EP0095436B1 - Gas-permeable refractory bodies - Google Patents

Gas-permeable refractory bodies Download PDF

Info

Publication number
EP0095436B1
EP0095436B1 EP83630093A EP83630093A EP0095436B1 EP 0095436 B1 EP0095436 B1 EP 0095436B1 EP 83630093 A EP83630093 A EP 83630093A EP 83630093 A EP83630093 A EP 83630093A EP 0095436 B1 EP0095436 B1 EP 0095436B1
Authority
EP
European Patent Office
Prior art keywords
gas
refractory
metal
unit
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP83630093A
Other languages
German (de)
French (fr)
Other versions
EP0095436A1 (en
Inventor
François Schleimer
Guy Denier
Romain Henrion
Jean Goedert
Ferdinand Goedert
Henri Klein
Josef Auer
Berndt Wendl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institut de Recherches de la Siderurgie Francaise IRSID
Arcelor Luxembourg SA
Original Assignee
Institut de Recherches de la Siderurgie Francaise IRSID
Arbed SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institut de Recherches de la Siderurgie Francaise IRSID, Arbed SA filed Critical Institut de Recherches de la Siderurgie Francaise IRSID
Priority to AT83630093T priority Critical patent/ATE23196T1/en
Publication of EP0095436A1 publication Critical patent/EP0095436A1/en
Application granted granted Critical
Publication of EP0095436B1 publication Critical patent/EP0095436B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/42Constructional features of converters
    • C21C5/46Details or accessories
    • C21C5/48Bottoms or tuyéres of converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D1/00Treatment of fused masses in the ladle or the supply runners before casting
    • B22D1/002Treatment with gases
    • B22D1/005Injection assemblies therefor

Definitions

  • the invention relates to refractory, gas-permeable structures for blowing gases into metal treatment vessels, through the lining thereof.
  • the oxygen blowing process used for fresh iron refreshing has recently been improved in terms of metallurgy in such a way that secondary gases, such as nitrogen or argon, are blown in in a controlled manner through the converter base. Also in oxygen bottom blowing processes and in metal treatment vessels, such as oven pans, desulfurization pans and the like. , the blowing of gases into the metal bath through the vessel bottom or the lining of the vessel walls can be considered.
  • the gas-permeable bricks to be inserted into the lining of the vessel are required to have a durability which corresponds to that of the other refractory lining, since it is difficult to replace worn-out gas blowing stones when hot.
  • the gas introduction should be possible both continuously and in particular discontinuously, i.e. the vessel should also be able to be operated without the introduction of gas, and the stones should be permeable to gas in an unchanged manner after the gas supply has been switched on again.
  • the gas permeability of the stones over their service life i.e. over an entire kiln trip, remain essentially the same.
  • patent application LU 81 208 the applicant has shown a device for blowing a treatment gas into a metal bath which is intended for insertion into the bottom of a metal treatment vessel and which has good durability and permits the blowing in of the desired amounts of gas.
  • This device essentially consists of a refractory, gas-permeable structure, wherein a plurality of flat, corrugated, tubular or wire-shaped metallic separating members of small wall thickness are embedded in the refractory material in the axial direction.
  • this structure consists of steel sheets and segments or strips of refractory material in an alternating arrangement.
  • the applicant has improved the refractory structures to the effect that the segments are produced in molds, with metal layers being pressed with the refractory material.
  • the adjacent longitudinal surfaces of the segments can be smooth or with a profiled, z. B. corrugated or grooved surface.
  • the object of the invention is to propose fireproof, gas-permeable structures consisting of segments, the segments of which do not react significantly with the flushing gas used, which can sometimes have an oxidizing effect.
  • the structure according to the invention consequently allows any gas to be blown into the converter which, at its normal operating temperature, does not enter into any connections with the selected coating.
  • the exact composition and grain structure of the refractory mass are of minor importance.
  • refractory material primarily gives the coating a hold and also prevents it from overheating by dissipating the heat to the cold side of the structure.
  • One of the most important properties of the refractory material is a low or coated expansion coefficient to prevent premature cracking to avoid formation in the building.
  • Suitable refractory materials are, for example, tar-bound sintered magnesia, high-alumina material or mixtures of magnesia and chrome ore.
  • FIGS. 2 to 6 show perspective sections through individual segments according to the invention.
  • the structure 1 shown in FIG. 1 has a metal housing 10 constructed from welded plates, which surrounds a total of twelve segments 3. Each segment is provided with metal supports 4, 4a on all four long sides. The sheets are corrugated on two long sides, while the sheets on the other two sides are flat. The segments are installed in such a way that a corrugated sheet 4a is in contact with a flat sheet 4. In order to prevent the metal housing from inflating, the plates of the metal housing 10 should preferably not have any corrugated metal sheets opposite them. A sheet metal plate 5 may possibly be inserted between the two rows of the segments 3, along which a gas passage takes place along as well as along the metal supports 4, 4a of the segments 3.
  • the segments are spaced from the end face of the metal housing by means of two strips 6, which are arranged on the inside of the metal housing 10 and are preferably attached to it by spot welding.
  • an end plate 7 is welded tight, which is provided with a pipe connection 8.
  • the space that remains free between the end plate and the end faces of the segments 3 is the distribution space for the gas.
  • the refractory mass 9 is provided on the cold end face of the segments 3 with a protective sheet (not shown).
  • the opposite, invisible side represents the fire side of the building and can be closed with a cover plate.
  • the latter is used if the infeed of the metal treatment vessel surrounding the structure contains tar or similar carbon carriers. It then serves to prevent the penetration of tar or the like into the gas passage joints of the structure or the sticking of the same during the heating of the vessel.
  • the cover plate melts at the start of operation and releases the joints.
  • only three elongated cuboid segments 3 are arranged one above the other in the metal housing 10.
  • the five sheets that surround one of the segments are all flat here, while in the two remaining segments only one large long side is provided with a corrugated sheet and the other three long sides (as well as the cold side) have flat sheets.
  • the three segments are arranged in the metal housing in such a way that no corrugated metal is in contact with it.
  • FIG. 2 shows a section through a segment 23, the refractory mass 29 of which is surrounded on all four sides and the cold end face (not shown) with flat steel sheets 24.
  • the flat sheets are provided with longitudinal metal strips 22, the strips being staggered on two opposite sides.
  • the strips 22 can be attached to the sheet by spot welding. The thickness of these strips allows the degree of gas permeability to be varied. However, the strips must not be chosen too thick in order to be able to operate the building without gas supply. Some metal penetrates the narrow gap between the segments; when the gas supply line is switched on again, this penetrated metal is flushed out of the building and the original gas permeability is restored. This surprising effect only occurs if the metal strips are not too thick.
  • the refractory mass 39 is surrounded by sheets 34 which are provided with longitudinal bars 32.
  • the longitudinal bars are staggered on opposing sheets. The bars can be easily rolled into the sheet.
  • FIG. 4 shows a segment 43, the refractory mass 49 of which is surrounded on all sides with steel sheets 44.
  • the gas throughput occurs primarily through grooves 42 milled into the sheet 44.
  • the refractory mass 59 is surrounded on all sides by flat sheets 54.
  • the distance between two segments is set by means of a mat-like structure 52 made of steel wool.
  • steel sheet is used as the coating of the refractory mass.
  • the sheet is rolled into the required shape, cut to size, bent and welded.
  • FIG. 6 Refractory material is first introduced into a press mold.
  • the mold provides the refractory material with bars, grooves or waves.
  • the elongated cuboid elements are painted.
  • the liquid used can be, for example, a metal paint with a ceramic binding material or a ceramic paint.
  • the two segments 63 shown in FIG. 6 have a coating 64 which was produced by immersing the corrugated refractory material 69 in a metal paint bath. After immersion, the segments are annealed depending on the selected metal color. It may be necessary to repeat the immersion annealing process several times until the desired thickness of the coating is reached.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Furnace Charging Or Discharging (AREA)

Description

Die Erfindung betrifft feuerfeste, gasdurchlässige Baukörper zum Einblasen von Gasen in Metallbehandlungsgefässe, durch deren Auskleidung hindurch.The invention relates to refractory, gas-permeable structures for blowing gases into metal treatment vessels, through the lining thereof.

Die zum Roheisenfrischen dienenden Sauerstoffaufblas-Verfahren, wurden neuerdings in me--tallurgischer Hinsicht dahingehend verbessert, dass durch den Konverterboden Sekundärgase, wie Stickstoff oder Argon, gesteuert eingeblasen werden. Auch bei Sauerstoff-Bodenblasverfahren sowie in Metallbehandlungsgefässen, wie etwa Ofenpfannen, Entschwefelungspfannen u.dgl. , kommt das Einblasen von Gasen in das Metallbad durch den Gefässboden oder die Auskleidung der Gefässwände hindurch in Betracht.The oxygen blowing process used for fresh iron refreshing has recently been improved in terms of metallurgy in such a way that secondary gases, such as nitrogen or argon, are blown in in a controlled manner through the converter base. Also in oxygen bottom blowing processes and in metal treatment vessels, such as oven pans, desulfurization pans and the like. , the blowing of gases into the metal bath through the vessel bottom or the lining of the vessel walls can be considered.

An die in die Auskleidung des Gefässes einzusetzenden gasdurchlässigen Steine wird die Forderung gestellt, dass ihre Haltbarkeit derjenigen der übrigen feuerfesten Auskleidung entspricht, da ein Auswechseln verschlissener Gasdurchblassteine im heissen Zustand schwierig ist. Ferner soll die Gaseinleitung sowohl kontinuierlich als insbesondere auch diskontinuierlich möglich sein, d.h. das Gefäss soll auch ohne Gaseinleitung betreibbar sein und nach dem Wiedereinschalten der Gaszufuhr sollen die Steine in unveränderter Weise gadurchlässig sein. Ausserdem soll die Gasdurchlässigkeit der Steine über ihre Gebrauchsdauer, d.h. über eine ganze Ofenreise, im wesentlichen gleich bleiben.The gas-permeable bricks to be inserted into the lining of the vessel are required to have a durability which corresponds to that of the other refractory lining, since it is difficult to replace worn-out gas blowing stones when hot. Furthermore, the gas introduction should be possible both continuously and in particular discontinuously, i.e. the vessel should also be able to be operated without the introduction of gas, and the stones should be permeable to gas in an unchanged manner after the gas supply has been switched on again. In addition, the gas permeability of the stones over their service life, i.e. over an entire kiln trip, remain essentially the same.

In der Patentanmeldung LU 81 208 hat die Anmelderin eine zum Einsetzen in den Boden eines Metallbehandlungsgefässes bestimmte Vorrichtung zum Einblasen eines Behandlungsgases in ein Metallbad aufgezeigt, welche eine gute Haltbarkeit besitzt und das Einblasen der gewünschten Gasmengen gestattet. Diese Vorrichtung besteht im wesentlichen in einem feuerfesten, gasdurchlässigen Baukörper, wobei in das feuerfeste Material in axialer Richtung eine Mehrzahl von ebenen, gewellten, rohrförmigen oder drahtförmigen metallischen Trenngliedern von geringer Wandstärke eingebettet ist. Nach einer Ausführungsform besteht dieser Baukörper aus Stahlblechen und Segmenten oder Streifen aus feuerfestem Material in abwechselnder Anordnung.In patent application LU 81 208, the applicant has shown a device for blowing a treatment gas into a metal bath which is intended for insertion into the bottom of a metal treatment vessel and which has good durability and permits the blowing in of the desired amounts of gas. This device essentially consists of a refractory, gas-permeable structure, wherein a plurality of flat, corrugated, tubular or wire-shaped metallic separating members of small wall thickness are embedded in the refractory material in the axial direction. According to one embodiment, this structure consists of steel sheets and segments or strips of refractory material in an alternating arrangement.

Da zur Herstellung solcher Baukörper ein vorgefertigter Block aus feuerfestem Material in die erforderlichen Streifen oder Segmente zerschnitten werden muss, ist das ein sehr aufwendiges Verfahren. Durch Verpressen von feuerfestem Material hergestellte Segmente sind, bedingt durch ihre geringe Dicke und grosse Länge, nicht hinreichend handhabungsfähig und verziehen sich, falls sie einem Steinbrand unterworfen werden.Since a prefabricated block of refractory material has to be cut into the required strips or segments in order to produce such structures, this is a very complex process. Segments made by pressing refractory material are, due to their small thickness and great length, not sufficiently manageable and warp if they are subjected to a stone fire.

In der EP-A- 43 338 hat die Anmelderin die feuerfesten Baukörper dahingehend verbessert, dass die Segmente in Pressformen hergestellt werden, wobei Metall-Lagen mit dem feuerfesten Material mitverpresst werden. Die aneinandergrenzenden Längsflächen der Segmente können dabei mit glatter oder mit profilierter, z. B. gewellter oder gerillter Oberfläche ausgebildet sein.In EP-A-43 338, the applicant has improved the refractory structures to the effect that the segments are produced in molds, with metal layers being pressed with the refractory material. The adjacent longitudinal surfaces of the segments can be smooth or with a profiled, z. B. corrugated or grooved surface.

Beim Zusammenbau der mit profilierten Metallauflagen versehenen Segmente entstehen im Baukörper Fugen, Kanäle, usw. durch welche der Gaszugang erfolgt, wobei die profilierten Längsflächen sowohl an einer glatten, als auch an einer profilierten Längsfläche des Nachbarsegments anliegen können. Die anliegende Längsfläche des Nachbarsegments kann ihrerseits mit einer mitverpressten Metallauflage versehen sein oder sie kann auflagenfrei sein. Auch können in einzelne Segmente mitverpresste Paare von aneinanderliegenden Metalleinlagen, z.B. Blechplatten, eingebettet werden. Dabei können zwischen den Metallplatten eines Einlagenpaares Distanzhalter angeordnet sein. Feuerfeste Baukörper der soeben beschriebenen Art arbeiten zufriedenstellend, wenn man als Spülgas Argon oder Stickstoff verwendet. Leider ist Argon ein sehr teures Gas. Reiner Stickstoff ist zwar billiger, löst sich aber bei hohen Temperaturen im flüssigen Stahl, was nachteilige Wirkungen auf die Stahlgüte mit sich bringt.When assembling the segments provided with profiled metal supports, joints, channels, etc. are created in the structure through which the gas can be accessed, whereby the profiled longitudinal surfaces can rest against both a smooth and a profiled longitudinal surface of the neighboring segment. The adjacent longitudinal surface of the neighboring segment can in turn be provided with a pressed-on metal support or it can be free of supports. Pairs of adjacent metal inserts, e.g. Sheet metal plates are embedded. Spacers can be arranged between the metal plates of a pair of inserts. Refractory structures of the type just described work satisfactorily when argon or nitrogen is used as the purge gas. Unfortunately, argon is a very expensive gas. Pure nitrogen is cheaper, but dissolves at high temperatures in the liquid steel, which has negative effects on the steel quality.

Die Anmelderin hat demzufolge Versuche unternommen, andere Gase, wie beispielsweise Kohlendioxyd, durch die Blassteine in den Konverter einzublasen, wobei ein schneller Verschleiss der feuerfesten Steine festgestellt werden musste und wobei die feuerfeste Masse schon nach wenigen Chargen zerkrümelte. Ausserdem wurde festgestellt, dass die Zersetzung des feuerfesten Materials vornehmlich von der warmen Seite des Baukörpers her erfolgt. Die dort herrschende Temperatur bewirkt scheinbar Reaktionen wie COZ+C=2 CO, wobei das C-Atom aus dem kohlenstoffhaltigen Bindemittel der feuerfesten Masse stammt. Daneben wird angenommen, dass auch Reaktionen wie CO2 + MgO = MgCOa ablaufen. Auch dies könnte das Zerkrümeln der Steinmasse erklären.The applicant has therefore attempted to blow other gases, such as carbon dioxide, through the blowing stones into the converter, a rapid wear of the refractory bricks having to be found and the refractory mass crumbling after only a few batches. It was also found that the refractory material decomposed primarily from the warm side of the building. The temperature prevailing there apparently causes reactions such as CO Z + C = 2 CO, the C atom originating from the carbon-containing binder of the refractory mass. In addition, it is assumed that reactions such as CO2 + MgO = MgCOa also take place. This could also explain the crumbling of the stone mass.

Die Aufgabe der Erfindung besteht darin, feuerfeste, gasdurchlässige, aus Segmenten bestehende Baukörper vorzuschlagen, deren Segmente nicht wesentlich mit dem verwendeten Spülgas, das mitunter oxydierend wirken kann, reagieren.The object of the invention is to propose fireproof, gas-permeable structures consisting of segments, the segments of which do not react significantly with the flushing gas used, which can sometimes have an oxidizing effect.

Diese Aufgabe wird durch die in Anspruch 1 gekennzeichnete Erfindung gelöst. Vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen beschrieben.This object is achieved by the invention characterized in claim 1. Advantageous embodiments of the invention are described in the subclaims.

Der erfindungsgemässe Baukörper erlaubt folglich das Einblasen in den Konverter von jeglichem Gas, das bei seiner normalen Betriebstemperatur nicht mit dem gewählten Überzug irgendwelche Verbindungen eingeht. Die genaue Zusammensetzung und der Kornaufbau der feuerfesten Masse werden hierdurch von untergeordneter Bedeutung.The structure according to the invention consequently allows any gas to be blown into the converter which, at its normal operating temperature, does not enter into any connections with the selected coating. The exact composition and grain structure of the refractory mass are of minor importance.

Die Masse verleiht in erster Linie dem Überzug Halt und vermeidet darüber hinaus eine übermässige Erhitzung desselben durch Ableiten der Wärme zur kalten Seite des Baukörpers hin. Eine der wichtigsten Eigenschaften des feuerfesten Materials ist ein niedriger oder dem Überzug angepasster Ausdehnungskoeffizient, um vorzeitige Rissbildungen in dem Baukörper zu vermeiden. Geeignete feuerfeste Stoffe sind beispielsweise teergebundene Sintermagnesia, Hochtonerdematerial oder Mischungen von Magnesia und Chromerz.The mass primarily gives the coating a hold and also prevents it from overheating by dissipating the heat to the cold side of the structure. One of the most important properties of the refractory material is a low or coated expansion coefficient to prevent premature cracking to avoid formation in the building. Suitable refractory materials are, for example, tar-bound sintered magnesia, high-alumina material or mixtures of magnesia and chrome ore.

Die Erfindung wird anhand von einige Ausführungswege darstellende Zeichnungen näher erläutert. Es zeigen:The invention will be explained in more detail with reference to drawings which illustrate some possible embodiments. Show it:

Die Fig. 1 eine perspektivische Ansicht eines erfindungsgemässen Baukörpers und die Fig.2 2 bis 6 perspektivische Schnitte durch einzelne erfindungsgemässe Segmente.1 shows a perspective view of a structure according to the invention and FIGS. 2 to 6 show perspective sections through individual segments according to the invention.

Der in der Fig. 1 dargestellte Baukörper 1 weist ein aus miteinander verschweissten Platten aufgebautes Metallgehäuse 10 auf, das insgesamt zwölf Segmente 3 umgibt. Jedes Segment ist auf allen vier Längsseiten mit Metallauflagen 4, 4a versehen. Auf zwei Längsseiten sind die Bleche gewellt während auf den zwei übrigen Seiten die Bleche flach ausgeführt sind. Die Segmente sind so eingebaut, dass jeweils ein gewelltes Blech 4a mit einem flachen Blech 4 in Kontakt liegt. Um ein Aufblähen des Metallgehäuses zu vermeiden, sollten den Platten des Metallgehäuses 10, möglichst keine gewellten Bleche gegenüberliegen. Zwischen den beiden Reihen der Segmente 3 kann eventuell eine Blechplatte 5 eingelegt sein, längs welcher ebenso wie längs der Metallauflagen 4, 4a der Segmente 3 ein Gasdurchgang erfolgt. Die Segmente sind mittels zweier Leisten 6, die an der Innenseite des Metallgehäuses 10 angeordnet und vorzugsweise an diesem durch Punktschweissen befestigt sind, von der Stirnseite des Metallgehäuses beabstandet. An dieser Stelle, die die Kaltseite darstellt, ist eine Stirnplatte 7 dicht angeschweisst, welche mit einem Rohranschluss 8 versehen ist. Der zwischen der Stirnplatte und den Stirnseiten der Segmente 3 freibleibende Raum ist der Verteilungsraum für das Gas. Die feuerfeste Masse 9 ist auf der kalten Stirnseite der Segmente 3 mit einem (nicht gezeigten) schützenden Blech versehen. Auf der kalten Seite des Baukörpers 1 herrschen Temperaturen von 300-500°C bei denen beispielsweise Kohlendioxyd die feuerfeste Masse nur sehr langsam angreift, doch ist auch hier ein schützender Überzug von Vorteil. Die gegenüberliegende, nicht sichtbare Seite stellt die Feuerseite des Baukörpers dar und kann mit einem Abdeckblech verschlossen sein. Letzteres wird angewendet, wenn die den Baukörper umgebende Zustellung des Metallbehandlungsgefässes Teer oder ähnliche Kohlenstoffträger enthält. Es dient dann dazu, während des Aufheizens des Gefässes das Eindringen von Teer oder dgl. in die Gasdurchgangsfugen des Baukörpers oder das Verkleben derselben zu verhindern. Das Abdeckblech schmilzt bei Betriebsbeginn ab und gibt die Fugen frei.The structure 1 shown in FIG. 1 has a metal housing 10 constructed from welded plates, which surrounds a total of twelve segments 3. Each segment is provided with metal supports 4, 4a on all four long sides. The sheets are corrugated on two long sides, while the sheets on the other two sides are flat. The segments are installed in such a way that a corrugated sheet 4a is in contact with a flat sheet 4. In order to prevent the metal housing from inflating, the plates of the metal housing 10 should preferably not have any corrugated metal sheets opposite them. A sheet metal plate 5 may possibly be inserted between the two rows of the segments 3, along which a gas passage takes place along as well as along the metal supports 4, 4a of the segments 3. The segments are spaced from the end face of the metal housing by means of two strips 6, which are arranged on the inside of the metal housing 10 and are preferably attached to it by spot welding. At this point, which represents the cold side, an end plate 7 is welded tight, which is provided with a pipe connection 8. The space that remains free between the end plate and the end faces of the segments 3 is the distribution space for the gas. The refractory mass 9 is provided on the cold end face of the segments 3 with a protective sheet (not shown). On the cold side of building 1 there are temperatures of 300-500 ° C. at which, for example, carbon dioxide attacks the refractory mass only very slowly, but a protective coating is also advantageous here. The opposite, invisible side represents the fire side of the building and can be closed with a cover plate. The latter is used if the infeed of the metal treatment vessel surrounding the structure contains tar or similar carbon carriers. It then serves to prevent the penetration of tar or the like into the gas passage joints of the structure or the sticking of the same during the heating of the vessel. The cover plate melts at the start of operation and releases the joints.

Bei einer vorteilhaften Variante des Baukörpers ordnet man lediglich drei längliche quaderförmige Segmente 3 übereinander im Metallgehäuse 10 an. Die fünf Bleche, welche eines der Segmente umgeben, sind hier alle flach ausgebildet, während bei den zwei übrigen Segmenten lediglich eine grosse Längsseite mit einem gewellten Blech versehen ist und die drei anderen Längsseiten (sowie die Kaltseite) flache Bleche besitzen. Die drei Segmente sind derart im Metallgehäuse angeordnet, dass kein gewellltes Blech mit diesem in Kontakt liegt.In an advantageous variant of the structure, only three elongated cuboid segments 3 are arranged one above the other in the metal housing 10. The five sheets that surround one of the segments are all flat here, while in the two remaining segments only one large long side is provided with a corrugated sheet and the other three long sides (as well as the cold side) have flat sheets. The three segments are arranged in the metal housing in such a way that no corrugated metal is in contact with it.

Die Fig. 2 zeigt einen Schnitt durch ein Segment 23, dessen feuerfeste Masse 29 auf allen vier Seiten und der (nicht dargestellten) kalten Stirnseite, mit flachen Stahlblechen 24 umgeben ist. Die flachen Bleche sind mit metallischen Längsstreifen 22 versehen, wobei die Streifen auf zwei gegenüberliegenden Seiten versetzt angeordnet sind. Die Streifen 22 können durch Punktschweissen auf dem Blech befestigt werden. Durch die Dicke dieser Streifen kann das Ausmass der Gasdurchlässigkeit variiert werden. Allerdings dürfen die Streifen nicht zu dick gewählt werden, um die Baukörper auch ohne Gaszufuhr betreiben zu können. Dabei dringt zwar etwas Metall in den engen Spalt zwischen den Segmenten ein; beim Wiedereinschalten der Gaszuleitung wird dieses eingedrungene Metall aber wieder aus dem Baukörper gespült und die ursprüngliche Gasdurchlässigkeit stellt sich wieder ein. Dieser überraschende Effekt setzt nur ein, wenn die Blechstreifen nicht zu dick sind.FIG. 2 shows a section through a segment 23, the refractory mass 29 of which is surrounded on all four sides and the cold end face (not shown) with flat steel sheets 24. The flat sheets are provided with longitudinal metal strips 22, the strips being staggered on two opposite sides. The strips 22 can be attached to the sheet by spot welding. The thickness of these strips allows the degree of gas permeability to be varied. However, the strips must not be chosen too thick in order to be able to operate the building without gas supply. Some metal penetrates the narrow gap between the segments; when the gas supply line is switched on again, this penetrated metal is flushed out of the building and the original gas permeability is restored. This surprising effect only occurs if the metal strips are not too thick.

Bei dem in der Fig. 3 dargestellten Segment 33 ist die feuerfeste Masse 39 von Blechen 34 umgeben, die mit Längsriegeln 32 versehen sind. Die Längsriegel sind auf sich gegenüberliegenden Blechen versetzt angeordnet. Die Riegel können auf einfache Art in das Blech gewalzt werden.In the segment 33 shown in FIG. 3, the refractory mass 39 is surrounded by sheets 34 which are provided with longitudinal bars 32. The longitudinal bars are staggered on opposing sheets. The bars can be easily rolled into the sheet.

In der Fig. 4 ist ein Segment 43 dargestellt, dessen feuerfeste Masse 49 auf allen Seiten mit Stahlblechen 44 umgeben ist. Der Gasdurchsatz erfolgt in dieser Ausführung vornehmlich durch in das Blech 44 gefräste Rillen 42.4 shows a segment 43, the refractory mass 49 of which is surrounded on all sides with steel sheets 44. In this embodiment, the gas throughput occurs primarily through grooves 42 milled into the sheet 44.

Bei dem in der Fig. 5 dargestellten Segment 53 ist die feuerfeste Masse 59 allseitig von flachen Blechen 54 umgeben. Der Abstand zwischen zwei Segmenten wird mittels eines mattenähnlichen Gebildes 52 aus Stahlwolle eingestellt.In the segment 53 shown in FIG. 5, the refractory mass 59 is surrounded on all sides by flat sheets 54. The distance between two segments is set by means of a mat-like structure 52 made of steel wool.

Bei den bisher beschriebenen Segmenten wird als Überzug der feuerfesten Masse Stahlblech verwendet. Das Blech wird hierbei in die benötigte Form gewalzt, zurechtgeschnitten, gebogen und verschweisst.In the segments described so far, steel sheet is used as the coating of the refractory mass. The sheet is rolled into the required shape, cut to size, bent and welded.

Eine andere vorteilhafte Ausgestaltung der Erfindung zeigt die Fig. 6. Feuerfestes Material wird hierbei zuerst in eine Pressform eingeführt. Die Pressform versieht das feuerfeste Material mit Riegeln, Rillen oder Wellen. Nach einer kurzen thermischen Behandlung, die eventuell notwendig ist um das Material zu verfestigen, werden die länglichen quaderförmigen Elemente mit einem Anstrich versehen. Die verwendete Flüssigkeit kann beispielsweise eine Metallfarbe mit einem keramischen Bindematerial sein oder eine Keramikfarbe. Die beiden auf Fig. 6 dargestellten Segmente 63 besitzen einen Überzug 64 der durch Eintauchen des gewellten feuerfesten Materials 69 in ein Metallfarbbad hergestellt wurde. Nach dem Eintauchen werden die Segmente in Abhängigkeit von der gewählten Metallfarbe getempert. Es kann eventuell notwendig sein, den Eintauch-Temperprozess mehrere Male zu wiederholen, bis die gewünschte Dicke des Überzugs erreicht ist.Another advantageous embodiment of the invention is shown in FIG. 6. Refractory material is first introduced into a press mold. The mold provides the refractory material with bars, grooves or waves. After a brief thermal treatment, which may be necessary to solidify the material, the elongated cuboid elements are painted. The liquid used can be, for example, a metal paint with a ceramic binding material or a ceramic paint. The two segments 63 shown in FIG. 6 have a coating 64 which was produced by immersing the corrugated refractory material 69 in a metal paint bath. After immersion, the segments are annealed depending on the selected metal color. It may be necessary to repeat the immersion annealing process several times until the desired thickness of the coating is reached.

Claims (8)

1. Refractory gas-permeable structural unit (1) for blowing gas into a metallurgical vessel through its lining, comprising at least two elements (3, 23, 33, 43, 53, 63) having a core of refractory nonporous material (9, 29, 39, 49, 59, 69), said elements abutting against one another with their longitudinal faces, a common metal housing (10) surrounding the longitudinal faces of said elements with at one of the end faces of the unit (1), at least one gas connection (8) and a gas distribution chamber, characterised in that the elements are provided at least on all their longitudinal faces with a gas-tight cover.
2. Refractory unit as defined in claim 1, characterised in that the gas-tight cover consists of sheet metal (4, 4a, 24, 34, 44, 54).
3. Refractory unit as defined in claim 2, characterised in that the sheet metal is of steel, optionally provided with surface protecting means.
4. Refractory unit as defined in claims 2 or 3, characterised in that metal layers or spacers, for instance metal strips, wires or steel wool, are arranged between the elements.
5. Refractory unit as defined in claim 1, characterised in that the gas-tight cover consists of a coating of metal paint (64).
6. Refractory unit as defined in claim 1, characterised in that the gas-tight cover consists of a coating of ceramic paint.
7. Refractori unit as defined in claims 5 or 6, characterised in that the refractory material (69) is provided with bars, grooves, or corrugations.
8. Refractory unit as defined in one of claims 1-7, characterised in that the elements are provided on all their faces, with the exception of the face coming into contact with the liquid metal, with a gas-tight cover.
EP83630093A 1982-05-25 1983-05-20 Gas-permeable refractory bodies Expired EP0095436B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT83630093T ATE23196T1 (en) 1982-05-25 1983-05-20 FIRE-RESISTANT, GAS-PERMEABLE STRUCTURE.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
LU84167 1982-05-25
LU84167A LU84167A1 (en) 1982-05-25 1982-05-25 FIRE-RESISTANT, GAS-PERMEABLE CONSTRUCTION

Publications (2)

Publication Number Publication Date
EP0095436A1 EP0095436A1 (en) 1983-11-30
EP0095436B1 true EP0095436B1 (en) 1986-10-29

Family

ID=19729884

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83630093A Expired EP0095436B1 (en) 1982-05-25 1983-05-20 Gas-permeable refractory bodies

Country Status (15)

Country Link
EP (1) EP0095436B1 (en)
JP (2) JPS58210113A (en)
KR (1) KR910009493B1 (en)
AR (1) AR229811A1 (en)
AT (1) ATE23196T1 (en)
AU (1) AU557537B2 (en)
BR (1) BR8302619A (en)
CA (1) CA1229228A (en)
DE (1) DE3367257D1 (en)
ES (1) ES522666A0 (en)
IN (1) IN157467B (en)
LU (1) LU84167A1 (en)
MX (1) MX158037A (en)
PT (1) PT76732B (en)
ZA (1) ZA833627B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LU85131A1 (en) * 1983-12-12 1985-09-12 Arbed GAS-PERMEABLE CONSTRUCTION BODY MADE OF FIRE-RESISTANT MATERIAL
EP0547080B1 (en) * 1990-09-08 1994-11-30 Veitsch-Radex Aktiengesellschaft für feuerfeste Erzeugnisse Scavenging port for passing gases and/or solids into a metallurgical melt, and a process for manufacturing the port

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2455008A1 (en) * 1979-04-25 1980-11-21 Siderurgie Fse Inst Rech REFRACTORY PIECE WITH SELECTIVE AND ORIENTED PERMEABILITY FOR THE INSUFFLATION OF A FLUID
CS241483B2 (en) * 1980-06-25 1986-03-13 Arbed Refractory building body
LU82552A1 (en) * 1980-06-25 1982-01-20 Arbed FIRE-RESISTANT, GAS-PERMEABLE CONSTRUCTION

Also Published As

Publication number Publication date
PT76732A (en) 1983-06-01
CA1229228A (en) 1987-11-17
ZA833627B (en) 1984-02-29
LU84167A1 (en) 1983-11-23
ES8404414A1 (en) 1984-04-16
JPH0744041U (en) 1995-10-24
AR229811A1 (en) 1983-11-30
BR8302619A (en) 1983-12-13
IN157467B (en) 1986-04-05
DE3367257D1 (en) 1986-12-04
MX158037A (en) 1988-12-28
KR840004787A (en) 1984-10-24
ES522666A0 (en) 1984-04-16
KR910009493B1 (en) 1991-11-19
ATE23196T1 (en) 1986-11-15
PT76732B (en) 1986-01-27
JPS58210113A (en) 1983-12-07
EP0095436A1 (en) 1983-11-30
AU557537B2 (en) 1986-12-24
AU1493183A (en) 1983-12-01

Similar Documents

Publication Publication Date Title
EP0146079A2 (en) Gas-permeable refractory plug
EP0043338B1 (en) Gas-permeable body of fire-resistant material
EP0043787B1 (en) Gas-permeable body of fire-resistant material
EP0095436B1 (en) Gas-permeable refractory bodies
DE3026324C2 (en) Oven for controlled atmosphere operation
DE19542446C2 (en) Fireproof molded panels with gas routing channels
EP0320673A1 (en) Metallurgical vessel
DE2221639C3 (en) Lining of side wall parts of a furnace, in particular a blast furnace
DE3019228A1 (en) DEVICE FOR THERMAL REGENERATIVE TREATMENT OF A GAS FLOW
DE938732C (en) Electrically heated chamber annealing furnace with protective gas filling
LU82552A1 (en) FIRE-RESISTANT, GAS-PERMEABLE CONSTRUCTION
DE934228C (en) Fireproof regenerative furnace, in particular for generating heating gas
DE2431082C2 (en) Roll weld cladding
DE3729295C1 (en) Wear-resistant cladding of a high-temperature boiler surface, in particular an additive chute on a converter exhaust gas cooling stack
LU82553A1 (en) FIRE-RESISTANT, GAS-PERMEABLE CONSTRUCTION
DE7918516U1 (en) TROLLEY FOR FAST FURNACE, ESPECIALLY FOR PRODUCTS MADE OF CERAMIC MATERIAL LIKE TILES AND THE LIKE.
DE1533019C (en) Sintering furnace for pressure sintering powder metallurgical products
DE2458989C3 (en) Composite block for refractory furnace linings
DE1808236C (en) Radiant heater
DE3744694C2 (en)
DE1261529B (en) Process for preventing or reducing the clogging of refractory linings in metallurgical ovens and refractory linings for carrying out this process
DE1043291B (en) Method and device for carrying out endothermic reactions
DE1440270C (en) Melting runner type low frequency induction furnace
AT240772B (en) Basic, refractory stone unit
WO2020182328A1 (en) Metallurgic furnace

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE DE FR GB IT NL SE

17P Request for examination filed

Effective date: 19840525

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: INSTITUT DE RECHERCHES DE LA SIDERURGIE FRANCAISE

Owner name: ARBED S.A.

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE FR GB IT NL SE

REF Corresponds to:

Ref document number: 23196

Country of ref document: AT

Date of ref document: 19861115

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3367257

Country of ref document: DE

Date of ref document: 19861204

ITF It: translation for a ep patent filed
ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19910329

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19910404

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19910423

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19910510

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19910513

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19910521

Year of fee payment: 9

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19910531

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19920520

Ref country code: AT

Effective date: 19920520

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19920521

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19920531

BERE Be: lapsed

Owner name: INSTITUT DE RECHERCHES DE LA SIDERURGIE FRANCAISE

Effective date: 19920531

Owner name: ARBED S.A.

Effective date: 19920531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19921201

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19920520

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19930129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19930202

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 83630093.9

Effective date: 19921204