EP0036163B1 - Tritium-Nachweis in Gasen - Google Patents
Tritium-Nachweis in Gasen Download PDFInfo
- Publication number
- EP0036163B1 EP0036163B1 EP81101723A EP81101723A EP0036163B1 EP 0036163 B1 EP0036163 B1 EP 0036163B1 EP 81101723 A EP81101723 A EP 81101723A EP 81101723 A EP81101723 A EP 81101723A EP 0036163 B1 EP0036163 B1 EP 0036163B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- counter
- counting
- wires
- gas
- flow
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J47/00—Tubes for determining the presence, intensity, density or energy of radiation or particles
- H01J47/06—Proportional counter tubes
- H01J47/062—Multiwire proportional counter tubes
Definitions
- the present invention relates to a device for the continuous detection of very small amounts of tritium in a gas mixture, for example in the product gas of a central gas supply, in particular a nuclear-heated coal gasification plant.
- the device is primarily intended for methane-containing gases, but is also suitable for gases containing CO z , C Z H s or C s H s .
- Proportional flow meters are known for the detection of the ⁇ radiation emitted by tritium, in which a constant methane stream which is completely free of tritium is passed through a closed counting space in which several counting wires are suspended in an electrically insulated manner. Compared to the gas to be tested, these counting rooms have a window that is closed with a very thin metal foil. The ß-radiation entering the counting area through this window ionizes the methane present in the counting area and briefly allows an electrical current to flow between the counting wires and the housing.
- DE-A No. 2500510 discloses a device for the continuous detection of very small amounts of tritium, the device consisting of a counting space through which the gas can flow, in which one or more counting wires are spanned and the counting area is surrounded by a heater is.
- the arrangement described there is a laboratory measuring device which is designed in particular for the selective detection of tritium between other radioactive substances. In principle there is an arbitrarily long measuring time available because the device described is a laboratory measuring device and not an operating measuring device adapted to certain conditions. If you e.g.
- the known measuring devices result in measuring times of around 1 hour to ensure a clear separation from the background radiation that is always present.
- the passage time of the product gas in a nuclear coal gasification plant from the reactor to the entry into the supply network is only 10 minutes, the measurement time that can be achieved with this would be too long.
- the object of the present invention is a device for the continuous detection of very small amounts of tritium in a gas mixture, in particular in the product gas of a central methane supply.
- the device should have the shortest possible response time, i.e. the measurement time required for the significant detection of a certain low radioactivity of the gas should be as short as possible.
- the device consists of a counting space through which the gas mixture can flow, in which a plurality of counting wires are spanned and the counting area is surrounded by a heater.
- the counting space is surrounded by a housing that is designed for high pressures, for example 6 bar.
- the counting space is separated from the housing by a ceramic molded body.
- Many very thin counting wires are arranged in parallel planes in the counting area, so that the counting area is used as cheaply as possible with regard to the distribution of the electric field strengths.
- the counting space is constructed in such a way that the gas can flow through it in a straight line, the counting wires everywhere being aligned as precisely as possible parallel to the direction of flow.
- the design of the counter tube according to the invention enables very precise measurements despite the increased pressure in the counter tube. Although the mean free path of ions and electrons generated by radioactive radiation is reduced until the next collision due to the pressure increase, this can be compensated for by the embodiment according to the invention. Because the wires are very thin, there is an electrical field strength in their vicinity which is sufficient to form ion cascades and thereby generate counting pulses. The counting space can be better utilized by using many counting wires. Since ion pairs generated by radiation may recombine before generating a cascade, it is necessary to maintain high electric field strengths as evenly as possible in the counting space. The remaining features of the main claim complete the functionality of the counter tube according to the invention.
- the very thin counting wires must be protected from tearing by the gas flow, which is done by the fact that the flow is guided as precisely as possible parallel to the counting wires.
- the possibility of being able to measure at increased pressure in the payment room brings considerable advantages for the sensitivity and response time.
- the ratio of radioactive decays to be measured increases by a corresponding factor compared to the always present background radiation, and the absolute number of decays in the volume naturally also increases in proportion to the pressure with the radioactive concentration remaining the same.
- the counter tubes according to the invention are much easier to shield against background radiation than, for example, counter tubes with a correspondingly increased volume.
- the measuring line from the main gas line to the measuring device should be as short as possible so that part of the tritium does not diffuse out through the pipe wall in the measuring line and thus no additional time is lost.
- the pressure, temperature and speed of the gas in the counting room should be controllable. In order to simplify the evaluation of the measurement, it seems advisable to keep these values constant. All three values are important for the gas flow flowing through the counting area. Maintaining a maximum and minimum gas velocity in the counting room is also important because on the one hand the thin and very sensitive counting wires must not be damaged and on the other hand the gas transport time is important for the measuring time. Furthermore, it appears appropriate to provide the counting room with a shield against the natural radiation from the environment, because the tritium activity to be measured here is already in the range of the natural radiation level.
- the counting wires of one level are each connected to one another in an electrically conductive manner. This simplifies the connection of the supply lines and makes good use of the counter tube volume with regard to the electrical field strength. Depending on the operating requirements, a different connection of the counting wires is also possible.
- the cylindrical housing 1 is connected with a cover 2 to the inflow 3 and with a cover 4 to the outflow 5 and contains an outer, likewise cylindrical, ceramic molded body 6, which encloses a metallic, rectangular counting space 7.
- This counting space is open at both ends and contains, in three planes parallel to the direction of flow, a plurality of counting wires 8, 9 and 10 which are fastened in an insulated manner in the counting space 7.
- the counting wires of one level are each conductively connected to one another and connected to a line which is led to the outside through a high-voltage-resistant insulation 11. Outside the counting space 7, but inside the ceramic molded body 6, an electrical heater 12 is provided, the connections of which are led out of the housing 1 through insulation 13.
- a circular perforated plate 14 is arranged in the flow direction in front of the molded body 6 and is intended to make the flow more uniform.
- a compressor 31 is arranged in the main line 30 and compresses the product gas emerging from a gas factory, for example at 1.7 bar, to the pressure of a long-distance gas line of, for example, 70 bar.
- Each of the three housings 1 is equipped both on its inflow side with a pressure regulating valve 32 and a shut-off valve 33 and on its outflow side with a pressure regulating valve 34 and a shut-off valve 35.
- the connecting lines to the main line 30 can each be closed with a shut-off valve 36 and 37. This circuit ensures that the three devices are constantly supplied with the necessary gas pressure as long as the compressor 31 supplies product gas to the gas supply network.
Landscapes
- Measurement Of Radiation (AREA)
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
Description
- Die vorliegende Erfindung betrifft ein Gerät zum kontinuierlichen Nachweis von sehr geringen Mengen von Tritium in einem Gasgemisch, z.B. im Produktgas einer zentralen Gasversorgung, insbesondere einer nuklear beheizten Kohlevergasungsanlage. Das Gerät ist in erster Linie für methanhaltige Gase gedacht, ist aber auch geeignet für Gase, die COz, CZHs oder CsHs enthalten.
- Bei nuklear beheizten Kohlevergasungsanlagen soll sichergestellt werden, dass radioaktive Gase, insbesondere Tritium, aus dem Kernreaktor nicht mit dem Produktgas auf dem Wege durch die Gasleitungen zu einem Verbraucher gelangen können. Auch bei nicht nuklear beheizten Kohlevergasungsanlagen oder bei solchen Gasversorgungsanlagen, die sowohl natürliches Erdgas als auch mit Kernenergie aus Kohle hergestelltes Methan verarbeiten und an einen Verbraucher leiten, ist es von Interesse, ob das Produkt nachweisbare Mengen von Tritium oder anderen radioaktiven Gasen enthält.
- Zum Nachweis der von Tritium ausgehenden β-Strahlung sind Proportionaldurchflusszähler bekannt, in denen ein konstanter und von Tritium völlig freier Methanstrom durch einen geschlossenen Zählraum geleitet wird, in dem mehrere Zähldrähte elektrisch isoliert aufgehängt sind. Gegenüber dem zu prüfenden Gas haben diese Zählräume ein Fenster, das mit einer sehr dünnen Metallfolie verschlossen ist. Die durch dieses Fenster in den Zählraum eindringende ß-Strahlung ionisiert das im Zählraum vorhandene Methan und lässt kurzzeitig einen elektrischen Strom zwischen Zähldrähten und Gehäuse fliessen.
- Weiterhin sind Geräte bekannt, bei denen ein Gemisch aus Methan und dem zu prüfenden Gas bei Atmosphärendruck und geringer Geschwindigkeit durch einen Zählraum fliesst. So ist beispielsweise aus der DE-A Nr. 2500510 ein Gerät zum kontinuierlichen Nachweis von sehr geringen Tritiummengen bekannt, wobei das Gerät aus einem von dem Gas durchströmbaren Zählraum besteht, in welchem ein oder mehrere Zähldrähte aufgespannt sind und wobei der Zählraum von einer Heizung umgeben ist. Die dort beschriebene Anordnung ist ein Labormessgerät, welches insbesondere für den selektiven Nachweis von Tritium zwischen anderen radioaktiven Stoffen konzipiert ist. Dafür steht eine im Prinzip beliebig lange Messzeit zur Verfügung, da das beschriebene Gerät ein Labormessgerät und kein an bestimmte Bedingungen angepasstes Betriebsmessgerät ist. Wenn man sich z.B. zum Ziel setzt, eine Tritiumkonzentration von 0,37 Bq/g Gas noch signifikant nachweisen zu können, so ergeben sich bei den bekannten Messgeräten Messzeiten von etwa 1 h, um eine deutliche Trennung von der stets vorhandenen Untergrundstrahlung zu gewährleisten. Da aber die Durchgangszeit des Produktgases in einer nuklearen Kohlevergasungsanlage vom Reaktor bis zum Eintritt in das Versorgungsnetz nur 10 min beträgt, wäre die hiermit erreichbare Messzeit zu lang.
- Aufgabe der vorliegenden Erfindung ist ein Gerätzum kontinuierlichen Nachweis von sehr geringen Mengen von Tritium in einem Gasgemisch, insbesondere im Produktgas einer zentralen Methanversorgung. Dabei soll das Gerät eine möglichst kurze Ansprechzeit haben, d.h. die Messzeit, die zum signifikanten Nachweis einer bestimmten geringen Radioaktivität des Gases benötigt wird, soll möglichst klein sein.
- Zur Lösung dieser Aufgabe wird ein Gerät nach dem Hauptanspruch vorgeschlagen. Das Gerät besteht aus einem von dem Gasgemisch durchströmbaren Zählraum, in welchem mehrere Zähldrähte aufgespannt sind und wobei der Zählraum von einer Heizung umgeben ist. Der Zählraum ist dabei von einem Gehäuse umgeben, das für hohe Drücke, beispielsweise 6 bar, ausgelegt ist. Zusätzlich ist der Zählraum von dem Gehäuse durch einen keramischen Formkörper getrennt. Im Zählraum sind viele sehr dünne Zähldrähte in parallelen Ebenen angeordnet, so dass der Zählraum bezüglich der Verteilung der elektrischen Feldstärken möglichst günstig ausgenutzt wird. Ausserdem ist der Zählraum so konstruiert, dass er von dem Gas geradlinig durchströmt werden kann, wobei die Zähldrähte überall möglichst genau parallel zur Strömungsrichtung ausgerichtet sind.
- Die erfindungsgemässe Ausführung des Zählrohres ermöglicht trotz des erhöhten Druckes im Zählrohr sehr genaue Messungen. Zwar wird durch die Druckerhöhung die mittlere freie Weglänge von durch radioaktive Strahlung erzeugten Ionen und Elektronen bis zum nächsten Zusammenstoss verkleinert, jedoch kann dies durch die erfindungsgemässe Ausführung kompensiert werden. Dadurch, dass die Drähte sehr dünn sind, herrscht in ihrer Nähe eine elektrische Feldstärke, die ausreicht, um lonenkaskaden zu bilden und dadurch Zählimpulse zu erzeugen. Durch die Verwendung vieler Zähldrähte kann der Zählraum besser ausgenutzt werden. Da durch Strahlung erzeugte lonenpaare unter Umständen schon vor Erzeugung einer Kaskade wieder rekombinieren, ist es nötig, hohe elektrische Feldstärken möglichst gleichmässig im Zählraum aufrechtzuerhalten. Die übrigen Merkmale des Hauptanspruchs vervollständigen die Funktionsfähigkeit des erfindungsgemässen Zählrohres. Insbesondere müssen die sehr dünnen Zähldrähte vor einem Zerreissen durch die Gasströmung geschützt werden, was dadurch geschieht, dass die Strömung möglichst genau parallel zu den Zähldrähten geführt wird. Die Möglichkeit, bei erhöhtem Druck im Zahlraum messen zu können, bringt erhebliche Vorteile für die Empfindlichkeit bzw. Ansprechzeit. So erhöht sich das Verhältnis von zu messenden radioaktiven Zerfällen gegenüber der immer vorhandenen Untergrundstrahlung um einen entsprechenden Faktor und die absolute Zahl der Zerfälle im Volumen steigt natürlich auch proportional zum Druck bei gleichbleibender Radioaktivitätskonzentration an. Darüber hinaus lassen sich die erfindungsgemässen Zählrohre viel leichter gegen Untergrundstrahlung abschirmen als beispielsweise Zählrohre mit einem entsprechend vergrösserten Volumen. Für die oben erwähnte Tritiumkonzentration von 0,37 Bq/g Gas ergibt sich für einen Gasgemischdruck im Zählrohr von beispielsweise 6 bar nunmehr eine Messzeit von etwa 10 min, was für die vorgesehene Verwendung ausreicht. Den gewünschten hohen Druck kann man mit einem Kompressor erzeugen, der einen Teilstrom des Gasgemisches aus der Hauptleitung entnimmt und nach der Messung wieder in die Hauptgasleitung zurückbefördert. Zweckmässiger erscheint es, für eine Produktgasanlage das Messgerät nicht, wie üblich, unmittelbar im Anschluss an die Produktionsanlage vorzusehen, sondern erst dort, wo das Produktgas auf den gewünschten Netzdruck verdichtet wird und dementsprechend unter einem hohen Druck verfügbar ist. Die Messleitung von der Hauptgasleitung bis zum Messgerät sollte möglichst kurz sein, damit nicht in der Messleitung ein Teil des Tritiums durch die Rohrwand nach aussen diffundiert und damit keine zusätzlichen Zeitverluste entstehen. Druck, Temperatur und Geschwindigkeit des Gases im Zählraum sollten kontrolierbar sein. Um die Auswertung der Messung zu vereinfachen, erscheint es zweckmässig, diese Werte konstant zu halten. Alle drei Werte sind von Bedeutung für den durch den Zählraum fliessenden Gasstrom. Die Einhaltung einer maximalen und minimalen Gasgeschwindigkeit im Zählraum ist ausserdem von Bedeutung, weil einerseits die dünnen und sehr empfindlichen Zähldrähte nicht beschädigt werden dürfen und andererseits die Gastransportzeit von Bedeutung ist für die Messzeit. Weiterhin erscheint es zweckmässig, den Zählraum mit einer Abschirmung gegen die natürliche Strahlung aus der Umgebung zu versehen, weil die hier zu messende Tritiumaktivität bereits im Bereich des natürlichen Strahlenpegels liegt. Eine Verfälschung der Messungen durch Tritiumablagerungen im Bereich des Zählrohres kann vermieden werden, wenn der Zähler in Abständen durch Aufheizen und ähnliche Massnahmen von radioaktiven Ablagerungen befreit wird. Zusätzlich kann durch entsprechende Materialwahl des keramischen Formkörpers die Adsorption von Tritium klein gehalten werden, wobei der keramische Formkörper den Zähler ausserdem elektrisch und thermisch gegen das Gehäuse isoliert.
- In weiterer Ausgestaltung der Erfindung wird im Anspruch 2 vorgeschlagen, dass die Zähldrähte einer Ebene jeweils elektrisch leitend miteinander verbunden sind. Dies vereinfacht die Anschlüsse der Zuleitungen und nutzt das Zählrohrvolumen bezüglich der elektrischen Feldstärke gut aus. Je nach den Betriebsanforderungen ist aber auch eine andere Schaltung der Zähldrähte möglich.
- In zusätzlicher Ausgestaltung der Erfindung wird im Anspruch 3 vorgeschlagen, in Strömungsrichtung vor dem Zählraum eine Lochplatte anzuordnen. Da bei hohem Druck turbulente Strömungen die notwendigerweise sehr dünnen Zähldrähte zerstören könnten, ist diese Lochplatte eine Möglichkeit, durch Vergleichmässigung der Strömung die Belastung der Zähldrähte zu verringern.
- Die Fig. 1 bis 3 zeigen mögliche Ausführungsbeispiele der Erfindung.
- Fig. 1 zeigt die konstruktive Ausführung eines Tritiumzählers im Längsschnitt.
- Fig. 2 zeigt einen Querschnitt durch Fig. 1.
- Fig. 3 zeigt in schematischer Darstellung eine Anordnung von drei parallelen Tritiumzählern und eine Schaltung zur Auswertung der Messsignale.
- Das zylindrische Gehäuse 1 ist mit einem Deckel 2 an den Zufluss 3 und mit einem Deckel 4 an den Abfluss 5 angeschlossen und enthält einen aussen ebenfalls zylindrischen keramischen Formkörper 6, der einen metallischen, rechteckigen Zählraum 7 umschliesst. Dieser Zählraum ist an beiden Enden offen und enthält in drei zur Strömungsrichtung parallelen Ebenen mehrere Zähldrähte 8, 9 und 10, die im Zählraum 7 isoliert befestigt sind. Die Zähldrähte einer Ebene sind jeweils miteinander leitend verbunden und an eine Leitung angeschlossen, die durch eine hochspannungsfeste Isolierung 11 nach aussen geführt ist. Ausserhalb des Zählraumes 7 aber innerhalb des keramischen Formkörpers 6 ist eine elektrische Beheizung 12 vorgesehen, deren Anschlüsse durch eine Isolierung 13 aus dem Gehäuse 1 herausgeführt sind. In Strömungsrichtung vor dem Formkörper 6 ist eine kreisförmige Lochplatte 14 angeordnet, die die Strömung vergleichmässigen soll.
- In Fig. 3 sind drei vollständige Nachweisgeräte strömungstechnisch parallel geschaltet. In der Hauptleitung 30 ist ein Kompressor 31 angeordnet, der das aus einer Gasfabrik beispielsweise mit 1,7 bar austretende Produktgas auf den Druck einer Ferngasleitung von beispielsweise 70 bar verdichtet. Jedes der drei Gehäuse 1 ist sowohl auf seiner Zuflussseite mit einem Druckregulierventil 32 und einem Absperrventil 33 als auch auf seiner Abflussseite mit einem Druckregulierventil 34 und einem Absperrventil 35 ausgestattet. Ausserdem sind die Verbindungleitungen zur Hauptleitung 30 mit je einem Absperrventil 36 und 37 verschliessbar. Mit dieser Schaltung ist gewährleistet, dass die drei Geräte, solange der Kompressor 31 Produktgas ins Gasversorgungsnetz liefert, ständig mit dem notwendigen Gasdruck versorgt sind. Damit sind also diese Geräte unabhängig von besonderen Kompressoren. Durch die Parallelschaltung von im Beispiel drei Geräten wird gewährleistet, dass ein einzelnes Gerät ausgewechselt und inspiziert werden kann, während die beiden anderen Geräte weiterhin den Tritiumgehalt überwachen. In der Fig. 3 nicht dargestellt, aber für den praktischen Betrieb sehr zweckmässig ist es, wenn anstelle eines Nachweisgerätes zwei Geräte hintereinander geschaltet sind. Bei dieser Anordnung kann man die Anzeige beider Geräte miteinander vergleichen und bei eventuell unterschiedlichen Anzeigen auf Messfehler schliessen. Ausserdem kann man jeweils eines der beiden Geräte beispielsweise mit einer künstlichen Strahlungsquelle prüfen.
- Im übrigen ist die Konstruktion- und Betriebsweise von Proportionaldurchflusszählern in "Kernphysikalische Messverfahren" von Hubert Neuert, erschienen 1966 im G. Braun-Verlag, Karlsruhe, beschrieben, insbesondere auf den Seiten 328,410 ff. Daher kann an dieser Stelle auf die Beschreibung einer elektrischen und elektronischen Schaltung zur Auswertung der Messsignale verzichtet werden.
Claims (3)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19803009563 DE3009563A1 (de) | 1980-03-13 | 1980-03-13 | Tritium-nachweis in gasen |
DE3009563 | 1980-03-13 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0036163A2 EP0036163A2 (de) | 1981-09-23 |
EP0036163A3 EP0036163A3 (en) | 1982-04-28 |
EP0036163B1 true EP0036163B1 (de) | 1985-02-27 |
Family
ID=6097033
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP81101723A Expired EP0036163B1 (de) | 1980-03-13 | 1981-03-09 | Tritium-Nachweis in Gasen |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP0036163B1 (de) |
JP (1) | JPS56143976A (de) |
DE (2) | DE3009563A1 (de) |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1123409B (de) * | 1959-06-23 | 1962-02-08 | Inst Staubforschung Und Radioa | Ionisationskammer zum Nachweis von Betastrahlen |
DE1489925A1 (de) * | 1965-07-01 | 1969-09-04 | Kernforschung Gmbh Ges Fuer | Verfahren und Vorrichtung zum Messen der Aktivitaet eines vorbestimmten Stoffes in einem mehrere radioaktive Stoffen enthaltenden Stoffgemisch |
JPS5070967U (de) * | 1973-10-15 | 1975-06-23 | ||
DE2500510C3 (de) * | 1975-01-08 | 1979-01-11 | Laboratorium Prof. Dr. Rudolf Berthold, 7547 Wildbad | Verfahren zur Selektierung der Kernstrahlung bestimmter gasförmiger, in einem Trägergas in ein Zählrohr gebrachter Radionuklide, unter Diskriminierung nach der Impulsform sowie Anwendung dieses Verfahrens und Verwendung «ines DurchfluBzählrohres hierzu |
JPS5311469A (en) * | 1976-07-16 | 1978-02-01 | Nabisco Inc | Device of treating article |
-
1980
- 1980-03-13 DE DE19803009563 patent/DE3009563A1/de not_active Ceased
-
1981
- 1981-03-09 DE DE8181101723T patent/DE3169125D1/de not_active Expired
- 1981-03-09 EP EP81101723A patent/EP0036163B1/de not_active Expired
- 1981-03-11 JP JP3516081A patent/JPS56143976A/ja active Granted
Also Published As
Publication number | Publication date |
---|---|
EP0036163A3 (en) | 1982-04-28 |
JPH0330838B2 (de) | 1991-05-01 |
JPS56143976A (en) | 1981-11-10 |
EP0036163A2 (de) | 1981-09-23 |
DE3009563A1 (de) | 1981-09-17 |
DE3169125D1 (en) | 1985-04-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0254160B1 (de) | Einrichtung zum Messen des Massenstromes in einem Rohr | |
DE1573515A1 (de) | Einrichtung zur Ermittlung von Leckstellen | |
DE3148611A1 (de) | Wasserstoff-fuehler | |
DE1648902B2 (de) | Ionenkammerdetektor | |
DE2415559A1 (de) | Anzeigevorrichtung fuer den zustand eines nichtleitenden fliessfaehigen mediums | |
EP0036163B1 (de) | Tritium-Nachweis in Gasen | |
DE19528290C1 (de) | Verfahren zur Überwachung des Qualitätszustandes des Füllgases Schwefelhexafluorid in gasgefüllten Anlagen | |
EP0205747A1 (de) | Einrichtung zur Prüfung elektrischer oder elektronischer Systeme mit elektro-magnetischen Pulsen | |
DE1289669B (de) | Geraet zur Bestimmung der Groessenverteilung der Aerosolteilchen in einer gasfoermigen Probe | |
DE1289333B (de) | Geraet zum Messen der Wasserstoffkonzentration in Fluessigkeiten | |
CH638046A5 (de) | Verfahren und versuchsanordnung zur untersuchung von gasen. | |
DE3904168C2 (de) | ||
DE8006812U1 (de) | Geraet zum kontinuierlichen nachweis von tritium | |
DE2149491A1 (de) | Strahlungsdetektor | |
DE570781C (de) | Messgeraet zur Gasanalyse nach dem Prinzip der Waermeleitfaehigkeitsmessung | |
DE2723998C3 (de) | Detektor zur Bestimmung der Konzentration von Tritium in Gasen | |
DE69401374T2 (de) | Ionisationskammer mit hoher Empfindlichkeit für Gammastrahlung | |
DE68905236T2 (de) | Verfahren und Vorrichtung zur Bestimmung des Feuchtigkeitsgehaltes von Gasen. | |
DE2725960A1 (de) | Verfahren und vorrichtung zur bestimmung der stroemungsgeschwindigkeit von gasen | |
DE825908C (de) | Einrichtung fuer gasanalytische Untersuchungen, insbesondere Rauchgaspruefer | |
DE1925601A1 (de) | Vorrichtung zur Feststellung des Sinnes einer Gasstroemung mittels lonisierung des stroemenden Gases | |
DE2018624C3 (de) | Einrichtung zum Zählen von kugelförmigen Elementen | |
DE349299C (de) | Einrichtung zur Bestimmung der Konzentration einer Komponente eines Gasgemisches | |
DE1673279A1 (de) | Einrichtung zur Groessenbestimmung und Zaehlung von in einer Suspension enthaltenen Teilchen | |
DE3936719A1 (de) | Verfahren und vorrichtung zur messung der papierformation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Designated state(s): DE FR GB NL |
|
17P | Request for examination filed |
Effective date: 19811028 |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Designated state(s): DE FR GB NL |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Designated state(s): DE FR GB NL |
|
REF | Corresponds to: |
Ref document number: 3169125 Country of ref document: DE Date of ref document: 19850404 |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: INTERATOM GESELLSCHAFT MIT BESCHRAENKTER HAFTUNG |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
NLT2 | Nl: modifications (of names), taken from the european patent patent bulletin |
Owner name: INTERATOM GESELLSCHAFT MIT BESCHRAENKTER HAFTUNG T |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19910218 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19910321 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19910331 Year of fee payment: 11 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19920309 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19920521 Year of fee payment: 12 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Effective date: 19921001 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee | ||
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Effective date: 19921130 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19931201 |