EP0043338B1 - Gas-permeable body of fire-resistant material - Google Patents
Gas-permeable body of fire-resistant material Download PDFInfo
- Publication number
- EP0043338B1 EP0043338B1 EP81630044A EP81630044A EP0043338B1 EP 0043338 B1 EP0043338 B1 EP 0043338B1 EP 81630044 A EP81630044 A EP 81630044A EP 81630044 A EP81630044 A EP 81630044A EP 0043338 B1 EP0043338 B1 EP 0043338B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- metal
- gas
- structural unit
- elements
- segments
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000000463 material Substances 0.000 title description 4
- 230000009970 fire resistant effect Effects 0.000 title 1
- 239000002184 metal Substances 0.000 claims description 84
- 229910052751 metal Inorganic materials 0.000 claims description 84
- 239000011819 refractory material Substances 0.000 claims description 16
- 238000007664 blowing Methods 0.000 claims description 6
- 238000003825 pressing Methods 0.000 claims description 5
- 239000011148 porous material Substances 0.000 claims description 4
- 210000000078 claw Anatomy 0.000 claims description 3
- 238000009826 distribution Methods 0.000 claims description 3
- 239000004570 mortar (masonry) Substances 0.000 claims description 3
- 238000003466 welding Methods 0.000 claims description 3
- 229910000831 Steel Inorganic materials 0.000 claims description 2
- 239000011324 bead Substances 0.000 claims description 2
- 239000010959 steel Substances 0.000 claims description 2
- 239000010410 layer Substances 0.000 claims 14
- 239000011229 interlayer Substances 0.000 claims 1
- 239000007789 gas Substances 0.000 description 35
- 239000004575 stone Substances 0.000 description 13
- 230000035699 permeability Effects 0.000 description 7
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 5
- 125000006850 spacer group Chemical group 0.000 description 5
- 238000000034 method Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000011269 tar Substances 0.000 description 4
- 239000000395 magnesium oxide Substances 0.000 description 3
- 230000035515 penetration Effects 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 1
- 229910000805 Pig iron Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000011449 brick Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000011294 coal tar pitch Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010891 electric arc Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052928 kieserite Inorganic materials 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000005272 metallurgy Methods 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 239000011295 pitch Substances 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C5/00—Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
- C21C5/28—Manufacture of steel in the converter
- C21C5/30—Regulating or controlling the blowing
- C21C5/34—Blowing through the bath
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D1/00—Treatment of fused masses in the ladle or the supply runners before casting
- B22D1/002—Treatment with gases
- B22D1/005—Injection assemblies therefor
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C7/00—Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
- C21C7/04—Removing impurities by adding a treating agent
- C21C7/072—Treatment with gases
Definitions
- the invention relates to refractory, gas-permeable structures for blowing a gas into a metal treatment vessel through its lining.
- the oxygen-blowing processes used to fresh iron which are known under the names “LD”, “LDAC”, “OLP”, and “BOF” processes, have recently been improved in terms of metallurgy in such a way that secondary gases such as Nitrogen or argon, can be injected in a controlled manner.
- secondary gases such as Nitrogen or argon
- the blowing of gas into the metal bath through the vessel bottom or the lining of the vessel walls can also be considered.
- the gas-permeable refractory bricks to be inserted into the lining of the base or the side walls of the vessel, through which the gas is introduced, are required to have a durability which corresponds to that of the other refractory lining, since a replacement of worn-out gas bubbles in the hot state, for example in the case of a converter base is difficult.
- the introduction of gas should be possible both continuously and in particular discontinuously; i.e. the vessel should also be able to be operated without introducing gas and, after the gas supply has been switched on again, the stones should be permeable to gas in an unchanged manner.
- the gas permeability of the stones over their service life, i.e. over an entire kiln trip, remain essentially the same.
- the previously known gas-permeable stones made of porous refractory material do not meet these requirements. Their shelf life in fresh containers is much lower than that of the surrounding lining material. Porous stones installed in an oxygen converter in the floor can withstand less than 100 batches, while the rest of the lining provides a shelf life of 500 batches and more. Furthermore, a discontinuous gas supply is not possible with porous stones; metal penetrates into the pores of the stones and solidifies there. When the gas supply is switched on again, the stone is no longer sufficiently gas permeable.
- this refractory, gas-permeable structure consists of at least two segments of refractory, non-porous material lying alongside one another on longitudinal surfaces, and metal layers arranged between them, the segments being combined on the long side by a common metal housing which is sealed on the longitudinal surfaces of the segments, possibly underneath Use of an intermediate mortar layer, and one of the end faces of the structure is provided with at least one connection and a distribution space for the gas supply.
- a prefabricated block of refractory material has to be cut into the required strips or segments, which is a very complex manufacturing step. Since the segments generally have a small thickness and a large length, segments produced by pressing refractory material are not sufficiently manageable and warp if they are subjected to a stone fire.
- An object of the invention is to improve the structure of such structures in such a way that simplified production is possible and prefabricated segments with sufficient stability can be used.
- Another task is to increase the gas throughput capacity without compromising the good durability of the structure.
- the metal layers are pressed with the refractory material of the segments, at least one of the adjacent longitudinal surfaces of the segments being provided with a metal layer.
- the structures according to the invention can be designed in such a way that the adjoining longitudinal surfaces of the segments are formed with a smooth or with a profiled, for example corrugated or grooved surface, and also in such a way that the segments with the interposition of metal plates, pairs of metal plates and / or spacers, lie together.
- the latter can be made from beads or knobs formed in the metal layers, from sheet metal strips, wires or from combustible or vaporizable inserts and the like. consist.
- a further embodiment can consist in the fact that a second support, For example, a sheet metal plate is attached, for example welded, and that the adjacent longitudinal surface of the neighboring segment is free of metal layers.
- the profiles can be formed in the longitudinal surfaces of the prefabricated segments made of refractory material by cutting or milling.
- the segments with co-pressed metal supports with a profiled surface can be produced in a simple manner in that the press ram or the mold wall with the corresponding profiling, e.g. B. corrugation or scoring is provided and an initially flat sheet metal plate and the refractory mass are introduced into the mold. During the pressing process, the profiling is then automatically formed in the pressed sheet metal plate.
- the press ram or the mold wall with the corresponding profiling e.g. B. corrugation or scoring
- an initially flat sheet metal plate and the refractory mass are introduced into the mold.
- the profiling is then automatically formed in the pressed sheet metal plate.
- the profiled longitudinal surfaces being able to rest against both a smooth and a profiled longitudinal surface of the neighboring segment.
- the adjacent longitudinal surface of the neighboring segment can in turn be provided with a pressed-on metal support or it can be free of supports.
- a further embodiment of the structure according to the invention can consist in that at least one co-pressed pair of metal inserts, e.g. Sheet metal, is embedded.
- Spacers of the type mentioned above can be arranged between the metal plates of a pair of inserts.
- the extent of the gas permeability can be varied further by the number of insert pairs arranged in a structure and by their configuration with spacers.
- the structure can be produced in a simple manner by first introducing part of the refractory material into the press mold, then inserting the insert pair, which extends over the entire length of the stone but only over part of the stone width, and finally further refractory Material is filled. If the structure is to have more than one pair of inserts, this process is repeated accordingly. The pressing pressure is then applied perpendicular to the inserts and the structure is thereby shaped. After removal from the press, the inserts on the front of the structure are exposed to allow gas to pass through.
- a folded sheet or a compressed pipe can also be used. Multi-layer inserts, possibly with spacer elements, are also possible.
- the extent of the gas permeability can be varied by the number of insert pairs arranged in a structure. Since the refractory material used for the building structure can correspond to that of the rest of the lining, the building structure has the same durability as the lining surrounding it. An early renewal of the gas passage stones is not necessary.
- the structures can also be operated without gas supply. While some metal penetrates into the narrow gap between the inserts of a couple, when the gas supply line is switched on again, this penetrated metal is flushed out of the structure and the original gas permeability is restored. This remains essentially the same over the entire service life of the structure.
- the structure 1 shown in Fig. 1 has a e.g. Metal housing 2 constructed from welded plates, which surrounds a total of twelve segments 3, which are arranged in two rows of six pieces each. Each segment 3 has a co-pressed metal support 4 and lies with an unreinforced side surface with the interposition of a mortar layer, not shown, close to the inside of the metal housing 2. This prevents the undesirable, because uncontrollable, gas flow along the metal housing.
- a sheet metal plate 5 is inserted between the two rows of the segments 3, along which a gas passage can take place, as well as along the metal supports 4 of the segments 3.
- a pair of plates can also be arranged.
- the sheet metal plate 5 or the pair of plates can be mortared.
- the segments 3 are spaced from the end face of the metal housing by means of two strips 6, which are arranged on the inside of the metal housing 2 and are preferably attached to it by spot welding. On this side, which represents the cold side, an end plate 7 is welded tight, which is provided with a pipe connection 8. The one between the front plate te 7 and the end faces of the segments 3 remaining space is the distribution space for the gas.
- the opposite side of the front side 7, not visible, represents the fire side of the building and can be closed with a cover plate.
- the latter is used if the infeed of the metal treatment vessel surrounding the structure contains tar or similar carbon carriers. It then serves to prevent the penetration of tar or the like into the gas passage joints of the structure and the sticking of the same during the heating of the vessel.
- the cover plate melts at the start of operation and releases the joints.
- a bracket (not shown) can be attached, via which the structure can be hung on a crane hook.
- segments 30, 31, 32 are shown, which are provided on two, three and four longitudinal surfaces with co-pressed metal supports 4, 41, 42.
- the latter can be provided with punched claws 9 projecting into the refractory material for better connection to the refractory material.
- the segment 33 in FIG. 5 has a co-pressed metal support 4 and a second metal support 43 fastened to it by spot welding.
- the segments 30, 31, 32, 33 can be inserted into the structure according to FIG. 1 instead of the segments 3.
- the Fig. Shows a segment 34 which is pressed on a longitudinal surface with a profiled and that a corrugated metal pad 44 and on the opposite longitudinal surface with a flat metal pad 4.
- FIG. 7 shows a segment 35 which can replace three segments 3 of the structure according to FIG. 1.
- This segment 35 is provided with a U-shaped co-pressed metal support 45 and two pairs of sheet metal inserts 10, which extend over the entire length but only over part of the width of the segment 35.
- these inserts 10 can be designed as smooth sheet metal strips or, as shown in FIG. 8, as sheet metal strips provided with spacers, such as sikken or grooves 11. To improve the connection between the stone mass and the inserts 10, these can be provided with claws 9.
- the structure 1 shown in FIG. 9 has a metal housing 2 which surrounds twelve segments which are arranged in two rows of six pieces each. Each segment is provided with a profile on a longitudinal surface, specifically a profile in the form of grooves in the upper segments 34a and one in the form of waves in the lower segments 34. In practice, however, the same type of profiling will be used for all segments.
- the pressed flat sheet metal plates which are located in the joints between two segments of a row, can also be provided with profiles in one variant.
- An insert in the form of a pair of sheet metal plates is shown between the two rows.
- the building body 1 shown in FIG. 10 has a metal housing 2 which surrounds four segments 35. These four segments lie against one another with their U-shaped pressed-in metal supports 45, whereas the unreinforced long sides of the segments lie against the inside of the housing, which e.g. is made from welded plates.
- Sheet metal is particularly suitable as the material for the metallic inserts, e.g. in a thickness between 0.5 and 3 mm, which can optionally be provided with a surface protection.
- the structure can, for. B. from a tar-bound magnesia mass with the following composition and the following grain structure:
- coal tar pitch 4% by weight are added to the sintered magnesia as a binder.
- Other tars, pitches, synthetic resins or the like also come as binders. into consideration.
- composition suitable for use in a building structure according to the invention has the following composition and the following grain structure:
- the components are mixed with 3.7% by weight of kieserite solution with a density of 1.22 g / cm 3 .
- the invention is not restricted to the use of the refractory materials mentioned.
- Other refractory materials e.g. B. Mixtures of magnesia and chrome ore, high alumina material can be used.
- the structures according to the invention have sufficient gas permeability, the passage of gas taking place on the one hand through the joints between the individual segments and on the other hand through the joints between the metal inserts.
- the segments themselves have practically no gas permeability, and therefore the refractory material used for the structure can correspond to that of the rest of the lining of the metal treatment vessel.
- the gas-permeable structures have the same durability as that of the lining surrounding them, and premature renewal of the gas-permeable structures is not necessary.
- a metal plate is generally provided in each joint of the structure through which gas is to pass, whether in the form of metal layers on the segments or in the form of metal plates arranged between the segments. As said, these metal plates or supports prevent the penetration of metal from the metal bath of the treatment vessel into the joints, even in the case of the treatment of pig iron, which due to its consistency and viscosity has a particularly strong tendency to penetrate into the joints.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Furnace Housings, Linings, Walls, And Ceilings (AREA)
- Carbon Steel Or Casting Steel Manufacturing (AREA)
- Treatment Of Steel In Its Molten State (AREA)
- Gas Separation By Absorption (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Description
Die Erfindung betrifft feuerfeste, gasdurchlässige Baukörper zum Einblasen eines Gases in ein Metallbehandlungsgefäss durch dessen Auskleidung hindurch.The invention relates to refractory, gas-permeable structures for blowing a gas into a metal treatment vessel through its lining.
Die zum Roheisenfrischen dienenden Sauerstoffaufblas-Verfahren, welche unter den Namen «LD»-, «LDAC»-, «OLP»-, «BOF»-Verfahren bekannt sind, wurden neuerdings in metallurgischer Hinsicht dahingehend verbessert, dass durch den Konverterboden Sekundärgase, wie Stickstoff oder Argon, gesteuert eingeblasen werden. Auch bei anderen Metallbehandlungsgefässen, wie etwa Pfannen zur Nachbehandlung von Stahl oder Lichtbogenöfen, kommt das Einblasen von Gas in das Metallbad durch den Gefässboden oder die Auskleidung der Gefässwände hindurch in Betracht.The oxygen-blowing processes used to fresh iron, which are known under the names “LD”, “LDAC”, “OLP”, and “BOF” processes, have recently been improved in terms of metallurgy in such a way that secondary gases such as Nitrogen or argon, can be injected in a controlled manner. In other metal treatment vessels, such as pans for post-treatment of steel or electric arc furnaces, the blowing of gas into the metal bath through the vessel bottom or the lining of the vessel walls can also be considered.
An die in die Auskleidung des Bodens oder der Seitenwände des Gefässes einzusetzenden gasdurchlässigen feuerfesten Steine, durch welche die Gaseinleitung erfolgt, wird die Forderung gestellt, dass ihre Haltbarkeit derjenigen der übrigen feuerfesten Auskleidung entspricht, da ein Auswechseln verschlissener Gasdurchblassteine im heissen Zustand etwa bei einem Konverterboden schwierig ist. Ferner soll die Gaseinleitung sowohl kontinuierlich als insbesondere auch diskontinuierlich möglich sein; d.h. das Gefäss soll auch ohne Gaseinleitung betreibbar sein und nach dem Wiedereinschalten der Gaszufuhr sollen die Steine in unveränderter Weise gasdurchlässig sein. Ausserdem soll die Gasdurchlässigkeit der Steine über ihre Gebrauchsdauer, d.h. über eine ganze Ofenreise, im wesentlichen gleich bleiben.The gas-permeable refractory bricks to be inserted into the lining of the base or the side walls of the vessel, through which the gas is introduced, are required to have a durability which corresponds to that of the other refractory lining, since a replacement of worn-out gas bubbles in the hot state, for example in the case of a converter base is difficult. Furthermore, the introduction of gas should be possible both continuously and in particular discontinuously; i.e. the vessel should also be able to be operated without introducing gas and, after the gas supply has been switched on again, the stones should be permeable to gas in an unchanged manner. In addition, the gas permeability of the stones over their service life, i.e. over an entire kiln trip, remain essentially the same.
Die bisher bekannten gasdurchlässigen Steine aus porösem feuerfestem Material entsprechen diesen Forderungen nicht. Ihre Haltbarkeit in Frischgefässen ist wesentlich geringer als die des umliegenden Auskleidematerials. So halten in einem Sauerstoffkonverter im Boden eingebaute poröse Steine weniger als 100 Chargen stand, wogegen die übrige Auskleidung Haltbarkeiten von 500 Chargen und mehr erbringt. Ferner ist mit porösen Steinen eine diskontinuierliche Gaszufuhr nicht mögich; es dringt Metall in die Poren der Steine ein und erstarrt dort. Nach Wiedereinschalten der Gaszufuhr ist der Stein nicht mehr ausreichend gasdurchlässig.The previously known gas-permeable stones made of porous refractory material do not meet these requirements. Their shelf life in fresh containers is much lower than that of the surrounding lining material. Porous stones installed in an oxygen converter in the floor can withstand less than 100 batches, while the rest of the lining provides a shelf life of 500 batches and more. Furthermore, a discontinuous gas supply is not possible with porous stones; metal penetrates into the pores of the stones and solidifies there. When the gas supply is switched on again, the stone is no longer sufficiently gas permeable.
In der älteren Patentanmeldung EP-A1-0 021 861 hat die Anmelderin eine zum Einsetzen in den Boden eines Metallbehandlungsgefässes bestimmte Vorrichtung zum Einblasen eines Behandlungsgases in ein Metallbad aufgezeigt, welche eine merklich verbesserte Haltbarkeit gegenüber den bisher bekannten gasdurchlässigen Steinen besitzt und das Einblasen der gewünschten Gasmengen gestattet. Diese Vorrichtung besteht im wesentlichen in einem feuerfesten, gasdurchlässigen Baukörper, wobei in das feuerfeste Material in axialer Richtung eine Mehrzahl von ebenen, gewellten, rohrförmigen oder drahtförmigen metallischen Trenngliedern von geringer Wandstärke eingebettet ist. Nach einer Ausführungsform besteht dieser feuerfeste, gasdurchlässige Baukörper aus mindestens zwei, an Längsflächen aneinander liegenden Segmenten aus feuerfestem nicht porösem Material sowie dazwischen angeordneten Metall-Lagen, wobei die Segmente längsseitig durch ein gemeinsames Metallgehäuse zusammengefasst sind, das an Längsflächen der Segmente dicht, gegebenenfalls unter Verwendung einer Mörtelzwischenschicht, anliegt und eine der Stirnseiten des Baukörpers mit mindestens einem Anschluss und einem Verteilungsraum für die Gaszufuhr versehen ist.In the earlier patent application EP-A1-0 021 861, the applicant has shown a device for blowing a treatment gas into a metal bath intended for insertion into the bottom of a metal treatment vessel, which has a noticeably improved durability compared to the previously known gas-permeable stones and the blowing in of the desired ones Amounts of gas allowed. This device essentially consists of a refractory, gas-permeable structure, wherein a plurality of flat, corrugated, tubular or wire-shaped metallic separating members of small wall thickness are embedded in the refractory material in the axial direction. According to one embodiment, this refractory, gas-permeable structure consists of at least two segments of refractory, non-porous material lying alongside one another on longitudinal surfaces, and metal layers arranged between them, the segments being combined on the long side by a common metal housing which is sealed on the longitudinal surfaces of the segments, possibly underneath Use of an intermediate mortar layer, and one of the end faces of the structure is provided with at least one connection and a distribution space for the gas supply.
Zur Herstellung solcher Baukörper muss ein vorgefertigter Block aus feuerfestem Material in die erforderlichen Streifen oder Segmente zerschnitten werden, was einen sehr aufwendigen Herstellungsschritt darstellt. Da nämlich die Segmente in der Regel eine geringe Dicke und eine grosse Länge besitzen, sind durch Verpressen von feuerfestem Material hergestellte Segmente nicht hinreichend handhabungsfähig und verziehen sich, falls sie einem Steinbrand unterworfen werden.To manufacture such structures, a prefabricated block of refractory material has to be cut into the required strips or segments, which is a very complex manufacturing step. Since the segments generally have a small thickness and a large length, segments produced by pressing refractory material are not sufficiently manageable and warp if they are subjected to a stone fire.
Eine Aufgabe der Erfindung ist es, den Aufbau solcher Baukörper derart zu verbessern, dass eine vereinfachte Herstellung möglich ist und vorgefertigte Segmente mit ausreichender Stabilität Anwendung finden können.An object of the invention is to improve the structure of such structures in such a way that simplified production is possible and prefabricated segments with sufficient stability can be used.
Eine weitere Aufgabe besteht darin, die Gasdurchsatzkapazität zu erhöhen, ohne hierbei die gute Haltbarkeit der Baukörper zu beeinträchtigen.Another task is to increase the gas throughput capacity without compromising the good durability of the structure.
Diese Aufgaben werden nach der Erfindung dadurch gelöst, dass die Metall-Lagen mit dem feuerfesten Material der Segmente verpresst sind, wobei wenigstens eine der aneinanderliegenden Längsflächen der Segmente mit einer Metall-Lage versehen ist.These objects are achieved according to the invention in that the metal layers are pressed with the refractory material of the segments, at least one of the adjacent longitudinal surfaces of the segments being provided with a metal layer.
Durch die Anordnung mitverpresster Metallauflagen wird die Herstellung und Handhabung relativ dünner Segmente mit grosser Länge wesentlich erleichtert, da die Metallauflage als eine Art Armierung der Segmente wirkt, welche deren Stabilität erhöht. Die Anwendung von Segmenten oder Teilkörpern mit mitverpressten Metallauflagen vereinfacht ferner den Zusammenbau mehrerer Segmente zu einem Baukörper, weil dabei nunmehr das Einlegen von Blechplatten entbehrlich wird. Trotzdem können falls gewünscht zwischen den Segmenten Metallplattenpaare angeordnet sein.The arrangement of pressed-in metal supports makes the manufacture and handling of relatively thin segments of great length considerably easier, since the metal support acts as a kind of reinforcement for the segments, which increases their stability. The use of segments or partial bodies with pressed-in metal supports also simplifies the assembly of several segments to form a single building structure, since it is now unnecessary to insert sheet metal plates. Nevertheless, pairs of metal plates can be arranged between the segments if desired.
Die erfindungsgemässen Baukörper können derart ausgestaltet sein, dass die aneinandergrenzenden Längsflächen der Segmente mit glatter oder mit profilierter, z.B. gewellter oder gerillter Oberfläche ausgebildet sind, und ferner in der Weise, dass die Segmente unter Zwischenschaltung von Metallplatten, von Metallplattenpaaren und/oder von Distanzhaltern, aneinanderliegen. Letztere können aus in den Metall-Lagen ausgeformten Sicken oder Noppen, aus Blechstreifen, Drähten oder aus verbrennbaren oder verdampfbaren Einlagen u.dgl. bestehen. Eine weitere Ausgestaltung kann darin bestehen, dass an einer mitverpressten Metall-Lage eine zweite Auflage, z.B. eine Blechplatte angebracht, z.B. angeschweisst ist und dass die anliegende Längsfläche des Nachbarsegments metallagenfrei ist.The structures according to the invention can be designed in such a way that the adjoining longitudinal surfaces of the segments are formed with a smooth or with a profiled, for example corrugated or grooved surface, and also in such a way that the segments with the interposition of metal plates, pairs of metal plates and / or spacers, lie together. The latter can be made from beads or knobs formed in the metal layers, from sheet metal strips, wires or from combustible or vaporizable inserts and the like. consist. A further embodiment can consist in the fact that a second support, For example, a sheet metal plate is attached, for example welded, and that the adjacent longitudinal surface of the neighboring segment is free of metal layers.
Die Profilierungen, wie Wellen, Rillen, Nuten od.dgl., können in den Längsflächen der aus feuerfestem Material bestehenden, vorgefertigten Segmente durch Schneiden oder Fräsen ausgebildet werden. Es ist aber auch möglich, die Profilierungen im Zuge der Herstellung der Segmente auszubilden, indem der Pressstempel oder die Formenwand der zur Herstellung der Segmente verwendeten Pressform mit der entsprechenden negativen Profilierung ausgestattet ist, wodurch beim Pressen der Segmente die Profilierung in den Längsflächen entsteht.The profiles, such as shafts, grooves, grooves or the like, can be formed in the longitudinal surfaces of the prefabricated segments made of refractory material by cutting or milling. However, it is also possible to form the profiles in the course of the production of the segments, in that the press die or the mold wall of the press mold used for producing the segments is equipped with the corresponding negative profile, as a result of which the profile is formed in the longitudinal surfaces when the segments are pressed.
Die Herstellung der Segmente mit mitverpressten Metallauflagen mit profilierter Oberfläche kann in einfacher Weise dadurch erfolgen, dass der Pressstempel oder die Pressformenwandung mit der entsprechenden Profilierung, z. B. Wellung oder Rillung, versehen ist und eine zunächst ebene Blechplatte sowie die feuerfeste Masse in die Pressform eingeführt werden. Beim Pressvorgang wird dann automatisch die Profilierung in der mitverpressten Blechplatte ausgebildet.The segments with co-pressed metal supports with a profiled surface can be produced in a simple manner in that the press ram or the mold wall with the corresponding profiling, e.g. B. corrugation or scoring is provided and an initially flat sheet metal plate and the refractory mass are introduced into the mold. During the pressing process, the profiling is then automatically formed in the pressed sheet metal plate.
Beim Zusammenbau der mit profilierten Metallauflagen versehenen Segmente entstehen im Baukörper Fugen, Kanäle, durch welche der Gasdurchgang erfolgen kann, wobei die profilierten Längsflächen sowohl an einer glatten als auch an einer profilierten Längsfläche des Nachbarsegments anliegen kann. Die anliegende Längsfläche des Nachbarsegments kann ihrerseits mit einer mitverpressten Metallauflage versehen sein oder sie kann auflagenfrei sein.When assembling the segments provided with profiled metal supports, joints, channels are created in the structure through which the gas can pass, the profiled longitudinal surfaces being able to rest against both a smooth and a profiled longitudinal surface of the neighboring segment. The adjacent longitudinal surface of the neighboring segment can in turn be provided with a pressed-on metal support or it can be free of supports.
Eine weitere Ausgestaltung des erfindungsgemässen Baukörpers kann darin bestehen, dass in einzelne oder in alle Segmente mindestens ein mitverpresstes Paar von aneinanderliegenden Metalleinlagen, z.B. Blechplatten, eingebettet ist. Dabei können zwischen den Metallplatten eines Einlagenpaares Distanzhalter der obgenannten Art angeordnet sein. Durch die Anzahl der in einem Baukörper angeordneten Einlagenpaare sowie durch deren Ausgestaltung mit Distanzhaltern kann das Ausmass der Gasdurchlässigkeit weiter variiert werden.A further embodiment of the structure according to the invention can consist in that at least one co-pressed pair of metal inserts, e.g. Sheet metal, is embedded. Spacers of the type mentioned above can be arranged between the metal plates of a pair of inserts. The extent of the gas permeability can be varied further by the number of insert pairs arranged in a structure and by their configuration with spacers.
Im Fall dieser mitverpressten Einlagenpaare ist der Baukörper in einfacher Weise dadurch herstellbar, dass in die Pressform zunächst ein Teil des feuerfesten Materials eingeführt wird, sodann das Einlagenpaar, das über die gesamte Steinlänge aber nur über einen Teil der Steinbreite reicht, eingelegt und schliesslich weiteres feuerfestes Material eingefüllt wird. Soll der Baukörper mehr als ein Einlagenpaar aufweisen, wiederholt sich dieser Vorgang entsprechend. Sodann wird senkrecht zu den Einlagen der Pressdruck aufgebracht und der Baukörper dadurch geformt. Nach der Entnahme aus der Presse werden die Einlagen an den Stirnseiten der Baukörper freigelegt, um den Gasdurchgang zu ermöglichen. Anstelle eines Plattenpaares kann auch ein gefalztes Blech oder ein zusammengedrücktes Rohr eingesetzt werden. Ferner sind auch mehrlagige Einlagen, gegebenenfalls mit Distanzelementen, möglich.In the case of these co-pressed insert pairs, the structure can be produced in a simple manner by first introducing part of the refractory material into the press mold, then inserting the insert pair, which extends over the entire length of the stone but only over part of the stone width, and finally further refractory Material is filled. If the structure is to have more than one pair of inserts, this process is repeated accordingly. The pressing pressure is then applied perpendicular to the inserts and the structure is thereby shaped. After removal from the press, the inserts on the front of the structure are exposed to allow gas to pass through. Instead of a pair of plates, a folded sheet or a compressed pipe can also be used. Multi-layer inserts, possibly with spacer elements, are also possible.
Durch die Anzahl der in einem Baukörper angeordneten Einlagenpaare kann das Ausmass der Gasdurchlässigkeit variiert werden. Da das für die Baukörper verwendete feuerfeste Material dem der übrigen Auskleidung entsprechen kann, haben die Baukörper die gleiche Haltbarkeit wie die sie umgebende Auskleidung. Eine vorzeitige Erneuerung der Gasdurchlasssteine ist nicht erforderlich.The extent of the gas permeability can be varied by the number of insert pairs arranged in a structure. Since the refractory material used for the building structure can correspond to that of the rest of the lining, the building structure has the same durability as the lining surrounding it. An early renewal of the gas passage stones is not necessary.
Wie sich gezeigt hat, können die Baukörper auch ohne Gaszufuhr betrieben werden. Dabei dringt zwar etwas Metall in den engen Spalt zwischen den Einlagen eines Paares ein, bei Wiedereinschalten der Gaszuleitung wird aber dieses eingedrungene Metall wieder aus dem Baukörper gespült und die ursprüngliche Gasdurchlässigkeit stellt sich wieder ein. Diese bleibt über die ganze Lebensdauer des Baukörpers im wesentlichen gleich.As has been shown, the structures can also be operated without gas supply. While some metal penetrates into the narrow gap between the inserts of a couple, when the gas supply line is switched on again, this penetrated metal is flushed out of the structure and the original gas permeability is restored. This remains essentially the same over the entire service life of the structure.
Zur näheren Erläuterung der Erfindung dienen die Zeichnungen, in denen in nicht einschränkender Weise einige mögliche Ausgestaltungen der erfindungsgemässen Baukörper dargestellt werden. Es zeigen:
- Die Fig. 1 eine erste mögliche Ausführungsform eines Baukörpers;
- die Fig. bis 7 verschiedene Ausführungsformen von Segmenten;
- die Fig. 8 ein Ausführungsbeispiel eines mitzuverpressenden Einlagenpaares im vergrösserten Massstab;
- die Fig. 9 eine zweite mögliche Ausführungsform eines Baukörpers in dem Segmente gemäss der Fig. 6 zur Anwendung kommen und
- die Fig. 10 eine dritte mögliche Form, in der Segmente gemäss der Fig. 7 eingesetzt sind.
- 1 shows a first possible embodiment of a building structure;
- to 7 different embodiments of segments;
- 8 shows an embodiment of a pair of inserts to be pressed in on an enlarged scale;
- 9 shows a second possible embodiment of a structure in which segments according to FIG. 6 are used and
- FIG. 10 shows a third possible form in which segments according to FIG. 7 are used.
Der in der Fig. 1 dargestellte Baukörper 1 weist ein z.B. aus miteinander verschweissten Platten aufgebautes Metallgehäuse 2 auf, das insgesamt zwölf Segmente 3 umgibt, die in zwei Reihen zu je sechs Stück angeordnet sind. Jedes Segment 3 besitzt eine mitverpresste Metallauflage 4 und liegt mit einer unbewehrten Seitenfläche unter Zwischenschaltung einer nicht dargestellten Mörtelschicht dicht an der Innenseite des Metallgehäuses 2 an. Dadurch wird der unerwünschte, weil unkontrollierbare Gasdurchfluss längs des Metallgehäuses verhindert.The
Zwischen den beiden Reihen der Segmente 3 ist eine Blechplatte 5 eingelegt, längs welcher ebenso wie längs den Metallauflagen 4 der Segmente 3 ein Gasdurchgang erfolgen kann. Anstelle der Blechplatte 5 kann auch ein Plattenpaar angeordnet sein. Ferner können die Blechplatte 5 oder das Plattenpaar eingemörtelt sein.A
Die Segmente 3 sind mittels zweier Leisten 6, die an der Innenseite des Metallgehäuses 2 angeordnet und vorzugsweise an diesem durch Punktschweissen befestigt sind, von der Stirnseite des Metallgehäuses beabstandet. An dieser Seite, die die Kaltseite darstellt, ist eine Stirnplatte 7 dicht angeschweisst, welche mit einem Rohranschluss 8 versehen ist. Der zwischen der Stirnplatte 7 und den Stirnseiten der Segmente 3 bleibende Raum ist der Verteilungsraum für das Gas.The
Die der Stirnseite 7 gegenüberliegende, nicht sichtbare Seite stellt die Feuerseite des Baukörpers dar und kann mit einem Abdeckblech verschlossen sein. Letzteres wird angewendet, wenn die den Baukörper umgebende Zustellung des Metallbehandlungsgefässes Teer oder ähnliche Kohlenstoffträger enthält. Es dient dann dazu, während des Aufheizens des Gefässes das Eindringen von Teer oder dgl. in die Gasdurchgangsfugen des Baukörpers und das Verkleben derselben zu verhindern. Das Abdeckblech schmilzt bei Betriebsbeginn ab und gibt die Fugen frei. Im Bereich der feuerseitigen Stirnseite des Baukörpers kann ein nicht gezeigter Bügel angebracht sein, über den der Baukörper an einen Kranhaken gehängt werden kann.The opposite side of the
In den Fig. 2, 3, 4 sind Segmente 30, 31, 32 dargestellt, die an zwei, drei bzw. vier Längsflächen mit mitverpressten Metallauflagen 4, 41, 42 versehen sind. Letztere können zwecks besserer Verbindung mit dem feuerfesten Material mit ausgestanzten, in das feuerfeste Material ragenden Krallen 9 versehen sein. Das Segment 33 in der Fig. 5 besitzt eine mitverpresste Metallauflage 4 und eine durch Punktschweissen daran befestigte zweite Metallauflage 43. Die Segmente 30, 31, 32, 33 können anstelle der Segmente 3 in den Baukörper nach der Fig. 1 eingesetzt sein.2, 3, 4,
Die Fig. zeigt ein Segment 34, das an einer Längsfläche mit einer profilierten und zwar einer gewellten Metallauflage 44 verpresst ist und an der gegenüberliegenden Längsfläche mit einer ebenen Metallauflage 4. Beim Zusammenbau zweier solcher Segmente 34 in einen Baukörper entstehen längs der Profilierung Kanäle für den Gasdurchgang.The Fig. Shows a
Die Fig. 7 zeigt ein Segment 35, das drei Segmente 3 des Baukörpers nach der Fig. 1 ersetzen kann. Dieses Segment 35 ist mit einer U-förmigen mitverpressten Metallauflage 45 und zwei Paaren von Blecheinlagen 10 versehen, die sich über die gesamte Länge aber nur über einen Teil der Breite des Segments 35 erstrecken. Je nach der gewünschten Gasdurchlässigkeit können diese Einlagen 10 als glatte Blechstreifen oder aber, wie in der Fig. 8 gezeigt, als mit Distanzhaltern, wie Sikken oder Rillen 11 versehene Blechstreifen ausgebildet sein. Zur Verbesserung der Verbindung zwischen der Steinmasse und den Einlagen 10 können diese mit Krallen 9 versehen sein.FIG. 7 shows a
Der in der Fig. 9 dargestellte Baukörper 1 weist ein Metallgehäuse 2 auf, das zwölf Segmente umgibt, die in zwei Reihen zu je sechs Stück angeordnet sind. Jedes Segment ist an einer Längsfläche mit einer Profilierung versehen und zwar ist in den oberen Segmenten 34a eine Profilierung in der Form von Rillen dargestellt und in den unteren Segmenten 34 eine solche in der Form von Wellen. In der Praxis wird man jedoch bei allen Segmenten dieselbe Art der Profilierung anwenden.The
Die mitverpressten ebenen Blechplatten, welche sich in den Fugen zwischen je zwei Segmenten einer Reihe befinden, können in einer Variante auch mit Profilierungen versehen sein. Zwischen den beiden Reihen ist eine Einlage in der Form eines Blechplattenpaares dargestellt.The pressed flat sheet metal plates, which are located in the joints between two segments of a row, can also be provided with profiles in one variant. An insert in the form of a pair of sheet metal plates is shown between the two rows.
Der in der Fig. 10 gezeigte Baukörper 1 weist ein Metallgehäuse 2 auf, das vier Segmente 35 umgibt. Diese vier Segmente liegen mit ihren U-förmigen mitverpressten Metallauflagen 45 aneinander, wogegen die unbewehrten Längsseiten der Segmente an der Innenseite des Gehäuses anliegen, das z.B. aus miteinander verschweissten Platten hergestellt ist.The
Als Material für die metallischen Einlagen eignet sich insbesondere Stahlblech, z.B. in einer Stärke zwischen 0,5 und 3 mm, das gegebenenfalls mit einem Oberflächenschutz versehen sein kann.Sheet metal is particularly suitable as the material for the metallic inserts, e.g. in a thickness between 0.5 and 3 mm, which can optionally be provided with a surface protection.
Der Baukörper kann z. B. aus einer teergebundenen Magnesiamasse mit der folgenden Zusammensetzung und folgendem Kornaufbau hergestellt werden:
Der Sintermagnesia werden 4 Gew.-% Steinkohlenteerpech als Bindemittel zugesetzt. Als Bindemittel kommen auch andere Teere, Peche, Kunstharze od.dgl. in Betracht.4% by weight of coal tar pitch are added to the sintered magnesia as a binder. Other tars, pitches, synthetic resins or the like also come as binders. into consideration.
Eine weitere, zur Verwendung in einem erfindungsgemässen Baukörper geeignete Masse weist folgende Zusammensetzung und folgenden Kornaufbau auf:
Die Komponenten werden zwecks chemischer Bindung mit 3,7 Gew.-% Kieseritlösung mit einer Dichte von 1,22 g/cm3 vermischt.For chemical bonding, the components are mixed with 3.7% by weight of kieserite solution with a density of 1.22 g / cm 3 .
Die Erfindung ist aber nicht auf die Verwendung der genannten feuerfesten Materialien beschränkt. Es können auch andere feuerfeste Stoffe, z. B. Mischungen von Magnesia und Chromerz, Hochtonerdematerial, Anwendung finden.However, the invention is not restricted to the use of the refractory materials mentioned. Other refractory materials, e.g. B. Mixtures of magnesia and chrome ore, high alumina material can be used.
Die erfindungsgemässen Baukörper besitzen eine ausreichende Gasdurchlässigkeit, wobei der Gasdurchgang einerseits durch die Fugen zwischen den einzelnen Segmenten und andererseits durch die Fugen zwischen den Metalleinlagen erfolgt. Die Segmente selbst besitzen praktisch keine Gasdurchlässigkeit, und demnach kann das für die Baukörper verwendete feuerfeste Material dem der übrigen Auskleidung des Metallbehandlungsgefässes entsprechen. Dadurch haben die gasdurchlässigen Baukörper die gleiche Haltbarkeit wie die der sie umgebenden Auskleidung, und eine vorzeitige Erneuerung der gasdurchlässigen Baukörper ist nicht erforderlich. Erfindungsgemäss wird generell in jeder Fuge des Baukörpers, durch die ein Gasdurchgang erfolgen soll, eine Metallplatte, sei es in Form von Metall-Lagen auf den Segmenten, sei es in Form von zwischen den Segmenten angeordneten Metallplatten, vorgesehen. Wie gesagt, verhindern diese Metallplatten oder-auflagen das Eindringen von Metall aus dem Metallbad des Behandlungsgefässes in die Fugen, und zwar auch im Falle der Behandlung von Roheisen, welches infolge seiner Konsistenz und Viskosität eine besonders starke Neigung hat, in die Fugen einzudringen.The structures according to the invention have sufficient gas permeability, the passage of gas taking place on the one hand through the joints between the individual segments and on the other hand through the joints between the metal inserts. The segments themselves have practically no gas permeability, and therefore the refractory material used for the structure can correspond to that of the rest of the lining of the metal treatment vessel. As a result, the gas-permeable structures have the same durability as that of the lining surrounding them, and premature renewal of the gas-permeable structures is not necessary. According to the invention, a metal plate is generally provided in each joint of the structure through which gas is to pass, whether in the form of metal layers on the segments or in the form of metal plates arranged between the segments. As said, these metal plates or supports prevent the penetration of metal from the metal bath of the treatment vessel into the joints, even in the case of the treatment of pig iron, which due to its consistency and viscosity has a particularly strong tendency to penetrate into the joints.
Diese Erscheinung mag damit erklärt werden, dass die in den gasdurchlässigen Fugen angeordneten Metallplatten eine Kühlwirkung ausüben und die Wärme rasch zur kalten Stirnfläche des Baukörpers ableiten. Dadurch erstarrt eindringendes Behandlungsmetall schon nach einer kurzen Strecke (wenige cm). Bei Fugen ohne Metallplatten oder-auflagen wurde dagegen das Vordringen von Behandlungsmetall bis zur kalten Stirnfläche beobachtet.This phenomenon may be explained by the fact that the metal plates arranged in the gas-permeable joints exert a cooling effect and quickly dissipate the heat to the cold end face of the structure. As a result, penetrating treatment metal solidifies after a short distance (a few cm). In the case of joints without metal plates or coverings, however, the penetration of treatment metal up to the cold end face was observed.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT81630044T ATE15389T1 (en) | 1980-06-25 | 1981-06-15 | FIRE-RESISTANT, GAS-PERMEABLE STRUCTURE. |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
LU82552A LU82552A1 (en) | 1980-06-25 | 1980-06-25 | FIRE-RESISTANT, GAS-PERMEABLE CONSTRUCTION |
LU82554 | 1980-06-25 | ||
LU82553A LU82553A1 (en) | 1980-06-25 | 1980-06-25 | FIRE-RESISTANT, GAS-PERMEABLE CONSTRUCTION |
LU82552 | 1980-06-25 | ||
LU82553 | 1980-06-25 | ||
LU82554A LU82554A1 (en) | 1980-06-25 | 1980-06-25 | FIRE-RESISTANT, GAS-PERMEABLE CONSTRUCTION |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0043338A1 EP0043338A1 (en) | 1982-01-06 |
EP0043338B1 true EP0043338B1 (en) | 1985-09-04 |
Family
ID=27350740
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP81630044A Expired EP0043338B1 (en) | 1980-06-25 | 1981-06-15 | Gas-permeable body of fire-resistant material |
Country Status (14)
Country | Link |
---|---|
US (1) | US4395026A (en) |
EP (1) | EP0043338B1 (en) |
AU (1) | AU539352B2 (en) |
BR (1) | BR8103982A (en) |
CA (1) | CA1177643A (en) |
CS (1) | CS241483B2 (en) |
DD (1) | DD159783A5 (en) |
DE (1) | DE3172127D1 (en) |
ES (1) | ES259132Y (en) |
IN (1) | IN155938B (en) |
PL (1) | PL132680B1 (en) |
PT (1) | PT73175B (en) |
RO (1) | RO82232A (en) |
SU (1) | SU1255057A3 (en) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
LU82597A1 (en) * | 1980-07-09 | 1982-02-17 | Arbed | FIRE-RESISTANT, GAS-PERMEABLE CONSTRUCTION |
LU83247A1 (en) * | 1981-03-23 | 1983-02-22 | Arbed | METHOD AND DEVICE FOR TREATING METAL MELT IN THE METALURGICAL PROCESSES |
LU83313A1 (en) * | 1981-04-22 | 1983-03-24 | Arbed | METHOD AND DEVICE FOR THE DIRECT PRODUCTION OF LIQUID IRON |
LU83314A1 (en) * | 1981-04-24 | 1983-03-24 | Arbed | METHOD AND DEVICE FOR DESULFURING IRON MELT |
LU83826A1 (en) * | 1981-12-09 | 1983-09-01 | Arbed | METHOD AND DEVICE FOR THE DIRECT PRODUCTION OF LIQUID IRON |
US4462576A (en) * | 1982-02-24 | 1984-07-31 | Didier-Werke Ag | Apparatus for supplying gas through the wall of a metallurgical container |
LU84167A1 (en) * | 1982-05-25 | 1983-11-23 | Arbed | FIRE-RESISTANT, GAS-PERMEABLE CONSTRUCTION |
CA1206752A (en) * | 1982-06-18 | 1986-07-02 | Jean Goedert | Method and device for draining metallurgical vessels |
FR2538410B1 (en) * | 1982-12-24 | 1988-04-29 | Siderurgie Fse Inst Rech | REFRACTORY ELEMENT AND NOZZLE HOLDER AND METHOD FOR PREVENTING REFRACTORY WEAR USING THE SAME |
LU85131A1 (en) * | 1983-12-12 | 1985-09-12 | Arbed | GAS-PERMEABLE CONSTRUCTION BODY MADE OF FIRE-RESISTANT MATERIAL |
AT382889B (en) * | 1984-03-15 | 1987-04-27 | Voest Alpine Ag | RINSING DEVICE FOR A METALLURGICAL VESSEL |
US4754954A (en) * | 1986-01-29 | 1988-07-05 | Lazcano Navarro Arturo | Refractory device for introducing a gas into a molten metal and a method for making the device |
AT384034B (en) * | 1986-02-03 | 1987-09-25 | Voest Alpine Ag | RINSING DEVICE FOR A METALLURGICAL VESSEL |
CA2091280C (en) * | 1991-06-18 | 1996-06-11 | Michael D. Ii Labate | Device for directional gas distribution into molten metal |
JP3613686B1 (en) * | 2003-07-25 | 2005-01-26 | 日本坩堝株式会社 | A ladle for molten metal transportation and a method for discharging molten metal |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
LU54172A1 (en) * | 1967-07-26 | 1969-05-21 | ||
DE2205656C3 (en) * | 1972-02-07 | 1976-01-02 | Uralskij Nautschno-Issledowatelskij Institut Tschernych Metallow, Swerdlowsk (Sowjetunion) | Ladle for blowing metal through with gas |
SE392479B (en) * | 1974-03-20 | 1977-03-28 | Asea Ab | FORMA AT METALLURGIC CONVERTERS AND MELTING OVEN |
FR2455008A1 (en) * | 1979-04-25 | 1980-11-21 | Siderurgie Fse Inst Rech | REFRACTORY PIECE WITH SELECTIVE AND ORIENTED PERMEABILITY FOR THE INSUFFLATION OF A FLUID |
DE8028296U1 (en) * | 1980-10-23 | 1981-05-27 | Arbed S.A., Luxembourg | Gas-permeable masonry body made of refractory material |
-
1981
- 1981-05-25 CS CS813865A patent/CS241483B2/en unknown
- 1981-06-11 PT PT73175A patent/PT73175B/en unknown
- 1981-06-15 EP EP81630044A patent/EP0043338B1/en not_active Expired
- 1981-06-15 DE DE8181630044T patent/DE3172127D1/en not_active Expired
- 1981-06-16 IN IN389/DEL/81A patent/IN155938B/en unknown
- 1981-06-22 DD DD81231011A patent/DD159783A5/en not_active IP Right Cessation
- 1981-06-23 CA CA000380406A patent/CA1177643A/en not_active Expired
- 1981-06-24 BR BR8103982A patent/BR8103982A/en not_active IP Right Cessation
- 1981-06-24 SU SU813300250A patent/SU1255057A3/en active
- 1981-06-24 AU AU72164/81A patent/AU539352B2/en not_active Ceased
- 1981-06-24 RO RO81104679A patent/RO82232A/en unknown
- 1981-06-24 PL PL1981231843A patent/PL132680B1/en unknown
- 1981-06-25 ES ES1981259132U patent/ES259132Y/en not_active Expired
- 1981-06-25 US US06/277,218 patent/US4395026A/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CS241483B2 (en) | 1986-03-13 |
CA1177643A (en) | 1984-11-13 |
PT73175B (en) | 1982-09-01 |
PL132680B1 (en) | 1985-03-30 |
RO82232B (en) | 1983-07-30 |
AU7216481A (en) | 1982-01-07 |
SU1255057A3 (en) | 1986-08-30 |
PT73175A (en) | 1981-07-01 |
BR8103982A (en) | 1982-03-09 |
US4395026A (en) | 1983-07-26 |
ES259132Y (en) | 1984-03-16 |
IN155938B (en) | 1985-03-23 |
DE3172127D1 (en) | 1985-10-10 |
CS386581A2 (en) | 1985-07-16 |
AU539352B2 (en) | 1984-09-20 |
RO82232A (en) | 1983-08-03 |
PL231843A1 (en) | 1982-03-15 |
EP0043338A1 (en) | 1982-01-06 |
ES259132U (en) | 1983-07-16 |
DD159783A5 (en) | 1983-04-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0043338B1 (en) | Gas-permeable body of fire-resistant material | |
EP0043787B1 (en) | Gas-permeable body of fire-resistant material | |
EP0146079A2 (en) | Gas-permeable refractory plug | |
DE3127183C2 (en) | Molten metal channel unit, especially for blast furnaces | |
DE19542446C2 (en) | Fireproof molded panels with gas routing channels | |
DE1938337C3 (en) | Fireproof brick | |
DE2221639C3 (en) | Lining of side wall parts of a furnace, in particular a blast furnace | |
DE1269146B (en) | Metal sheathed refractory stone | |
DE1483633C2 (en) | Lining for a mold attachment | |
LU82553A1 (en) | FIRE-RESISTANT, GAS-PERMEABLE CONSTRUCTION | |
EP0095436B1 (en) | Gas-permeable refractory bodies | |
LU82552A1 (en) | FIRE-RESISTANT, GAS-PERMEABLE CONSTRUCTION | |
DE102005011789B3 (en) | Refractory plate and method for its production | |
DE1854743U (en) | BASIC, REFRACTORY STONE FOR USE IN PARTICULAR IN HANGED CEILINGS OR RELEASED WALLS OF INDUSTRIAL STOVES. | |
AT201638B (en) | Refractory vaulted furnace roof for metallurgical furnaces | |
LU82554A1 (en) | FIRE-RESISTANT, GAS-PERMEABLE CONSTRUCTION | |
DE1055165B (en) | Refractory, basic or neutral stone, especially for refractory furnace ceilings, and process for its production | |
DE1806017C3 (en) | Electric furnace, especially electric arc furnace | |
DE8028296U1 (en) | Gas-permeable masonry body made of refractory material | |
DE892233C (en) | Ceiling formed by beams made of ceiling stones made of baked clay or similar brick material | |
AT242046B (en) | Process for the production of reinforced, basic refractory bricks, blocks and the like. like units | |
DE2926061A1 (en) | TROLLEY FOR FAST FURNACE, ESPECIALLY FOR PRODUCTS MADE OF CERAMIC MATERIAL LIKE TILES AND OTHERS | |
AT230921B (en) | Large-format, refractory block built from stacked sheet metal casing stones | |
AT239123B (en) | Refractory composite stone | |
DE1950045A1 (en) | Furnace and process for heat treatment of glass |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Designated state(s): AT BE DE FR GB IT NL SE |
|
17P | Request for examination filed |
Effective date: 19820618 |
|
ITF | It: translation for a ep patent filed | ||
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Designated state(s): AT BE DE FR GB IT NL SE |
|
REF | Corresponds to: |
Ref document number: 15389 Country of ref document: AT Date of ref document: 19850915 Kind code of ref document: T |
|
REF | Corresponds to: |
Ref document number: 3172127 Country of ref document: DE Date of ref document: 19851010 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19910426 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19910502 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 19910514 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 19910612 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19910614 Year of fee payment: 11 |
|
ITTA | It: last paid annual fee | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19910630 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19920602 Year of fee payment: 12 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Effective date: 19920615 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19920616 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Effective date: 19920630 |
|
BERE | Be: lapsed |
Owner name: ARBED S.A. Effective date: 19920630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Effective date: 19930101 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Effective date: 19930226 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19930302 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19930615 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19930615 |
|
EUG | Se: european patent has lapsed |
Ref document number: 81630044.6 Effective date: 19930109 |