EP0032168B1 - Installation d'injection de combustible pour moteurs à combustion interne, notamment pour moteurs diesel - Google Patents

Installation d'injection de combustible pour moteurs à combustion interne, notamment pour moteurs diesel Download PDF

Info

Publication number
EP0032168B1
EP0032168B1 EP80106901A EP80106901A EP0032168B1 EP 0032168 B1 EP0032168 B1 EP 0032168B1 EP 80106901 A EP80106901 A EP 80106901A EP 80106901 A EP80106901 A EP 80106901A EP 0032168 B1 EP0032168 B1 EP 0032168B1
Authority
EP
European Patent Office
Prior art keywords
control
pressure
line
valve
pressure line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP80106901A
Other languages
German (de)
English (en)
Other versions
EP0032168A1 (fr
Inventor
Jean Leblanc
Jean Pigeroulet
Max Dr. Dipl.-Ing. Straubel
Konrad Dr. Dipl.-Ing. Eckert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Priority to AT80106901T priority Critical patent/ATE10532T1/de
Publication of EP0032168A1 publication Critical patent/EP0032168A1/fr
Application granted granted Critical
Publication of EP0032168B1 publication Critical patent/EP0032168B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • F02M59/36Varying fuel delivery in quantity or timing by variably-timed valves controlling fuel passages to pumping elements or overflow passages
    • F02M59/361Valves being actuated mechanically
    • F02M59/362Rotary valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • F02M59/36Varying fuel delivery in quantity or timing by variably-timed valves controlling fuel passages to pumping elements or overflow passages
    • F02M59/365Varying fuel delivery in quantity or timing by variably-timed valves controlling fuel passages to pumping elements or overflow passages valves being actuated by the fluid pressure produced in an auxiliary pump, e.g. pumps with differential pistons; Regulated pressure of supply pump actuating a metering valve, e.g. a sleeve surrounding the pump piston
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • F02M59/36Varying fuel delivery in quantity or timing by variably-timed valves controlling fuel passages to pumping elements or overflow passages
    • F02M59/366Valves being actuated electrically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition

Definitions

  • the invention is based on a fuel injection device according to the preamble of claim 1.
  • a fuel injection device of this type is already known (US-A-3 486 493), in which the injection pump is designed as a pump nozzle and the fuel injection quantity by one into one Overflow channel used hydraulically driven spool is determined.
  • This control slide determines the effective delivery stroke and thus the fuel injection quantity of the injection pump by blocking the backflow from the pump work space; and the injection is ended when this control slide opens the overflow channel and the injection pressure can be relieved.
  • the control slide is acted upon by the supply pressure of the feed pump and is actuated by pressure relief in its spring chamber containing the return spring.
  • control pressure line also serves as a filling line, with which effects on the control are expected.
  • a fuel injector of almost the same type is known from US-A-3 465 737, in which, however, the control slide is actuated by the control pressure of a separate injection pump serving as a control pump and at the same time driven by the pump nozzle.
  • a known spray adjuster which transmits the drive torque is installed in the drive of the control pump, so that the overall outlay for the device is very great.
  • the aim of the invention is to obtain a compact injection device for each individual injection pump with little construction work, with mechanical controls being switched off and which can be used in high-speed diesel engines.
  • a fuel injection device is also known from FR-A-2 235 276, in which the control device determining the start and end of injection is formed by a solenoid valve arrangement consisting of two solenoid valves.
  • This solenoid valve arrangement is arranged separately from a distributor device.
  • the solenoid valve arrangement is arranged separately from a distributor device.
  • the solenoid valves are directly exposed to the fuel under injection pressure during the injection, which increases the accuracy and The high pressure resistance of these valves makes extremely high demands.
  • the injection pressure generated by the pump pistons collapses completely after each injection, so that the injection pressure for the next injection must be built up again in the entire high-pressure system.
  • the central rotary distributor also directs the fuel under injection pressure to the injection nozzles, so that there are disproportionately large dead spaces under injection pressure.
  • a constant quantity pump is used as the feed pump, which delivers both the injection quantity and the control fuel quantity and is able to generate the required control pressure.
  • a simplified line routing is achieved by means of the features of claims 3 to 6, the relief features occurring during the reversing of the control slide valve and thus the switching movements of these control slide valve being damped, according to claim 5, of the overflow channel at the same time filling the Pump work space is used, and a corresponding part of the filling channel is replaced by channels on the control slide according to the features of patent claim 6.
  • the throttle line connecting the pressure chamber of the control slide with its spring chamber according to claim 7 ensures that the control slide always remains in the initial position in the unactuated state and is therefore insensitive to leakage currents.
  • the characterizing features of claim 8, on the other hand, ensure that the fuel escaping from the pump work chamber under high pressure does not get directly into the spring chamber of the control spool and possibly adversely affects its control movement.
  • claims 11 to 13 define various possible solenoid valve combinations, of which the feature combinations selected according to claim 11 or 12 enable a clear separation between control pressure and supply pressure by the use of a 3/2-way valve inserted in the control pressure line, and thus a faster one Ensures the stroke of the control spool. Due to the characterizing features of claim 13, the structure of the 2/2-way valves, which are very simple in construction, can be used, and simple line routing is made possible.
  • the features of the characterizing part of claim 14 ensure rapid actuation of the solenoid valve controlling the start of injection or the end of injection, and no injection can take place in the event of a power failure, which takes into account the safety requirements.
  • a fuel injection device is claimed with a central valve assembly having a rotary valve, in which the metering slide, which can only be actuated to change the delivery quantity and change the start of injection, advantageously does not rotate with the drive, and thus in a simple manner by known electrical or mechanical actuators can be operated.
  • the particular advantage of this arrangement is the exact separation between the mechanically or electrically actuated actuators that change the start of injection and the actuators that control the delivery rate, and also that the metering slide floating within the rotating control sleeve can be actuated practically smoothly with very low actuating forces, since it is completely is balanced within the control sleeve.
  • a revolving control sleeve is known per se from the already cited US-A-3 486 493. However, there is no arbitrary adjustment of the delivery rate and the rotational position of the control sleeve that determines the start of delivery, since the control sleeve is adjusted depending on the wire number by a centrifugal weight controller, thus works as part of an all-speed controller and also controls the start of delivery depending on the speed.
  • the inevitable connection of the control pressure line to the pressure chambers to be under control pressure is possible in the simplest possible way by the distributor device formed by a control point on each pump piston, the length of the control line can be kept extremely short in an advantageous manner, thereby the dead spaces of the control lines are reduced, and an otherwise necessary drive of the distributor device is eliminated.
  • the control fuel source is formed by an auxiliary pump which is driven at the same time as the pump piston, and the claims in EP-A-0 032 172 are directed to a fuel injection device in which the control device drives the control slide one for all Injection pumps common, the beginning and the duration of the pressurization of the pressure chambers of the control slide valve assembly determining and consists of a separate from this distributor.
  • the special design of the control fuel source claimed in the present patent in connection with further combination features in claim 1 is not claimed in the aforementioned patent applications.
  • FIG. 1 shows a simplified illustration of the first exemplary embodiment with four injection pumps shown in cross section, designed as pump nozzles and a mechanical distributor device
  • FIG. 1 shows a section along the line II in FIG. 1, only partially shown
  • FIG. 2 shows a simplified illustration of the second Embodiment with a valve arrangement formed by two solenoid valves
  • Figure 2a shows an embodiment variant of the control slide valve used in Figures 1, 2 and 4 with a separate relief line
  • Figure 3 shows the third embodiment with a solenoid valve arrangement and a distributor device formed by a rotary distributor
  • Figure 4 shows a detail the fourth embodiment with a simplified solenoid valve arrangement
  • FIG. 1 shows a simplified illustration of the first exemplary embodiment with four injection pumps shown in cross section, designed as pump nozzles and a mechanical distributor device
  • FIG. 1 shows a section along the line II in FIG. 1, only partially shown
  • FIG. 2 shows a simplified illustration of the second Embodiment with a valve arrangement formed by two solenoid valves
  • Figure 2a shows
  • FIG. 5 shows a control diagram for the solenoid valve arrangements shown in FIGS. 2 to 4
  • FIG. 6 shows a partial cross section through the valve arrangement used in FIG. 1
  • FIG 6 and FIG. 7 shows a simplified cross section through an embodiment variant of the valve arrangement used in FIG. 1 and shown in more detail in FIGS. 1 a, 6 and 6 a.
  • 10a to 10d are four mechanically driven pump nozzles, which essentially consist of an injection pump 12a to 12d, which is driven by a drive cam 11a to 11d of an engine camshaft 11, and one with a piston pump assembled, designed as a pressure-controlled injection valve injector 13.
  • an injection pump 12a to 12d which is driven by a drive cam 11a to 11d of an engine camshaft 11, and one with a piston pump assembled, designed as a pressure-controlled injection valve injector 13.
  • any of the known injection valves controlled by the fuel pressure and designed as outward or inward opening valves can be used as the injection nozzle.
  • the pump pistons dip into their pump strokes, which are generated by the drive cams 11a to 11d against a plunger spring 1 and are transmitted via roller tappets 16, in a pump work chamber 18 formed by part of a cylinder bore 17 of the pump pistons 14a to 14d a.
  • These pump work spaces 18 are filled with fuel via fill lines 21 which are connected to a supply line 19 which is common to all pump nozzles 10a to 10d and are under the supply pressure Pv and which are also to be regarded as an extension of the overflow channels designated 22 and connected to the pump work spaces 18.
  • the overflow lines 22 are also to be regarded as part of the filling lines 21.
  • a control slide 24, which can be actuated against the force of a return spring 23, is inserted, which in the pump nozzle 10a is in a position closing the overflow channel 22 to initiate injection, in the other pump nozzles 10b to 1 Od, however, in its starting position connecting the pump work space 18 with the filling lines 21 and thus with the supply line 19 serving as low pressure line.
  • the filling lines 21 each open into a spring chamber 25 of the control slide 24 containing the return spring 23, and the spring chamber 25 is in permanent connection with a ring groove via channels 26 formed by surfaces or grooves in a section 24a of the control slide 24 Trained control point 27 of the control slide 24.
  • the annular groove 27 has opened the connection from the filling line 21 to the overflow channel 22, this connection is closed in the first pump nozzle 10a.
  • Each of the control slides 24 is delimited at its end opposite the return spring 23 by a pressure chamber 28, which in turn is connected via a control line 29 to a control pressure line 31 common to all pump nozzles.
  • the control pressure line 31 can be set under the control pressure p s of a control fuel source 32 if the pressure level of the fuel delivered by a feed pump 33 from a tank 34 to the control pressure line 31 is determined by a first pressure limiting valve 35. This is the case when the control fuel located in the control pressure line 31 is prevented by a valve arrangement 36 from flowing into a low pressure line which is at a substantially lower pressure.
  • the supply line 19 serves as a low-pressure line, in which case the supply pressure p ′′ prevails in the present case.
  • the first pressure-limiting valve 35 is used to control this supply pressure Pv followed by a second pressure relief valve 37.
  • the control fuel source 32 is thus formed by the feed pump 33, which is preferably embodied as a constant quantity pump, and the first pressure limiting valve 35, and the control pressure p s prevailing in the control pressure line when the return line is blocked is several times higher than the supply pressure p prevailing in the supply line 19 and the filling lines 21 v .
  • the central valve arrangement 36 for all pump nozzles 10a to 10d has a rotary valve 38 which is driven simultaneously with the camshaft 11 in synchronism with the injection pumps 12a to 12d and is longitudinally displaceable for changing the delivery rate and rotatable relative to its drive for changing the start of injection.
  • the rotating rotary valve 38 is provided with four control surfaces 41 on its jacket surface designated 39, ie the rotary valve 38 carries one control surface 41 for each control line 29 to be controlled.
  • the valve arrangement 36 is in a control pressure line 31 with the line 42 connecting the supply line 19 serving as the low pressure line, a control opening 42a of the line 42 permanently connected to the control pressure line 31 being controlled by the control surfaces 41 on the rotary valve 38 and another control opening 42b leading to the low pressure line 19 in permanent connection with one recess 40 delimited by control surfaces 41 on rotary valve 38. If one of the control surfaces 41 closes the control opening 42a, the control pressure p s limited by the first pressure relief valve 35 is built up in the control pressure line 31 and, as shown in FIG. 1, via an annular groove 43 serving as a distributor device on the pump piston 14a and the control line 29 into the pressure chamber 28 of the first pump nozzle 10a passed.
  • the pump work chamber 18 is connected to the supply line 19 via the overflow channel 22, the control point 27 on the control slide 24, the channels 26, the spring chamber 25 and the filling line 21.
  • the resulting drop in pressure in the pump work chamber 18 ends the injection, and in the pump work chamber 18 only a stand pressure corresponding to the supply pressure p " is maintained.
  • this pump working chamber 18 is filled again via the filling line 21 and the overflow line 22. This filling is ended when the pump piston 14a is again in its bottom dead center position, as is the case with the pump pistons 14c and 14d of the third and fourth pump nozzles 10c and 10d the case is.
  • the drive cams 11a to 11d are designed so that a longer rest of the pump piston 14a to 14d takes place both in the lower and in the top dead center position, thereby ensuring that when one of the control slides 24 is actuated, another is not influenced , because both in the lower and in the top dead center position, the annular groove 43 on the pump pistons 14a to 14d closes the connection from the pressure chamber 28 via the control line 29 to the common control pressure line 31.
  • the individual pump nozzles 10a to 10d are actuated directly by the drive cams 11 to 11d connected and driven via the dash-dot line, preferably formed by the overhead engine camshaft, as a result of which the "rigid drive" necessary for generating high injection pressures is actuated. is guaranteed.
  • the pump pistons 14a to 14d can also be driven by rocker arms known per se cams 11 a to 11 d are driven (not shown).
  • the rotary valve 38 is also driven by the same engine camshaft 11, and a spatially advantageous arrangement of the entire fuel injection device is obtained if, as indicated by dash-dotted lines on the feed pump 33, this is also driven by the engine camshaft 11.
  • the pump nozzles 10a to 10d are constructed in the same way as those described for FIG. 1 of the first exemplary embodiment, and the control fuel source 32 also works in the same way.
  • the control fuel source 32 also works in the same way.
  • four drive cams 11 to 11d connected via the engine camshaft 11 are also shown, and the control lines 29 of the same length for each pump nozzle 10a to 10d can be connected to the control pressure line 31 by the annular grooves 43 serving as a distributor device on the pump pistons 14a to 14d .
  • valve arrangement used here is a solenoid valve arrangement 48 which consists of two solenoid valves 46 and 47 and which is to be regarded as part of the control device, through which the control fuel flows out of the control pressure line 31 to the supply or low pressure line 19 under the supply pressure p " in the position shown of the solenoid valves 46 and 47.
  • the control pressure p s prevails in the control pressure line 31 and in the pressure chamber 28 of the first pump nozzle 10a, since the drive cam 11a has already moved the pump piston 14a of the first pump nozzle 10a so far (adjustment um /, u) that the annular groove 43 has connected the associated control line 29 to the control pressure line 31 and the control slide 24 has been moved into the position shown which blocks the overflow line 22.
  • the control lines 29, which are not under control pressure, are the other of the drive cams 11 b to 11 d driven and in their upper or lower dead Pump nozzles 10b to 10d at the point position are separated from the control pressure line 31 under control pressure p s by the corresponding position of the associated ring grooves 43.
  • the solenoid valve arrangement consists of the two hydraulically connected solenoid valves 46 and 47, through which extremely short control times that cannot be achieved with a single solenoid valve can be achieved if the control signals overlap accordingly.
  • the first solenoid valve 46 is designed as a 2/2-way valve and is actuated in FIG. drawn by the associated energized electromagnet shifted second switching position in which it blocks the connecting line 42 ', from the control pressure line 31 to the supply line 19.
  • the second solenoid valve 47 is a 3/2-way valve and, in its deenergized first switching position shown in FIG. 2, connects the part 31 a of the control pressure line 31 leading to the distribution device 43 with the other part 31 b connected to the control fuel source 32. To end the injection and discharge of the control pressure line 31, this second solenoid valve 47 switches over when the electromagnet is energized into its second switching position connecting part 31a of the control pressure line 31 with the supply line 19.
  • the first solenoid valve 46 then returns to the first switching position shown in the circuit symbol when the electromagnet is de-energized, and the second solenoid valve 47 is brought back to the drawn first switching position with the electromagnet also de-energized.
  • FIG. 2a shows an embodiment variant of the control slide 24 used in all exemplary embodiments and designated 24 ′.
  • This control slide 24 'contains a throttle line 51 drilled essentially through its longitudinal axis, which connects the pressure chamber 28 to the spring chamber 25 containing the return spring 23 and is designed so closely that leakage fuel reaching the pressure chamber 28 via the control line 29 when the distributor device 43 is blocked can overflow the spring chamber 25, but the actuation of the control slide 24 'is not impaired when the pressure chamber 28 is set under control pressure p s .
  • the throttle line 51 can be designed as a throttle overall, but it is more favorable to make the part of this line running in the axial direction somewhat larger and to design only a short part of this line, designated 51 a in FIG.
  • the pump pistons designated 14a 'to 14d' become the pump nozzles 10a 'to 10d' are driven by drive cams 11a 'to 11d' which differ in shape from the drive cams 11a to 11d of FIGS. 1 and 2, and a central drive, which is driven synchronously with the pump nozzles 10a 'to 10d', serves as the distributor device Rotary distributor 53, which is also connected directly or indirectly to the engine camshaft 11.
  • a jacket surface 54 of this rotary distributor 53 is provided with a control opening 55 which is permanently connected to the control pressure line 31 and whose sludges B denoted B in the circumferential direction are designed for the longest possible actuation duration of the control slide 24, taking into account the speeds occurring in practice.
  • the control opening 55 is in permanent connection with the control pressure line 31 via a transverse bore 56 in the rotary distributor 53 and via a longitudinal bore 57, and when the rotary distributor 53 rotates clockwise to control the pump nozzles 10a 'to 10d', the individual control lines 29 become successively connected to the control pressure line 31 in time with the injections by means of the control opening 55.
  • the solenoid valve arrangement inserted into the control pressure line 31 between the part 31 leading to the distributor device 53 and the part 31 of this line 31 fed from the control fuel source 32 is designated 48 'in FIG. 3 and consists of two 3/2-way valves 46' and 47 '. , through which the part 31 a of the control pressure line 31 permanently connected to the distributor device 53 can alternately be connected to the other part 31 b of the control pressure line 31 connected to the control fuel source 32 or to the low pressure or supply line 19.
  • FIG. 3 shows the first solenoid valve 46 ', which is actuated to initiate the start of spraying, in its switching position which prevents the fuel from flowing out of the control pressure line 31 into the low pressure line 19, but which permits the flow of the control fuel from the control fuel source 32 to the rotary distributor 53, the second solenoid valve 47 'Was already in this corresponding switching position and (not shown) at the end of the injection, the second solenoid valve 47' can then switch into a switching position which enables the relief of the control pressure p s in the part 31 of the control pressure line 31 leading to the rotary distributor 53. In this switching position, a connection is then made to the supply line 19, in which the supply pressure p v , which is substantially lower than the control pressure p s , prevails and is controlled by the pressure limiting valve 37, as already described above for FIG. 1.
  • FIG. 4 shows a circuit-technically simplified solenoid valve arrangement 48 ′′ which can be used instead of the solenoid valve arrangements 48 or 48 ′ in FIGS. 2 and 3 and which consists of two almost identical solenoid valves 46 ′′ and 47 ′′ designed as 2/2-way valves.
  • Both solenoid valves 46 “and 47” are inserted into the control pressure line 31 with the supply line 19 connecting lines 42 'and 42 ".
  • the first solenoid valve 46 " is in its second switching position, which blocks the connection from the control pressure line 31 to the low pressure line 19 when the electromagnet is energized, while the second, non-energized solenoid valve 47" already blocks this connection in its position first switch position.
  • control pressure line 31 is connected directly to the control fuel source 32, and the supply line 19 branches off between the two pressure limiting valves 35 and 37.
  • a flow restrictor 59 can be inserted into the control pressure line 31 before the connection to the supply line 19 via the lines 42 ′ and 42 ′′.
  • This flow restrictor 59 must be designed in such a way that a pressure drop to the supply pressure p v which enables the return stroke of the control slide 24 is possible when the connection to the supply line 19 in the control pressure line 31 is controlled by the second solenoid valve 47 ′′, and that a rapid pressure build-up is also achieved when the outflow is blocked of the control pressure p s takes place in this control pressure line 31.
  • FIG. 2 The mode of operation of the two solenoid valves 46 and 47 shown in FIG. 2 in their switching position blocking the outflow from the control pressure line 31 and also of the solenoid valves 46 ′ and 47 ′ or 46 ′′ and 47 ′′ described in FIGS. 3 and 4 is shown in FIG 5 see diagram shown.
  • the first solenoid valve 46, 46 ', 46 is switched on shortly before t z to control the start of spraying and is switched off again at a point in time that can be defined within wide limits between t 3 and t 2.
  • Curve d shows that the second solenoid valve 47, 47 ', 47 "is switched on to control the end of the spray at t 3 and is switched off again before t 2, for example at t, or, as indicated by dash-dotted lines, at t s .
  • FIG. 6 shows a section through a practical exemplary embodiment of the valve arrangement 36, only indicated in FIGS. 1 and 1, with the components essential for the actuation of the rotary valve 38, and FIG. 6a shows an oblique view of the rotary valve 38.
  • a centrifugal weight group 61 is in the drive of the rotary valve 38 inserted, the centrifugal weights 62 act on an adjusting sleeve 63, and which, in the case of the centrifugal force-dependent axial movement of the adjusting sleeve 63 against the force of the adjusting spring 66, produce a relative rotation of the rotary valve 38 serving to change the start of injection to its drive 11 by means of a pin 64 and a slot 65 .
  • the recess 40 in the rotary valve 38 which is delimited in one direction by the control surfaces 41, is in permanent communication with the supply line 19 via the control opening 42b and part of the line 42, while the control opening 42a which can be closed by the control surfaces 41 for controlling the injection duration is connected to the control pressure line 31 is connected.
  • the axial movement of the rotary valve 38 which influences the delivery quantity can be effected via a lever 67 for switching off or correcting the delivery quantity, while the adjustment of control springs 68a, 68b and 68c can be influenced via an adjustment lever 69.
  • the control spring forces are transmitted via an intermediate lever 71.
  • FIG. 7 shows an embodiment variant of the mechanical valve arrangement 36 used in FIGS. 1, 1a, 6 and 6a.
  • the valve arrangement denoted by 36 'in FIG. 7 contains in a fixed housing 91 a circumferential control sleeve 92, preferably of a shaft indicated by a dash-dotted shaft that rotates synchronously with the motor pin shaft 11 or, as assumed in the exemplary embodiment, directly from the motor cam shaft 11 via a backlash-free coupling .
  • a diaphragm clutch is driven, which is shown in Figure 7, however, to simplify the drawing as a claw coupling shown offset by 45 °.
  • the control sleeve 92 receives in a central longitudinal bore 94 a metering slide 95 which can be displaced longitudinally to change the delivery quantity and can be rotated to change the start of injection, but is otherwise stationary and is provided with the four control surfaces designated here by 41 '.
  • the control sleeve 92 which is arranged concentrically around the metering slide 95, is provided with only one control opening 96, which is designed as a radial bore in a plane perpendicular to the longitudinal axis of the control sleeve 92 and opens into an annular groove 98 on the circumference of the control sleeve 92, and the annular groove 98 is in turn over again the control opening 42a in the housing 91 is connected to the part of the line 42 leading to the control pressure line 31.
  • the recess 40 ' which is axially delimited on one side by the control surfaces 41' is via radial bores 97 and an annular groove 100 in the control sleeve 92 in permanent connection with the control opening 42b in the housing 91 and via this and part of the line 42 with the supply line 19
  • the required longitudinal displacement of the metering slide 95 takes place via a lever 99, the rotary movement required for changing the start of spraying via a lever 101.
  • Both levers can be actuated via known mechanical or electromechanical controllers or spray adjusters, and hydraulic or electrohydraulic actuators can also act on these levers 99 and 101 .
  • the fuel injection devices described as exemplary embodiments are provided exclusively with pump nozzles, because these best bring out the advantages of the hydraulic control according to the invention.
  • the principle of the invention can also be applied to individual pumps and to injection pumps combined to form in-line pumps.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Fuel-Injection Apparatus (AREA)

Claims (21)

1. Installation d'injection de carburant pour moteurs à combustion interne, notamment pour moteurs Diesel avec respectivement pour chaque cylindre du moteur un piston de pompe (14a à 14d; 14a' à 14d') entraîné mécaniquement, d'une pompe d'injection (12a à 12d) alimentée avec du carburant sous pression d'alimentation, avec respectivement un tiroir de commande (24, 24'), susceptible d'être actionné contre au moins l'action d'un ressort de rappel (23), par la pression de commande d'une source de carburant de commande (32) commune à toutes les pompes d'injection, ce tiroir étant installé sur un canal de trop-plein (22) relié en permanence à la chambre de travail (18) de la pompe et fermant ce canal pour mettre en route le début de l'injection, puis l'ouvrant à nouveau pour mettre fin à l'injection, et avec un dispositif de commande (48, 48', 48") . grâce auquel la pression de commande est susceptible d'être appliquée par l'intermédiaire de canalisations de commande (29) aux chambres de pression (28) des tiroirs de commande (24, 24'), installation caractérisée en ce que:
a) la source du carburant de commande (32) est constituée de la pompe de refoulement (33) agencée pour engendrer une pression de commande (ps) plusieurs fois plus élevée que la pression d'alimentation (pv) des pompes d'injection (12a à 12d), et d'une première soupape de limitation de la pression (35) limitant la pression de commande (ps) dans une canalisation de pression de commande (31) susceptible d'être reliée aux canalisations de commande (29),
b) une second soupape de limitation de la pression (35) est branchée à la suite de la première soupape de limitation de la pression (37), cette seconde soupape déterminant la pression d'alimentation (pv) régnant dans les canalisations de remplissage (21) distinctes des canalisations de commande (29),
c) le dispositif de commande est constitué par un dispositif de soupapes (36, 48, 48', 48") commun à toutes les pompes d'injection (12a à 12d) et déterminant le début et la durée de l'application de la pression aux chambres de pression (28) des tiroirs de commande (24, 24'), et par un dispositif de répartition (43, 53) distinct de ce dispositif de soupapes et grâce auquel, respectivement une des canalisations de commande (29) aboutissant aux chambres de pression (28) des tiroirs de commande (24, 24') est susceptible d'être reliée, à la cadence des injections, à la canalisation de pression de commande (31),
d) la pression de commande (ps) nécessaire pour l'actionnement des tiroirs de commande (24, 24') et s'appliquant respectivement, par l'intermédiaire du dispositif de répartition (43, 53), à l'une des chambres de pression (28), est établie par le dispositif de soupapes (36, 48, 48', 48") arrêtant l'évacuation du carburant de commande de la canalisation de pression de commande (31) dans une canalisation basse pression (19), tandis qu'elle est ensuite à nouveau relâchée vers la canalisation basse pression (19) pour la course en retour du tiroir de commande (24, 24').
2. Installation d'injection de carburant selon la revendication 1, caractérisée en ce que la pompe de refoulement (33) est une pompe délivrant une quantité constante.
3. Installation d'injection de carburant selon l'une des revendications 1 ou 2, caractérisée en ce que les canalisations de remplissage (21) sont raccordées à une canalisation d'alimentation (19) commune à toutes les pompes d'injection (12a à 12d) et dans laquelle règne la pression d'alimentation (pv).
4. Installation d'injection de carburant selon l'une des revendications 1 à 3, caractérisée en ce que la canalisation d'alimentation (19) joue le rôle de canalisation basse pression pour le carburant s'évacuant de la canalisation de pression de commande (31) par l'intermédiaire du dispositif de soupapes (36, 48, 48', 48").
5. Installation d'injection de carburant selon une des revendications 1 à 4, caractérisée en ce que la chambre de travail (18) de la pompe est susceptible d'être reliée à la canalisation de remplissage (21) par le canal de trop-plein (22) commandé par un emplacement de commande (27) sur le tiroir de commande (24), (figures 1,2 et 3).
6. Installation d'injection de carburant selon la revendication 5, caractérisée en ce que la canalisation de remplissage (21 ) est reccordée à une chambre de ressort (25) contenant le ressort de rappel (23) du tiroir de commande (24), et, par l'intermédiaire de canaux (26) se trouvant dans une partie (24a) du tiroir de commande (24) disposée entre l'emplacement de commande (27) sur le tiroir de commande (24) et la chambre de ressort (25), cette canalisation de remplissage (21) est susceptible d'être reliée au canal de trop-plein (22).
7. Installation d'injection de carburant selon une des revendications 1 à 6, caractérisée en ce que la chambre de pression (28) du tiroir de commande (24') est reliée à la chambre de ressort (25) contenant le ressort de rappel (23) par l'intermédiaire d'une canalisation d'étranglement (51) de préférence percée à travers le tiroir de commande (24'), (figure 2a).
8. Installation d'injection de carburant selon une des revendications 1 à 7, caractérisée en ce que le canal de trop-plein (22) est susceptible d'être relié à une canalisation de délestage (52) par l'intermédiaire d'une rainure annulaire (27') sur le tiroir de commande (24'), cette rainure étant étanchée par rapport à la chambre de ressort (25) contenant le ressort de rappel (23), (figure 2a).
9. Installation d'injection de carburant selon une des revendications 1 à 8, caractérisée en ce que le dispositif de soupapes revêt la forme d'un dispositif de soupapes magnétiques (48, 48', 48") déterminant le début et la durée de l'injection (figures 2, 3 et 4).
10. Installation d'injection de carburant selon la revendication 9, caractérisée en ce que le dispositif de soupapes magnétiques (48, 48', 48") est constitué de deux soupapes magnétiques (46 et 47, 46' et 47', 46" et 47") branchées hydrauliquement an parallèle, dont la première (46, 46', 46"), ouverte vers la canalisation basse pression (19) avant le début de l'injection, arrête par son mouvement de commutation, pour la mise en route de l'injection, l'évacuation du carburant de commande à partir de la canalisation de pression de commande (31) dans la canalisation basse pression (19), évacuation déjà coupée avant le début de l'injection par la seconde soupape magnétique (47, 47', 47"), et cette seconde soupape magnétique (47, 47', 47"), par son mouvement de commutation permettant l'évacuation alors que la première soupape magnétique (46, 46', 46") est encore commutée, commande la fin de l'injection (figures 2, 3 et 4).
11. Installation d'injection de carburant selon la revendication 10, caractérisée en ce que les deux soupapes magnétiques (46' et 47') sont des soupapes à passage à trois et deux voies, grâce auxquelles une partie (31 a) reliée en permanence au dispositif de répartition (53), de la canalisation de pression de commande (31) est susceptible d'être reliée alternativement à l'autre partie (31b) communiquant avec la source de carburant de commande (32), de la canalisation de pression de commande (31) ou bien à la canalisation basse pression (19) (figure 3).
12. Installation d'injection de carburant selon la revendication 10, caractérisée en ce que la première soupape magnétique (46) est une soupape à passage à deux et deux voies et est installée sur une canalisation (42') reliant la canalisation de pression de commande (31) à la canalisation basse pression (19), tandis que la seconde soupape magnétique (47) est une soupape à passage à trois et deux voies et relie alternativement une partie (31 a), aboutissant au dispositif de répartition (43), de la canalisation de commande sous pression (31) à l'autre partie (31 b), reliée à la source de carburant de commande (32), de cette canalisation de pression de commandé (31), ou bien à la canalisation basse pression (19), (figure 2).
13. Installation d'injection de carburant selon la revendication 10, caractérisée en ce que les deux soupapes magnétiques (46", 47") du dispositif de soupapes magnétiques (48") sont des soupapes à passage deux et deux voies, qui sont respectivement placées sur chacune des canalisations (42', 42") reliant la canalisation de pression de commande (31) à la canalisation basse pression (19), et qui ouvrent ou ferment alternativement ces canalisations (42', 42") (figure 4).
14. Installation d'injection de carburant selon une des revendications 10 à 13, caractérisée en ce que la première soupape magnétique (46, 46', 46") est susceptible d'être excitée pour son déplacement de commutation qui déclenche le début de l'injection en fermant la liaison entre la canalisation de pression de commande (31) et la canalisation basse pression (19), tandis que la seconde soupape magnétique (47, 47', 47") est susceptible d'être excitée pour son déplacement de commutation qui commande la fin de l'injection en délestant la canalisation de pression de commande (31) vers la canalisation basse pression (19), (figures 2, 3 et 4).
15. Installation d'injection de carburant selon une des revendications 1 à 14, avec un répartiteur tournant central jouant le rôle de dispositif de répartition entrainé en synchronisme avec les pompes d'injection, et qui pour actionner le tiroir de commande, établit et interrompt successivement, à la cadence des injections, la liaison des différentes canalisations de commande à la canalisation de pression de commande, installation caractérisée en ce que la surface enveloppe tournante (54) du répartiteur tournant (53) est munie d'un orifice de commande (55) relié en permanence à la canalisation de pression de commande (31) et dont la largeur (B), vue en direction périphérique, est prévue pour une durée d'actionnement aussi longue que possible du tiroir de commande (24) (figure 3).
16. Installation d'injection de carburant selon une des revendications 1 à 8 avec un dispositif central de soupapes comportant une soupape tournante, cette soupape tournante, entraînée en synchronisme avec les pompes d'injection, étant susceptible d'être déplacée longitudinalement pour modifier la quantité refoulée et étant susceptible d'être décalée en rotation par rapport à son entraînement pour modifier le début d'injection, tandis que cette soupape tournante, pour commander in pression de commande actionnant le tiroir de commande, ouvre ou ferme, au moyen d'au moins une surface de commande, à la cadence des injections, la liaison entre la canalisation de commande ainsi commandée et la canalisation basse pression, installation caractérisée en ce que le dispositif de soupapes (36) est installé sur une canalisation (42) reliant la canalisation de pression de commande (31) à la canalisation basse pression (19) et que la soupape tournante (38) comporte sur sa surface enveloppe (39) une surface de commande (41) par canalisation de commande (29) (figures 1, 1a, 6, 6a).
17. installation d'injection de carburant selon une des revendications 1 à 8 avec un dispositif de soupape central comportant une soupape tournante, qui est entraînée en synchronisme avec les pompes d'injection et qui, pour commander la pression de commande actionnant les tiroirs de commande, ferme ou ouvre au moyen d'une surface de commande, à la cadence des injections, la liaison entre la canalisation de commande ainsi commandée et une canalisation basse pression, installation caractérisée en ce que la soupape tournante est constituée par une douille de commande (92) disposée concentriquement autour d'un tiroir de dosage (95), et que ce tiroir de dosage (95) muni d'une surface de commande (41') et restant autrement au repos, est monté dans la douille de commande (92) de façon à pouvoir être déplacé longitudinalement pour modifier la quantité refoulée et à pouvoir être décalé en rotation pour modifier le début de l'invention, et il comporte un évidement délimité d'un côté, par les surfaces de commande (41') et relié en permanence à la canalisation basse pression (19) (figure 7).
18. Installation d'injection de carburant selon la revendication 17, caractérisée en ce que la douille de commande (92) est munie d'un seul orifice de commande (96) réalisé de préférence sous forme d'un perçage radial et coopérant avec les surfaces de commande (41') sur le tiroir de dosage (95), cet orifice de commande débouchant dans une rainure annulaire (98) sur la périphérie de la douille de commande (92), cette rainure annulaire (98) étant reliée en permanence à la canalisation de pression de commande (31) (figure 7).
19. Installation d'injection de carburant selon une des revendications 1 à 14 ou bien 16 à 18, caractérisée en ce que le dispositif de répartition est constitué d'un emplacement de commande (43) usiné sur le piston (14a à 14d) de chacune des pompes d'injection (12a à 12d), emplacement de commande grâce auquel, au moins dans la position de départ ou position au point mort bas (UT) du piston (14a à 14d) de la pompe, la tiaisôn entre la canalisation de commande associée (29) et la canalisation de pression de commande (31) est interrompue puis à nouveau rétablie après une première course partielle (h,) (figures 1 et 2).
20. Installation d'injection de carburant selon la revendication 19, caractérisée en ce que l'emplacement de commande est constitué par une rainure annulaire (43) usinée dans la surface enveloppe du piston (14a à 14d) de la pompe.
21. Installation d'injection de carburant selon la revendication 13, caractérisée en ce que, entre la source de carburant de commande (32) et la jonction avec les canalisations (42', 42") comportant les soupapes magnétiques (46", 47"), un étranglement (59) du débit est installé sur la canalisation de pression de commande (31) (figure 4).
EP80106901A 1980-01-12 1980-11-08 Installation d'injection de combustible pour moteurs à combustion interne, notamment pour moteurs diesel Expired EP0032168B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT80106901T ATE10532T1 (de) 1980-01-12 1980-11-08 Kraftstoffeinspritzeinrichtung fuer brennkraftmaschinen, insbesondere fuer dieselmotoren.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19803001051 DE3001051A1 (de) 1980-01-12 1980-01-12 Kraftstoffeinspritzeinrichtung fuer brennkraftmaschinen, insbesondere fuer dieselmotoren
DE3001051 1980-01-12

Publications (2)

Publication Number Publication Date
EP0032168A1 EP0032168A1 (fr) 1981-07-22
EP0032168B1 true EP0032168B1 (fr) 1984-11-28

Family

ID=6091969

Family Applications (1)

Application Number Title Priority Date Filing Date
EP80106901A Expired EP0032168B1 (fr) 1980-01-12 1980-11-08 Installation d'injection de combustible pour moteurs à combustion interne, notamment pour moteurs diesel

Country Status (4)

Country Link
EP (1) EP0032168B1 (fr)
JP (1) JPS56106060A (fr)
AT (1) ATE10532T1 (fr)
DE (2) DE3001051A1 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3124500A1 (de) * 1981-06-23 1983-01-13 Robert Bosch Gmbh, 7000 Stuttgart Kraftstoffeinspritzpumpe
JPS588269A (ja) * 1981-07-09 1983-01-18 Nippon Denso Co Ltd 内燃機関の点火時期制御方法
FR2514827A1 (fr) * 1981-10-15 1983-04-22 Renault Dispositif d'injection pression-temps a predosage
JP2760040B2 (ja) * 1989-05-01 1998-05-28 トヨタ自動車株式会社 ユニットインジェクタの燃料供給排出装置
DE4320620B4 (de) * 1993-06-22 2004-04-01 Robert Bosch Gmbh Kraftstoffeinspritzeinrichtung für Brennkraftmaschinen
NL1014518C2 (nl) * 2000-02-29 2001-08-30 Technoscan Engineering B V Inrichting, brandstofinspuitsysteem en werkwijze voor het doseren van brandstof.
CN108730085A (zh) * 2017-04-14 2018-11-02 康明斯公司 低成本共轨燃料系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE594336C (de) * 1930-12-22 1934-03-15 Magneti Marelli Spa Brennstoffeinspritzpumpe
US2069744A (en) * 1932-01-16 1937-02-09 Ex Cell O Aircraft & Tool Corp Fluid distribution system
US2357563A (en) * 1942-07-23 1944-09-05 Gen Motors Corp Fuel injection pump
DE920881C (de) * 1949-03-05 1954-12-02 Daimler Benz Ag Brennstoffeinspritzpumpe fuer Brennkraftmaschinen
US3486493A (en) * 1968-02-13 1969-12-30 Allis Chalmers Mfg Co Fuel injection unit
FR2235276A2 (fr) * 1973-06-28 1975-01-24 Bendix Corp
EP0032171A1 (fr) * 1980-01-12 1981-07-22 Robert Bosch Gmbh Installation d'injection de combustible pour moteurs à combustion interne, notamment pour moteurs Diesel
EP0032172A1 (fr) * 1980-01-12 1981-07-22 Robert Bosch Gmbh Installation d'injection de combustible pour moteurs à combustion interne, notamment pour moteurs Diesel

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE594336C (de) * 1930-12-22 1934-03-15 Magneti Marelli Spa Brennstoffeinspritzpumpe
US2069744A (en) * 1932-01-16 1937-02-09 Ex Cell O Aircraft & Tool Corp Fluid distribution system
US2357563A (en) * 1942-07-23 1944-09-05 Gen Motors Corp Fuel injection pump
DE920881C (de) * 1949-03-05 1954-12-02 Daimler Benz Ag Brennstoffeinspritzpumpe fuer Brennkraftmaschinen
US3486493A (en) * 1968-02-13 1969-12-30 Allis Chalmers Mfg Co Fuel injection unit
FR2235276A2 (fr) * 1973-06-28 1975-01-24 Bendix Corp
EP0032171A1 (fr) * 1980-01-12 1981-07-22 Robert Bosch Gmbh Installation d'injection de combustible pour moteurs à combustion interne, notamment pour moteurs Diesel
EP0032172A1 (fr) * 1980-01-12 1981-07-22 Robert Bosch Gmbh Installation d'injection de combustible pour moteurs à combustion interne, notamment pour moteurs Diesel

Also Published As

Publication number Publication date
JPS56106060A (en) 1981-08-24
DE3001051A1 (de) 1981-07-16
ATE10532T1 (de) 1984-12-15
EP0032168A1 (fr) 1981-07-22
DE3069719D1 (en) 1985-01-10
JPH0346664B2 (fr) 1991-07-16

Similar Documents

Publication Publication Date Title
DE3148671C2 (fr)
EP0909883B1 (fr) Dispositif et méthode de commande des soupapes de moteur diesel réversible
DE2213776A1 (de) Kraftstoffeinspritzanlage fuer brennkraftmaschinen
DE2126736A1 (de) Kraftstoffeinspntzanlage fur Brenn kraftmaschinen
DE3001155A1 (de) Kraftstoffeinspritzanlage fuer selbstzuendende brennkraftmaschine
DE3545052A1 (de) Brennstoff-einspritzpumpe fuer eine wenigstens vierzylindrige brennkraftmaschine
DE3425522C2 (fr)
DE10155669A1 (de) Vorrichtung zur Steuerung mindestens eines Gaswechselventils
EP0322426B1 (fr) Pompe d'injection de carburant
EP0455763B1 (fr) Dispositif de commande hydraulique de soupapes pour un moteur a combustion interne multicylindre
EP0032168B1 (fr) Installation d'injection de combustible pour moteurs à combustion interne, notamment pour moteurs diesel
EP0282508B1 (fr) Dispositif d'injection de carburant dans un moteur diesel avec preinjection
EP0265460B1 (fr) Pompe d'injection de carburant pour moteurs a combustion interne
EP0070558B1 (fr) Pompe d'injection de carburant
DE3428174A1 (de) Kraftstoffeinspritzpumpe fuer brennkraftmaschinen
EP0882180B1 (fr) Pompe d'injection de carburant de type distributrice
EP0032172B1 (fr) Installation d'injection de combustible pour moteurs à combustion interne, notamment pour moteurs Diesel
EP0273225B1 (fr) Pompe d'injection de combustible pour moteurs à combustion interne
EP0032171B1 (fr) Installation d'injection de combustible pour moteurs à combustion interne, notamment pour moteurs Diesel
DE2929176C2 (de) Verteilerkraftstoffeinspritzpumpe für Brennkraftmaschinen
DE1907317A1 (de) Brennstoffeinspritzungseinheit
EP0346607A2 (fr) Dispositif de contrôle hydraulique pour systèmes d'injection du carburant pour machines à combustion interne
EP1049860A1 (fr) Pompe d'injection de carburant
DD256167A1 (de) Kraftstoffeinspritzpumpe mit umlaufender steuerkante
DE19719938A1 (de) Motorbremse für eine Brennkraftmaschine mit mehreren Zylindern

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19801108

AK Designated contracting states

Designated state(s): AT DE FR GB IT

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT DE FR GB IT

REF Corresponds to:

Ref document number: 10532

Country of ref document: AT

Date of ref document: 19841215

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3069719

Country of ref document: DE

Date of ref document: 19850110

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19861127

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19881108

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19900905

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19901129

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19910129

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19911108

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19920731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19920801

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST