EP0049324B1 - Process and installation for smouldering oil shale - Google Patents
Process and installation for smouldering oil shale Download PDFInfo
- Publication number
- EP0049324B1 EP0049324B1 EP81104562A EP81104562A EP0049324B1 EP 0049324 B1 EP0049324 B1 EP 0049324B1 EP 81104562 A EP81104562 A EP 81104562A EP 81104562 A EP81104562 A EP 81104562A EP 0049324 B1 EP0049324 B1 EP 0049324B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- distillation
- gas
- reactor
- oil shale
- smoldering
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000004058 oil shale Substances 0.000 title claims description 27
- 238000000034 method Methods 0.000 title claims description 22
- 238000009434 installation Methods 0.000 title 1
- 239000007789 gas Substances 0.000 claims description 65
- 229910052799 carbon Inorganic materials 0.000 claims description 17
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 15
- 239000000428 dust Substances 0.000 claims description 9
- 238000010438 heat treatment Methods 0.000 claims description 8
- 238000002485 combustion reaction Methods 0.000 claims description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 5
- 239000001301 oxygen Substances 0.000 claims description 5
- 229910052760 oxygen Inorganic materials 0.000 claims description 5
- 239000000567 combustion gas Substances 0.000 claims description 3
- 238000011043 electrofiltration Methods 0.000 claims description 3
- 238000004821 distillation Methods 0.000 claims 27
- 239000011343 solid material Substances 0.000 claims 2
- 102100025840 Coiled-coil domain-containing protein 86 Human genes 0.000 claims 1
- 101000932708 Homo sapiens Coiled-coil domain-containing protein 86 Proteins 0.000 claims 1
- LELOWRISYMNNSU-UHFFFAOYSA-N hydrogen cyanide Chemical compound N#C LELOWRISYMNNSU-UHFFFAOYSA-N 0.000 claims 1
- 238000003756 stirring Methods 0.000 claims 1
- 238000003763 carbonization Methods 0.000 description 31
- 239000007787 solid Substances 0.000 description 9
- 239000012159 carrier gas Substances 0.000 description 6
- 239000000463 material Substances 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 238000001035 drying Methods 0.000 description 3
- 239000003546 flue gas Substances 0.000 description 3
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000010454 slate Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229910021532 Calcite Inorganic materials 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 150000001721 carbon Chemical class 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical group 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 239000010459 dolomite Substances 0.000 description 1
- 229910000514 dolomite Inorganic materials 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000005367 electrostatic precipitation Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000003595 mist Substances 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- JTJMJGYZQZDUJJ-UHFFFAOYSA-N phencyclidine Chemical class C1CCCCN1C1(C=2C=CC=CC=2)CCCCC1 JTJMJGYZQZDUJJ-UHFFFAOYSA-N 0.000 description 1
- 238000009656 pre-carbonization Methods 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 238000010626 work up procedure Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G1/00—Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
- C10G1/02—Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal by distillation
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10B—DESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
- C10B49/00—Destructive distillation of solid carbonaceous materials by direct heating with heat-carrying agents including the partial combustion of the solid material to be treated
- C10B49/02—Destructive distillation of solid carbonaceous materials by direct heating with heat-carrying agents including the partial combustion of the solid material to be treated with hot gases or vapours, e.g. hot gases obtained by partial combustion of the charge
- C10B49/04—Destructive distillation of solid carbonaceous materials by direct heating with heat-carrying agents including the partial combustion of the solid material to be treated with hot gases or vapours, e.g. hot gases obtained by partial combustion of the charge while moving the solid material to be treated
- C10B49/08—Destructive distillation of solid carbonaceous materials by direct heating with heat-carrying agents including the partial combustion of the solid material to be treated with hot gases or vapours, e.g. hot gases obtained by partial combustion of the charge while moving the solid material to be treated in dispersed form
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10B—DESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
- C10B53/00—Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
- C10B53/06—Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form of oil shale and/or or bituminous rocks
Definitions
- GB-A 668 808 describes a process for smoldering oil shale with a hot gas in a shaft furnace, the condensable constituents being separated from the smoldering gas, a proportion of the smoldering gas corresponding to the increase in the gas quantity being removed and the rest after heating up in the smoldering reactor is returned.
- the solid, still carbon-containing smoldering residue introduces an oxygen-containing gas, in particular air, into another part of the shaft furnace separated from the smoldering part in order to burn part of the carbon and to increase the temperature of the residue.
- the cooled, de-condensable gas is passed through the residue heated in this way, in order to heat it up again, whereupon it flows in countercurrent through the smoldering part of the smoldering furnace, where it causes the oil shale to smolder, and is then passed through fresh oil shale so that the oil contained in it after condensation at least partially condenses.
- the shaft furnace principle can no longer be used for finely shredded goods.
- Other methods using fines such as US-A 3 844 930 work with solids as heat carriers.
- the amount of solids to be handled is further increased by the amount of heat transfer medium which is a multiple of the amount of shale used.
- the carbonization gas mixed with the carrier gases is separated from the solids - heat transfer particles and carbonization residue.
- the smoldering gases are produced in dilution by the carrier gases, which makes their work-up more difficult.
- the smoldering residue leaves the cyclone in a mixture with the solid heat transfer media, so that larger amounts of ballast must also be carried along during its further processing.
- the smoldering temperatures are generally above 450 ° C and should not exceed 650 ° C, otherwise the reduction in yield due to cracking reactions cannot be avoided despite the short smoldering times. Temperatures between 470 and 550 ° C. are preferred.
- the attached Fig. 1 shows the yields in the cyclone swelling of a Schandelah oil shale compared to the yields according to the Fischer test.
- the oil shale used contained 10.3% by weight of organic carbon and had the following Fischer test yields:
- the carbonization gas is preheated to temperatures which are 150 to 250 K above the carbonization temperature.
- This overheating depends on the ratio of carbonization gas to oil shale, which is usually between 0.8 and 1.4 Nm 3 / kg, preferably between 1.0 and 1.2 Nm 3 / kg lies on the temperature of the slate used, on the residual moisture, on the carbonate decomposition of the carbonates contained, and on the heat losses of the system.
- coarser feed material can be used in the method according to the invention than in the known method. Oil shale with a grain size of up to 3 mm, even up to 5 mm, can be used. These coarse-grained slates have the advantage of containing less dust, which considerably facilitates both the processing of the carbonization gas and the further treatment of the carbonization residue.
- the condensable components are separated from the carbonization gas by cooling it directly with cold oil, possibly with subsequent electrostatic precipitation of the oil mist.
- deposition by means of electrofiltration has proven to be particularly expedient. This is quite surprising, because it was not to be expected that the high temperatures of more than 450 ° C would allow electrofiltration of the carbonization gases, since the electrical field would collapse in a reducing atmosphere without the presence of sulfuric vapors.
- the smoldering residue is withdrawn from the cyclone reactor; its carbon is expediently burned with oxygen-containing gases, in particular air, it being possible for the hot combustion gas to be used for preheating the circulating carbonization gas.
- the carbon of the carbonization residue is expediently burned with oxygen-containing gases in a fluidized bed.
- the combustion conditions must be set so that S0 2 produced during combustion is integrated into the residue due to dolomite and calcite which may be found in the shale.
- the smoldering residue discharged from the smoldering cyclone reactor can first be degassed in a container before its carbon is burned with oxygen-containing gases.
- smoldering gas can be passed through for faster removal of the gases still present, it being expedient to loosen up the smoldering residue with stirrers or to shift it in a rotating drum.
- the known device in which the gas discharge of the smoldering reactor is connected to an oil separator and the inlet connector of the smoldering reactor is connected to the oil separator via a blower, has a cyclone reactor with a tangential inlet connector and a heat exchanger between the blower and the tangential inlet connector of the smoldering cyclone reactor for carrying out the method according to the invention .
- a preheater for the oil shale to be smoldered is preferably provided in front of the tangential inlet connection of the smoldering cyclone reactor.
- a dust separator operating at temperatures of the dew point of the carbonization gases in particular an electrostatic filter, is arranged between the carbonization cyclone reactor and the oil separator.
- the solids discharge of the smoldering cyclone reactor is connected to a combustion furnace and its hot gas outlet is connected to the heat exchanger provided for heating the smoldering gas serving as carrier gas. It has also proven to be expedient to provide a post-carbonization drum on the solid discharge port of the smoldering cyclone reactor or between this discharge port and the combustion device for smoldering residue.
- a device according to the invention is shown schematically in the attached FIG. 3.
- the method according to the invention is explained on the basis of this:
- the oil shale 1 is comminuted to a grain size of less than 3 mm.
- the comminution and screening is expediently carried out together with the drying and preheating in a mill dryer 2, for which purpose the flue gases 3 are used after the cycle gas preheater 4.
- the cooled flue gas is discharged via line 5.
- the crushed, dried and preheated oil shale 6 to approx. 110 ° C is mixed in the riser 7 with circulating hot gas 8, a substantial part of the heat being transferred from the heating gas to the slate in the riser pipe, and this mixture via the tangential feed 9 in led the smoldering cyclone 10.
- the oil and dust-containing carbonization gases leave the carbonization cyclone 10 via line 11, while the carbonization residue is fed via line 12 into a re-carbonation drum 13.
- part of the hot recycle gas is passed through line 14 into the re-carbonation drum 13.
- the smoldering and cycle gas 15 from the after-carbonization 13 is led together with the smoldering gases 11 from the smoldering cyclone into a dedusting system 16.
- the separated dust is fed via line 17 into the post-carbon drum 13.
- the dedusted gas passes through the pipeline 18 into the oil separator 19, where it is freed of the condensable fractions which are supplied as product via the line 20 to the further processing.
- From the oil separation 19, a part of the smoldering gas corresponding to the amount of gas obtained during the pre-carbonization is likewise produced as a product via the line 21 dissipated.
- the remaining carbonization gas is fed via line 22 to the compressor 23 and, after compression through line 24, reaches the cycle gas preheater 4.
- the hot smoldering residue 25 behind the post-carbonization drum 13 is fed to a fluidized bed incinerator 26, in which the residual carbon is burned off.
- the temperature control for setting the optimal SO 2 integration is carried out by the heat exchanger 27 in the fluidized bed, which is designed as a steam generator.
- the hot flue gas leaves the fluidized bed furnace via line 28.
- the heat content of this gas is used in the cycle gas heat exchanger 4 for smoldering and in mill drying 2 for drying and preheating the oil shale.
- the burned-off oil shale from the fluidized bed furnace is fed through line 29 to a cooler 30 and leaves the cooler via line 31.
- the combustion air 32 which is compressed in the compressor 33, is led via line 34 to the cooler 30 and via the line 35 reaches the fluidized bed furnace 26.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Combustion & Propulsion (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Dispersion Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Description
Zur Schwelung von Ölschiefer sind viele Verfahren bekannt. Dabei wird der Ölschiefer erhitzt, wobei sich das im Schiefer enthaltene Kerogen zersetzt und in Form gasförmiger und flüssiger Kohlenwasserstoffe gewonnen werden kann. Je nach dem Wasserstoffgehalt des Ölschiefers kann ein mehr oder weniger grosser Anteil der organischen Substanz gewonnen werden, ein Teil verbleibt stets als Restkohlenstoff auf dem Schiefer. Im Interesse einer weitestgehenden Ausnutzung des Energiegehalts des Ölschiefers sollte auch dieser Kohlenstoff energetisch genutzt werden.Many methods are known for smoldering oil shale. The oil shale is heated, whereby the kerogen contained in the shale decomposes and can be obtained in the form of gaseous and liquid hydrocarbons. Depending on the hydrogen content of the oil shale, a more or less large proportion of the organic substance can be obtained, some of it always remains on the shale as residual carbon. In the interest of making the most of the energy content of the oil shale, this carbon should also be used for energy.
Viele Verfahren verwenden das Schachtofenprinzip zur Schwelung, z.B. US-A 3 736 247 und DE-B 2 243 389. Nachteilig ist, dass der bei der Zerkleinerung zwangsläufig anfallende Feingutanteil nicht eingesetzt werden kann. Ausserdem ist der vollständige Abbrand des Restkohlenstoffs durch die erforderliche Stückgutaufgabegrösse sehr erschwert. Weiterhin sind die Öldämpfe und das Schwelgas längere Zeit der Schweltemperatur ausgesetzt, wodurch sich Crackreaktionen ergeben, die zu einer Verminderung der Ausbeute und einer Verschlechterung der Ölqualität führen.Many processes use the shaft furnace principle for smoldering, e.g. US Pat. No. 3,736,247 and DE-B 2,243,389. It is disadvantageous that the proportion of fines which is inevitably obtained during comminution cannot be used. In addition, the complete combustion of the residual carbon is very difficult due to the required size of the general cargo. Furthermore, the oil vapors and the carbonization gas are exposed to the carbonization temperature for a long time, which results in cracking reactions which lead to a reduction in the yield and a deterioration in the oil quality.
In GB-A 668 808 wird ein Verfahren zum Schwelen von Ölschiefer mit einem heissen Gas in einem Schachtofen beschrieben, wobei aus dem Schwelgas die kondensierbaren Bestandteile abgeschieden werden, ein der Vergrösserung der Gasmenge entsprechender Anteil des Schwelgases abgeführt und der Rest nach Aufheizen in den Schwelreaktor zurückgeführt wird. Durch den festen, noch kohlenstoffhaltigen Schwelrückstand wird in einem weiteren, vom Schwelteil abgetrennten Teil des Schachtofens ein sauerstoffhaltiges Gas, insbesondere Luft eingeleitet, um einen Teil des Kohlenstoffs zu verbrennen und die Temperatur des Rückstands zu erhöhen. Danach wird in einem dritten, ebenfalls abgetrennten Teil des Schachtofens durch den so aufgeheizten Rückstand das gekühlte, von kondensierbaren Anteilen befreite Schwelgas geleitet, um es wieder aufzuheizen, worauf es im Gegenstrom durch den Schwelteil des Schwelofens, wo es die Schwelung des Ölschiefers bewirkt, und anschliessend durch frischen Ölschiefer geleitet wird, so dass das nach der Schwelung in ihm enthaltene Öl zumindest teilweise kondensiert.GB-A 668 808 describes a process for smoldering oil shale with a hot gas in a shaft furnace, the condensable constituents being separated from the smoldering gas, a proportion of the smoldering gas corresponding to the increase in the gas quantity being removed and the rest after heating up in the smoldering reactor is returned. The solid, still carbon-containing smoldering residue introduces an oxygen-containing gas, in particular air, into another part of the shaft furnace separated from the smoldering part in order to burn part of the carbon and to increase the temperature of the residue. Then, in a third, also separated part of the shaft furnace, the cooled, de-condensable gas is passed through the residue heated in this way, in order to heat it up again, whereupon it flows in countercurrent through the smoldering part of the smoldering furnace, where it causes the oil shale to smolder, and is then passed through fresh oil shale so that the oil contained in it after condensation at least partially condenses.
Bei feiner zerkleinertem Gut ist das Schachtofenprinzip nicht mehr anwendbar. Andere Verfahren mit Feinguteinsatz wie z.B. US-A 3 844 930 arbeiten mit Feststoffen als Wärmeträger. Durch die Wärmeträgerumlaufmenge, die ein Mehrfaches der Schiefereinsatzmenge beträgt, wird die zu handhabende Feststoffmenge weiter erhöht.The shaft furnace principle can no longer be used for finely shredded goods. Other methods using fines such as US-A 3 844 930 work with solids as heat carriers. The amount of solids to be handled is further increased by the amount of heat transfer medium which is a multiple of the amount of shale used.
Aus den DE-A 2 728 204und 2 728 455 ist es bekannt, die Pyrolyse von kohlenstoffhaltigem Material, auch von Ölschiefer, in einem Zyklon-Reaktor vorzunehmen. Das kohlenstoffhaltige Material wird hierbei in einer Korngrösse kleiner als 1 mm in einem Trägergasstrom bei Geschwindigkeitenn von 20 - 76 m/sec in einen Zyklon-Reaktor geführt. Vor oder im Einlass des Zyklons wird dieser Gasstrom mit einem zweiten Gasstrom vermengt, der heisse Feststoffteilchen enthält, die zur Aufheizung des kohlenstoffhaltigen Materials auf Schweltemperatur dienen sollen. Das Gewichtsverhältnis der zur Heizung dienenden Feststoffe zu dem kohlenstoffhaltigen Material soll zwischen 2 und 20 liegen. Nach einer kurzen Kontaktzeit - gerechnet als durchschnittliche Verweilzeit des Trägergases im Zyklon - von weniger als etwa einer Sekunde, insbesondere zwischen 0,1 und 0,6 sec wird das mit den Trägergasen vermischte Schwelgas von den Feststoffen - Wärmeträgerteilchen und Schwelrückstand - getrennt.From DE-A 2 728 204 and 2 728 455 it is known to carry out the pyrolysis of carbon-containing material, including oil shale, in a cyclone reactor. The carbonaceous material is fed into a cyclone reactor with a grain size of less than 1 mm in a carrier gas stream at speeds of 20-76 m / sec. In front of or in the inlet of the cyclone, this gas stream is mixed with a second gas stream which contains hot solid particles which are intended to heat the carbon-containing material to the low temperature. The weight ratio of the solids used for heating to the carbon-containing material should be between 2 and 20. After a short contact time - calculated as the average residence time of the carrier gas in the cyclone - of less than about one second, in particular between 0.1 and 0.6 sec, the carbonization gas mixed with the carrier gases is separated from the solids - heat transfer particles and carbonization residue.
Bei diesem bekannten Verfahren fallen also die Schwelgase in Verdünnung durch die Trägergase an, wodurch ihre Aufarbeitung erschwert wird. Der Schwelrückstand verlässt den Zyklon im Gemisch mit den Feststoff-Wärmeträgern, so dass auch bei seiner weiteren Verarbeitung grössere Balastmengen mitgeschleppt werden müssen.In this known method, the smoldering gases are produced in dilution by the carrier gases, which makes their work-up more difficult. The smoldering residue leaves the cyclone in a mixture with the solid heat transfer media, so that larger amounts of ballast must also be carried along during its further processing.
Überraschenderweise würde nun gefunden, dass man die Schwelung von Ölschiefer, bei dem aus dem Schwelgas die kondensierbaren Bestandteile abgeschieden werden, ein der Vergrösserung der Gasmenge entsprechender Anteil abgeführt und der Rest wiederaufgeheizt und in den Schwelreaktor zurückgeführt wird, trotz der gegenüber der Schwelung in Schachtöfen um mehrere Grössenordnungen kürzere Schwelzeiten in einem Zyklonreaktor vornehmen kann, wobei das Schwelgas indirekt aufgeheizt und als alleiniger Wärmeträger in den Schwelzyklonreaktor zurückgespeist wird. Ölschiefer und Heizgaz werden hierbei im Gleichstrom geführt.Surprisingly, it would now be found that the smoldering of oil shale, in which the condensable constituents are separated from the smoldering gas, a portion corresponding to the increase in the amount of gas was removed and the rest was re-heated and returned to the smoldering reactor, despite that compared to smoldering in shaft furnaces can make several orders of magnitude shorter carbonization times in a cyclone reactor, the carbonization gas being indirectly heated and fed back into the carbonization cyclone reactor as the sole heat transfer medium. Oil shale and heating gas are conducted in direct current.
Man erhält so ein reines, unverdünntes Schwelgas, aus dem sich die kondensierbaren Anteile besser abscheiden lassen als aus einem mit Trägergas verdünnten Schwelgas und das auch nach Abscheidung der kondensierbaren Anteile wegen der höheren Konzentration an gasförmigen Kohlenwasserstoffen einen höheren Wert aufweist als das verdünnte Schwelgas. In gleicher Weise wird die Weiterverarbeitung des Schwelrückstands durch das Fehlen der Ballaststoffe erleichtert.This gives a pure, undiluted carbonization gas from which the condensable components can be separated out better than from a carbonization gas diluted with carrier gas and which, even after the condensable components have been separated off, has a higher value than the diluted carbonization gas because of the higher concentration of gaseous hydrocarbons. In the same way, the processing of the smoldering residue is facilitated by the lack of fiber.
Die Schweltemperaturen liegen im allgemeinen über 450° C und sollten 650°C nicht überschreiten, da andernfalls Ausbeuteminderung durch Crackreaktionen trotz der kurzen Schwelzeiten nicht zu vermeiden sind. Bevorzugt werden Temperaturen zwischen 470 und 550°C. In der anliegenden Fig. 1 sind die Ausbeuten bei der Zyklonschwelung eines Schandelah-Ölschiefers im Vergleich zu den Ausbeuten nach dem Fischer-Testdargestellt. Der eingesetzte Ölschiefer enthielt 10,3 Gew.-% organischen Kohlenstoff und hatte folgende Fischer-Test-Ausbeuten:
Bei dem erfindungsgemässen Verfahren wird das Schwelgas auf Temperaturen vorgeheizt, die 150 bis 250 K über der Schweltemperatur liegen. Abhängig ist diese Überhitzung vom Verhältnis Schwelgas zu Ölschiefer, das üblicherweise zwischen 0,8 und 1,4 Nm3/kg, vorzugsweise zwischen 1,0 und 1,2 Nm3/kg liegt, von der Temperatur des eingesetzten Schiefers, von der Restfeuchte, von der Karbonatzersetzung der enthaltenen Karbonate, und von den Wärmeverlusten des Systems.In the process according to the invention, the carbonization gas is preheated to temperatures which are 150 to 250 K above the carbonization temperature. This overheating depends on the ratio of carbonization gas to oil shale, which is usually between 0.8 and 1.4 Nm 3 / kg, preferably between 1.0 and 1.2 Nm 3 / kg lies on the temperature of the slate used, on the residual moisture, on the carbonate decomposition of the carbonates contained, and on the heat losses of the system.
Um eine stärkere Aufheizung des rückgeführten Schwelgases zu vermeiden, ist es zweckmässig, den Ölschiefer weitgehend vorzutrocknen und auf eine Temperatur kurz unterhalb des Beginns der Kerogenzersetzung vorzuwärmen.In order to avoid a stronger heating of the recirculated carbonization gas, it is advisable to pre-dry the oil shale to a large extent and to preheat it to a temperature just below the start of the kerogen decomposition.
Überraschenderweise ergab sich weiterhin, dass beim erfindungsgemässen Verfahren gröberes Einsatzmaterial verwendet werden kann als beim bekannten Verfahren. So kann Ölschiefer einer Körnung bis zu 3 mm, selbst bis 5 mm verwendet werden. Diese grobkörnigeren Schiefer haben den Vorteil, geringere Staubmengen zu enthalten, wodurch sowohl die Verarbeitung des Schwelgases, als auch die Weiterbehandlung des Schwelrückstands wesentlich erleichtert werden.Surprisingly, it was also found that coarser feed material can be used in the method according to the invention than in the known method. Oil shale with a grain size of up to 3 mm, even up to 5 mm, can be used. These coarse-grained slates have the advantage of containing less dust, which considerably facilitates both the processing of the carbonization gas and the further treatment of the carbonization residue.
In Fig. 2 ist der Restkohlenstoffgehalt des oben erwähnten Ölschiefers nach der Schwelung in Abhängigkeit von seiner Korngrösse aufgetragen. Man erkennt, dass die Ausschwelung bei Korngrössen von 2 mm praktisch gleich der bei Korngrössen von 0,1 mm ist und auch bei Korngrössen von 3 mm nur eine unbedeutende Erhöhung des Restkohlenstoffgehalts festzustellen ist.In Fig. 2, the residual carbon content of the above-mentioned oil shale after smoldering is plotted as a function of its grain size. It can be seen that the carbonization with grain sizes of 2 mm is practically the same as with grain sizes of 0.1 mm and even with grain sizes of 3 mm there is only an insignificant increase in the residual carbon content.
Die Abscheidung der kondensierbaren Anteile aus dem Schwelgas erfolgt durch dessen direkte Abkühlung mit kaltem Öl, gegebenenfalls mit nachfolgender elektrostatischer Fällung der Ölnebel.The condensable components are separated from the carbonization gas by cooling it directly with cold oil, possibly with subsequent electrostatic precipitation of the oil mist.
Als zweckmässig hat es sich erwiesen, im Schwelgas enthaltenen Staub vor der Abscheidung der kondensierbaren Anteile zu entfernen, da die Trennung des Kondensats von den Stäuben grosse Schwierigkeiten macht. Zur Abscheidung der Stäube können z.B. Hochleistungszyklone eingesetzt werden.It has proven to be expedient to remove dust contained in the carbonization gas before the condensable components are separated, since the separation of the condensate from the dusts is very difficult. For separating the dusts e.g. High performance cyclones are used.
Besonders zweckmässig hat sich jedoch die Abscheidung mittels Elektrofiltration erwiesen. Dies ist durchaus überraschend, denn es war nicht zu erwarten, dass bei den hohen Temperaturen von mehr als 450°C eine Elektrofiltration der Schwelgase möglich ist, da in reduzierender Atmosphäre allein ohne das Vorhandensein von Schweldämpfen das elektrische Feld zusammenbricht. Der Schwelrückstand wird aus dem Zyklon-Reaktor abgezogen; sein Kohlenstoff wird zweckmässigerweise mit sauerstoffhaltigen Gasen, insbesondere Luft verbrannt, wobei das heisse Verbrennungsgas zum Vorwärmen des Kreislauf-Schwelgases verwendet werden kann.However, deposition by means of electrofiltration has proven to be particularly expedient. This is quite surprising, because it was not to be expected that the high temperatures of more than 450 ° C would allow electrofiltration of the carbonization gases, since the electrical field would collapse in a reducing atmosphere without the presence of sulfuric vapors. The smoldering residue is withdrawn from the cyclone reactor; its carbon is expediently burned with oxygen-containing gases, in particular air, it being possible for the hot combustion gas to be used for preheating the circulating carbonization gas.
Zweckmässigerweise erfolgt die Verbrennung des Kohlenstoffs des Schwelrückstands mit sauerstoffhaltigen Gasen in einem Wirbelbett. Dabei sind die Verbrennungsbedingungen so einzustellen, dass bei der Verbrennung entstehendes S02 durch evtl. im Schiefer enthaltenem Dolomit und Calcit in den Rückstand eingebunden wird.The carbon of the carbonization residue is expediently burned with oxygen-containing gases in a fluidized bed. The combustion conditions must be set so that S0 2 produced during combustion is integrated into the residue due to dolomite and calcite which may be found in the shale.
Zur Verbesserung der Schwelausbeute kann man den aus dem Schwelzyklon-Reaktor ausgetragenen Schwelrückstand zunächst in einem Behälter entgasen, bevor sein Kohlenstoff mit sauerstoffhaltigen Gasen verbrannt wird. Durch den im Entgasungsbehälter befindlichen Schwelrückstand kann Schwelgas zum schnelleren Abführen der noch anfallenden Gase hindurchgeleitet werden, wobei es zweckmässig ist, den Schwelrückstand mit Rührern aufzulokkern oder in einer Drehtrommel umzuschichten.To improve the smoldering yield, the smoldering residue discharged from the smoldering cyclone reactor can first be degassed in a container before its carbon is burned with oxygen-containing gases. Through the smoldering residue in the degassing tank, smoldering gas can be passed through for faster removal of the gases still present, it being expedient to loosen up the smoldering residue with stirrers or to shift it in a rotating drum.
Die bekannte Vorrichtung, bei der die Gasabführung des Schwelreaktors mit einem Ölabscheider und der Einführstutzen des Schwelreaktors über ein Gebläse mit dem Ölabscheider verbunden ist, weist zur Durchführung des erfindungsgemässen Verfahrens einen Zyklonreaktor mit tangentialem Einführstutzen und einen Wärmetauscher zwischen Gebläse und dem tangentialen Einführungssiutzen des Schwelzyklonreaktors auf. Vorzugsweise ist ein Vorwärmer für den zu schwelenden Ölschiefer vor dem tangentialen Einführungsstutzen des Schwelzyklonreaktors vorgesehen.The known device, in which the gas discharge of the smoldering reactor is connected to an oil separator and the inlet connector of the smoldering reactor is connected to the oil separator via a blower, has a cyclone reactor with a tangential inlet connector and a heat exchanger between the blower and the tangential inlet connector of the smoldering cyclone reactor for carrying out the method according to the invention . A preheater for the oil shale to be smoldered is preferably provided in front of the tangential inlet connection of the smoldering cyclone reactor.
Gemäss einer besonderen Ausführungsform der Erfindung ist ein bei Temperaturen des Taupunktes der Schwelgase arbeitender Staubabscheider, insbesondere ein Elektrofilter zwischen Schwelzyklon-reaktor und Ölabscheider angeordnet. Nach einer weiteren Ausbildung der Erfindung ist der Feststoffaustrag des Schwelzyklonreaktors mit einem Verbrennungsofen und dessen Heissgasausgang mit dem zur Erhitzung des als Trägergas dienenden Schwelgases vorgesehenen Wärmetauscher verbunden. Es hat sich auch als zweckmässig erwiesen, am Feststoff-Abführstutzen des Schwelzyklonreaktors bzw. zwischen diesem Abführstutzen und der Verbrennungsvorrichtung für Schwelrückstand eine Nachschweltrommel vorzusehen.According to a special embodiment of the invention, a dust separator operating at temperatures of the dew point of the carbonization gases, in particular an electrostatic filter, is arranged between the carbonization cyclone reactor and the oil separator. According to a further embodiment of the invention, the solids discharge of the smoldering cyclone reactor is connected to a combustion furnace and its hot gas outlet is connected to the heat exchanger provided for heating the smoldering gas serving as carrier gas. It has also proven to be expedient to provide a post-carbonization drum on the solid discharge port of the smoldering cyclone reactor or between this discharge port and the combustion device for smoldering residue.
In der anliegenden Fig. 3 ist eine erfindungsgemässe Vorrichtung schematisch dargestellt. Anhand dieser sei das erfindungsgemässe Verfahren erläutert: Der Ölschiefer 1 wird auf eine Korngrösse kleiner als 3 mm zerkleinert. Die Zerkleinerung und Sichtung erfolgt zweckmässigerweise zusammen mit der Trocknung und Vorwärmung in einer Mahltrocknung 2, wozu die Rauchgase 3 nach dem Kreislaufgasvorwärmer 4 eingesetzt werden. Das gekühlte Rauchgas wird über die Leitung 5 abgeführt.A device according to the invention is shown schematically in the attached FIG. 3. The method according to the invention is explained on the basis of this: The
Der zerkleinerte, getrocknete und auf ca. 110°C vorgewärmte Ölschiefer 6 wird in der Steigleitung 7 mit Kreislaufschwelgas 8 gemischt, wobei bereits im Steigrohr ein wesentlicher Teil der Wärme vom Heizgas auf den Schiefer übertragen wird, und dieses Gemisch über die tangentiale Zuführung 9 in den Schwelzyklon 10 geführt. Über die Leitung 11 verlassen die öl- und staubhaltigen Schwelgase den Schwelzyklon 10, während der Schwelrückstand über die Leitung 12 in eine Nachschweltrommel 13 geführt wird. Um die Abführung der entstehenden Schwelgase zu beschleunigen, wird ein Teil des heissen Kreislaufgases durch die Leitung 14 in die Nachschweltrommel 13 geführt. Das Schwel- und Kreislaufgas 15 aus der Nachschwelung 13 wird zusammenmit den Schwelgasen 11 aus dem Schwelzyklon in ein Entstaubungssystem 16 geführt. Der abgeschiedene Staub wird über die Leitung 17 in die Nachschweltrommel 13 gegeben. Durch die Rohrleitung 18 gelangt das entstaubte Gas in die Ölabscheidung 19 und wird dort von den kondensierbaren Anteilen befreit, die als Produkt über die Leitung 20 der Weiterverarbeitunng zugeführt werden. Aus der Ölabscheidung 19 wird ebenfalls ein der bei der Vorschwelung anfallenden Gasmenge entsprechender Teil des Schwelgases als Produkt über die Leitung 21 abgeführt. Das übrige Schwelgas wird über die Leitung 22 dem Verdichter 23 zugeführt und gelangt nach der Verdichtung durch die Leitung 24 zum Kreislaufgasvorwärmer 4.The crushed, dried and preheated
Der heisse Schwelrückstand 25 hinter der Nachschweltrommel 13 wird einem Wirbelbett-Verbrennungsofen 26 zugeführt, in dem der Restkohlenstoff abgebrannt wird. Die Temperaturregelung zur Einstellung der optimalen SO2-Einbindung erfolgt durch den Wärmetauscher 27 im Wirbelbett, der als Dampferzeuger ausgebildet ist. Das heisse Rauchgas verlässt den Wirbelbettofen über die Leitung 28. Der Wärmeinhalt dieses Gases wird im Kreislaufgaswärmeaustauscher 4 zur Schwelung und in der Mahltrocknung 2 zur Trocknung und Vorwärmung des Ölschiefers genutzt.The hot smoldering
Der abgebrannte Ölschiefer aus dem Wirbelbettofen wird durch die Leitung 29 einem Kühler 30 zugeführt und verlässt den Kühler über die Leitung 31. Zur Kühlung dient die Verbrennungsluft 32, die im Verdichter 33 komprimiert, über die Leitung 34 zum Kühler 30 geführt wird und über die Leitung 35 in den Wirbelbettofen 26 gelangt.The burned-off oil shale from the fluidized bed furnace is fed through
Claims (15)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3023670A DE3023670C2 (en) | 1980-06-25 | 1980-06-25 | Method and device for smoldering oil shale |
DE3023670 | 1980-06-25 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0049324A1 EP0049324A1 (en) | 1982-04-14 |
EP0049324B1 true EP0049324B1 (en) | 1984-09-12 |
Family
ID=6105369
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP81104562A Expired EP0049324B1 (en) | 1980-06-25 | 1981-06-13 | Process and installation for smouldering oil shale |
Country Status (9)
Country | Link |
---|---|
US (1) | US4388173A (en) |
EP (1) | EP0049324B1 (en) |
AU (1) | AU545951B2 (en) |
BR (1) | BR8103968A (en) |
DE (2) | DE3023670C2 (en) |
ES (1) | ES8207580A1 (en) |
JO (1) | JO1113B1 (en) |
MA (1) | MA19167A1 (en) |
YU (1) | YU42719B (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BR8302810A (en) * | 1983-05-27 | 1985-01-15 | Petroleo Brasileiro Sa | PROCESS FOR RETURNING SOLIDS CONTAINING HYDROCARBONS |
DE3323770A1 (en) * | 1983-07-01 | 1985-01-03 | Metallgesellschaft Ag, 6000 Frankfurt | METHOD FOR DRYING AND HEATING OIL-BASED SOLIDS |
US4585543A (en) * | 1984-03-09 | 1986-04-29 | Stone & Webster Engineering Corp. | Method for recovering hydrocarbons from solids |
US4601812A (en) * | 1985-01-07 | 1986-07-22 | Conoco Inc. | Oil shale retorting process |
DE3715158C1 (en) * | 1987-05-07 | 1988-09-15 | Veba Oel Entwicklungs Gmbh | Process for extracting sulfur |
GB2276631A (en) * | 1993-02-24 | 1994-10-05 | Great Eastern | Process for removal of petroleum contaminants from particulate materials |
CA2546940C (en) * | 2006-05-15 | 2010-09-21 | Olav Ellingsen | Process for simultaneous recovery and cracking/upgrading of oil from solids |
US10030199B2 (en) * | 2007-11-23 | 2018-07-24 | Bixby Energy Systems, Inc. | Pyrolisis apparatus |
US9795972B2 (en) | 2012-08-07 | 2017-10-24 | Cameron International Corporation | High temperature high pressure electrostatic treater |
CN104745221B (en) * | 2015-04-01 | 2016-04-27 | 曲靖众一精细化工股份有限公司 | A kind of thin, granule destructive distillation oil gas high-quality recovery method and retrieving arrangement thereof |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2414586A (en) * | 1942-09-05 | 1947-01-21 | Universal Oil Prod Co | Distillation of hydrocarbonaceous solids |
US2434567A (en) * | 1944-01-19 | 1948-01-13 | Standard Oil Dev Co | Method and apparatus for contacting hydrocarbons with catalyst particles |
GB668808A (en) * | 1949-09-17 | 1952-03-19 | California Research Corp | Process for retorting shale |
US2942043A (en) * | 1955-01-03 | 1960-06-21 | Hoechst Ag | Process for carrying out endothermic chemical reactions |
US3475319A (en) * | 1966-12-22 | 1969-10-28 | Exxon Research Engineering Co | Retorting of oil shale |
DE1809874B2 (en) * | 1968-11-20 | 1974-10-31 | Metallgesellschaft Ag, 6000 Frankfurt | Device for the dry distillation of bituminous or oil-containing, fine-grained materials for the purpose of obtaining liquid hydrocarbons |
US3577338A (en) * | 1969-02-19 | 1971-05-04 | Phillip H Gifford | Process for recovery of oil from oil shale simultaneously producing hydrogen |
GB1326455A (en) * | 1971-01-26 | 1973-08-15 | Texaco Development Corp | Hydrotorting of shale to produce shale oil |
BR7105857D0 (en) * | 1971-09-06 | 1973-04-10 | Brasileiros Sa Petrob Petroleo | PERFECT PROCESS FOR OBTAINING GAS OIL AND PIROBETUMINOUS SHALE BY-PRODUCTS OR OTHER MATERIALS IMPREGNATED WITH HYDROCARBONS |
DE2244753B1 (en) * | 1972-09-08 | 1973-10-18 | Mannesmann Ag, 4000 Duesseldorf | Method and device for reinforcing gauze |
US4003797A (en) * | 1976-05-05 | 1977-01-18 | Union Oil Company Of California | Superatmospheric pressure shale retorting process |
US4066529A (en) * | 1976-05-07 | 1978-01-03 | Paraho Corporation | Method of design for vertical oil shale retorting vessels and retorting therewith |
DE2728455A1 (en) * | 1976-06-25 | 1978-01-05 | Occidental Res Corp | Pyrolysis of carbonaceous fuels in cyclone separator - with solid heat carrier, giving higher yields of middle distillate |
US4105502A (en) * | 1976-06-25 | 1978-08-08 | Occidental Petroleum Corporation | Simplified liquefaction pyrolysis process and apparatus therefor |
DE2637427C3 (en) * | 1976-08-20 | 1980-04-03 | Metallgesellschaft Ag, 6000 Frankfurt | Process for heating fine-grained, carbonaceous material |
US4118309A (en) * | 1976-12-10 | 1978-10-03 | Atlantic Richfield Company | Separation and recovery of heat carriers in an oil shale retorting process |
GB1567115A (en) * | 1978-02-28 | 1980-05-08 | Shale Oil Science & Systems In | Method and apparatus for processing solid materials such as oil shale |
US4199432A (en) * | 1978-03-22 | 1980-04-22 | Chevron Research Company | Staged turbulent bed retorting process |
US4222850A (en) * | 1979-02-15 | 1980-09-16 | Gulf Research & Development Company | Process for retorting oil shale |
DE2923048C2 (en) * | 1979-06-07 | 1984-11-08 | Rheinische Braunkohlenwerke AG, 5000 Köln | Process for smoldering oil shale or tar sand in the presence of hydrogen |
-
1980
- 1980-06-25 DE DE3023670A patent/DE3023670C2/en not_active Expired
-
1981
- 1981-05-19 YU YU1294/81A patent/YU42719B/en unknown
- 1981-06-01 MA MA19376A patent/MA19167A1/en unknown
- 1981-06-12 AU AU71670/81A patent/AU545951B2/en not_active Ceased
- 1981-06-13 EP EP81104562A patent/EP0049324B1/en not_active Expired
- 1981-06-13 DE DE8181104562T patent/DE3165997D1/en not_active Expired
- 1981-06-16 JO JO19811113A patent/JO1113B1/en active
- 1981-06-23 ES ES503316A patent/ES8207580A1/en not_active Expired
- 1981-06-24 US US06/277,001 patent/US4388173A/en not_active Expired - Fee Related
- 1981-06-24 BR BR8103968A patent/BR8103968A/en unknown
Also Published As
Publication number | Publication date |
---|---|
AU545951B2 (en) | 1985-08-08 |
ES503316A0 (en) | 1982-10-01 |
US4388173A (en) | 1983-06-14 |
YU42719B (en) | 1988-12-31 |
DE3165997D1 (en) | 1984-10-18 |
ES8207580A1 (en) | 1982-10-01 |
BR8103968A (en) | 1982-03-09 |
MA19167A1 (en) | 1981-12-31 |
EP0049324A1 (en) | 1982-04-14 |
AU7167081A (en) | 1982-01-07 |
JO1113B1 (en) | 1982-07-10 |
DE3023670C2 (en) | 1982-12-23 |
DE3023670A1 (en) | 1982-01-14 |
YU129481A (en) | 1983-12-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69114294T2 (en) | REUSE METHOD, APPARATUS AND PRODUCT PRODUCED IN THIS METHOD FOR OBTAINING AN EXTENDER OR SOFTENER FOR RUBBER FROM AUTOMOTIVE TIRES. | |
DE2621941C3 (en) | Process for producing coal and hydrocarbon vapors from rubber by thermal decomposition | |
DE1909263C3 (en) | Method and device for the smoldering of fine-grained bituminous substances that form a powdery smoldering residue | |
DE3344847C2 (en) | Rapid pyrolysis of lignite and an arrangement for carrying out this process | |
DE1809874B2 (en) | Device for the dry distillation of bituminous or oil-containing, fine-grained materials for the purpose of obtaining liquid hydrocarbons | |
DE2633789C3 (en) | Method and apparatus for the production of petroleum coke calcine | |
EP0049324B1 (en) | Process and installation for smouldering oil shale | |
DE1470604A1 (en) | Process for extracting oil from substances containing hydrocarbons | |
EP3081622A1 (en) | Method and plant for improving the preparation of pyrolysis tar | |
DE2532778B2 (en) | Process for preheating oil shale prior to its pyrolysis | |
DE2640508A1 (en) | METHOD FOR OPERATING TWO-STAGE CARBON FLOW DRYERS | |
WO1996021824A1 (en) | Process for the heat treatment of waste material | |
DE3237791A1 (en) | MULTI-STAGE PROCESS AND DEVICE FOR DRYING PARTICLE-CARBONATED MATERIAL | |
DD141056A5 (en) | METHOD AND DEVICE FOR THE PREPARATION AND COMBUSTION OF COAL | |
EP0116180B1 (en) | Process for smoldering hydrogenation residues | |
DE69100682T3 (en) | Method and device for producing a solid fuel from combustible waste. | |
DE3220229A1 (en) | METHOD FOR PRODUCING A GAS FLOW RICH IN HYDROGEN AND CARBON MONOXIDE FROM COAL | |
DE2415412A1 (en) | METHOD AND DEVICE FOR TREATMENT OF HIGH MOLECULAR HYDROCARBONATES OR ALTOELE | |
DE3323770C2 (en) | ||
DE69732164T2 (en) | Thermal device and method for removing contaminants from oil | |
DE3305994A1 (en) | METHOD FOR DRY DISTILLING BITUMIOUS OR OIL-BASED SOLIDS | |
EP0113811A2 (en) | Process for the production of raw material from synthetic material waste, and apparatus for carrying out the process | |
DE2537732B2 (en) | Process for the thermal processing of solid bituminous materials | |
DE1160823B (en) | Process for continuous degassing, such as smoldering and / or coking, of fine-grained, non-baking, water-containing fuels by means of hot gas flows | |
DE2516745C3 (en) | Process for carbonization of coal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Designated state(s): DE FR GB IT SE |
|
17P | Request for examination filed |
Effective date: 19820611 |
|
ITF | It: translation for a ep patent filed | ||
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Designated state(s): DE FR GB IT SE |
|
REF | Corresponds to: |
Ref document number: 3165997 Country of ref document: DE Date of ref document: 19841018 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19890613 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19900629 Year of fee payment: 10 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Effective date: 19920228 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19930507 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19930611 Year of fee payment: 13 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19940614 |
|
EUG | Se: european patent has lapsed |
Ref document number: 81104562.4 Effective date: 19950110 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19950301 |
|
EUG | Se: european patent has lapsed |
Ref document number: 81104562.4 |