EP0037051B1 - Accélérateur linéaire pour particules chargées - Google Patents

Accélérateur linéaire pour particules chargées Download PDF

Info

Publication number
EP0037051B1
EP0037051B1 EP81102176A EP81102176A EP0037051B1 EP 0037051 B1 EP0037051 B1 EP 0037051B1 EP 81102176 A EP81102176 A EP 81102176A EP 81102176 A EP81102176 A EP 81102176A EP 0037051 B1 EP0037051 B1 EP 0037051B1
Authority
EP
European Patent Office
Prior art keywords
accelerator
accelerator tube
charged particles
magnetic coils
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP81102176A
Other languages
German (de)
English (en)
Other versions
EP0037051A1 (fr
Inventor
Volker Adolf Stieber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0037051A1 publication Critical patent/EP0037051A1/fr
Application granted granted Critical
Publication of EP0037051B1 publication Critical patent/EP0037051B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H9/00Linear accelerators

Definitions

  • the invention relates to a linear accelerator for charged particles intended for therapy, with an evacuated accelerator tube with walls made of non-ferromagnetic material, with a device for accelerating the charged particles in the forward direction, the particles forming radiation pulses with a predeterminable pulse frequency, and with a vacuum-tight tube final exit window for the accelerated particles.
  • Accelerators for charged particles are mainly used in medical radiation therapy, but less frequently for purposes of radiation screening and sterilization of all kinds of samples. They create a tightly focused beam of accelerated charged particles.
  • electron accelerators mostly linear accelerators, more rarely circular accelerators (betatrons), are also used to generate X-rays with a target exposed to the electron beam. This mostly very hard X-ray radiation is mostly used for medical radiation therapy, but occasionally also for the sterilization of samples of all kinds.
  • the charged particles are accelerated inside an evacuated accelerator tube.
  • the charged particles or the X-rays of the target exposed to the particle beam must pass through an exit window that seals the accelerator tube in a vacuum-tight manner.
  • the exit window generally consists of a thin metal foil.
  • the beam of charged particles has energy of around 4 MeV in common electron accelerators.
  • the exit window is heated at the point of impact of the particle beam. Some of the secondary electrons are directed backwards, i. H. inside the accelerator tube, made of the material of the radiation exit window.
  • Linear accelerators of the type mentioned at the outset, which are intended for therapy, are available on the market.
  • An accelerator for charged particles, in particular for electrons, with an evacuated accelerator tube, a device for accelerating the charged particles in the forward direction and with an exit window for the particles is known from US Pat. No. 3,222,558.
  • the end piece of the accelerator tube widens and the exit window is elongated.
  • magnetic deflection coils at the beginning of the widening end piece in order to scan the beam at high frequency over the (narrow) window width and at low frequency over the (larger) window height. This leads to a more uniform beam distribution on the product to be irradiated and to an increase in the area that is covered by the beam.
  • this is not a therapy device, it must be noted that nothing is said in this document about the exact construction of the magnetic deflection unit.
  • DE-A-2 040 158 describes a method for increasing the output power of an electron accelerator, by means of which the risk of window overheating is reduced.
  • the direction of the electron beam is controlled by four electromagnetic scanning coils, which are arranged at 90 ° to one another outside the acceleration container.
  • the electron beam is deflected on the exit window on a closed rectangular path. This requires a relatively complex control device.
  • CH-A-363 272 discloses an electron accelerator in which an electron beam deflected by a main deflection system passes through an acceleration tube. The heating is distributed over the entire exit window by additionally subjecting the electron beam to a transverse deflection perpendicular to the main deflection. It is assumed that electromagnetic windings cannot be used. Instead, the transverse deflection system has two conductors connected in series and through which current flows in the opposite direction, which are fitted inside the tube on opposite sides and parallel to the axis thereof. Such a solution requires expensive bushings for the two conductors if vacuum problems are not to arise.
  • the invention is based, to build a linear accelerator of the type mentioned smaller, lighter and safer and at the same time the radiation protection and the task improve driving safety.
  • this object is achieved according to the invention in that an electromagnetic device known per se for repeated deflection of the beam of charged particles is arranged in the vicinity of the exit window, in that the device comprises three magnetic coils, that the three magnetic coils against one another by 120 ° are arranged around the beam of charged particles around the outer circumference of the walls of the accelerator tube, which walls are made of non-ferromagnetic material, the axes of the three magnet coils intersecting at a common point lying on the axis of symmetry of the accelerator tube, and the three magnet coils on are connected to a three-phase network, the frequency of which is lower than the aforementioned pulse frequency of the radiation pulses, as a result of which the device generates an alternating magnetic field which circularly deflects the point of incidence of the beam of the charged particles on the exit window.
  • This electromagnetic device has the advantage that the thermal secondary electrons emitted at the exit window are also deflected. However, due to their lower energy, they are deflected far more than the accelerated primary electrons. The consequence of this is that the secondary electrons emitted by the exit window are deflected onto the wall of the accelerator tube surrounding the exit window, while the accelerated primary electrons experience only a very slight deflection at the same time. The secondary electrons striking the wall of the accelerator tube can no longer be accelerated backwards and can no longer trigger X-ray quanta at the end of the accelerator tube opposite the exit window. The radiation protection measures in this area can therefore be largely reduced.
  • the impact area of the accelerated electrons on the exit window increases on average over time, so that the local thermal load is reduced.
  • the yield of secondary electrons is reduced and, as a side effect, the maximum thermally permissible beam power is increased.
  • the device deflects the beam of charged particles in a circular manner, this has the consequence that the deflecting field is always non-zero and that secondary electrons generated at the exit window cannot be accelerated backwards at any time interval.
  • the area of impact of the particle beam on the window is increased with the least possible deflection force.
  • the changing magnetic field can be generated differently than a deflecting electric field outside the accelerator tube and can be brought into effect inside the accelerator tube without bushings or other internals inside the accelerator tube.
  • a particularly expedient construction results if the electromagnetic device according to a development of the invention is arranged at that end of the accelerator tube which faces the exit window.
  • This has the advantage that it is located in the immediate vicinity of the point of origin of the secondary electrons and that it detects the secondary electrons before it passes through the first cavity resonator of the accelerator tube, i.e. H. with the least possible energy, distracts from the wall of the accelerator tube.
  • the deflecting forces can be kept particularly small, and the deflection of the beam of accelerated particles - the primary radiation - is kept small.
  • FIG. 1 and 2 show a highly schematic representation of a linear accelerator 1 as used for medical purposes.
  • Its accelerator tube 2 carries a particle source 4 at one end and a radiation exit window 8 at its other end.
  • electrons are emitted from the particle source 4 into the interior of the acceleration tube 2. These electrons are accelerated by the electric fields generated inside the accelerator tube.
  • the accelerator tube consists of a series of mutually coupled cavity resonators 5, to which an electromagnetic wave, whether as a standing wave or as a traveling wave, is coupled in a manner not shown here.
  • the accelerator tube 2 of a linear accelerator is essentially rotationally symmetrical and has a straight axis of symmetry 6. It is evacuated.
  • Such an accelerator tube is known, for example, under the type designation "Los Alamos".
  • a pulsed electron beam therefore strikes the exit window 8.
  • the exit window consists of a thin metal foil that seals the accelerator tube in a vacuum-tight manner.
  • the metal foil in particle accelerators should be as thin as possible in order to weaken the particle beam as little as possible.
  • the electron beam striking the beam exit window has a diameter of approx. 0.5 mm. 3 and 4, the point of incidence of the undeflected electron beam on the exit window is designated by 10.
  • the accelerated electrons leave the exit window 8 as an electron beam 12.
  • the electrons have an energy of 4 MeV.
  • This emerging electron beam 12 can also strike a target 13 that is brought into its path if necessary, in order to generate X-ray pulses. Either the emerging electron beam 12 or the X-rays emitted by the target are used in radiation therapy.
  • a magnetic deflection device 14, 16, 18 for repeated deflection of the beam on the accelerator tube is arranged in a plane immediately in front of the beam exit window 8.
  • the wall of the accelerator tube consists of non-ferromagnetic material, preferably of copper.
  • the effect of such a deflection device is that it deflects the secondary electrons emerging from the exit window into the interior of the accelerator tube 2 against the wall of the accelerator tube.
  • it increases the impact area 10 of the accelerated electrons on the exit window averaged over time and thus reduces its local thermal load.
  • FIGS. 3 and 4 the impact surface 10a of the particle beam on the exit window 8, which is enlarged by periodic deflection over time, is shown in an enlarged representation.
  • the magnetic deflection device has three magnetic coils 14, 16, 18. In order for these to bring their variable magnetic field as close as possible to the impact surface of the electrons on the exit window, these magnetic coils are on the outside of the accelerator tube
  • the radiation direction is arranged somewhat in front of the radiation exit window 3.
  • the three magnetic coils are arranged offset by 120 ° relative to one another about the axis of symmetry 6 of the accelerator tube 2 and thus at the same time also about the electron beam accelerated along the axis of symmetry.
  • the three axes of symmetry 24, 26, 28 of the magnetic coils 14, 16, 18 are aligned perpendicular to the direction of the electron beam. They meet at a common point on the axis of symmetry of the accelerator tube.
  • the solenoids 14, 16, 18 are connected to AC voltage. Three-phase current is best suited as an AC voltage source. As shown in Fig. 5, the solenoids can be connected to the poles U, V and W of the three-phase source. When the current is switched on, each of the three coils generates a magnetic field that has a force component directed at right angles to the axis of symmetry of the accelerator tube.
  • the magnetic field of the magnetic coil 14 is drawn out in FIG. 2 and designated 25. 2 shows that the magnetic coils 14, 16 and 18 of the exemplary embodiment are adapted to the circular circumference of the accelerator tube 2. In this way, a better transition of the magnetic field is achieved than with straight coils. Solenoid coils without a core have proven their worth.
  • the three magnetic coils can be arranged at different distances from the accelerator tube 2 if, for example, other components are attached to the accelerator tube at one point.
  • the uniform rotating field can be achieved by applying the one coil further away to a higher voltage via a matching transformer.
  • a matching transformer 30 in a delta connection is shown in FIG. 6. It serves to adjust the magnet coil current with different numbers of turns or different turn diameters so that the magnetic field is the same size in the interior of the accelerator tube despite different coil dimensions and / or coil spacing. Even if one coil has to be kept smaller than the other coil, for example for reasons of space, this can be compensated for by a corresponding adjustment of the current through this coil.
  • the transformer 30 is connected on one side to the connections U, V, W of a three-phase supply and on the other side to the magnet coil or coils. The easiest way to do this is to use three-phase current from the public grid.
  • the point of impact 15 on the circuit 10a rotates about 50 or 60 times per second. Five to six electron pulses will strike the radiation exit window during a single revolution. As a result, the thermal energy generated when the electrons impact the radiation exit window is distributed over a much larger cross section. For example, the original impact area can be increased from 0.5 mm 2 to 2 mm 2 . As a result, the local heating and thus the emission of secondary electrons itself is reduced. As a side effect, the risk of the radiation exit window blowing through is also reduced.
  • the primary electrons are accelerated to energies of around 4 MeV and are deflected only very slightly by the circular magnetic field, the secondary electrons have lower, so-called thermal energy. They would be accelerated without the coils 14, 16, 18 along the axis of symmetry of the accelerator tube in the opposite direction to the electron source 4 and would generate high-energy X-rays when they hit the wall there or the particle source 4 used in the wall. This, in turn, would require a complex, heavy and space-consuming shield. This undesired backward directed hard X-ray radiation is designated by 44 in FIG. 1. However, the magnetic fields of the switched-on magnetic coils 14, 16, 18 deflect these slow-moving thermal electrons from their original direction at the exit window and let them hit the inner walls of the accelerator tube. In this way, the effort can be used for radiation lenabtubun g significantly reduced.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Particle Accelerators (AREA)
  • Radiation-Therapy Devices (AREA)

Claims (6)

1. Accélérateur linéaire (1) de particules chargées, qui est destiné à la radiothérapie et qui comprend un tube accélérateur (2) évacué et possédant des parois en un matériau non ferromagnétique, un dispositif (5) pour accélérer les particules chargées vers l'avant, les particules formant un faisceau à impulsions de rayonnement à fréquence de répétition des impulsions pouvant être donnée à l'avance, et une fenêtre de sortie (8) des particules accélérées obturant le tube accélérateur (2) d'une manière étanche au vide, caractérisé en ce qu'un dispositif électromagnétique, connu en soi, pour dévier de manière répétée le faisceau de particules chargées est disposé à proximité de la fenêtre de sortie (8), en ce que le dispositif comporte trois bobines d'électroaimant (14, 16, 18) qui sont disposées avec un décalage de 120° les unes des autres autour du faisceau de particules chargées sur le pourtour extérieur des parois en matériau non ferromagnétique du tube accélérateur (2), les axes (24,26, 28) des trois bobines d'électroaimant (14,16,18) se coupant en un point commun sur l'axe de symétrie (6) du tube accélérateur (2), et en ce que les trois bobines d'électroaimant sont raccordées à un réseau triphasé (U, V, W) dont la fréquence est inférieure à la fréquence de répétition des impulsions de rayonnement mentionnée, le dispositif électromagnétique produisant ainsi un champ magnétique alternant qui dévie le point d'incidence (15) du faisceau de particules chargées sur la fenêtre de sortie (8) suivant un cercle.
2. Accélérateur linéaire suivant la revendication 1, caractérisé en ce que le dispositif électromagnétique est disposé à l'extrémité du tube de accélérateur (2) qui est du côté de la fenêtre de sortie (8).
3. Accélérateur linéaire suivant la revendication 1 ou 2, caractérisé en ce que, dans le cas où les bobines d'électroaimants (14, 16, 18) sont situées à des distances différentes, de l'axe de symétrie (6) du tube accélérateur (2), chaque champ magnétique (25) de ces trois bobines d'électroaimants (14, 16, 18) est maintenu à la même valeur dans la région de la fenêtre de sortie (8) en réglant la tension appliquée et/ou en choisissant des dimensions de bobines différentes.
4. Accélérateur linéaire suivant l'une des revendications 1 à 3, caractérisé en ce que les bobines d'électroaimants (14, 16, 18) sont reliées électriquement en montage en triangle (figure 6).
5. Accélérateur linéaire suivant l'une des revendications 1 à 4, caractérisé en ce que le réseau triphasé (U, V, W) est le réseau public ayant une fréquence de 50 ou de 60 Hz.
6. Accélérateur linéaire suivant l'une des revendications 1 à 5, caractérisé en ce que la forme des bobines d'électroaimants (14, 16, 18) est adaptée à la conformation du tube accélérateur (2) (figure 2).
EP81102176A 1980-03-31 1981-03-23 Accélérateur linéaire pour particules chargées Expired EP0037051B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US135300 1980-03-31
US06/135,300 US4293772A (en) 1980-03-31 1980-03-31 Wobbling device for a charged particle accelerator

Publications (2)

Publication Number Publication Date
EP0037051A1 EP0037051A1 (fr) 1981-10-07
EP0037051B1 true EP0037051B1 (fr) 1985-01-23

Family

ID=22467466

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81102176A Expired EP0037051B1 (fr) 1980-03-31 1981-03-23 Accélérateur linéaire pour particules chargées

Country Status (4)

Country Link
US (1) US4293772A (fr)
EP (1) EP0037051B1 (fr)
JP (1) JPS56152199A (fr)
DE (1) DE3168429D1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020212200B3 (de) 2020-09-28 2022-03-17 Siemens Healthcare Gmbh Verfahren zur Elektronenstrahlablenkung mittels einer Magneteinheit eines Linearbeschleunigersystems, Linearbeschleunigersystem, MeV-Strahlengerät und Computerprogrammprodukt zur Durchführung der Verfahren

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60216249A (ja) * 1984-04-12 1985-10-29 Nippon Atom Ind Group Co Ltd 螢光x線分析装置
JPS61197700U (fr) * 1985-05-31 1986-12-10
US4767930A (en) * 1987-03-31 1988-08-30 Siemens Medical Laboratories, Inc. Method and apparatus for enlarging a charged particle beam
US5006759A (en) * 1988-05-09 1991-04-09 Siemens Medical Laboratories, Inc. Two piece apparatus for accelerating and transporting a charged particle beam
WO2005055269A2 (fr) * 2003-12-01 2005-06-16 Mbda Uk Limited Ameliorations apportees ou relatives a un canon electronique et une fenetre de faisceau d'electrons
ES2558978T3 (es) 2004-07-21 2016-02-09 Mevion Medical Systems, Inc. Generador de formas de ondas de radiofrecuencia programable para un sincrociclotrón
EP2389978B1 (fr) 2005-11-18 2019-03-13 Mevion Medical Systems, Inc. Radiothérapie à particules chargées
JP4930778B2 (ja) * 2007-02-07 2012-05-16 株式会社Ihi 質量分離電磁石
US8581523B2 (en) 2007-11-30 2013-11-12 Mevion Medical Systems, Inc. Interrupted particle source
US8933650B2 (en) 2007-11-30 2015-01-13 Mevion Medical Systems, Inc. Matching a resonant frequency of a resonant cavity to a frequency of an input voltage
WO2010019584A1 (fr) * 2008-08-11 2010-02-18 Ion Beam Applications S.A. Accélérateur de protons en courant continu à fort courant
JP5490608B2 (ja) * 2010-05-11 2014-05-14 住友重機械工業株式会社 中性子捕捉療法用中性子発生装置及び制御方法
DE102011075210B4 (de) * 2011-05-04 2016-03-24 Siemens Aktiengesellschaft Linearbeschleuniger
EP2901821B1 (fr) 2012-09-28 2020-07-08 Mevion Medical Systems, Inc. Régénérateur de champ magnétique
CN104813750B (zh) 2012-09-28 2018-01-12 梅维昂医疗系统股份有限公司 调整主线圈位置的磁垫片
WO2014052734A1 (fr) 2012-09-28 2014-04-03 Mevion Medical Systems, Inc. Commande de thérapie par particules
EP2900324A1 (fr) 2012-09-28 2015-08-05 Mevion Medical Systems, Inc. Système de commande pour un accélérateur de particules
EP2901820B1 (fr) 2012-09-28 2021-02-17 Mevion Medical Systems, Inc. Focalisation d'un faisceau de particules à l'aide d'une variation de champ magnétique
US10254739B2 (en) 2012-09-28 2019-04-09 Mevion Medical Systems, Inc. Coil positioning system
WO2014052709A2 (fr) 2012-09-28 2014-04-03 Mevion Medical Systems, Inc. Contrôle de l'intensité d'un faisceau de particules
US8927950B2 (en) 2012-09-28 2015-01-06 Mevion Medical Systems, Inc. Focusing a particle beam
EP3342462B1 (fr) 2012-09-28 2019-05-01 Mevion Medical Systems, Inc. Réglage de l'énergie d'un faisceau de particules
US8791656B1 (en) 2013-05-31 2014-07-29 Mevion Medical Systems, Inc. Active return system
US9730308B2 (en) 2013-06-12 2017-08-08 Mevion Medical Systems, Inc. Particle accelerator that produces charged particles having variable energies
WO2015048468A1 (fr) 2013-09-27 2015-04-02 Mevion Medical Systems, Inc. Balayage par un faisceau de particules
US9962560B2 (en) 2013-12-20 2018-05-08 Mevion Medical Systems, Inc. Collimator and energy degrader
US10675487B2 (en) 2013-12-20 2020-06-09 Mevion Medical Systems, Inc. Energy degrader enabling high-speed energy switching
US9661736B2 (en) 2014-02-20 2017-05-23 Mevion Medical Systems, Inc. Scanning system for a particle therapy system
RU2567741C1 (ru) * 2014-06-23 2015-11-10 Федеральное государственное бюджетное учреждение Национальный исследовательский центр "Курчатовский институт" "Государственный научный центр Российской Федерации - Институт Теоретической и Экспериментальной Физики" Диафрагмированный волновод с фокусирующим магнитным полем
US9950194B2 (en) 2014-09-09 2018-04-24 Mevion Medical Systems, Inc. Patient positioning system
US10786689B2 (en) 2015-11-10 2020-09-29 Mevion Medical Systems, Inc. Adaptive aperture
EP3481503B1 (fr) 2016-07-08 2021-04-21 Mevion Medical Systems, Inc. Planification de traitement
US11103730B2 (en) 2017-02-23 2021-08-31 Mevion Medical Systems, Inc. Automated treatment in particle therapy
CN111093767B (zh) 2017-06-30 2022-08-23 美国迈胜医疗系统有限公司 使用线性电动机而被控制的可配置准直仪
TW202041245A (zh) 2019-03-08 2020-11-16 美商美威高能離子醫療系統公司 用於粒子治療系統之準直儀及降能器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2820165A (en) * 1951-07-13 1958-01-14 High Voltage Engineering Corp Means for cooling the windows of acceleration tubes for electrostatic generators
US2863103A (en) * 1954-09-24 1958-12-02 W N Borg Corp Relay
US2866902A (en) * 1955-07-05 1958-12-30 High Voltage Engineering Corp Method of and apparatus for irradiating matter with high energy electrons
US3013154A (en) * 1958-11-14 1961-12-12 High Voltage Engineering Corp Method of and apparatus for irradiating matter with high energy electrons
US3120609A (en) * 1961-05-04 1964-02-04 High Voltage Engineering Corp Enlargement of charged particle beams
US3222558A (en) * 1961-05-22 1965-12-07 Gen Electric Vanadium window for an atomic particle and radiation emitting device
US3621327A (en) * 1969-12-29 1971-11-16 Ford Motor Co Method of controlling the intensity of an electron beam

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2961561A (en) * 1957-10-29 1960-11-22 Gen Electric Internal magnetic deflection system for electron beam generator
US3133227A (en) * 1958-06-25 1964-05-12 Varian Associates Linear particle accelerator apparatus for high energy particle beams provided with pulsing means for the control electrode
DE1614742C3 (de) * 1967-11-25 1974-01-03 Steigerwald Strahltechnik Gmbh, 8000 Muenchen Beschleunigungsrohr für einen mehrstufigen elektrostatischen Geradeausbeschleuniger zum Beschleunigen von Ladungsträgerstrahlen
BE754746A (fr) * 1969-08-13 1971-01-18 Ford Motor Co Procede pour augmenter la puissance de sortie d'un accelerateurelectronique
FR2260253B1 (fr) * 1974-02-04 1976-11-26 Cgr Mev
FR2386109A1 (fr) * 1977-04-01 1978-10-27 Cgr Mev Tete d'irradiation a rayons g pour une irradiation panoramique et generateur de rayons g comportant une telle tete d'irradiation

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2820165A (en) * 1951-07-13 1958-01-14 High Voltage Engineering Corp Means for cooling the windows of acceleration tubes for electrostatic generators
US2863103A (en) * 1954-09-24 1958-12-02 W N Borg Corp Relay
US2866902A (en) * 1955-07-05 1958-12-30 High Voltage Engineering Corp Method of and apparatus for irradiating matter with high energy electrons
US3013154A (en) * 1958-11-14 1961-12-12 High Voltage Engineering Corp Method of and apparatus for irradiating matter with high energy electrons
US3120609A (en) * 1961-05-04 1964-02-04 High Voltage Engineering Corp Enlargement of charged particle beams
US3222558A (en) * 1961-05-22 1965-12-07 Gen Electric Vanadium window for an atomic particle and radiation emitting device
US3621327A (en) * 1969-12-29 1971-11-16 Ford Motor Co Method of controlling the intensity of an electron beam

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020212200B3 (de) 2020-09-28 2022-03-17 Siemens Healthcare Gmbh Verfahren zur Elektronenstrahlablenkung mittels einer Magneteinheit eines Linearbeschleunigersystems, Linearbeschleunigersystem, MeV-Strahlengerät und Computerprogrammprodukt zur Durchführung der Verfahren

Also Published As

Publication number Publication date
JPH0356440B2 (fr) 1991-08-28
DE3168429D1 (en) 1985-03-07
JPS56152199A (en) 1981-11-25
US4293772A (en) 1981-10-06
EP0037051A1 (fr) 1981-10-07

Similar Documents

Publication Publication Date Title
EP0037051B1 (fr) Accélérateur linéaire pour particules chargées
DE3050343C2 (de) Einrichtung zur Elektronenbestrahlung von Objekten
DE102006062667B4 (de) Vorrichtung für die Ausgabe von Hoch- und/oder Niederenergieröntgenstrahlen
EP3115082B1 (fr) Installation de thérapie par irradiation de particules avec aimants solénoïdes
DE102005015601A1 (de) Teilchenstrahlbeschleuniger, Teilchenbestrahlungs-Behandlungssystem, welches den Teilchenstrahlbeschleuniger verwendet, sowie Verfahren zum Betreiben des Teilchenbestrahlungs-Behandlungssystems
EP2273856A2 (fr) Ensemble accélérateur et procédé de réglage d'une énergie des particules
DE3586176T2 (de) Mikrowellenelektronenkanone.
DE68905417T2 (de) Vorrichtung zur beidseitigen bestrahlung eines produktes.
DE2112215B2 (de) Neutronengenerator
DE102014219016B4 (de) Verfahren zum Steuern eines Stehwellenbeschleunigers
CH405514A (de) Anordnung zum Richten einer ionisierenden Strahlung auf einen Teil eines zu bestrahlenden Objektes
EP3086325A1 (fr) Systeme de guidage de rayonnement, dispositif de therapie par rayonnement de particules et procede
EP1158562B1 (fr) Tube radiogène à cathode plane
DE3842131A1 (de) Einrichtung zur erzeugung eines magnetfeldes
DE19743163C2 (de) Röntgenröhre
EP0481103B1 (fr) Tomodensitomètre avec faisceau électronique dévié suivant une trajectoire circulaire
WO2012025261A1 (fr) Appareil de thérapie
DE1565883B1 (de) Vorrichtung zum Erhitzen eines Materials mittels Elektronen
DE1906951B2 (de) Verfahren und Vorrichtung zur Erzeugung einer Schar von Elektronenstrahlen
DE2064273A1 (de) Verfahren zur Steuerung der Intensi tat eines Elektronenstrahles und Vornch tung hierfür
DE1489020A1 (de) Beschleuniger fuer geladene Teilchen
DD204947A1 (de) Einrichtung zum elektronenstrahlbedampfen breiter baender
DE3877427T2 (de) Beschleuniger fuer einen elektronenteppich.
EP2082625B1 (fr) Betatron a bobine de contraction et d'expansion
DE3806079A1 (de) Verfahren zur erzeugung und fuehrung von intensiven, grossflaechigen ionen-, elektronen- und roentgenstrahlen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE FR

17P Request for examination filed

Effective date: 19811028

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE FR

REF Corresponds to:

Ref document number: 3168429

Country of ref document: DE

Date of ref document: 19850307

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19910527

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19921201

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20000328

Year of fee payment: 20