer. Im Interesse einer weitestgehenden Ausnutzung des Energiegehalts des Ölschiefers sollte auch dieser Kohlenstoff energetisch genutzt werden.
  • Viele Verfahren verwenden das Schachtofenprinzip zur Schwelung, z.B. US-A 3 736 247 und DE-B 2 243 389. Nachteilig ist, dass der bei der Zerkleinerung zwangsläufig anfallende Feingutanteil nicht eingesetzt werden kann. Ausserdem ist der vollständige Abbrand des Restkohlenstoffs durch die erforderliche Stückgutaufgabegrösse sehr erschwert. Weiterhin sind die Öldämpfe und das Schwelgas längere Zeit der Schweltemperatur ausgesetzt, wodurch sich Crackreaktionen ergeben, die zu einer Verminderung der Ausbeute und einer Verschlechterung der Ölqualität führen.
  • In GB-A 668 808 wird ein Verfahren zum Schwelen von Ölschiefer mit einem heissen Gas in einem Schachtofen beschrieben, wobei aus dem Schwelgas die kondensierbaren Bestandteile abgeschieden werden, ein der Vergrösserung der Gasmenge entsprechender Anteil des Schwelgases abgeführt und der Rest nach Aufheizen in den Schwelreaktor zurückgeführt wird. Durch den festen, noch kohlenstoffhaltigen Schwelrückstand wird in einem weiteren, vom Schwelteil abgetrennten Teil des Schachtofens ein sauerstoffhaltiges Gas, insbesondere Luft eingeleitet, um einen Teil des Kohlenstoffs zu verbrennen und die Temperatur des Rückstands zu erhöhen. Danach wird in einem dritten, ebenfalls abgetrennten Teil des Schachtofens durch den so aufgeheizten Rückstand das gekühlte, von kondensierbaren Anteilen befreite Schwelgas geleitet, um es wieder aufzuheizen, worauf es im Gegenstrom durch den Schwelteil des Schwelofens, wo es die Schwelung des Ölschiefers bewirkt, und anschliessend durch frischen Ölschiefer geleitet wird, so dass das nach der Schwelung in ihm enthaltene Öl zumindest teilweise kondensiert.
  • Bei feiner zerkleinertem Gut ist das Schachtofenprinzip nicht mehr anwendbar. Andere Verfahren mit Feinguteinsatz wie z.B. US-A 3 844 930 arbeiten mit Feststoffen als Wärmeträger. Durch die Wärmeträgerumlaufmenge, die ein Mehrfaches der Schiefereinsatzmenge beträgt, wird die zu handhabende Feststoffmenge weiter erhöht.
  • Aus den DE-A 2 728 204und 2 728 455 ist es bekannt, die Pyrolyse von kohlenstoffhaltigem Material, auch von Ölschiefer, in einem Zyklon-Reaktor vorzunehmen. Das kohlenstoffhaltige Material wird hierbei in einer Korngrösse kleiner als 1 mm in einem Trägergasstrom bei Geschwindigkeitenn von 20 - 76 m/sec in einen Zyklon-Reaktor geführt. Vor oder im Einlass des Zyklons wird dieser Gasstrom mit einem zweiten Gasstrom vermengt, der heisse Feststoffteilchen enthält, die zur Aufheizung des kohlenstoffhaltigen Materials auf Schweltemperatur dienen sollen. Das Gewichtsverhältnis der zur Heizung dienenden Feststoffe zu dem kohlenstoffhaltigen Material soll zwischen 2 und 20 liegen. Nach einer kurzen Kontaktzeit - gerechnet als durchschnittliche Verweilzeit des Trägergases im Zyklon - von weniger als etwa einer Sekunde, insbesondere zwischen 0,1 und 0,6 sec wird das mit den Trägergasen vermischte Schwelgas von den Feststoffen - Wärmeträgerteilchen und Schwelrückstand - getrennt.
  • Bei diesem bekannten Verfahren fallen also die Schwelgase in Verdünnung durch die Trägergase an, wodurch ihre Aufarbeitung erschwert wird. Der Schwelrückstand verlässt den Zyklon im Gemisch mit den Feststoff-Wärmeträgern, so dass auch bei seiner weiteren Verarbeitung grössere Balastmengen mitgeschleppt werden müssen.
  • Überraschenderweise würde nun gefunden, dass man die Schwelung von Ölschiefer, bei dem aus dem Schwelgas die kondensierbaren Bestandteile abgeschieden werden, ein der Vergrösserung der Gasmenge entsprechender Anteil abgeführt und der Rest wiederaufgeheizt und in den Schwelreaktor zurückgeführt wird, trotz der gegenüber der Schwelung in Schachtöfen um mehrere Grössenordnungen kürzere Schwelzeiten in einem Zyklonreaktor vornehmen kann, wobei das Schwelgas indirekt aufgeheizt und als alleiniger Wärmeträger in den Schwelzyklonreaktor zurückgespeist wird. Ölschiefer und Heizgaz werden hierbei im Gleichstrom geführt.
  • Man erhält so ein reines, unverdünntes Schwelgas, aus dem sich die kondensierbaren Anteile besser abscheiden lassen als aus einem mit Trägergas verdünnten Schwelgas und das auch nach Abscheidung der kondensierbaren Anteile wegen der höheren Konzentration an gasförmigen Kohlenwasserstoffen einen höheren Wert aufweist als das verdünnte Schwelgas. In gleicher Weise wird die Weiterverarbeitung des Schwelrückstands durch das Fehlen der Ballaststoffe erleichtert.
  • Die Schweltemperaturen liegen im allgemeinen über 450° C und sollten 650°C nicht überschreiten, da andernfalls Ausbeuteminderung durch Crackreaktionen trotz der kurzen Schwelzeiten nicht zu vermeiden sind. Bevorzugt werden Temperaturen zwischen 470 und 550°C. In der anliegenden Fig. 1 sind die Ausbeuten bei der Zyklonschwelung eines Schandelah-Ölschiefers im Vergleich zu den Ausbeuten nach dem Fischer-Testdargestellt. Der eingesetzte Ölschiefer enthielt 10,3 Gew.-% organischen Kohlenstoff und hatte folgende Fischer-Test-Ausbeuten:
    Figure imgb0001
  • Bei dem erfindungsgemässen Verfahren wird das Schwelgas auf Temperaturen vorgeheizt, die 150 bis 250 K über der Schweltemperatur liegen. Abhängig ist diese Überhitzung vom Verhältnis Schwelgas zu Ölschiefer, das üblicherweise zwischen 0,8 und 1,4 Nm3/kg, vorzugsweise zwischen 1,0 und 1,2 Nm3/kg liegt, von der Temperatur des eingesetzten Schiefers, von der Restfeuchte, von der Karbonatzersetzung der enthaltenen Karbonate, und von den Wärmeverlusten des Systems.
  • Um eine stärkere Aufheizung des rückgeführten Schwelgases zu vermeiden, ist es zweckmässig, den Ölschiefer weitgehend vorzutrocknen und auf eine Temperatur kurz unterhalb des Beginns der Kerogenzersetzung vorzuwärmen.
  • Überraschenderweise ergab sich weiterhin, dass beim erfindungsgemässen Verfahren gröberes Einsatzmaterial verwendet werden kann als beim bekannten Verfahren. So kann Ölschiefer einer Körnung bis zu 3 mm, selbst bis 5 mm verwendet werden. Diese grobkörnigeren Schiefer haben den Vorteil, geringere Staubmengen zu enthalten, wodurch sowohl die Verarbeitung des Schwelgases, als auch die Weiterbehandlung des Schwelrückstands wesentlich erleichtert werden.
  • In Fig. 2 ist der Restkohlenstoffgehalt des oben erwähnten Ölschiefers nach der Schwelung in Abhängigkeit von seiner Korngrösse aufgetragen. Man erkennt, dass die Ausschwelung bei Korngrössen von 2 mm praktisch gleich der bei Korngrössen von 0,1 mm ist und auch bei Korngrössen von 3 mm nur eine unbedeutende Erhöhung des Restkohlenstoffgehalts festzustellen ist.
  • Die Abscheidung der kondensierbaren Anteile aus dem Schwelgas erfolgt durch dessen direkte Abkühlung mit kaltem Öl, gegebenenfalls mit nachfolgender elektrostatischer Fällung der Ölnebel.
  • Als zweckmässig hat es sich erwiesen, im Schwelgas enthaltenen Staub vor der Abscheidung der kondensierbaren Anteile zu entfernen, da die Trennung des Kondensats von den Stäuben grosse Schwierigkeiten macht. Zur Abscheidung der Stäube können z.B. Hochleistungszyklone eingesetzt werden.
  • Besonders zweckmässig hat sich jedoch die Abscheidung mittels Elektrofiltration erwiesen. Dies ist durchaus überraschend, denn es war nicht zu erwarten, dass bei den hohen Temperaturen von mehr als 450°C eine Elektrofiltration der Schwelgase möglich ist, da in reduzierender Atmosphäre allein ohne das Vorhandensein von Schweldämpfen das elektrische Feld zusammenbricht. Der Schwelrückstand wird aus dem Zyklon-Reaktor abgezogen; sein Kohlenstoff wird zweckmässigerweise mit sauerstoffhaltigen Gasen, insbesondere Luft verbrannt, wobei das heisse Verbrennungsgas zum Vorwärmen des Kreislauf-Schwelgases verwendet werden kann.
  • Zweckmässigerweise erfolgt die Verbrennung des Kohlenstoffs des Schwelrückstands mit sauerstoffhaltigen Gasen in einem Wirbelbett. Dabei sind die Verbrennungsbedingungen so einzustellen, dass bei der Verbrennung entstehendes S02 durch evtl. im Schiefer enthaltenem Dolomit und Calcit in den Rückstand eingebunden wird.
  • Zur Verbesserung der Schwelausbeute kann man den aus dem Schwelzyklon-Reaktor ausgetragenen Schwelrückstand zunächst in einem Behälter entgasen, bevor sein Kohlenstoff mit sauerstoffhaltigen Gasen verbrannt wird. Durch den im Entgasungsbehälter befindlichen Schwelrückstand kann Schwelgas zum schnelleren Abführen der noch anfallenden Gase hindurchgeleitet werden, wobei es zweckmässig ist, den Schwelrückstand mit Rührern aufzulokkern oder in einer Drehtrommel umzuschichten.
  • Die bekannte Vorrichtung, bei der die Gasabführung des Schwelreaktors mit einem Ölabscheider und der Einführstutzen des Schwelreaktors über ein Gebläse mit dem Ölabscheider verbunden ist, weist zur Durchführung des erfindungsgemässen Verfahrens einen Zyklonreaktor mit tangentialem Einführstutzen und einen Wärmetauscher zwischen Gebläse und dem tangentialen Einführungssiutzen des Schwelzyklonreaktors auf. Vorzugsweise ist ein Vorwärmer für den zu schwelenden Ölschiefer vor dem tangentialen Einführungsstutzen des Schwelzyklonreaktors vorgesehen.
  • Gemäss einer besonderen Ausführungsform der Erfindung ist ein bei Temperaturen des Taupunktes der Schwelgase arbeitender Staubabscheider, insbesondere ein Elektrofilter zwischen Schwelzyklon-reaktor und Ölabscheider angeordnet. Nach einer weiteren Ausbildung der Erfindung ist der Feststoffaustrag des Schwelzyklonreaktors mit einem Verbrennungsofen und dessen Heissgasausgang mit dem zur Erhitzung des als Trägergas dienenden Schwelgases vorgesehenen Wärmetauscher verbunden. Es hat sich auch als zweckmässig erwiesen, am Feststoff-Abführstutzen des Schwelzyklonreaktors bzw. zwischen diesem Abführstutzen und der Verbrennungsvorrichtung für Schwelrückstand eine Nachschweltrommel vorzusehen.
  • In der anliegenden Fig. 3 ist eine erfindungsgemässe Vorrichtung schematisch dargestellt. Anhand dieser sei das erfindungsgemässe Verfahren erläutert: Der Ölschiefer 1 wird auf eine Korngrösse kleiner als 3 mm zerkleinert. Die Zerkleinerung und Sichtung erfolgt zweckmässigerweise zusammen mit der Trocknung und Vorwärmung in einer Mahltrocknung 2, wozu die Rauchgase 3 nach dem Kreislaufgasvorwärmer 4 eingesetzt werden. Das gekühlte Rauchgas wird über die Leitung 5 abgeführt.
  • Der zerkleinerte, getrocknete und auf ca. 110°C vorgewärmte Ölschiefer 6 wird in der Steigleitung 7 mit Kreislaufschwelgas 8 gemischt, wobei bereits im Steigrohr ein wesentlicher Teil der Wärme vom Heizgas auf den Schiefer übertragen wird, und dieses Gemisch über die tangentiale Zuführung 9 in den Schwelzyklon 10 geführt. Über die Leitung 11 verlassen die öl- und staubhaltigen Schwelgase den Schwelzyklon 10, während der Schwelrückstand über die Leitung 12 in eine Nachschweltrommel 13 geführt wird. Um die Abführung der entstehenden Schwelgase zu beschleunigen, wird ein Teil des heissen Kreislaufgases durch die Leitung 14 in die Nachschweltrommel 13 geführt. Das Schwel- und Kreislaufgas 15 aus der Nachschwelung 13 wird zusammenmit den Schwelgasen 11 aus dem Schwelzyklon in ein Entstaubungssystem 16 geführt. Der abgeschiedene Staub wird über die Leitung 17 in die Nachschweltrommel 13 gegeben. Durch die Rohrleitung 18 gelangt das entstaubte Gas in die Ölabscheidung 19 und wird dort von den kondensierbaren Anteilen befreit, die als Produkt über die Leitung 20 der Weiterverarbeitunng zugeführt werden. Aus der Ölabscheidung 19 wird ebenfalls ein der bei der Vorschwelung anfallenden Gasmenge entsprechender Teil des Schwelgases als Produkt über die Leitung 21 abgeführt. Das übrige Schwelgas wird über die Leitung 22 dem Verdichter 23 zugeführt und gelangt nach der Verdichtung durch die Leitung 24 zum Kreislaufgasvorwärmer 4.
  • Der heisse Schwelrückstand 25 hinter der Nachschweltrommel 13 wird einem Wirbelbett-Verbrennungsofen 26 zugeführt, in dem der Restkohlenstoff abgebrannt wird. Die Temperaturregelung zur Einstellung der optimalen SO2-Einbindung erfolgt durch den Wärmetauscher 27 im Wirbelbett, der als Dampferzeuger ausgebildet ist. Das heisse Rauchgas verlässt den Wirbelbettofen über die Leitung 28. Der Wärmeinhalt dieses Gases wird im Kreislaufgaswärmeaustauscher 4 zur Schwelung und in der Mahltrocknung 2 zur Trocknung und Vorwärmung des Ölschiefers genutzt.
  • Der abgebrannte Ölschiefer aus dem Wirbelbettofen wird durch die Leitung 29 einem Kühler 30 zugeführt und verlässt den Kühler über die Leitung 31. Zur Kühlung dient die Verbrennungsluft 32, die im Verdichter 33 komprimiert, über die Leitung 34 zum Kühler 30 geführt wird und über die Leitung 35 in den Wirbelbettofen 26 gelangt.

Claims (15)

1. Verfahren zum Schwelen von Ölschiefer mit einem heissen Gas in einem Schwelreaktor, bei dem aus dem Schwelgas die kondensierbaren Bestandteile abgeschieden werden, ein der Vergrösserung der Gasmenge entsprechender Anteil abgeführt und der Rest wieder aufgeheizt und in den Schwelreaktor zurückgeführt wird, dadurch gekennzeichnet, dass ein Zyklonreaktor verwendet, das Schwelgas indirekt wieder aufgeheizt und als alleiniger Wärmeträger in den Schwelzyklon-Reaktor zurückgespeist wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Ölschiefer vor seinem Zusatz zum Schwelgas auf Temperaturen unterhalb der Schweltemperatur vorgewärmt und getrocknet wird.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass Ölschiefer einer Korngrösse bis zu 5 mm der Verschwelung unterworfen wird.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass aus dem Schwelgas bei Temperaturen über dem Taupunkt der kondensierbaren Anteile der Staub abgeschieden wird.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass der Staub durch Elektrofiltration entfernt wird.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der Kohlenstoff des Schwelrückstands mit sauerstoffhaltigen Gasen verbrannt und das Verbrennungsgas ganz oderteilweise zum Vorwärmen des Kreislauf-Schwelgases verwendet wird.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das Verbrennungsgas nach dem Vorwärmen des Kreislaufgases zur Vorwärmung und Trocknung des Ölschiefers verwendet wird.
8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass der Schwelrückstand nach seinem Austrag aus dem Schwelzyklon-Reaktor in einem Behälter auf der Schweltemperatur gehalten wird.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass durch den mittels Rühren oder Drehtrommel bewegten Schwelrückstand Schwelgas nach Abscheidung der kondensierbaren Bestandteile geleitet wird.
10. Vorrichtung zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 9, bei der die Gasabführung eines Schwelreaktors (10) mit einem Ölabscheider (19) und der Einführungsstutzen des Schwelreaktors (10) über ein Gebläse (23) mit dem Ölabscheider (19) verbunden ist, dadurch gekennzeichnet, dass der Reaktor (10) ein Zyklonreaktor mit tangentialem Einführungsstutzen (9) ist und dass sich ein Wärmeaustauscher (4) zwischen dem Gebläse (23) und dem tangentialen Einführungsstutzen (9) des Schwelzyklon-Reaktors (10) befindet.
11. Vorrichtung nach Anspruch 10, dadurch gekennzeichnet, dass ein Vorwärmer (2) für den zu schwelenden Ölschiefer vor dem tangentialen Einführungsstutzen (9) des Schwelzyklon-Reaktors (10) vorgesehen ist.
12. Vorrichtung nach Anspruch 10 und 11, dadurch gekennzeichnet, dass ein bei Temperaturen oberhalb des Taupunktes der Schwelgase arbeitender Staubabscheider (16) zwischen Schwelzyklon-Reaktor (10) und Ölabscheider (19) angeordnet ist.
13. Vorrichtung nach Anspruch 12, dadurch gekennzeichnet, dass als Staubabscheider (16) ein Elektrofilter verwendet wird.
14. Vorrichtung nach einem der Ansprüche 10 bis 13, dadurch gekennzeichnet, dass der Feststoffaustrag (12) des Schwelzyklon-Reaktors (10) mit einem Verbrennungsofen (26) und dessen Heissgasausgang mit dem Wärmetauscher (4) verbunden ist.
15. Vorrichtung nach einem der Ansprüche 10 bis 14, dadurch gekennzeichnet, dass eine Nachschweltrommel (13) am Feststoff-Abführstutzen (12) des Schwelzyklon-Reaktors (10) bzw. zwischen diesem Abführstutzen (12) und der Verbrennungsvorrichtung (26) für Schwelrückstand vorgesehen ist.
EP81104562A 1980-06-25 1981-06-13 Verfahren und Vorrichtung zum Schwelen von Ölschiefer Expired EP0049324B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3023670 1980-06-25
DE3023670A DE3023670C2 (de) 1980-06-25 1980-06-25 Verfahren und Vorrichtung zum Schwelen von Ölschiefer

Publications (2)

Publication Number Publication Date
EP0049324A1 EP0049324A1 (de) 1982-04-14
EP0049324B1 true EP0049324B1 (de) 1984-09-12

Family

ID=6105369

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81104562A Expired EP0049324B1 (de) 1980-06-25 1981-06-13 Verfahren und Vorrichtung zum Schwelen von Ölschiefer

Country Status (9)

Country Link
US (1) US4388173A (de)
EP (1) EP0049324B1 (de)
AU (1) AU545951B2 (de)
BR (1) BR8103968A (de)
DE (2) DE3023670C2 (de)
ES (1) ES8207580A1 (de)
JO (1) JO1113B1 (de)
MA (1) MA19167A1 (de)
YU (1) YU42719B (de)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR8302810A (pt) * 1983-05-27 1985-01-15 Petroleo Brasileiro Sa Processo para a retornagem de solidos contendo hidrocarbonetos
DE3323770A1 (de) * 1983-07-01 1985-01-03 Metallgesellschaft Ag, 6000 Frankfurt Verfahren zum trocknen und erhitzen von oelhaltigen feststoffen
US4585543A (en) * 1984-03-09 1986-04-29 Stone & Webster Engineering Corp. Method for recovering hydrocarbons from solids
US4601812A (en) * 1985-01-07 1986-07-22 Conoco Inc. Oil shale retorting process
DE3715158C1 (de) * 1987-05-07 1988-09-15 Veba Oel Entwicklungs Gmbh Verfahren zur Gewinnung von Schweloel
GB2276631A (en) * 1993-02-24 1994-10-05 Great Eastern Process for removal of petroleum contaminants from particulate materials
CA2546940C (en) * 2006-05-15 2010-09-21 Olav Ellingsen Process for simultaneous recovery and cracking/upgrading of oil from solids
US10030199B2 (en) * 2007-11-23 2018-07-24 Bixby Energy Systems, Inc. Pyrolisis apparatus
US9795972B2 (en) 2012-08-07 2017-10-24 Cameron International Corporation High temperature high pressure electrostatic treater
CN104745221B (zh) * 2015-04-01 2016-04-27 曲靖众一精细化工股份有限公司 一种细、小颗粒干馏油气高品质回收方法及其回收装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2414586A (en) * 1942-09-05 1947-01-21 Universal Oil Prod Co Distillation of hydrocarbonaceous solids
US2434567A (en) * 1944-01-19 1948-01-13 Standard Oil Dev Co Method and apparatus for contacting hydrocarbons with catalyst particles
GB668808A (en) * 1949-09-17 1952-03-19 California Research Corp Process for retorting shale
US2942043A (en) * 1955-01-03 1960-06-21 Hoechst Ag Process for carrying out endothermic chemical reactions
US3475319A (en) * 1966-12-22 1969-10-28 Exxon Research Engineering Co Retorting of oil shale
DE1809874B2 (de) * 1968-11-20 1974-10-31 Metallgesellschaft Ag, 6000 Frankfurt Vorrichtung zur trockenen Destillation von bituminösen oder ölhaltigen, feinkörnigen Materialien zwecks Gewinnung von flüssigen Kohlenwasserstoffen
US3577338A (en) * 1969-02-19 1971-05-04 Phillip H Gifford Process for recovery of oil from oil shale simultaneously producing hydrogen
GB1326455A (en) * 1971-01-26 1973-08-15 Texaco Development Corp Hydrotorting of shale to produce shale oil
BR7105857D0 (pt) * 1971-09-06 1973-04-10 Brasileiros Sa Petrob Petroleo Processo aprefeicoado para obtencao de oleo gas e subprodutos de xisto pirobetuminosos ou outros materiais impregnados com hidrocarbonetos
DE2244753B1 (de) * 1972-09-08 1973-10-18 Mannesmann Ag, 4000 Duesseldorf Verfahren und Vorrichtung zur Ver mchtung von Mull
US4003797A (en) * 1976-05-05 1977-01-18 Union Oil Company Of California Superatmospheric pressure shale retorting process
US4066529A (en) * 1976-05-07 1978-01-03 Paraho Corporation Method of design for vertical oil shale retorting vessels and retorting therewith
DE2728455A1 (de) * 1976-06-25 1978-01-05 Occidental Res Corp Verfahren und vorrichtung zum pyrolysieren von kohlenstoffhaltigem material
US4105502A (en) * 1976-06-25 1978-08-08 Occidental Petroleum Corporation Simplified liquefaction pyrolysis process and apparatus therefor
DE2637427C3 (de) * 1976-08-20 1980-04-03 Metallgesellschaft Ag, 6000 Frankfurt Verfahren zum Erhitzen von feinkernigem, kohlenstoffhaltigem Material
US4118309A (en) * 1976-12-10 1978-10-03 Atlantic Richfield Company Separation and recovery of heat carriers in an oil shale retorting process
GB1567115A (en) * 1978-02-28 1980-05-08 Shale Oil Science & Systems In Method and apparatus for processing solid materials such as oil shale
US4199432A (en) * 1978-03-22 1980-04-22 Chevron Research Company Staged turbulent bed retorting process
US4222850A (en) * 1979-02-15 1980-09-16 Gulf Research & Development Company Process for retorting oil shale
DE2923048C2 (de) * 1979-06-07 1984-11-08 Rheinische Braunkohlenwerke AG, 5000 Köln Verfahren zum Schwelen von Ölschiefer oder Teersand in Gegenwart von Wasserstoff

Also Published As

Publication number Publication date
ES503316A0 (es) 1982-10-01
EP0049324A1 (de) 1982-04-14
AU7167081A (en) 1982-01-07
JO1113B1 (en) 1982-07-10
AU545951B2 (en) 1985-08-08
YU129481A (en) 1983-12-31
YU42719B (en) 1988-12-31
DE3023670C2 (de) 1982-12-23
BR8103968A (pt) 1982-03-09
MA19167A1 (fr) 1981-12-31
DE3023670A1 (de) 1982-01-14
US4388173A (en) 1983-06-14
DE3165997D1 (en) 1984-10-18
ES8207580A1 (es) 1982-10-01

Similar Documents

Publication Publication Date Title
DE69114294T2 (de) Wiederverwendungsverfahren, apparat und produkt hergestellt in diesem verfahren zur gewinnung eines extenders oder weichmachers für gummi aus automobilaltreifen.
DE2621941C3 (de) Verfahren zur Herstellung von Kohle und Kohlenwasserstoffdämpfen aus Gummi durch thermische Zersetzung
DE1909263C3 (de) Verfahren und Vorrichtung zum Schwelen von feinkörnigen bituminösen Stoffen, die einen staubförmigen Schwelrückstand bilden
DE3344847C2 (de) Schnell-Pyrolyse von Braunkohlen und Anordnung zur Durchführung dieses Verfahrens
DE1809874B2 (de) Vorrichtung zur trockenen Destillation von bituminösen oder ölhaltigen, feinkörnigen Materialien zwecks Gewinnung von flüssigen Kohlenwasserstoffen
DE2633789C3 (de) Verfahren und Vorrichtung zur Herstellung von Petrolkokskalzinat
EP0049324B1 (de) Verfahren und Vorrichtung zum Schwelen von Ölschiefer
DE1470604A1 (de) Verfahren zur OElgewinnung aus kohlenwasserstoffhaltigen Stoffen
EP3081622A1 (de) Verfahren und anlage zur verbesserten herstellung von pyrolyseteer
DE2532778B2 (de) Verfahren zum Vorwärmen von ölschiefer vor dessen Pyrolyse
DE2640508A1 (de) Verfahren zum betrieb von zweistufigen kohleflugstromtrocknern
WO1996021824A1 (de) Verfahren zur thermischen behandlung von abfallmaterial
DE3237791A1 (de) Mehrstufiges verfahren und einrichtung zum trocknen von teilchenfoermigem kohlenstoffhaltigem material
DD141056A5 (de) Verfahren und vorrichtung zur aufbereitung und verbrennung von kohle
EP0116180B1 (de) Verfahren zum Schwelen von Hydrierrückständen
DE69100682T3 (de) Verfahren und Vorrichtung zur Herstellung von einem festen Brennstoff ausgehend von brennbaren Abfällen.
DE2415412A1 (de) Verfahren und vorrichtung zur behandlung hochmolekularer hydrocarbonate oder altoele
DE3323770C2 (de)
DE69732164T2 (de) Thermisches Gerät und Verfahren zum Entfernen von Verunreinigungen aus Öl
DE3305994A1 (de) Verfahren zur trockenen destillation von bitumioesen oder oelhaltigen feststoffen
EP0113811A2 (de) Verfahren zur Gewinnung von Rohstoffen aus Kunststoffabfällen und Anlage zur Durchführung des Verfahrens
DE2537732B2 (de) Verfahren zur thermischen Verarbeitung von festen bituminösen Stoffen
DE1160823B (de) Verfahren zum kontinuierlichen Entgasen, wie Schwelen und/oder Verkoken, von feinkoernigen, nicht backenden, wasserhaltigen Brennstoffen mittels heisser Gasstroeme
DE2516745C3 (de) Verfahren zur Verschwelung von Kohle
EP0068524B1 (de) Verfahren zur Gewinnung von Öl aus ölhaltigen Mineralien

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE FR GB IT SE

17P Request for examination filed

Effective date: 19820611

ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE FR GB IT SE

REF Corresponds to:

Ref document number: 3165997

Country of ref document: DE

Date of ref document: 19841018

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19890613

GBPC Gb: european patent ceased through non-payment of renewal fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19900629

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19920228

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19930507

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19930611

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19940614

EUG Se: european patent has lapsed

Ref document number: 81104562.4

Effective date: 19950110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19950301

EUG Se: european patent has lapsed

Ref document number: 81104562.4