EP0039330A1 - Circuit pour decaler des impulsions - Google Patents

Circuit pour decaler des impulsions

Info

Publication number
EP0039330A1
EP0039330A1 EP80901190A EP80901190A EP0039330A1 EP 0039330 A1 EP0039330 A1 EP 0039330A1 EP 80901190 A EP80901190 A EP 80901190A EP 80901190 A EP80901190 A EP 80901190A EP 0039330 A1 EP0039330 A1 EP 0039330A1
Authority
EP
European Patent Office
Prior art keywords
displacement unit
output
circuit arrangement
memory
read
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP80901190A
Other languages
German (de)
English (en)
Inventor
Gottfried Tschannen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Schweiz AG
Original Assignee
Siemens Albis AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Albis AG filed Critical Siemens Albis AG
Publication of EP0039330A1 publication Critical patent/EP0039330A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/76Television signal recording
    • H04N5/91Television signal processing therefor
    • H04N5/93Regeneration of the television signal or of selected parts thereof
    • H04N5/95Time-base error compensation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/13Arrangements having a single output and transforming input signals into pulses delivered at desired time intervals
    • H03K5/131Digitally controlled
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K2005/00013Delay, i.e. output pulse is delayed after input pulse and pulse length of output pulse is dependent on pulse length of input pulse
    • H03K2005/00019Variable delay
    • H03K2005/00058Variable delay controlled by a digital setting
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K2005/00013Delay, i.e. output pulse is delayed after input pulse and pulse length of output pulse is dependent on pulse length of input pulse
    • H03K2005/0015Layout of the delay element
    • H03K2005/00234Layout of the delay element using circuits having two logic levels
    • H03K2005/00247Layout of the delay element using circuits having two logic levels using counters

Definitions

  • the invention relates to a circuit arrangement for changing the temporal position of pulses of a pulse train.
  • Such a circuit arrangement can be used to correct errors and distortions that can occur in the optics of an optoelectric converter.
  • This will be illustrated in more detail using an example of an optical scanning element with a polygon mirror, which is often used in infrared or facsimile scanning devices.
  • a first source of error is that the lens system usually has a different magnification at the edge of the image than in the optical axis.
  • distortions arise.
  • a square is represented in a barrel or pillow shape.
  • the distortion described is further transmitted in the electrical signal in such a way that the spatial displacement of a light beam occurring in the optics corresponds to a temporal displacement of the pixel signal assigned to the light beam.
  • the pixel signal can be corrected by compensating this time shift.
  • a second source of error consists in determining the position of the mirror, which determination is necessary in order to be able to identify the electrical pulse associated with a scanned pixel.
  • a stroboscopic disk is often scanned with a photoelectric element.
  • the invention solves the problem of creating a circuit arrangement for changing the temporal position of pulses of a pulse train, which requires the least possible effort.
  • FIG. 1 shows the block diagram of a first variant of the entire arrangement
  • Fig. 7 shows the block diagram of a second variant of the entire arrangement.
  • a signal source Q is connected to a counter Z.
  • the counter Z is connected via a memory S to the input 1 of a displacement unit VE.
  • Output 2 of the displacement unit VE is identical to output A of the entire circuit arrangement.
  • FIGS. 2 to 6 there is also a connection between the source Q and the input 3 of the displacement unit VE, which connection is shown in dashed lines in FIG. 1.
  • the change value assigned in each case to a specific pulse and defined in advance is stored in a read-only memory S and is called up by a counter Z which identifies the respective pulse emitted by the source Q. In accordance with this change value, the pulse is shifted in time in the shifting unit VE.
  • the displacement unit VE can be constructed in various ways.
  • the displacement unit VE is implemented in the form of a delay unit.
  • the inputs of fixed delay elements Tl ... TN are connected to input 2 of the displacement unit VE. Since each delay element T1 ... TN causes a different time shift, a pulse shifted by different delay times can be taken from the outputs of the delay elements T1 ... TN.
  • a multiplexer M loaded with change values retrieved from the fixed value memory S. the output of a delay element T assigned to a specific change value is connected to the output 3 of the displacement unit VE.
  • the 'delay elements T1 ... TN are connected in series to the pulse source Q.
  • a multiplexer M loaded with change values retrieved from the read-only memory S connects the output of a delay element T associated with a certain change value to the output 2 of the displacement unit VE.
  • the advantage of this solution is that the delay elements T1 ... TN can uniformly have the same delay time. This makes it possible to simplify production.
  • a suitable combination of fixed time delay elements T is connected in series between the input 2 and the output 3 of the displacement unit VE with the aid of switches SW1... SWN.
  • the unused time delay elements T are bridged.
  • the switches are controlled directly by the read-only memory S, a switch SW1 ... SWN being assigned to each bit position of the read-only memory S and the delay time of the controlled delay element T1 ... TN being selected in accordance with the weighting of the assigned bit position. Since instead of a multiplexer several individual switches are required and the timing elements have different delay times instead of a uniform delay time, this solution variant is particularly advantageous when a larger number of delay stages are required. Compared to the solutions according to FIGS. 2 and 3, a smaller number N of delay elements T1 ... TN is required from three different adjustable delay times.
  • the time shift is effected in the form of a frequency shift.
  • a voltage-controlled oscillator VCO is connected, for example via a multiplexer M, to a specific frequency-determining element F1 ... FN.
  • the multiplexer M is controlled in accordance with the information read from the fixed value memory S.
  • the displacement unit t VE consists of a phase locked loop.
  • a voltage controlled oscillator VCO is controlled via an adding circuit A by a phase detector D, which compares the phase position of the oscillator signal applied to its input b with that of the signal of the pulse source applied to its input a. Since a frequency difference corresponds to a phase shift increasing or decreasing proportionally to the time, the phase detector D outputs a control voltage until the frequencies of the pulse source and the oscillator signal match. If a certain voltage is additionally fed into the control circuit via the adder circuit A, it has to be compensated for by a change in the output signal of the phase detector D, and a corresponding phase shift occurs between the source signal and the oscillator signal.
  • a corresponding phase shift can thus be brought about by means of change information retrieved from the read-only memory S, which is converted into a specific change voltage in a digital / analog converter D / A and fed into the control circuit via the adder circuit A.
  • a voltage-controlled oscillator VCO is controlled by a phase detector D, which compares the frequency of the source signal with the oscillator signal reduced in a Johnson counter Z.
  • the oscillator frequency is accordingly higher than the frequencies of the source signal, depending on the reduction.
  • the Johnson counter Z has a number N of outputs corresponding to the number of counting pulses in a counting cycle.
  • the first pulse of the input signal can be tapped at the first output, the second pulse at the second, and so on.
  • a pulse appears at each output of the counter compared to one of the other outputs by a certain amount of time.
  • a multiplexer M connects a specific output of the Johnson counter Z to the output of the displacement unit VE in accordance with a change signal read from the read-only memory S.
  • an ordinary cyclic counter can also be used.
  • Each output variable appears to be shifted in time by a certain amount compared to the other output variables.
  • a specific output variable can be detected with the aid of a coincidence circuit loaded by the read-only memory S.
  • the coincidence signal corresponds to the position signal shifted in time by the desired amount.
  • neither phase nor frequency of the signal of the oscillator VCO can be matched to that of the pulse source Q. It is therefore inevitable that the number of pulses in a pulse train emitted by the oscillator VCO neither remains constant nor does it match the number of pulses from the pulse source Q counted by the counter Z. If this does not matter, the solution according to FIG. 5 can be implemented with relatively little effort. 6 and 7, synchronization is provided. 6 is particularly suitable for high frequencies, since the frequency of the oscillator signal coincides with that of the source signal and the frequency range of the oscillator VCO can thus be fully utilized. 7, the frequency of the oscillator signal corresponding to the counting cycle of the counter Z is higher than the frequency of the source signal. If the source signal remains constant in terms of frequency, the frequency of the oscillator signal need not be changed. This means fewer problems with stability.
  • the delay times of the delay elements T1 ... TN according to FIGS. 2, 3 and 4 are frequency-dependent.
  • the frequency of the pulse source may * fluctuate only within defined limits, given the prescribed accuracy of the delay times.
  • a control circuit shown in FIGS. 6, 7 is to be provided.
  • the present circuit arrangement is very well suited for correcting errors and distortions that can arise in the optical part of an infrared recording device. If, for example, aspherical lenses were used instead of the usual spherical lenses in a telescope attachment, then in addition to more expensive production, a larger tube length would also have to be accepted. However, a longer pipe length reduces the mobility of a system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)

Abstract

Diverses erreurs et distorsions apparaissant dans un convertisseur opto-electrique sont avantageusement corrigees dans la partie electrique. Ceci est obtenu avec un decalage dans le temps du signal ponctuel d'image. L'invention donne une solution generale du probleme avec simplicite avec un circuit en decalant dans le temps une suite d'impulsions. Dans ce circuit les valeurs corrigees attribuees aux impulsions a decaler sont emmagasinees dans une memoire fixe et sont recherchees par un compteur (Z) d'identification d'impulsion. Les valeurs corrigees sont transmises vers une unite de decalage (VE). Cette unite realise un decalage dans le temps des impulsions. Diverses formes d'execution d'une telle unite de decalage sont decrites.
EP80901190A 1979-09-28 1980-07-02 Circuit pour decaler des impulsions Withdrawn EP0039330A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH877579A CH646287A5 (de) 1979-09-28 1979-09-28 Schaltungsanordnung zur zeitlichen verschiebung von impulsen.
CH8775/79 1979-09-28

Publications (1)

Publication Number Publication Date
EP0039330A1 true EP0039330A1 (fr) 1981-11-11

Family

ID=4344598

Family Applications (1)

Application Number Title Priority Date Filing Date
EP80901190A Withdrawn EP0039330A1 (fr) 1979-09-28 1980-07-02 Circuit pour decaler des impulsions

Country Status (4)

Country Link
EP (1) EP0039330A1 (fr)
CH (1) CH646287A5 (fr)
IT (1) IT1132980B (fr)
WO (1) WO1981000940A1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4488297A (en) * 1982-04-05 1984-12-11 Fairchild Camera And Instrument Corp. Programmable deskewing of automatic test equipment
US4458165A (en) * 1983-03-23 1984-07-03 Tektronix, Inc. Programmable delay circuit
US4600945A (en) * 1983-03-31 1986-07-15 Rca Corporation Digital video processing system with raster distortion correction
JPS60143017A (ja) * 1983-12-29 1985-07-29 Advantest Corp クロツク同期式論理装置
US4737670A (en) * 1984-11-09 1988-04-12 Lsi Logic Corporation Delay control circuit
JPH0677791A (ja) * 1992-08-26 1994-03-18 Nippondenso Co Ltd 遅延装置,プログラム可能遅延線及び発振装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2774872A (en) * 1952-12-17 1956-12-18 Bell Telephone Labor Inc Phase shifting circuit
US2960568A (en) * 1958-02-26 1960-11-15 Rca Corp Tape reproducing system
DE1252234B (fr) * 1963-10-05
GB1294758A (en) * 1969-12-13 1972-11-01 Tokyo Shibaura Electric Co Program control devices
US3913021A (en) * 1974-04-29 1975-10-14 Ibm High resolution digitally programmable electronic delay for multi-channel operation
DE2520089A1 (de) * 1975-05-06 1976-11-18 Philips Patentverwaltung Schaltungsanordnung zur erzeugung aequidistanter von einem mechanischen taktgeber abgeleiteter elektrischer impulse
US4016511A (en) * 1975-12-19 1977-04-05 The United States Of America As Represented By The Secretary Of The Air Force Programmable variable length high speed digital delay line
JPS5927513B2 (ja) * 1976-11-05 1984-07-06 日本テレビジヨン工業株式会社 信号発生器
US4129867A (en) * 1977-04-28 1978-12-12 Motorola Inc. Multi-pulse modulator for radar transponder
US4104538A (en) * 1977-04-29 1978-08-01 Fairchild Camera And Instrument Corporation Digitally synthesized back-up frequency
US4271483A (en) * 1977-08-04 1981-06-02 Independent Broadcasting Authority Delay circuits

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO8100940A1 *

Also Published As

Publication number Publication date
IT1132980B (it) 1986-07-09
CH646287A5 (de) 1984-11-15
WO1981000940A1 (fr) 1981-04-02
IT8024776A0 (it) 1980-09-19

Similar Documents

Publication Publication Date Title
DE3153280C2 (fr)
DE69726689T2 (de) Wandlung eines Analogsignals, insbesondere eines Fernsehsignals, in einem Digitalsignal
DE3203967C2 (de) Photoelektrische Wandlereinrichtung
DE69124436T2 (de) Bildaufnahmesystem mit optischer Bildformumwandlung
DE68912146T2 (de) Digitale Vorrichtung zur Korrektur der Konvergenz.
DE3320096A1 (de) Verfahren und vorrichtung zum feststellen eines scharfstellenzustandes bei einem optischen abbildungssytem
DE4035145A1 (de) Optisches system zur aufteilung einer reellen abbildung
DE3304592C2 (fr)
DE2821024C3 (de) Signalgenerator zur Synthese von Fernseh-Priifzeilensignalen
EP0039330A1 (fr) Circuit pour decaler des impulsions
DE10121757B4 (de) Datenregenerator mit einstellbarer Entscheiderschwelle und einstellbarem Abtastzeitpunkt
EP0085337B1 (fr) Système de télécommunications numériques
DE2730208A1 (de) Verfahren zum festhalten des pegels eines eingangssignals auf einem bezugspegel und dabei verwendbare klemmschaltung
DE2934976C2 (fr)
DE68910603T2 (de) Vorrichtung zur Erzeugung eines Rasterablenksignals.
DE10241848A1 (de) Verfahren zur Erfassung von optischen bzw. elektrischen Signalfolgen und Augenmonitor zur Erfassung und Darstellung von Signalfolgen
DE102009039430B4 (de) Vorrichtung und Verfahren mit ersten und zweiten Zeittakten
DE102008064063B4 (de) Steuersignalerzeugungsschaltung zur Einstellung eines Periodenwerts eines erzeugten Taktsignals als die Periode eines Referenzsignals, multipliziert mit oder dividiert durch eine beliebige reelle Zahl
EP0226813A2 (fr) Synthétiseur à compensation par addition
DE4333391C1 (de) Testsystem für eine Regeneratoreinrichtung
DE1762423A1 (de) Verfahren zum UEbertragen von Signalen
DE69130780T2 (de) Bildaufnahmegerät mit darin verwendeter Zählerschaltung
EP0463206B1 (fr) Procédé pour mesurer des petites différences de phase et circuit pour appliquer ce procédé
DE60217261T2 (de) Entzerrung von optischen Signalen
DE3843261A1 (de) Schaltungsanordnung zur steuerung der phase eines taktsignals

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): CH DE FR GB NL

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19811116

RIN1 Information on inventor provided before grant (corrected)

Inventor name: TSCHANNEN, GOTTFRIED