EP0036801A1 - Appareil pour mesurer automatiquement la viscosité des liquides - Google Patents

Appareil pour mesurer automatiquement la viscosité des liquides Download PDF

Info

Publication number
EP0036801A1
EP0036801A1 EP81400373A EP81400373A EP0036801A1 EP 0036801 A1 EP0036801 A1 EP 0036801A1 EP 81400373 A EP81400373 A EP 81400373A EP 81400373 A EP81400373 A EP 81400373A EP 0036801 A1 EP0036801 A1 EP 0036801A1
Authority
EP
European Patent Office
Prior art keywords
tube
ball
electromagnet
viscosity
poles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP81400373A
Other languages
German (de)
English (en)
Other versions
EP0036801B1 (fr
Inventor
Guy Garnaud
Roger Bouhier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Medica-Test A Responsabilite Ltee Ste
Original Assignee
Medica-Test A Responsabilite Ltee Ste
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Medica-Test A Responsabilite Ltee Ste filed Critical Medica-Test A Responsabilite Ltee Ste
Priority to AT81400373T priority Critical patent/ATE6444T1/de
Publication of EP0036801A1 publication Critical patent/EP0036801A1/fr
Application granted granted Critical
Publication of EP0036801B1 publication Critical patent/EP0036801B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N11/00Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties
    • G01N11/10Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by moving a body within the material
    • G01N11/12Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by moving a body within the material by measuring rising or falling speed of the body; by measuring penetration of wedged gauges

Definitions

  • the present invention relates to an apparatus for automatically measuring the viscosity of liquids.
  • This device is mainly intended for measuring the viscosity of blood, but can also be applied to other liquids of which it is interesting to know the viscosity, such as hydrocarbons, paints, varnishes, inks, syrupy liquids and the like .
  • 0n are known viscometers comprising a viscometer tube, held in a substantially vertical position and containing a ball, means for introducing the liquid to be tested in this tube and for measuring the duration of fall of this ball in the tube containing the liquid. This measurement of duration in turn makes it possible to determine the viscosity by various means well known to the technician.
  • the ball After having measured this fall duration, the ball must be returned to the initial position. This operation is generally carried out manually by inverting the viscometric tube.
  • the viscosity and coagulation properties of the blood depend on the shear to which the blood is subjected before and during the measurement, that is to say the way in which the blood is stirred or stirred. It As a result, the measurements should preferably be made in the sampling syringe, immediately after the sampling and then at known time intervals with a homogeneous and reproducible mixing.
  • the ascent of the ball in the viscometer constitutes a mixing of the blood and, consequently, the ball must be gone up over the entire height of the column of liquid, failing which, in the upper part, groups of red blood cells agglomerate in bundles, clots form uncontrollably and distort successive measurements.
  • known devices are not suitable, for example, for precisely measuring the viscosity of blood, taking into account, on the one hand, the speed with which this viscosity changes over time due to coagulation, and on the other hand part, due to the need to produce throughout the volume homogeneous brewing conditions.
  • the object of the present invention is to create an apparatus for measuring the viscosity of liquids which is both very precise, convenient to use and allowing repetitive measurements at very close time intervals, with homogeneous stirring, and which is of this fact, which is particularly well suited for measuring the viscosity of a liquid such as blood, the viscosity of which changes very rapidly over time.
  • the apparatus covered by the invention comprises a viscometric tube held in an inclined position and containing a ball, means for introducing the liquid to be tested into said tube and means for measuring the duration of fall of this ball in the tube containing the liquid, these means being associated with means for converting this duration of fall of the ball into viscosity, and electromagnetic means making it possible to raise the ball made of magnetic material at the top of the tube and to maintain it in this high position and means for remove this magnetic field and allow the ball to fall into the tube.
  • this device is characterized in that said electromagnetic means comprise means for applying along the tube to the ball of magnetic material, a magnetic field gradient directed towards the top of the tube.
  • the aforementioned means preferably consist of an electromagnet placed along the entire useful height of the viscometer tube.
  • the electromagnet comprises two poles having ends arranged opposite one another and defining an elongated and narrow air gap along which the viscosimetric tube is placed, the distance between the tube and the ends of the two poles gradually increasing between the top and the bottom of the tube.
  • the magnetic field gradually increases between the bottom and the top of the tube.
  • the ball is thus attracted automatically, and at regular speed, from the bottom of the tube to the poi & t located at the top of the tube where the magnetic field is the most intense.
  • the device comprises a fixed support made of non-magnetic material, the viscometric tube possibly being constituted by a disposable syringe intended to be removably engaged in this tubular support.
  • This syringe thus plays simultaneously the role of organ for collecting the liquid to be tested and of viscometric tube.
  • the liquid is blood and it is desired to carry out successive measurements at very short time intervals, it is advantageous to have a set of disposable syringes.
  • the electromagnet is associated with control means allowing automatic and periodic operation of this electromagnet in order to perform repetitive measurements.
  • the apparatus comprises a syringe 1 comprising a piston 2 and containing a liquid whose viscosity is to be measured.
  • This syringe 1 contains a ball 3 made of magnetic material such as stainless steel or ordinary steel possibly coated with a protective coating to avoid any chemical attack by the liquid to be tested.
  • the syringe 1 is preferably disposable, especially if the liquid to be tested is difficult to clean.
  • the syringe 1 is removably engaged in the internal recess 5 of a tubular support 4 made of plastic.
  • This tubular support 4 is fixed against a plate 6 by means of two arms 7.
  • This plate is fixed to a base, not shown, ensuring the stability of the device.
  • an electromagnet 8 which is firmly fixed to the base of the device.
  • This electromagnet has two poles 9, the ends 9a of which are located opposite one another (see FIG. 3). These ends 9a define an elongated and narrow air gap 10 along which the tubular support 4 is placed in which the syringe 1 is placed.
  • the poles 9 have in the vicinity of their ends 9a a triangular cross section.
  • the faces II of these poles 9 located opposite the tubular support 4 are arranged in the extension of one another.
  • the faces 12 of these poles 9 adjacent to the tubular support 4 define a dihedral inside which this support 4 is arranged.
  • the ends 9a of the poles 9 are rectilinear and form an angle a between them (FIG. 1).
  • This angle a can vary appreciably between 0 and 20 °.
  • the ends 9a of the poles 9 are located a few millimeters from each other and from the outer wall of the tubular support 4. This distance is much less than the diameter of the syringe 1. A this place, the magnetic field produced by the electromagnet 8 is the most intense.
  • the axis XX 'of the syringe 1 forms with the plane P parallel to the faces II of the poles 9 an angle b which can vary between 5 and 20 ° approximately.
  • the lower edge 13 of the poles 9 is at a sufficiently reduced distance from the lower end 1a of the syringe for the magnetic field to be able to move up the ball from this end 1a.
  • the automatic ball winding device 3 makes repetitive viscosity measurements possible, according to a fully automatic operating cycle.
  • the electromagnet 8 is associated with an automatic control circuit for its operation, as shown in FIG. 4.
  • This electronic circuit includes a first timing circuit which determines the time for the current to flow through the electromagnet 8.
  • This first timing circuit essentially comprises field effect transistors 14 and 16, allowing a sufficiently long time constant, and the amplifier transistor 15.
  • the circuit also comprises a resistor 17 and a capacitor 18, a relay 19 controlling the electrical circuit 20 supplying the electromagnet 8 and another relay 21 controlling the reset. at 22 of an electronic chronometer not shown.
  • the first time circuit is put into manual operation using a switch 23a.
  • the transistor 16 becomes conductive, the transistors 14 and 16 are blocked, which leads to the interruption of the circuit 20 supplying the electromagnet 8 and the falling of the ball 3. We can then measure the falling time of the ball, as will be explained in more detail below.
  • the second variable timer is defined by the electrical circuits 23 and 24. This variable timer modifies the reproduction rate of the measurement cycle according to variable durations, equal for example to 5 seconds, 10 seconds, 20 seconds and 40 seconds.
  • the means for automatically measuring the fall time of the ball 3, include (see FIG. 2), two induction coils 25, 26 surrounding the tubular support 4 axially and spaced from each other for example 20 mm. These two coils 25, 26 constitute the self-inductions of an oscillating circuit whose frequency variations due to the passage of the ball are detected and transformed into pulses capable of controlling an electronic chronometer or the internal clock of a microprocessor. The measured times are transformed into viscosity values by the microprocessor.
  • the device according to FIG. 2 comprising the electromagnet and the viscosimetric tube can be carried by an adjustable inclination support with two predetermined end positions so that the inclination of the viscometer tube with respect to the vertical can vary.
  • the electromagnet 8 can be replaced by or combined with a solenoid coaxial with the viscometer tube and having a greater number of turns per unit of length at the upper part of the tube than at its lower part and / or a smaller coil diameter to create an appropriate magnetic field gradient.
  • the magnetic iron circuit can be a cylinder, coaxial with the solenoid, surrounding it outside; it can include a pole piece at its upper part (the two poles of the solenoid being at its two ends, it is advisable not to increase the local intensity of the field by a pole piece at the bottom).
  • This pole piece may be a ring surrounding the support - of the syringe and can stabilize the ball in a precise position which would be substantially in the center of this ring.
  • the crossing by the ball 3 of a single induction coil provides a frequency variation giving a voltage variation whose slope is proportional to the fall speed.
  • This voltage displayed on a digital voltmeter can be transformed into viscosity value by calculation.
  • the apparatus according to the invention can be used to measure with extreme precision the blood coagulation times.
  • the measurement of the coagulation time is carried out by a chronometer, the start of which is given by the first pulse due to the passage of the ball 3 in the induction coil 25, that is to say from the introduction of the syringe 1 in the device.
  • the stopwatch is stopped as soon as the ball 3 stops moving and supplying pulses to the measurement system.
  • the device according to the invention can be provided with the following accessories: thermostatically controlled enclosure surrounding the support 4 of the syringe 1, electronic thermometer with display taking the temperature near the syringe 1, stopwatch measuring the coagulation time and recorder of fall time, viscosity, temperature and coagulation time.
  • the device according to the invention is also advantageously carried on three setting screws and may include a spirit level to allow its correct horizontal positioning.
  • the apparatus according to the invention may comprise an additional induction coil disposed at the upper part of the viscometric tube or syringe 1 to block, in the closed position, the control relay 19 for energizing the electromagnet 8 as long as the ball 3 is not in the high position.
  • the apparatus according to the invention can be used to measure the viscosity of all liquids such as hydrocarbons, oils, paints, varnishes, inks, biological liquids, saline solutions, syrupy solutions and suspensions . It can be used in all cases where knowledge of viscosity is useful, in particular in the chemical industry to adjust the pumping power of liquids. In the paint industry, it allows the addition of solvents in defined quantity to paints and varnishes. In the medical comaine, it is used to control the diseases having an incidence on the viscosity or the time of coagulation of the blood and to control the operational risks in correlation with the viscosity. In the pharmaceutical field, the device according to the invention can be used to control the action of drugs on the viscosity of the blood. In the food industry, the apparatus according to the invention can be used to control syrups and gelation. It can also allow rapid measurement of the saturation state of the solutions.
  • all liquids such as hydrocarbons, oils, paints, varnishes, inks, biological liquids

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

L'appareil pour mesurer la viscosité des liquides comprend un tube viscosimétrique (1) renfermant une bille (3). Des moyens sont prévus pour mesurer la durée de chute de cette bille (3) dansle tube (1). L'appareil comprend un électro-aimant (8) adjacent au tube (1), cet électro-aimant (8) comportant des pôles (9) établissant le long du tube (1) un gradient de champ magnétique permettant de remonter automatiquement la bille (3). Utilisation notamment pour mesurer la viscosité et le temps de coagulation du sang.

Description

  • La présente invention concerne un appareil pour mesurer automatiquement la viscosité des liquides.
  • Cet appareil est destiné principalement à mesurer la viscosité du sang, mais peut être également appliqué à d'autres liquides dont il est intéressant de connaître la viscosité, tels que les hydrocarbures, les peintures, les vernis, les encres, les liquides sirupeux et analogues.
  • Dans le domaine médical, la mesure de la viscosité du sang et notamment l'évolution de cette viscosité, jusqu'à coagulation, fournissent des renseignements très intéressants sur certaines maladies.
  • 0n connaît des viscosimètres comprenant un tube viscosimétrique, maintenu dans une position sensiblement verticale et renfermant une bille, des moyens pour introduire le liquide à tester dans ce tube et pour mesurer la durée de chute de cette bille dans le tube contenant le liquide. Cette mesure de durée permet, à son tour, de déterminer la viscosité par des moyens divers, bien connus du technicien.
  • Après avoir mesuré cette durée de chute, on doit remettre la bille en position initiale. Cette opération est réalisée généralement manuellement en retournant le tube viscosimétrique.
  • Ces appareils connus présentent les inconvénients d'être peu fiables, incommodes à utiliser et se prêtent difficilement à des mesures précises et répétitives, indispensables dans le cas où l'on veut étudier l'évolution de la viscosité d'un liquide au cours du temps.
  • Les propriétés de viscosité et de coagulation du sang dépendent du cisaillement auquel est soumis le sang avant et pendant la mesure, c'est-à-dire de la manière dont le sang est remué ou brassé. Il en résulte que les mesures doivent être effectuées dans la seringue de prélèvement de préférence, immédiatement après le prélèvement puis à intervalles de temps connus avec un brassage homogène et reproductible. La remontée de la bille dans le viscosimètre constitue un brassage du sang et, par conséquent, la bille doit être remontée sur toute la hauteur de la colonne de liquide, faute de quoi, dans la partie supérieure, des groupes de globules rouges s'agglomèrent en paquets, des caillots se forment de façon incontrôlable et faussent les mesures successives.
  • Le brassage homogène, quine doit pas être trop énergique afin d'éviter l'altération des propriétés mécaniques du sang, ne peut s'effectuer qu'avec une remontée de la bille à vitesse relativement faible et régulière. Il en résulte que la remontée de la bille ne peut pas être effectuée par action d'un électro-aimant ou d'un solénolde ordinaires sur une bille magnétique. En particulier, dans un solénolde la composante longitudinale du champ est soit constante (sauf à ses extrémités) dans un solénolde long et la bille ne peut se déplacer sur une distance notable, soit la zone de remontée est très courte dans un solénolde court dans lequel ladite composante du champ n'est nulle part constante. De plus, la vitesse de remontée de la bille est très accélérée si aucun dispositif particulier n'est réalisé pour produire un gradient convenable.
  • Ainsi, les appareils connus ne sont pas adaptés par exemple pour mesurer avec précision la viscosité du sang, compte tenu, d'une part, de la rapidité avec laquelle cette viscosité évolue au cours du temps en raison de la coagulation, et d'autre part, en raison de la nécessité de produire dans tout le volume des conditions de brassage homogène.
  • Le but de la présente invention est de créer un appareil pour mesurer la viscosité des liquides qui soit à la fois très précis, commode à utiliser et permettant des mesures répétitives à des intervalles de temps très rapprochés, avec un brassage homogène, et qui soit de ce fait, particulièrement bien adapté à la mesure de la viscosité d'un liquide tel que le sang dont la viscosité évolue très rapidement au cours du temps.
  • L'appareil visé par l'invention comprend un tube viscosimétrique maintenu dans une position inclinée et renfermant une bille, des moyens pour introduire le liquide à tester dans ledit tube et des moyens pour mesurer la durée de chute de cette bille dans le tube contenant le liquide, ces moyens étant associés à des moyens pour convertir cette durée de chute de la bille en viscosité, et des moyens électromagnétiques permettant de remonter la bille réalisée en matériau magnétique en haut du tube et de la maintenir dans cette position haute et des moyens pour supprimer ce champ magnétique et permettre la chute de la bille dans le tube.
  • Suivant l'invention, cet appareil est caractérisé en ce que lesdits moyens électromagnétiques comprennent des moyens pour appliquer le long du tube à la bille en matériau magnétique, un gradient de champ magnétique dirigé vers le haut du tube.
  • Les moyens précités sont constitués de préférence par un électro-aimant placé le long de toute la hauteur utile du tube viscosimétrique.
  • Ainsi, à la fin de la mesure, il suffit de mettre l'électro-aimant sous tension pour faire remonter la bille. Cette remontée est assurée grâce au gradient de champ magnétique créé le long du tube. La bille s'immobilise en haut du tube, en un endroit très précis et parfaitement reproductible où le champ magnétique est le plus intense. Pour effectuer une mesure, il suffit de couper l'alimentation électrique de l'électro-aimant, ce qui entraîne la chute de la bille. La remontée et la chute de la bille, s'effectuent ainsi automatiquement, sans avoir à déplacer aucun élément de l'appareil, ce qui permet de réaliser des mesures successives avec des intervalles de temps très courts, de sorte qu'il est possible de suivre dans de très bonnes conditions l'évolution de la viscosité et de la coagulation d'un liquide tel que le sang.
  • Selon une version avantageuse de l'invention, l'électro-aimant comporte deux pôles présentant des extrémités disposées en regard l'une de l'autre et définissant un entrefer allongé et étroit le long duquel est placé le tube viscosimétrique, la distance entre le tube et les extrémités des deux pôles augmentant progressivement entre le haut et le bas du tube.
  • Ainsi le champ magnétique augmente progressivement entre le bas et le haut du tube. La bille est ainsi attirée automatiquement, et à vitesse régulière, à partir du bas du tube vers le poi&t situé en haut du tube où le champ magnétique est le plus intensé.
  • Selon une version préférée de l'invention, l'appareil comprend un support fixe en matière non-magnétique, le tube viscosimétrique étant éventuellement constitué par une seringue jetable destinée à être engagée de façon amovible dans ce support tubulaire.
  • Cette seringue joue ainsi simultanément le rôle d'organe de prélèvement du liquide à tester et de tube viscosimétrique. Dans le cas où le liquide est du sang et où l'on désire effectuer des mesures successives à intervalles de temps très courts, il est avantageux de disposer d'un jeu de seringues jetables.
  • Dans un tel cas, il est également avantageux que l'électro-aimant soit associé à des moyens de commande permettant un fonctionnement automatique et périodique de cet électro-aimant en vue de réaliser des mesures répétitives.
  • D'autres particularités et avantages de l'invention apparaîtront encore dans la description ci-après.
  • Aux dessins annexés donnés à titre d'exemples non limitatifs:
    • - la figure 1 est une vue en élévation et avec arrachements du devant d'un appareil conforme à l'invention,
    • - la figure 2 est une vue en élévation latérale de l'appareil selon la figure 1,
    • - la figure 3 est une vue en coupe suivant le plan II-II de la figure 2,
    • - la figure 4 est un schéma du circuit électronique de commande automatique du fonctionnement de l'électro-aimant.
  • Dans la réalisation des figures 1 et 2, l'appareil conforme à l'invention comprend une seringue 1 comportant un piston 2 et renfermant un liquide dont on désire mesurer la viscosité. Cette seringue 1 renferme une bille 3 en matériau magnétique tel que l'acier inoxydable ou l'acier ordinaire éventuellement revêtu par un revêtement de protection pour éviter toute agression chimique par le liquide à tester. La seringue 1 est de préférence jetable, notamment si le liquide à tester est difficile à nettoyer.
  • La seringue 1 est engagée de façon amovible dans l'évidement interne 5 d'un support tubulaire 4 en matière plastique. Ce support tubulaire 4 est fixé contre une plaque 6 au moyen de deux bras 7. Cette plaque est fixée à un socle non représenté, assurant la stabilité de l'appareil.
  • A l'arrière de la plaque 6 est disposé un électro-aimant 8 qui est solidement fixé au socle de l'appareil. Cet électro-aimant comporte deux pôles 9 dont les extrémités 9a sont situées en regard l'une de l'autre (voir figure 3). Ces extrémités 9a définissent un entrefer 10 allongé et étroit le long duquel est placé le support tubulaire 4 dans lequel est disposée la seringue 1.
  • On voit notamment sur la figure 2 que la distance d comprise entre le support tubulaire 4 et les extrémités 9a des pôles 9 augmente progressivement entre le haut et le bas de ce support 4. On définit ainsi à l'intérieur de la seringue 1 un gradient de champ magnétique produisant une force dirigée vers le haut de la seringue 1.
  • Dans l'exemple représenté, les pôles 9 présentent au voisinage de leurs extrémités 9a une section transversale triangulaire. Les faces II de ces pôles 9 situées à l'opposé du support tubulaire 4 sont disposées dans le prolongement l'une de l'autre. Les faces 12 de ces pôles 9 adjacentes au support tubulaire 4 définissent un dièdre à l'intérieur duquel est disposé ce support 4.
  • Les extrémités 9a des pôles 9 sont rectilignes et forment entre elles un angle a (figure 1). Cet angle a peut varier sensiblement entre 0 et 20°.
  • A la partie supérieure du support tubulaire 4, les extrémités 9a des pôles 9 sont situées à quelques millimètres l'une de l'autre et de la paroi extérieure du support tubulaire 4. Cette distance est nettement inférieure au diamètre de la seringue 1. A cet endroit, le champ magnétique produit par l'électro-aimant 8 est le plus intense.
  • Par ailleurs, l'axe X-X' de la seringue 1 forme avec le plan P parallèle aux faces II des pôles 9 un angle b qui peut varier entre 5 et 20° environ.
  • Dans la position représentée sur les figures 1 et 2, l'électro-aimant 8 est sous tension et la bille 3 est retenue à la partie supérieure de la seringue 1, près du piston 2 de cette dernière, à l'endroit où le champ magnétique est le plus intense. En coupant l'alimentation électrique de l'électro-aimant,on provoque la chute de la bille 3 vers le bas 1a de la seringue 1.
  • Le bord inférieur 13 des pôles 9 se trouve à une distance suffisamment réduite de l'extrémité inférieure 1a de la seringue pour que le champ magnétique puisse remonter la bille à partir de cette extrémité 1a.
  • Le dispositif de remontée automatique de la bille 3 rend possible des mesures répétitives de viscosité, selon un cycle de fonctionnement entièrement automatique.
  • L'électro-aimant 8 est à cet effet associé à un circuit de commande automatique de son fonctionnement, tel que représenté sur la figure 4.
  • Ce circuit électronique comprend un premier circuit de temporisation qui détermine le temps de passage du courant dans l'électro-aimant 8. Ce premier circuit de temporisation comprend essentiellement des transistors à effet de champ 14 et 16, permettant une constante de temps suffisamment longue, et le transistor amplificateur 15. Le circuit comporte d'autre part, une résistance 17 et une capacité 18, un relais 19 commandant le circuit électrique 20 d'alimentation de l'électro-aimant 8 et un autre relais 21 commandant la remise à zéro en 22 d'un chronomètre électronique non représenté.
  • Par ailleurs, la mise en fonctionnement manuel de ce premier circuit de temporisation s'effectue à l'aide d'un interrupteur 23a.
  • Le fonctionnement de ce premier circuit de temporisation est le suivant:
    • En fermant l'interrupteur 23a, le transistor 14 est rendu conducteur pendant une durée suffisante pour que le transistor 15 devienne à son tour conducteur et ferme le relais 19. Ce dernier ferme le circuit électrique 20 d'alimentation de l'électro-aimant 8 et remet à zéro le chronomètre électronique relié au circuit 22 par l'intermédiaire du relais 21.
  • Au bout d'une durée définie par la constante de temps due à 17 et 18, le transistor 16 devient conducteur, les transistors 14 et 16 se bloquent, ce qui entraîne la coupure du circuit 20 d'alimentation de l'électro-aimant 8 et la chute de la bille 3. On peut alors mesurer le temps de chute de la bille, comme on l'expliquera plus en détail plus loin.
  • Le second temporisateur variable est défini par les circuits électriques 23 et 24. Ce temporisateur variable modifie la cadence de reproduction du cycle de mesure selon des durées variables, égales par exemple à 5 secondes, 10 secondes, 20 secondes et 40 secondes.
  • Les moyens pour mesurer automatiquement le temps de chute de la bille 3, comprennent (voir figure 2), deux bobines d'induction 25, 26 entourant axialement le support tubulaire 4 et espacées l'une de l'autre par exemple de 20 mm. Ces deux bobines 25, 26 constituent les self-inductions d'un circuit oscillant dont les variations de fréquence dues au passage de la bille sont détectées et transformées en impulsions capables de commander un chronomètre électronique ou l'horloge interne d'un microprocesseur. Les temps mesurés sont transformés en valeurs de viscosité par le microprocesseur.
  • -L'expérience a montré que l'appareil conforme à l'invention permettait d'obtenir des valeurs de viscosité extrêmement précises et parfaitement reproductibles pour un même liquide. Ainsi, dans le cas de l'exemple représenté, on a obtenu des durées de chute de la bille constantes à 1/1000 près à température constante.
  • Bien entendu, l'invention n'est pas limitée à l'exemple que l'on vient de décrire, et on peut apporter à celui-ci de nombreuses modifications sans sortir du cadre de l'invention.
  • Ainsi, pour effectuer des mesures de viscosité du sang dans des conditions de faible cisaillement, c'est-à-dire lors d'un mouvement lent de la bille, le dispositif selon la figure 2 comprenant l'électro-aimant et le tube viscosimétrique peuvent être portés par un support à inclinaison réglable avec deux positions extrêmes pré-déterminées de telle sorte que l'inclinaison du tube viscosimétrique par rapport à la verticale puisse varier.
  • Par ailleurs, l'électro-aimant 8 peut être remplacé par ou combiné avec un solénoïde coaxial au tube viscosimétrique et présentant un nombre de spires par unité de longueur plus grand à la partie supérieure du tube qu'à sa partie inférieure et/ou un diamètre de spires plus petit afin de créer un gradient de champ magnétique approprié.
  • Pour augmenter l'efficacité du solénoïde (en diminuant la réluctance du circuit magnétique extérieur au solénoïde) il peut être utile de conduire les lignes de champ extérieures par du fer. Le circuit magnétique en fer peut être un cylindre, coaxial au solénoïde, l'entourant à l'extérieur; il peut comporter une pièce polaire à sa partie supérieure (les deux pôles du solénolde étant à ses deux extrémités, il y a lieu de ne pas augmenter l'intensité locale du champ par une pièce polaire à la partie inférieure). Cette pièce polaire peut être un anneau entourant le support - de la seringue et pouvant stabiliser la bille dans une position précise qui serait sensiblement au centre de cet anneau.
  • Dans une autre variante, la traversée par la bille 3 d'une seule bobine d'induction fournit une variation de fréquence donnant une variation de tension dont la pente est proportionnelle à la vitesse de chute. Cette tension affichée sur un voltmètre numérique peut être transformée en valeur de viscosité par un calcul.
  • L'appareil conforme à l'invention peut être utilisé pour mesurer avec une extrême précision les temps de coagulation du sang.
  • La mesure du temps de coagulation est effectuée par un chronomètre dont le départ est donné par la première impulsion due au passage de la bille 3 dans la bobine d'induction 25, c'est-à-dire dès l'introduction de la seringue 1 dans l'appareil. L'arrêt du chronomètre s'effectue dès que la bille 3 cesse de se déplacer et de fournir des impulsions au système de mesure.
  • Pour les besoins pratiques, l'appareil conforme à l'invention peut être pourvu des accessoires suivants: enceinte thermostatée entourant le support 4 de la seringue 1, thermomètre électronique à affichage prenant la température près de la seringue 1, chronomètre mesurant la durée de coagulation et enregistreur du temps de chute, de la viscosité, de la température et de la durée de coagulation. L'appareil conforme à l'invention, est en outre avantageusement porté sur trois vis de calage et peut comporter un niveau à bulle pour permettre son positionnement horizontal correct.
  • Par ailleurs, l'appareil conforme à l'invention peut comprendre une bobine d'induction supplémentaire disposée à la partie supérieure du tube viscosimétrique ou de la seringue 1 pour bloquer, en position fermée le relais de commande 19 de mise sous tension de l'électro-aimant 8 tant que la bille 3 n'est pas en position haute.
  • L'appareil conforme à l'invention peut être utilisé pour mesurer la viscosité de tous les liquides tels que les hydrocarbures, les huiles, les peintures, les vernis, les encres, les liquides biologiques, les solutions salines, les solutions sirupeuses et les suspensions. Il peut être utilisé dans tous les cas où la connaissance de la viscosité est utile, en particulier dans l'industrie chimique pour régler la puissance de pompage des liquides. Dans l'industrie des peintures, il permet l'adjonction de solvants en quantité définie aux peintures et vernis. Dans le comaine médical, il est utilisé pour contrôler les maladies ayant une incidence sur la viscosité ou le temps de coagulation du sang et pour contrôler les risques opératoires en corrélation avec la viscosité. Dans le domaine pharmaceutique, l'appareil conforme à l'invention peut servir au contrôle de l'action des médicaments sur la viscosité du sang. Dans l'industrie alimentaire, l'appareil selon l'invention peut servir à contrôler les sirops et la gélification. Il peut également permettre une mesure rapide de l'état de saturation des solutions.

Claims (9)

1. Appareil pour mesurer automatiquement la viscosité des liquides, comprenant un tube viscosimétrique (1) maintenu dans une position inclinée et renfermant une bille (3), des moyens (2) pour introduire le liquide à tester dans ledit tube et des moyens pour mesurer la durée de chute de cette bille (3) dans le tube (1) contenant le liquide, ces moyens étant associés à des moyens pour convertir cette durée de chute de la bille (3) en viscosité, et des moyens électromagnétiques (8) permettant de remonter la bille (3) réalisée en matériau magnétique en haut du tube et de la maintenir dans cette position haute et des moyens pour supprimer ce champ magnétique et permettre la chute de la bille (3) dans le tube (1), caractérisé en ce que lesdits moyens électromagnétiques (8) comprennent des moyens pour appliquer le long du tube à la bille en matériau magnétique, un gradient de champ magnétique dirigé vers le haut du tube.
2. Appareil conforme à la revendication 1, caractérisé en ce que les moyens (8) comprennent un électro-aimant qui comporte deux pôles (9) présentant des extrémités (9a) disposées en regard l'une de l'autre et définissant un entrefer (10) allongé et étroit le long duquel est placé le tube viscosimétrique (1), la distance (d) entre ce tube et les extrémités (9a) des deux pôles (9) augmentant progressivement entre le haut et le bas du tube (1).
3. Appareil conforme à la revendication 2, caractérisé en ce que les pôles (9) présentent au voisinage de leurs extrémités (9a) une section transversale triangulaire, les extrémités (9a) de ces pôles étant rectilignes et formant entre elles un angle (a) sensiblement compris entre 0 et 20°, en ce que la distance minimale comprise entre ces extrémités (9a) est inférieure au diamètre du tube (1) et en ce que ce dernier forme avec un plan (P) parallèle aux deux extrémités rectilignes (9a) des pôles (9) un angle (b) compris entre 5 et 20°.
4. Appareil conforme à la revendication 3, caractérisé en ce que l'entrefer (10) défini par les pôles (9) de l'électro-aimant (8) a une longueur sensiblement égale à la hauteur de chute de la bille (3).
5. Appareil conforme à l'une quelconque des revendications 1 à 4, caractérisé en ce qu'il comprend un support (4) fixe en matière non magnétique et en ce que le tube viscosimétrique (1) est constitué par une seringue destinée à être engagée de façon amovible dans ledit support (4).
6. Appareil conforme à l'une quelconque des revendications 1 à 5, dans lequel l'électro-aimant (8) est associé à des moyens de commande(14 à 24) permettant un fonctionnement automatique et périodique de l'électro-aimant en vue de réaliser des mesures répétitives de viscosité, caractérisé en ce que lesdits moyens de commande comprennent un premier temporisateur (23, 24) commandant l'arrêt du fonctionnement de l'électro-aimant (8) pendant une durée réglable et suffisante pour permettre la mesure de la durée de chute de la bille (3), et un second temporisateur (14 à 18) commandant par l'intermédiaire d'un relais (19) la mise sous tension de l'électro-aimant (8) pendant une durée suffisante pour permettre la remontée de la bille dans le tube viscosimétrique (1).
7. Appareil conforme à l'une quelconque des revendications 1 à 6, caractérisé en ce que les moyens pour convertir la mesure de la durée de chute de la bille comprennent un chronomètre à affichage numérique commandé par la chute de la bille et un microprocesseur programmé pour convertir les valeurs mesurées par le chronomètre en viscosité.
8. Appareil conforme aux revendications 1 à 7, caractérisé en ce qu'il comprend une bobine d'induction disposée à la partie supérieure du tube viscosimétrique (1) pour bloquer en position fermée le relais de commande (19) de mise sous tension de l'électro-aimant (8) tant que la bille (3) n'est pas en position haute.
9. Appareil conforme à la revendication 1, caractérisé en ce que les moyens pour établir un gradient de champ magnétique comprennent un solénolde entourant le tube (1) et présentant à sa partie supérieure un nombre de spires par unité de longueur plus grand et/ou des spires de diamètre plus petit, qu'à la partie inférieure.
EP81400373A 1980-03-26 1981-03-11 Appareil pour mesurer automatiquement la viscosité des liquides Expired EP0036801B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT81400373T ATE6444T1 (de) 1980-03-26 1981-03-11 Geraet zur automatischen messung der viskositaet von fluessigkeiten.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8006658A FR2479468A1 (fr) 1980-03-26 1980-03-26 Appareil pour mesurer automatiquement la viscosite des liquides
FR8006658 1980-03-26

Publications (2)

Publication Number Publication Date
EP0036801A1 true EP0036801A1 (fr) 1981-09-30
EP0036801B1 EP0036801B1 (fr) 1984-02-29

Family

ID=9240098

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81400373A Expired EP0036801B1 (fr) 1980-03-26 1981-03-11 Appareil pour mesurer automatiquement la viscosité des liquides

Country Status (7)

Country Link
US (1) US4388823A (fr)
EP (1) EP0036801B1 (fr)
AT (1) ATE6444T1 (fr)
CA (1) CA1150968A (fr)
DE (1) DE3162400D1 (fr)
ES (1) ES8202150A1 (fr)
FR (1) FR2479468A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0400847A2 (fr) * 1989-05-27 1990-12-05 FISONS plc Dispositif pour la détermination d'un changement dans l'état fondu du liquide
DE19712394A1 (de) * 1997-03-25 1998-10-01 Martin Pfeil Trawid Gmbh Kugelfallviskosimeter
WO2021066646A1 (fr) 2019-10-01 2021-04-08 Lely Patent N.V. Système de mesure pour denrées alimentaires

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4517830A (en) * 1982-12-20 1985-05-21 Gunn Damon M Blood viscosity instrument
US4637250A (en) * 1985-01-25 1987-01-20 State University Of New York Apparatus and method for viscosity measurements for Newtonian and non-Newtonian fluids
US4648262A (en) * 1985-03-07 1987-03-10 Reis August K Microviscosimeter
DE3621127A1 (de) * 1986-06-24 1988-01-14 Germerdonk Rolf Verfahren und apparatur zur beurteilung des morphologischen zustandes sowie des fermentationsfortschrittes agglomerierender biosuspensionen
US5203203A (en) * 1990-10-10 1993-04-20 Bryan William L Viscometer for in situ monitoring
US5522255A (en) 1993-08-31 1996-06-04 Boehringer Mannheim Corporation Fluid dose, flow and coagulation sensor for medical instrument
US5526111A (en) * 1993-08-31 1996-06-11 Boehringer Mannheim Corporation Method and apparatus for calculating a coagulation characteristic of a sample of blood a blood fraction or a control
US5841023A (en) * 1993-08-31 1998-11-24 Boehringer Mannheim Corporation Magnet for medical instrument
US5394739A (en) * 1994-06-06 1995-03-07 Computational Systems, Inc. Viscosity tester and method with orbiting object
US5569843A (en) * 1995-04-11 1996-10-29 Pad Peripheral Advanced Design, Inc. Unit used in an apparatus for measuring the viscosity of a fluid
US5629209A (en) * 1995-10-19 1997-05-13 Braun, Sr.; Walter J. Method and apparatus for detecting viscosity changes in fluids
US5854423A (en) * 1996-03-20 1998-12-29 Venegas; Jose G. Apparatus and method for assessment of visco-elasticity and shear adherence strength properties of blood clots
JP4669953B2 (ja) * 2005-11-02 2011-04-13 学校法人 関西大学 粘度測定用血液採取器及び血液粘度測定装置
JP4701442B2 (ja) * 2005-11-02 2011-06-15 学校法人 関西大学 血液粘度測定装置
JP4701441B2 (ja) * 2005-11-02 2011-06-15 学校法人 関西大学 血液粘度測定用採血管
JP2007127469A (ja) * 2005-11-02 2007-05-24 Univ Kansai 落体式血液粘度測定方法及び落体式血液粘度測定装置
WO2010035418A1 (fr) * 2008-09-26 2010-04-01 アサヒビール株式会社 Capteur de mesure de vitesse de chute pour viscosimètre de corps tombant et procédé de mesure de vitesse de chute
US8573029B2 (en) * 2009-10-03 2013-11-05 Asahi Group Holdings, Ltd. Method for sending a falling body in a falling-body viscometer, falling-body sending device, and falling-body viscometer provided therewith
JP5436568B2 (ja) * 2009-10-03 2014-03-05 アサヒグループホールディングス株式会社 落体式粘度計の落体の落下状態の判定方法、落体速度測定センサ、及び、それを備える落体式粘度計
WO2021131045A1 (fr) 2019-12-27 2021-07-01 ウィーン医科大学 Tube de collecte de sang permettant la mesure de la viscosité du sang, dispositif de mesure de la viscosité du sang, et paquet étanche de tube de collecte de sang permettant la mesure de la viscosité du sang

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2252572A (en) * 1938-06-16 1941-08-12 Lang Gregor Leighton Combined thixotrometer and viscosimeter
US2320218A (en) * 1941-03-24 1943-05-25 Standard Oil Dev Co Viscosimeter
FR1275856A (fr) * 1959-12-11 1961-11-10 British Petroleum Co Viscosimètre à bille
FR1280150A (fr) * 1959-12-03 1961-12-29 Great Lakes Carbon Corp Viscosimètre
FR2328191A1 (fr) * 1975-10-13 1977-05-13 Pipeline Sud Europ Viscosimetre a chute de bille et application de ce viscosimetre a la mesure de la viscosite dans les canalisations
GB1491865A (en) * 1974-11-21 1977-11-16 Capper Ltd B Instrument or apparatus for the measurement of viscosity

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1012092B (de) * 1953-06-22 1957-07-11 Brabender O H Verfahren zur Viskositaetsmessung
US2957338A (en) * 1957-11-29 1960-10-25 Great Lakes Carbon Corp Viscometer
US3368391A (en) * 1965-05-17 1968-02-13 Westinghouse Electric Corp Viscosity measuring apparatus
US3967934A (en) * 1969-06-13 1976-07-06 Baxter Laboratories, Inc. Prothrombin timer
US3677070A (en) * 1970-12-28 1972-07-18 Norcross Corp Magnetically coupled viscometer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2252572A (en) * 1938-06-16 1941-08-12 Lang Gregor Leighton Combined thixotrometer and viscosimeter
US2320218A (en) * 1941-03-24 1943-05-25 Standard Oil Dev Co Viscosimeter
FR1280150A (fr) * 1959-12-03 1961-12-29 Great Lakes Carbon Corp Viscosimètre
FR1275856A (fr) * 1959-12-11 1961-11-10 British Petroleum Co Viscosimètre à bille
GB1491865A (en) * 1974-11-21 1977-11-16 Capper Ltd B Instrument or apparatus for the measurement of viscosity
FR2328191A1 (fr) * 1975-10-13 1977-05-13 Pipeline Sud Europ Viscosimetre a chute de bille et application de ce viscosimetre a la mesure de la viscosite dans les canalisations

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Instrumentation and Control, No. 6 Juin 1969 Oxford, GB A.N. MELEKHIN et al.: "An Automatic Sphere Viscometer", page 60 * en entier * *
Review of Scientific Instruments, Vol. 48, No. 7, Juillet 1977, New York, US R.H. GEILS et al.: "Small-Volume Inclined Falling-Ball Viscometer" pages 783-785 * page 783, colonne de gauche lignes 17-30 * *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0400847A2 (fr) * 1989-05-27 1990-12-05 FISONS plc Dispositif pour la détermination d'un changement dans l'état fondu du liquide
EP0400847A3 (fr) * 1989-05-27 1992-05-06 FISONS plc Dispositif pour la détermination d'un changement dans l'état fondu du liquide
DE19712394A1 (de) * 1997-03-25 1998-10-01 Martin Pfeil Trawid Gmbh Kugelfallviskosimeter
DE19712394C2 (de) * 1997-03-25 2000-05-18 Martin Pfeil Trawid Gmbh Kugelfallviskosimeter
WO2021066646A1 (fr) 2019-10-01 2021-04-08 Lely Patent N.V. Système de mesure pour denrées alimentaires
NL2023922B1 (nl) 2019-10-01 2021-06-01 Lely Patent Nv Meetsysteem voor levensmiddelen

Also Published As

Publication number Publication date
FR2479468A1 (fr) 1981-10-02
US4388823A (en) 1983-06-21
ES500679A0 (es) 1982-01-01
DE3162400D1 (en) 1984-04-05
EP0036801B1 (fr) 1984-02-29
ES8202150A1 (es) 1982-01-01
CA1150968A (fr) 1983-08-02
ATE6444T1 (de) 1984-03-15
FR2479468B1 (fr) 1983-08-12

Similar Documents

Publication Publication Date Title
EP0036801B1 (fr) Appareil pour mesurer automatiquement la viscosité des liquides
EP0325874B1 (fr) Procédé et dispositif pour déterminer le temps de modification de l'état physique d'un milieu fluide
EP0180514B1 (fr) Procédé et dispositif de mesure de caractéristiques rhéologiques d'un fluide, en particulier d'un fluide biologique tel que le sang
EP0929498B1 (fr) Procede, dispositif et installation pour la distribution en quantites dosees de liquide
FR2896589A1 (fr) Cuvette d'analyse polyvalente
CH621872A5 (fr)
EP0882974A1 (fr) Installation et procédé pour déterminer le niveau et la densité d'un liquide dans une cuvée, au moyen d'une seule canne de bullage immergée
EP0018905B1 (fr) Dispositif de mesure de paramètres de coagulation ou de lyse
FR2625563A1 (fr) Dispositif pour mesurer le temps de modification de l'etat physique d'un milieu fluide
FR2580400A1 (fr) Dispositif pour l'etude de proprietes, notamment de l'elasticite d'une surface, en particulier de la peau
EP0258092B1 (fr) Appareil de congélation de produits biologiques conditionnés en paillettes au moyen d'un liquide cryogénique
EP0006556B1 (fr) Procédé et dispositif pour déposer dans un récipient une dose prédéterminée d'une substance liquide
CA2072402C (fr) Dispositif pour prelever et restituer une quantite predeterminee et constante d'un liquide
CA2378663A1 (fr) Procede et dispositif ameliores de comptage des inclusions dans un bain de metal liquide par ultra sons
EP0198770A2 (fr) Procédé et appareil pour la mesure de la coagulation du plasma sanguin
EP1342097A1 (fr) Dispositif pour l'analyse spectroscopique rmn in vivo des metabolites d'un milieu de culture
FR2699676A1 (fr) Dispositif de manipulation d'une seringue et automate d'analyse biologique comportant un tel dispositif.
FR2538117A1 (fr) Appareil d'analyses sanguines
EP0117182B1 (fr) Appareil d'analyses sanguines et procédé pour sa mise en oeuvre
BE853259A (fr) Dispositif de regulation automatique du debit d'un liquide
FR2557698A1 (fr) Circuit destine au controle de substances alimentaires liquides en vue de detecter diverses contaminations
FR2577043A1 (fr) Procede et dispositifs pour enregistrer l'evolution d'une grandeur physique dans un recipient clos
FR2984767A1 (fr) Installation de dosage de fluide et procede correspondant
EP0937977A1 (fr) Capteur de viscosité et régulateur pour le contrÔle en continu d'un bain de trempe
CH284474A (fr) Machine pour la mesure de la fatigue des matériaux aux efforts alternés.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19810314

AK Designated contracting states

Designated state(s): AT BE CH DE GB IT LU NL SE

ITCL It: translation for ep claims filed

Representative=s name: BARZANO' E ZANARDO ROMA S.P.A.

TCAT At: translation of patent claims filed
DET De: translation of patent claims
TCNL Nl: translation of patent claims filed
ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO ROMA S.P.A.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Designated state(s): AT BE CH DE GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 6444

Country of ref document: AT

Date of ref document: 19840315

Kind code of ref document: T

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19840331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19840331

Year of fee payment: 4

Ref country code: BE

Payment date: 19840331

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19840403

Year of fee payment: 4

REF Corresponds to:

Ref document number: 3162400

Country of ref document: DE

Date of ref document: 19840405

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19840517

Year of fee payment: 4

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19860411

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19870325

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19870331

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19890311

Ref country code: AT

Effective date: 19890311

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19890312

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19890331

Ref country code: CH

Effective date: 19890331

Ref country code: BE

Effective date: 19890331

BERE Be: lapsed

Owner name: MEDICA-TEST S.A.R.L.

Effective date: 19890331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19891001

GBPC Gb: european patent ceased through non-payment of renewal fee
NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19891201

EUG Se: european patent has lapsed

Ref document number: 81400373.7

Effective date: 19900124