EP0039330A1 - Schaltungsanordnung zur verschiebung von impulsen - Google Patents

Schaltungsanordnung zur verschiebung von impulsen

Info

Publication number
EP0039330A1
EP0039330A1 EP80901190A EP80901190A EP0039330A1 EP 0039330 A1 EP0039330 A1 EP 0039330A1 EP 80901190 A EP80901190 A EP 80901190A EP 80901190 A EP80901190 A EP 80901190A EP 0039330 A1 EP0039330 A1 EP 0039330A1
Authority
EP
European Patent Office
Prior art keywords
displacement unit
output
circuit arrangement
memory
read
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP80901190A
Other languages
English (en)
French (fr)
Inventor
Gottfried Tschannen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Schweiz AG
Original Assignee
Siemens Albis AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Albis AG filed Critical Siemens Albis AG
Publication of EP0039330A1 publication Critical patent/EP0039330A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/76Television signal recording
    • H04N5/91Television signal processing therefor
    • H04N5/93Regeneration of the television signal or of selected parts thereof
    • H04N5/95Time-base error compensation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/13Arrangements having a single output and transforming input signals into pulses delivered at desired time intervals
    • H03K5/131Digitally controlled
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K2005/00013Delay, i.e. output pulse is delayed after input pulse and pulse length of output pulse is dependent on pulse length of input pulse
    • H03K2005/00019Variable delay
    • H03K2005/00058Variable delay controlled by a digital setting
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K2005/00013Delay, i.e. output pulse is delayed after input pulse and pulse length of output pulse is dependent on pulse length of input pulse
    • H03K2005/0015Layout of the delay element
    • H03K2005/00234Layout of the delay element using circuits having two logic levels
    • H03K2005/00247Layout of the delay element using circuits having two logic levels using counters

Definitions

  • the invention relates to a circuit arrangement for changing the temporal position of pulses of a pulse train.
  • Such a circuit arrangement can be used to correct errors and distortions that can occur in the optics of an optoelectric converter.
  • This will be illustrated in more detail using an example of an optical scanning element with a polygon mirror, which is often used in infrared or facsimile scanning devices.
  • a first source of error is that the lens system usually has a different magnification at the edge of the image than in the optical axis.
  • distortions arise.
  • a square is represented in a barrel or pillow shape.
  • the distortion described is further transmitted in the electrical signal in such a way that the spatial displacement of a light beam occurring in the optics corresponds to a temporal displacement of the pixel signal assigned to the light beam.
  • the pixel signal can be corrected by compensating this time shift.
  • a second source of error consists in determining the position of the mirror, which determination is necessary in order to be able to identify the electrical pulse associated with a scanned pixel.
  • a stroboscopic disk is often scanned with a photoelectric element.
  • the invention solves the problem of creating a circuit arrangement for changing the temporal position of pulses of a pulse train, which requires the least possible effort.
  • FIG. 1 shows the block diagram of a first variant of the entire arrangement
  • Fig. 7 shows the block diagram of a second variant of the entire arrangement.
  • a signal source Q is connected to a counter Z.
  • the counter Z is connected via a memory S to the input 1 of a displacement unit VE.
  • Output 2 of the displacement unit VE is identical to output A of the entire circuit arrangement.
  • FIGS. 2 to 6 there is also a connection between the source Q and the input 3 of the displacement unit VE, which connection is shown in dashed lines in FIG. 1.
  • the change value assigned in each case to a specific pulse and defined in advance is stored in a read-only memory S and is called up by a counter Z which identifies the respective pulse emitted by the source Q. In accordance with this change value, the pulse is shifted in time in the shifting unit VE.
  • the displacement unit VE can be constructed in various ways.
  • the displacement unit VE is implemented in the form of a delay unit.
  • the inputs of fixed delay elements Tl ... TN are connected to input 2 of the displacement unit VE. Since each delay element T1 ... TN causes a different time shift, a pulse shifted by different delay times can be taken from the outputs of the delay elements T1 ... TN.
  • a multiplexer M loaded with change values retrieved from the fixed value memory S. the output of a delay element T assigned to a specific change value is connected to the output 3 of the displacement unit VE.
  • the 'delay elements T1 ... TN are connected in series to the pulse source Q.
  • a multiplexer M loaded with change values retrieved from the read-only memory S connects the output of a delay element T associated with a certain change value to the output 2 of the displacement unit VE.
  • the advantage of this solution is that the delay elements T1 ... TN can uniformly have the same delay time. This makes it possible to simplify production.
  • a suitable combination of fixed time delay elements T is connected in series between the input 2 and the output 3 of the displacement unit VE with the aid of switches SW1... SWN.
  • the unused time delay elements T are bridged.
  • the switches are controlled directly by the read-only memory S, a switch SW1 ... SWN being assigned to each bit position of the read-only memory S and the delay time of the controlled delay element T1 ... TN being selected in accordance with the weighting of the assigned bit position. Since instead of a multiplexer several individual switches are required and the timing elements have different delay times instead of a uniform delay time, this solution variant is particularly advantageous when a larger number of delay stages are required. Compared to the solutions according to FIGS. 2 and 3, a smaller number N of delay elements T1 ... TN is required from three different adjustable delay times.
  • the time shift is effected in the form of a frequency shift.
  • a voltage-controlled oscillator VCO is connected, for example via a multiplexer M, to a specific frequency-determining element F1 ... FN.
  • the multiplexer M is controlled in accordance with the information read from the fixed value memory S.
  • the displacement unit t VE consists of a phase locked loop.
  • a voltage controlled oscillator VCO is controlled via an adding circuit A by a phase detector D, which compares the phase position of the oscillator signal applied to its input b with that of the signal of the pulse source applied to its input a. Since a frequency difference corresponds to a phase shift increasing or decreasing proportionally to the time, the phase detector D outputs a control voltage until the frequencies of the pulse source and the oscillator signal match. If a certain voltage is additionally fed into the control circuit via the adder circuit A, it has to be compensated for by a change in the output signal of the phase detector D, and a corresponding phase shift occurs between the source signal and the oscillator signal.
  • a corresponding phase shift can thus be brought about by means of change information retrieved from the read-only memory S, which is converted into a specific change voltage in a digital / analog converter D / A and fed into the control circuit via the adder circuit A.
  • a voltage-controlled oscillator VCO is controlled by a phase detector D, which compares the frequency of the source signal with the oscillator signal reduced in a Johnson counter Z.
  • the oscillator frequency is accordingly higher than the frequencies of the source signal, depending on the reduction.
  • the Johnson counter Z has a number N of outputs corresponding to the number of counting pulses in a counting cycle.
  • the first pulse of the input signal can be tapped at the first output, the second pulse at the second, and so on.
  • a pulse appears at each output of the counter compared to one of the other outputs by a certain amount of time.
  • a multiplexer M connects a specific output of the Johnson counter Z to the output of the displacement unit VE in accordance with a change signal read from the read-only memory S.
  • an ordinary cyclic counter can also be used.
  • Each output variable appears to be shifted in time by a certain amount compared to the other output variables.
  • a specific output variable can be detected with the aid of a coincidence circuit loaded by the read-only memory S.
  • the coincidence signal corresponds to the position signal shifted in time by the desired amount.
  • neither phase nor frequency of the signal of the oscillator VCO can be matched to that of the pulse source Q. It is therefore inevitable that the number of pulses in a pulse train emitted by the oscillator VCO neither remains constant nor does it match the number of pulses from the pulse source Q counted by the counter Z. If this does not matter, the solution according to FIG. 5 can be implemented with relatively little effort. 6 and 7, synchronization is provided. 6 is particularly suitable for high frequencies, since the frequency of the oscillator signal coincides with that of the source signal and the frequency range of the oscillator VCO can thus be fully utilized. 7, the frequency of the oscillator signal corresponding to the counting cycle of the counter Z is higher than the frequency of the source signal. If the source signal remains constant in terms of frequency, the frequency of the oscillator signal need not be changed. This means fewer problems with stability.
  • the delay times of the delay elements T1 ... TN according to FIGS. 2, 3 and 4 are frequency-dependent.
  • the frequency of the pulse source may * fluctuate only within defined limits, given the prescribed accuracy of the delay times.
  • a control circuit shown in FIGS. 6, 7 is to be provided.
  • the present circuit arrangement is very well suited for correcting errors and distortions that can arise in the optical part of an infrared recording device. If, for example, aspherical lenses were used instead of the usual spherical lenses in a telescope attachment, then in addition to more expensive production, a larger tube length would also have to be accepted. However, a longer pipe length reduces the mobility of a system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)

Description

Schaltungsanordnung zur Verschiebung von Impulsen
Die Erfindung bezieht sich auf eine Schaltungsaπordnung zur Veränderung der zeitlichen Lage von Impulsen einer Impulsfolge.
Eine derartige Schaltungsanordnung kann zur Korrektur von Fehlern und Verzerrungen, wie sie in der Optik eines optoelektrischen Wandlers auftreten können, eingesetzt werden. Dies soll anhand eines Beispiels eines optischen Abtastelementes mit einem Polygonspiegel, wel¬ ches häufig bei Infrarot- oder Faksimile-Abtastgeräten verwendet wird, näher dargestellt werden. Bei einem derartigen Abtastelement bestehen vor allem zwei wichtige Fehlerquellen. Eine erste Fehlerquelle besteht darin, dass beim Linsensystem in der Regel am Bildrand eine andere Ver- grösserung auftritt als in der optischen Achse. Infolgedessen entstehen Verzerrungen. Ein Quadrat beispielsweise wird tonnen- oder kissenförmig abgebildet. Diese Verzerrungen können störend wirken, insbesondere wenn von verschiedenartigen optoelektrischen Wandlern aufgenommene Bilder zur Deckung gebracht werden sollen, wie dies beispielsweise bei der Kom¬ bination eines Tagsichtgerätes mit einem Nachtsichtgerät erforderlich sein kann. Die beschriebene Verzerrung wird im elektrischen Signal in der Weise weiterübertragen, dass die bei der Optik auftretende räum¬ liche Verschiebung eines Lichtstrahls einer zeitlichen Verschiebung des dem Lichtstrahl zugeordneten Bildpunktsignals entspricht. Durch die Kom¬ pensation dieser zeitlichen Verschiebung kann eine Korrektur des Bild¬ punktsignals bewirkt werden. Eine zweite Fehlerquelle besteht bei der Bestimmung der Position des Spiegels, welche Bestimmung erforderlich ist, um den einem abgetasteten Bildpunkt zugeordneten elektrischen Impuls identifizieren zu können. Zur Feststellung der Position des Spiegels wird häufig eine Stroboskopscheibe mit einem fotoelektrischen Element abgetastet. Infolge der Toleranzen beim Polygonspiegel bezüglich der von jeweils zwei aneinandergrenzenden Spiegelflächen gebildeten Winkel wird das einer bestimmten Position des Spiegels zugeordnete elektrische Posi¬ tionssignal mit einer zeitlichen Verschiebung an die entsprechende Aus-
OI.-PI werteschaltung abgegeben. Auch dieser Fehler kann mit einer Schaltungs¬ anordnung zur Korrektur der zeitlichen Lage einzelner Impulse einer Im¬ pulsfolge weitgehend kompensiert werden.
Die Erfindung, wie sie in den Ansprüchen angegeben ist, löst die Aufgabe, eine Schaltungsanordnung zur Veränderung der zeitlichen Lage von Impulsen einer Impulsfolge zu schaffen, welche einen möglichst geringen Aufwand erfordert.
Im folgenden wird die erfindungsgemässe Schaltungsanordnung anhand einer Zeichnung beispielsweise näher erläutert. Es zeigt: Fig. 1 das Blockschaltbild einer ersten Variante der gesamten Anordnung,
Fig. 2 bis 6 Ausführungsbeispiele einer Verschiebeeinheit VE in der Anordnung gemäss Fig. 1,
Fig. 7 das Blockschaltbild einer zweiten Variante der gesamten Anordnung.
In der Schaltungsanordnung gemäss Fig. 1 ist eine Signalquelle Q mit einem Zähler Z verbunden. Der Zähler Z ist über einen Speicher S am Eingang 1 einer Verschiebeeinheit VE angeschlossen. Der Ausgang 2 der Verschiebeeinheit VE ist identisch mit dem Ausgang A der gesamten Schal- tungsanordnung. In den in Fig. 2 bis 6 dargestellten Fällen besteht ausserde noch eine Verbindung zwischen der Quelle Q und dem Eingang 3 der Verschiebeeinheit VE, welche Verbindung in Fig. 1 gestrichelt dar¬ gestellt ist. Der jeweils einem bestimmten Impuls zugeordnete, im voraus festgelegte Aenderungswert ist in einem Festwertspeicher S gespeichert und wird durch einen den jeweils von der Quelle Q ausgesendeten Impuls identifizierenden Zähler Z abgerufen. Entsprechend diesem Aenderungs¬ wert wird der Impuls in der Verschiebeeinheit VE zeitlich verschoben. Die Verschiebeeinheit VE kann in verschiedener Weise aufge¬ baut werden. In einer ersten Variante gemäss Fig. 2 ist die Verschiebe- einheit VE in Form einer Verzögerungseinheit realisiert. Die Eingänge von festeingestellten Verzögerungsgliedern Tl ...TN sind am Eingang 2 der Verschiebeeinheit VE angeschlossen. Da jedes Verzögerungsglied Tl ... TN eine andere zeitliche Verschiebung bewirkt, ist an den Ausgängen der Verzögerungsg ieder T1...TN ein jeweils um unterschiedliche Verzögerungs Zeiten verschobener Impuls entnehmbar. Mit Hilfe eines mit vom Festwert¬ speicher S abgerufenen Aenderungswerten beaufschlagten Multiplexers M wi d der Ausgang eines einem bestimmten Aenderungswert zugeordneten Ver¬ zögerungsgl edes T mit dem Ausgang 3 der Verschiebeeinheit VE verbunden. In einer zweiten in Fig. 3 dargestellten Variante sind die ' Verzögerungsglieder T1...TN in Serie an der Impulsquelle Q angeschlossen. Ein mit vom Festwertspeicher S abgerufenen Aenderungswerten beaufschlag¬ ter Multiplexer M verbindet den einem gewissen Aenderungswert zugeord¬ neten Ausgang eines Verzögerungsgliedes T mit dem Ausgang 2 der Ver¬ schiebeeinheit VE. Der Vorteil dieser Lösung liegt darin, dass die Ver¬ zögerungsglieder T1...TN einheitlich eine gleiche Verzögerungszeit auf- weisen können. Dadurch lassen sich Vereinfachungen bei der Herstellung erzielen.
In einer dritten Variante gemäss Fig. 4 wird mit Hilfe von Schaltern SW1...SWN eine geeignete Kombination von festeingestellten Zeitverzögerungsgliedern T in Serie zwischen den Eingang 2 und den Aus- gang 3 der Verschiebeeinheit VE geschaltet. Die nichtverwendeten Zeit¬ verzögerungsglieder T werden überbrückt. Die Schalter werden direkt vom Festwertspeicher S gesteuert, wobei jeder Bitstelle des Festwertspeichers S ein Schalter SW1...SWN zugeordnet ist und die Verzögerungszeit des an¬ gesteuerten Verzögerungsgliedes T1...TN entsprechend der Gewichtung der zugeordneten Bitstelle gewählt ist. Da anstelle eines Multiplexers je¬ weils mehrere einzelne Schalter benötigt werden und die Zeitglieder an¬ stelle einer einheitlichen Verzögerungszeit unterschiedliche Verzögerungs¬ zeiten aufweisen, ist diese Lösungsvariante vor allem dann von Vorteil, wenn eine grössere Anzahl Verzögerungsstufen benötigt werden. Im Ver- gleich zu den Lösungen nach Fig. 2 und 3 ist ab drei verschiedenen ein¬ stellbaren Verzögerungszeiten eine geringere Anzahl N von Verzögerungs¬ gliedern T1...TN erforderlich.
Bei der Lösung nach Fig. 5 wird die zeitliche Verschiebung in Form einer Frequenzverschiebung bewirkt. Dabei ist ein spannungsgesteuer- ter Oszillator VCO beispielsweise über einen Multiplexer M mit einem be¬ stimmten frequenzbestimmenden Glied F1...FN verbunden. Der Multiplexer M wird hierbei entsprechend den aus dem Festwertspe cher S ausgelesenen Informationen gesteuert.
Bei der Variante nach Fig. 6 besteht die Verschiebeeinhe t VE aus einem Phasenregelkreis. Ein spannungsgesteuerter Oszillator VCO ist über eine Addierschaltung A von einem Phasendetektor D gesteuert, welcher die Phasenlage des an seinem Eingang b anliegenden Oszillatorsignals mit derjenigen des an seinem Eingang a anliegenden Signals der Impulsquelle vergleicht. Da eine Frequenzdifferenz einer proportional zur Zeit zu- oder abnehmenden Phasenverschiebung entspricht, gibt der Phasendetektor D solange eine Regelspannung ab bis die Frequenzen des Impulsquellen- und des Oszillatorsignals übereinstimmen. Wird über die Addierschaltung A zusätzlich eine bestimmte Spannung in den Regelkreis eingespeist, muss sie durch eine Aenderung des Ausgangssignals des Phasendetektors D kompensiert werden, und es stellt sich eine entsprechende Phasenverschie bung zwischen Quellensignal und Oszillatorsignal ein. Somit kann durch eine aus dem Festwertspeicher S abgerufene Aenderungsinformation, welche in einem Digital-/Analog-Wandler D/A in eine bestimmte Aenderungsspannun umgewandelt und über die Addierschaltung A in den Regelkreis eingespeist wird, eine entsprechende Phasenverschiebung bewirkt werden. Bei der in Fig. 7 dargestellten Verzögerungseinheit VE wird ein spannungsgesteuerter Oszillator VCO von einem Phasendetektor D ge¬ steuert, der die Frequenz des Quellensignals mit dem in einem Johnson- Zähler Z untersetzten Oszillatorsignal vergleicht. Die Oszillatorfre- quenz ist demzufolge entsprechend der Untersetzung höher als die Frequen des Quellensignals.
Der Johnson-Zähler Z besitzt eine der Anzahl Zählimpulse eines Zählzyklus entsprechende Anzahl N von Ausgängen. Der erste Impuls des Eingangssignals kann am ersten Ausgang abgegriffen werden, der zweite Impuls am zweiten usw. Ein Impuls erscheint also an jedem Ausgang des Zählers im Vergleich zu einem der anderen Ausgänge um einen bestimmten Betrag zeitlich verschoben. Ein Multiplexer M verbindet entsprechend einem aus dem Festwertspeicher S ausgelesenen Aenderungssignal einen bestimmten Ausgang des Johnson-Zählers Z mit dem Ausgang der Verschiebe¬ einheit VE. Anstelle des Johnson-Zählers Z kann auch ein gewöhnlicher zyklisch arbeitender Zähler verwendet werden. Eine jede Ausgangsvariable erscheint im Vergleich zu den anderen Ausgangsvariablen um einen bestimm ten Betrag zeitlich verschoben. Mit Hilfe einer vom Festwertspeicher S beaufschlagten Koinzidenzschaltung kann eine bestimmte Ausgangsvariable detektiert werden. Das Koinzidenzsignal entspricht dem um den gewünsch¬ ten Betrag zeitlich verschobenen Positionssignal. Bei der Lösung nach Fig. 5 können weder Phase noch Frequenz des Signals des Oszillators VCO auf dasjenige der I pulsquelle Q abge¬ stimmt werden. Deswegen ist es unvermeidlich, dass die Anzahl der Im¬ pulse einer vom Oszillator VCO abgegebenen Impulsfolge weder konstant bleibt noch mit der Anzahl der vom Zähler Z ausgezählten Impulse der Impulsquelle Q übereinstimmt. Sofern dies keine Rolle spielt, ist die Lösung nach Fig. 5 mit verhältnis ässig wenig Aufwand zu realisieren. In den Lösungen nach Fig. 6 und 7 ist eine Synchronisation vorgesehen. Die Lösung nach Fig. 6 ist insbesondere für hohe Frequenzen geeignet, da die Frequenz des Oszillatorsignals mit derjenigen des Quel¬ lensignals übereinstimmt und somit der Frequenzbereich des Oszillators VCO voll ausgenützt werden kann. Bei der Verzögerungseinheit VE nach Fig. 7 ist die Frequenz des Qszillatorsignals dem Zählzyklus des Zählers Z entsprechend höher als die Frequenz des Quellensignals. Sofern das Quellensignal frequenzmässig konstant bleibt, muss die Frequenz des Os- zillatorsignals nicht verändert werden. Dadurch ergeben sich weniger Probleme mit der Stabilität.
Es ist zu beachten, dass die Verzögerungszeiten der Verzöge¬ rungsglieder T1...TN gemäss Fig. 2, 3 und 4 frequenzabhängig sind. Die Frequenz der Impulsquelle darf*bei vorgeschriebener Genauigkeit der Ver¬ zögerungszeiten nur in definierten Grenzen schwanken. Bei grösseren der¬ artigen Schwankungen ist ein in Fig. 6, 7 gezeigter Regelkreis vorzu¬ sehen.
Wie eingangs erwähnt wurde, eignet sich die vorliegende Schal- tungsanordnung sehr gut zur Korrektur von Fehlern und Verzerrungen, die im optischen Teil eines Infrarot-Aufnahmegerätes entstehen können. Würden beispielsweise bei einem Fernrohrvorsatz asphärische anstelle der sonst üblichen sphärischen Linsen verwendet, so müsste neben einer teureren Fertigung zudem noch eine grössere Rohrlänge in Kauf genommen werden. Eine grössere Rohrlänge verringert jedoch die Mobilität einer Anlage.
Die Verbesserung der Toleranzen der jeweils von zwei aneinandergrenzenden Spiegelflächen gebildeten Winkel eines Polygonspiegels wird von einem gewissen Ausmass an immer aufwendiger. Sowohl im Falle des Fernrohrvor¬ satzes als auch im Falle der Toleranzen beim Polygonspiegel gibt es eine Grenze der Verbesserungen, bei welcher eine Korrektur im elektrischen Teil des Aufnahmegerätes wirtschaftlicher ist als eine Erhöhung der Präzision im optischen Teil.
Vv'IPO
< ?

Claims

Patentansprüche
1. Schaltungsanordnung zur Veränderung der zeitlichen Lage vo Impulsen einer Impulsfolge, dadurch gekennze chnet, dass eine Verschieb einheit (VE) mit variabler Zeitverschiebung sowie ein mit dieser verbun dener Festwertspeicher (S) vorgesehen ist, der den zu ändernden Impulse zugeordnete Aenderungsinformationen enthält, die von einem mit der Im¬ pulsquelle (Q) verbundenen Zähler (Z) abgerufen und der Verschiebeeinhei (VE) zugeführt werden.
2. Schaltungsanordnung nach Anspruch 1, dadurch gekennzeichne dass die Verschiebeeinheit (VE) aus mehreren eingangsseitig mit der Sig nalquelle (Q) verbundenen, festeingestellten Zeitverzögerungsgliedern (T1...TN) aufgebaut ist, deren Ausgänge mit den Eingängen eines mit den vom Festwertspeicher (S) abgerufenen Aenderungswerten beaufschlagten Multiplexers (M) verbunden sind, dessen Ausgang den Ausgang (2) der Ver schiebeeinheit (VE) bildet.
3. Schaltungsanordnung nach Anspruch 1, dadurch gekennzeichne dass die Verschiebeeinheit (VE) aus mehreren in Serie geschalteten und mit der Signalquelle (Q) verbundenem, festeingestellten Zeitverzögerungs gliedern (T1...TN) aufgebaut ist, deren Ausgänge mit den Eingängen eines mit den vom Festwertspeicher (S) abgerufenen Aenderungswerten beaufschla ten Multiplexers (M) verbunden sind, dessen Ausgang den Ausgang (2) der Verschiebeeinheit (VE) bildet.
4. Schaltungsanordnung nach Anspruch 1, dadurch gekennzeichne dass die Verschiebeeinheit (VE) aus mehreren hintereinandergeschalteten und mit der Signalquelle (Q) verbundenen, festeingestellten Zeitverzöge- rungsgliedern (T1...TN) aufgebaut ist, die mit am Festwertspeicher (S) angeschlossenen Schaltern (SW1...SWN) wahlweise überbrückbar sind.
5. Schaltungsanordnung nach Anspruch 1, dadurch gekennzeichne dass die Verschiebeeinheit (VE) aus einem spannungsgesteuerten Oszillato (VCO) besteht, der mit einem am Festwertspeicher (S) angeschlossenen Mul tiplexer (M) derart verbunden ist, dass je nach der ausgelesεnen Aende- rungsinformation unterschiedliche festeingestellte frequenzbestimmende Elemente (F1...FN) anschaltbar sind.
6. Schaltungsanordnung nach Anspruch 1, dadurch gekennzeichnet, dass die Verschiebeeinheit (VE) aus einem spannungsgesteuerten Oszillator (VCO) aufgebaut ist, dessen Eingang über eine Additionsschaltung (A) einerseits über einen Digital-/Analog-Wandler (DA) mit dem Festwertspei- eher (S) und andererseits mit einem Phasendetektor (D) verbunden ist, der an einem Eingang (a) mit der Signalquelle (Q) und am anderen Eingang (b) mit dem Ausgang des spannungsgesteuerten Oszillators (VCO) verbunden ist, welcher den Ausgang (2) der Verschiebeetnhei (VE) bildet.
7. Schaltungsanordnung nach Anspruch 1, dadurch gekennzeichnet, dass die Verschiebeeinheit (VE) aus einem spannungsgesteuerten Oszillator
(VCO) besteht, der von einem Phasendetektor (D) gesteuert wird, dessen erster Eingang (a) mit der Signalquelle (Q) und dessen zweiter Eingang (b) über einen Johnson-Zähler (Z) mit dem spannungsgesteuerten Oszillator (VCO) verbunden ist, wobei am Ausgang des Johnson-Zählers (Z) ein vom Festwertspeicher (S) gesteuerter Multiplexer (M) angeschlossen ist, des¬ sen Ausgang den Ausgang (2) der Verschiebeeinheit (VE) bildet.
8. Schaltungsanordnung nach Anspruch 7, dadurch gekennzeichnet, dass anstelle des Johnson-Zählers (Z) ein zyklisch arbeitender Zähler und anstelle des Multiplexers (M) eine Koinzidenzschaltung vorgesehen ist.
EP80901190A 1979-09-28 1980-07-02 Schaltungsanordnung zur verschiebung von impulsen Withdrawn EP0039330A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH877579A CH646287A5 (de) 1979-09-28 1979-09-28 Schaltungsanordnung zur zeitlichen verschiebung von impulsen.
CH8775/79 1979-09-28

Publications (1)

Publication Number Publication Date
EP0039330A1 true EP0039330A1 (de) 1981-11-11

Family

ID=4344598

Family Applications (1)

Application Number Title Priority Date Filing Date
EP80901190A Withdrawn EP0039330A1 (de) 1979-09-28 1980-07-02 Schaltungsanordnung zur verschiebung von impulsen

Country Status (4)

Country Link
EP (1) EP0039330A1 (de)
CH (1) CH646287A5 (de)
IT (1) IT1132980B (de)
WO (1) WO1981000940A1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4488297A (en) * 1982-04-05 1984-12-11 Fairchild Camera And Instrument Corp. Programmable deskewing of automatic test equipment
US4458165A (en) * 1983-03-23 1984-07-03 Tektronix, Inc. Programmable delay circuit
US4600945A (en) * 1983-03-31 1986-07-15 Rca Corporation Digital video processing system with raster distortion correction
JPS60143017A (ja) * 1983-12-29 1985-07-29 Advantest Corp クロツク同期式論理装置
US4737670A (en) * 1984-11-09 1988-04-12 Lsi Logic Corporation Delay control circuit
JPH0677791A (ja) * 1992-08-26 1994-03-18 Nippondenso Co Ltd 遅延装置,プログラム可能遅延線及び発振装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2774872A (en) * 1952-12-17 1956-12-18 Bell Telephone Labor Inc Phase shifting circuit
US2960568A (en) * 1958-02-26 1960-11-15 Rca Corp Tape reproducing system
DE1252234B (de) * 1963-10-05
GB1294758A (en) * 1969-12-13 1972-11-01 Tokyo Shibaura Electric Co Program control devices
US3913021A (en) * 1974-04-29 1975-10-14 Ibm High resolution digitally programmable electronic delay for multi-channel operation
DE2520089A1 (de) * 1975-05-06 1976-11-18 Philips Patentverwaltung Schaltungsanordnung zur erzeugung aequidistanter von einem mechanischen taktgeber abgeleiteter elektrischer impulse
US4016511A (en) * 1975-12-19 1977-04-05 The United States Of America As Represented By The Secretary Of The Air Force Programmable variable length high speed digital delay line
JPS5927513B2 (ja) * 1976-11-05 1984-07-06 日本テレビジヨン工業株式会社 信号発生器
US4129867A (en) * 1977-04-28 1978-12-12 Motorola Inc. Multi-pulse modulator for radar transponder
US4104538A (en) * 1977-04-29 1978-08-01 Fairchild Camera And Instrument Corporation Digitally synthesized back-up frequency
US4271483A (en) * 1977-08-04 1981-06-02 Independent Broadcasting Authority Delay circuits

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO8100940A1 *

Also Published As

Publication number Publication date
IT1132980B (it) 1986-07-09
CH646287A5 (de) 1984-11-15
WO1981000940A1 (en) 1981-04-02
IT8024776A0 (it) 1980-09-19

Similar Documents

Publication Publication Date Title
DE3153280C2 (de)
DE69726689T2 (de) Wandlung eines Analogsignals, insbesondere eines Fernsehsignals, in einem Digitalsignal
DE3203967C2 (de) Photoelektrische Wandlereinrichtung
DE69124436T2 (de) Bildaufnahmesystem mit optischer Bildformumwandlung
DE68912146T2 (de) Digitale Vorrichtung zur Korrektur der Konvergenz.
DE3320096A1 (de) Verfahren und vorrichtung zum feststellen eines scharfstellenzustandes bei einem optischen abbildungssytem
DE4035145A1 (de) Optisches system zur aufteilung einer reellen abbildung
DE3304592C2 (de)
DE2821024C3 (de) Signalgenerator zur Synthese von Fernseh-Priifzeilensignalen
EP0039330A1 (de) Schaltungsanordnung zur verschiebung von impulsen
DE10121757B4 (de) Datenregenerator mit einstellbarer Entscheiderschwelle und einstellbarem Abtastzeitpunkt
EP0085337B1 (de) Digitales Nachrichtenübertragungssystem
DE2730208A1 (de) Verfahren zum festhalten des pegels eines eingangssignals auf einem bezugspegel und dabei verwendbare klemmschaltung
DE2934976C2 (de)
DE68910603T2 (de) Vorrichtung zur Erzeugung eines Rasterablenksignals.
DE10241848A1 (de) Verfahren zur Erfassung von optischen bzw. elektrischen Signalfolgen und Augenmonitor zur Erfassung und Darstellung von Signalfolgen
DE102009039430B4 (de) Vorrichtung und Verfahren mit ersten und zweiten Zeittakten
DE102008064063B4 (de) Steuersignalerzeugungsschaltung zur Einstellung eines Periodenwerts eines erzeugten Taktsignals als die Periode eines Referenzsignals, multipliziert mit oder dividiert durch eine beliebige reelle Zahl
EP0226813A2 (de) Synthesizer mit Summenkompensation
DE4333391C1 (de) Testsystem für eine Regeneratoreinrichtung
DE1762423A1 (de) Verfahren zum UEbertragen von Signalen
DE69130780T2 (de) Bildaufnahmegerät mit darin verwendeter Zählerschaltung
EP0463206B1 (de) Verfahren zum Messen kleiner Phasendifferenzen und Schaltungsanordnung zur Durchführung des Verfahrens
DE60217261T2 (de) Entzerrung von optischen Signalen
DE3843261A1 (de) Schaltungsanordnung zur steuerung der phase eines taktsignals

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): CH DE FR GB NL

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19811116

RIN1 Information on inventor provided before grant (corrected)

Inventor name: TSCHANNEN, GOTTFRIED