EP0273225B1 - Pompe d'injection de combustible pour moteurs à combustion interne - Google Patents

Pompe d'injection de combustible pour moteurs à combustion interne Download PDF

Info

Publication number
EP0273225B1
EP0273225B1 EP19870117819 EP87117819A EP0273225B1 EP 0273225 B1 EP0273225 B1 EP 0273225B1 EP 19870117819 EP19870117819 EP 19870117819 EP 87117819 A EP87117819 A EP 87117819A EP 0273225 B1 EP0273225 B1 EP 0273225B1
Authority
EP
European Patent Office
Prior art keywords
pump
fuel injection
annular slide
stroke
outlet opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19870117819
Other languages
German (de)
English (en)
Other versions
EP0273225A3 (en
EP0273225A2 (fr
Inventor
Wolfgang Fehlmann
Gerald Höfer
Dieter Junger
Gerhard Stumpp
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0273225A2 publication Critical patent/EP0273225A2/fr
Publication of EP0273225A3 publication Critical patent/EP0273225A3/de
Application granted granted Critical
Publication of EP0273225B1 publication Critical patent/EP0273225B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M41/00Fuel-injection apparatus with two or more injectors fed from a common pressure-source sequentially by means of a distributor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M45/00Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship
    • F02M45/12Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship providing a continuous cyclic delivery with variable pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M41/00Fuel-injection apparatus with two or more injectors fed from a common pressure-source sequentially by means of a distributor
    • F02M41/08Fuel-injection apparatus with two or more injectors fed from a common pressure-source sequentially by means of a distributor the distributor and pumping elements being combined
    • F02M41/10Fuel-injection apparatus with two or more injectors fed from a common pressure-source sequentially by means of a distributor the distributor and pumping elements being combined pump pistons acting as the distributor
    • F02M41/12Fuel-injection apparatus with two or more injectors fed from a common pressure-source sequentially by means of a distributor the distributor and pumping elements being combined pump pistons acting as the distributor the pistons rotating to act as the distributor
    • F02M41/123Fuel-injection apparatus with two or more injectors fed from a common pressure-source sequentially by means of a distributor the distributor and pumping elements being combined pump pistons acting as the distributor the pistons rotating to act as the distributor characterised by means for varying fuel delivery or injection timing
    • F02M41/125Variably-timed valves controlling fuel passages
    • F02M41/126Variably-timed valves controlling fuel passages valves being mechanically or electrically adjustable sleeves slidably mounted on rotary piston

Definitions

  • the invention is based on a fuel injection pump according to the preamble of the main claim.
  • the pump piston has, as a relief channel, an axial blind bore extending from the pump work space, from which a transverse channel branches off to two first outlet openings and furthermore a radial channel branches off to a second outlet opening.
  • This outlet opening is offset from the first outlet openings on the pump drive side and works together with a radial bore arranged in the ring slide, via which the connection to the relief chamber can be established.
  • the radial bore is arranged in such a way that the second outlet opening in a ring slide position corresponds to the low-load operating range during the pump piston delivery stroke, while in the full-load range the second outlet opening does not come into contact with the radial bore.
  • This device serves to allow only a part of the delivery strokes of the pump piston to take effect in the low-load range, and accordingly several radial bores are provided around the ring slide, so that, for example, only every second pump piston delivery stroke leads to pressure build-up in the pump work space and thus to fuel injection. Accordingly, only half of the cylinders of the internal combustion engine are used to drive them. The purpose of this measure is to reduce fuel consumption in the partial load range.
  • either the number of injections can be reduced to half, similarly to that known from the prior art mentioned above, or the pressure delivery of the fuel injection pump can be completely prevented.
  • the width of the grooves it is possible to achieve throttled outflow or "leakage" of fuel during the respective delivery stroke, which is intended to reduce the fuel injection rate in the low speed range. This means that the internal combustion engine can be operated, for example, in idle mode with reduced combustion noise.
  • the fuel injection pump according to the invention with the characterizing features of the main claim has the advantage that with a change in the stroke position of the ring slide at an idle or low partial load range of rotation of the ring slide, the stroke is changed, from which after the start of the pump piston, the second outlet opening in connection with the Tax opening comes.
  • the fuel is delivered via this stroke without "leaking".
  • the proportion of the delivery stroke of the pump piston which is conveyed through the second outlet opening without "leaking” can be continuously increased. This enables jerk-free load absorption in the idling range.
  • the embodiment of claim 2 ensures that the transition is simple between idle operation and part-load operation, a "leakage" of fuel can be switched off via the second outlet opening during the delivery stroke of the pump piston. Due to the design with the longitudinal channels, the free cross-section at the control point is continuously reduced, so that here, too, a jump-free transition behavior between idling and part-load operation is possible.
  • the configurations according to claims 2 and 3 are advantageous alternative solutions for attaching the longitudinal channels in cooperation with the control opening.
  • a rotary magnet device is used for the adjustment of the ring slide, both in the stroke direction and in the direction of rotation, which is controlled by the electrical control device.
  • the fuel injection quantity in the part-load to full-load range can be set precisely with a single control element, operation with the quiet-running device according to the invention can be made possible in the idling range or low partial-load range, and finally the silent-running device can be switched off when the load is taken up.
  • the proportion of the higher delivery rate is at the end of the delivery stroke, so that an injection characteristic is obtained in which the fuel is supplied to the injection points first with a low injection rate and then with a higher injection rate. This favors the combustion process and reduces noise. Due to this injection behavior, the upstream fuel injection quantity is reduced even further during the ignition delay.
  • FIG. 1 shows a first exemplary embodiment based on a simplified representation of the fuel injection pump shown in longitudinal section
  • FIG. 2 shows a section through the pump piston of the exemplary embodiment according to FIG. 1 with a representation of the inventive design of pump piston and ring slide
  • FIG. 3 shows an equivalent configuration to the exemplary embodiment according to FIG. 2
  • 4 shows the rotary drive of the ring slide on the basis of a section through the fuel injection pump perpendicular to the pump piston axis
  • FIG. 5 shows an angulation of the outer surface of the pump piston in the area of its tax-effective part with associated control openings of the ring slide displaceable on this part according to FIG.
  • FIG. 7 shows a second exemplary embodiment of the invention as a change to the exemplary embodiment according to FIG. 1 Express cross-section through a fuel injection pump, FIG. 8 shows the ring slide movement or the position of the actuating element actuated in various operating areas for the exemplary embodiment According to FIG. 7, FIG. 9 shows an adjustment diagram of the adjustment element from the exemplary embodiment according to FIG. 7 and FIG. 10 shows a diagram of the fuel quantity to be injected over the stroke of the pump piston at different degrees of shutdown of the quiet running device.
  • a bushing 2 is arranged in a housing 1 of a fuel injection pump shown in FIG. 1, in the inner bore 3 of which a pump cylinder is formed, a pump piston 4 is driven by a cam drive 5 and executes a reciprocating and at the same time rotating movement.
  • the pump piston encloses a pump working chamber 6 on its one end face and partially protrudes out of the inner bore 3 into a pump suction chamber 7 which forms a relief chamber and is enclosed in the housing 1.
  • the pump work chamber 6 is supplied with fuel via longitudinal grooves 8 arranged in the lateral surface of the pump piston and a suction bore 9, which passes radially through the bushing 2 and runs in the housing 1 and extends from the pump suction chamber 7, as long as the pump piston assumes its suction stroke or its bottom dead center position .
  • the pump suction chamber is supplied with fuel via a feed pump 11 from a fuel tank, not shown here.
  • a pressure control valve (not shown)
  • the pressure in the suction space is usually controlled as a function of the speed, in order to e.g. to be able to carry out a speed-dependent spray adjustment hydraulically via a speed-dependent pressure.
  • the start of stroke of the pump piston is adjusted to early with increasing speed in a known manner.
  • the outlet openings 16 are preferably diametrically opposite, which leads to a balanced hydraulic load on the pump piston.
  • a quantity adjustment element in the form of a ring slide 18 is arranged on the pump piston, which can be rotated and displaced tightly on the pump piston and forms a first control edge 19 with its upper end face, through which the first outlet openings 16 are controlled.
  • a radial bore 20 branches off from the relief duct 14, which preferably runs coaxially with the pump piston axis, which leads to a distributor opening 21 on the circumference of the pump piston.
  • feed lines 22 branch off in a radial plane from the inner bore 3 and are arranged distributed on the circumference of the inner bore 3 in accordance with the number of cylinders of the associated internal combustion engine to be supplied with fuel.
  • the delivery lines each lead via a valve 23, which is designed as a check valve or as a pressure relief valve in a known manner, to the fuel injection points, not shown.
  • the fuel located in the pump work chamber 6 is conveyed via the relief channel 14, the radial bore 20 and the distributor groove 21.
  • This conveyance is interrupted when the first outlet openings 16 are opened by the control edge 19 in the course of the pump piston stroke and come into connection with the suction chamber 7. From this point on, the remaining fuel displaced by the pump piston is only fed into the suction chamber.
  • the fuel injection quantity regulator 25 provided for adjusting the ring slide has a tensioning lever 26 which is designed to be pivotable about an axis 27 and has one arm and is coupled at its lever arm end to its control spring arrangement 28.
  • This consists of an idle spring 29 which is arranged between the head of a coupling member 30 and the tensioning lever, the coupling member 30 being pushed through an opening in the tensioning lever and being connected to a main control spring 31 at the other end facing away from the head.
  • This is in turn suspended from its other end on a swivel arm 33 which can be adjusted with an adjusting lever 35 via a shaft 34 which is passed through the pump housing.
  • the adjusting lever can be operated arbitrarily by an operator between an adjustable full load stop 36 and an adjustable idle stop 37.
  • the adjusting lever 35 is connected to the accelerator pedal which the driver of the motor vehicle with which the internal combustion engine and the injection pump are equipped, actuates in accordance with his torque request.
  • the simple coil spring shown here as the main control spring other control spring arrangements can of course also be used, which are designed in multiple stages and / or pretensioned.
  • a starter lever 39 can also be pivoted about the axis 27 and is designed with two arms and is coupled with one arm via a ball head 40 in a radial plane to the ring slide transverse groove 41 engaging with the ring slide.
  • the other arm of the starter lever has a leaf spring 49 which, as a starter spring, is supported against the tensioning lever 26 in a spreading manner.
  • Actuator 42 of a speed sensor acts in the form of a centrifugal force control arrangement 43 of a known type on precisely this lever arm of start lever 39. This is driven synchronously with the drive shaft 44 of the fuel injection pump via a gear transmission 45.
  • the axis 27 is mounted on an adjusting lever 46 which can be pivoted about an axis 47 which is fixed to the housing and is held in contact with an adjustable stop 48 by a spring.
  • the longitudinal channel 14 in the pump piston or the relief channel 14 is extended according to Figure 2 beyond the exit of the transverse bore 15 to the pump piston drive side and there has a radial channel 50 in which one Throttle 51 is arranged.
  • a second outlet opening 52 is defined on the circumference of the pump piston.
  • longitudinal grooves 55 are arranged in isolation, which together form longitudinal channels with the lateral surface of the inner bore 53 of the ring slide sliding on the jacket of the pump piston.
  • the longitudinal grooves 55 can also be designed as longitudinal slots and at the same time also replace the throttle 51.
  • An annular groove 54 is also arranged on the ring slide, which starts from the lateral surface of the inner bore.
  • a channel 57 is provided between the control edge 19 of the ring slide and the annular groove 54 in the ring slide, which connects the inner bore 53 to the outer circumference of the ring slide in a radially extending manner.
  • the channel 57 is designed as a control opening 58 which, for example according to FIG. 5, can have the shape of an elongated hole extending in the axial direction.
  • FIG. 5 can have the shape of an elongated hole extending in the axial direction.
  • the outlet openings 16 initially have the circular cross section of the cross-bore exit surface and, attached thereto, a rectangular recess 60 with the boundary edge facing the control edge 19 and parallel to it.
  • This training is used in a known manner for the rapid opening of relief cross sections.
  • the longitudinal channels 55 are arranged so that they remain in connection with the annular groove 54 during the entire pump piston stroke.
  • the control opening 58 is arranged in such a way that the radial plane in which the control opening opens also remains in overlap with the ends of the longitudinal channels 55 facing away from the annular groove 54 over the entire pump piston stroke.
  • the dimensioning of the axial distance h1 between the second outlet opening and the first outlet opening is such that it is smaller than the axial distance h2 between the first control edge 19 and the boundary edge 61 of the annular groove 54 on the pump drive side.
  • the difference between these axial distances results in a usable leakage distance hl, which is also the difference of the possible useful stroke hn minus the preload stroke sx.
  • the ring slide also has, in its outer lateral surface, a longitudinal groove 62 extending in the axial direction with guide surfaces 63 pointing in the circumferential direction.
  • a sliding part 65 engages in the longitudinal groove 62, which is gripped by the boundary surfaces or guide surfaces 63 of the longitudinal groove 62.
  • the sliding part is pivotable in the circumferential direction to the ring slide 18 by an adjusting lever 66.
  • the adjusting lever is part of an angle lever 68 which can be pivoted about an axis 67, on the other lever arm 69 of which an adjusting finger 70 engages, which sits eccentrically on the end face 71 of a shaft 73 which is led out of the pump suction chamber 7 tightly through the housing.
  • an actuating lever 74 is rotatably mounted thereon and rotatable via a prestressed driving spring 75 in the form of a helical spring and a driving part 76, which is connected to the shaft 73 in a rotationally fixed manner.
  • the driving part has an arm 72 to which the actuating lever 74 is held under the action of the driving spring 75 and is thus coupled to the shaft 73.
  • the rotation takes place with the aid of a limit stop 77 connected to the shaft 73 only within a certain angular range, so that when the actuating lever 74 is actuated beyond this angular range, the latter only lifts from the arm 72 and is rotated further under tension of the driving spring, without the shaft 73 moving becomes.
  • the ring slide 18 can be rotated without the first control edge 19 changing its stroke position, in particular in that the transverse groove 41 runs parallel to the first control edge 19.
  • the rotational position of the ring slide is not changed, since the groove 62 extends in the axial direction.
  • the fuel injection pump in its special design to achieve quiet running works as follows:
  • the fuel quantity control is controlled by means of the idle spring 29.
  • the pump piston carries out a stroke of size sv with the beginning of the delivery stroke until the second outlet opening 52 comes into connection with the annular groove 54.
  • the first outlet openings are closed according to the dimensioning h1, h2 by the lateral surface of the inner bore 53 of the ring slide.
  • This stroke is also called the relief stroke and takes up a relatively large part of the total stroke of the pump piston, as can be seen from FIG. 6.
  • Injection could therefore take place from the stroke sv, since the distributor groove 21 is in connection with one of the pressure lines 22 and a pressure has been reached which corresponds to the opening pressure of the injection valve.
  • the second outlet opening is in connection with the annular groove 54, fuel can flow out to the suction chamber 7 via one of the longitudinal channels 55 and the control opening 58 via the channel 57.
  • the outflow rate is determined by the throttle 51, which can also be formed by a reduced cross section at any point in the connection between the pump work space from the branching off of the radial bore 20 and the relief space. For reasons of a low harmful space, the position of the choke 51 described is advantageous.
  • the outflow occurs only when the ring slide is in a rotational position which allows one of the longitudinal channels 55 to overlap with the control opening 58.
  • the longitudinal channels 55 are corresponding to the number of those taking place per revolution of the pump piston Delivery strokes distributed around its circumference, so that there is the possibility per pump piston delivery stroke to establish a connection between the annular groove 54 and suction chamber 7. Via this connection, fuel in the bypass for fuel delivery to the respective fuel injection nozzle leaks fuel into the suction space 7, so that the delivery rate to the injection nozzle is considerably reduced.
  • the effective delivery stroke is determined by the position of the ring slide 18 and ends when the first outlet openings are opened via the first control edge 19.
  • FIG. 5 shows the development of the outer surface of part of the inner bore 53 of the ring slide for this method of operation, superimposed with the outer surface and the control openings of the pump piston contained therein in the region of the ring slide.
  • a first position can be seen, in which the second outlet opening 52 just touches the lower boundary edge 61 of the ring slide 54.
  • the associated longitudinal channel 55 is in full overlap with the annular groove and the control opening 58 is in overlap with the longitudinal channel or with the longitudinal groove 55 at its left end.
  • the first outlet openings are fully closed by the circumferential surface of the ring slide and have the first control edge 19 not reached yet.
  • the pump piston is now raised further and has moved further in the direction of rotation, in the direction of the right-hand leaf edge in FIG.
  • the second outlet opening 52 ⁇ in this position is in overlap with the annular groove 54, the longitudinal groove 55 ⁇ is still in overlap with the annular groove and with the control opening 58.
  • the first outlet opening in position 16 ⁇ is still covered.
  • a leakage current flows to the suction space 7, the injection rate is reduced by this leakage current.
  • 16 ⁇ is opened by the first control edge, although the longitudinal groove 55 ⁇ in connection with the control opening 58 and the second outlet opening 52 ⁇ are still connected with the annular groove 54. At this point, the injection is stopped.
  • the centrifugal force sensor 43 and the idle spring 29 are used to move the slide to the pump workspace side, so that with the same pump piston control, the second outlet opening 52 only becomes one in accordance with the piston elevation curve 79 shown in FIG later point in connection with the annular groove 54 comes.
  • Fuel delivery takes a correspondingly longer time after a fuel preload stroke and then delivery to a reduced extent as shown in FIG. 6.
  • the fuel injection quantity or rate is shown there over the stroke of the ring slide.
  • the large rectangle on the left up to point sv is the quantity delivered by the pump piston that is necessary to pretension the fuel in the working area to the injection pressure.
  • the ring slide With further load absorption or with a further load on the internal combustion engine, the ring slide is moved further to the pump work space, so that only z. B. on line 5 or from which hub sx ⁇ can be leaked. Accordingly, the delivery stroke at hn dem, the pump piston delivery stroke for the starting additional quantity, is ended. It can be seen from this that it is possible in this way to carry the load at full injection rate up to the height of the useful stroke hn. Depending on how this useful stroke hn is structurally adjusted, an operation in which fuel is leaking can increase the injection quantity up to quantities that correspond, for example, to the full-load injection quantity.
  • the piston elevation curve was reproduced at 79 at the injection time setting point 0 °. If, however, the start of spraying is shifted to earlier angles with increasing speed, up to 12 ° cam angle to the left in FIG. 5, one can imagine the opening cross sections 55, 52 and 16 shifted to the left with the control cross section 58 remaining.
  • the shutdown device has the advantage, that it can be turned in the opposite direction to switch off than this early relocation of the control process. If one assumes that a leak duration of approx. 10 ° cam angle is required for a quiet run, the turn-off rotation is reduced to this angle plus the necessary overlap in order to obtain a tight seal between the control opening and the longitudinal groove.
  • the switch-off movement can therefore be kept very small, so that the entire device can also be used in a fuel injection pump which supplies more than four cylinders with each pump piston rotation.
  • the adjusting lever 74 is adjusted accordingly. This is coupled to the adjusting lever 35 and moved by it so that it brings the control opening 58 'into the switch-off position when the load is picked up or during the transition from idle mode to part-load mode. This results in an automatic shutdown with load absorption combined with a smooth transition of the fuel quantity metering without load jump.
  • the ring slide can also be rotated with the load pickup, in principle the same fuel quantity control results as is shown in FIG. 6 for the load pickup by lifting the ring slide.
  • FIG. 3 An equivalent embodiment according to FIG. 3 is also possible for the embodiment of the invention shown in FIG. 2.
  • the longitudinal grooves 155 forming the longitudinal channels are laid in the lateral surface of the inner bore 53 of the ring slide.
  • the annular groove 54 provided in the exemplary embodiment according to FIG. 2 then lies as an annular groove 154 at the end of the longitudinal grooves 155 on the pump work chamber side and is in constant communication with the radial channel 57.
  • the remaining openings are arranged in the same way as in the exemplary embodiment in FIG. 2.
  • the control opening is used the second outlet opening 52 in cooperation with the longitudinal channels 155 analogously to the above-described method of operation between the longitudinal channels 55 and the control opening 58.
  • an angle of rotation adjustment of the ring slide comes into question for the load bearing or for controlling the relief quantity, which at the same time also assumes the switch-off function.
  • FIG. 8 A second exemplary embodiment of the invention is shown in detail in FIG.
  • a rotary magnet signaling mechanism known per se is now provided, of which only the actuating shaft 81 is shown here, which is guided fixed to the housing and at one end of which the magnetic signal mechanism (not shown) is seated and the other end of which an actuator in the form of an eccentric on the End face of the adjusting shaft 81 seated ball head 82 is arranged.
  • This ball head engages in a recess 83 with a circular cross section on the circumference of the ring slide 18, the recess 83 being adapted to the shape of the ball head so that play-free actuation is possible.
  • FIG. 8 shows a top view of the ring slide 18, with a start position St of the ball head 82 and a stop position Sp of the ball head. It can be seen here, as in FIG. 7, that the axis of the actuating shaft 81 lies next to the longitudinal axis of the pump piston.
  • the work area of the rotary magnetic interlocking is divided into two different work areas.
  • the first work area I is located on the pitch circle of the movement circle of the ball head 82, which faces the pump work space. This area lies approximately symmetrically to an axis that runs parallel to the pump piston axis and intersects the axis of the actuating shaft 81.
  • the ball head 82 essentially executes a movement in the circumferential direction of the ring slide along this pitch circle 85. The stroke movement of the ring slide is negligible. In this first working area, the ring slide is turned off.
  • LV shows the silent run that has not been switched off, while in the left end area the silent run is switched off and at the same time the starting injection quantity is switched on. This position is marked with St.
  • assignments of the control cross section 58 to one of the longitudinal channels 55 are shown, specifically at the beginning of the stroke after passing through the preload stroke sv.
  • the longitudinal channel 55 shown moves in the same sense as that shown in FIG. 5, that is to the right with simultaneous movement Stroke according to arrow c.
  • the longitudinal channel 55 In the LV position, in the starting position after passing through a stroke sv, in which the second outlet opening 52 comes into contact with the annular groove 54, the longitudinal channel 55 already overlaps at the left edge of the control opening 58. At the end of the conveying stroke, the longitudinal channel 55 is still in register, on the right side of the control opening 58. Following the switch-off movement, the longitudinal channel 55 in the central region overlaps with the right half of the control opening 58 after passing through the preload stroke sv. This overlap is maintained over a partial stroke, which becomes smaller the further the ring slide is turned towards position St in the switch-off direction. Finally, in position St, the longitudinal channel is no longer in overlap with the control opening 58 after passing through the preliminary stroke sv.
  • This embodiment has the advantage that during the preliminary stroke sv the fuel is biased with the maximum possible delivery rate analogously to FIG. 6, now shown in FIG. This is followed by a delivery stroke for position LV, seen over the stroke length h1, the leakage distance, in which the delivery rate is significantly reduced. This corresponds to the flatter lower rectangle along the abscissa in FIG. 11. If load is now taken up from the LV position, with increasing rotation to the left at the end of the conveying stroke, increasingly wide conveying sections arise, in which conveying is carried out at full conveying capacity after an initially reduced conveying rate. For example, the following applies to an adjustment position 2, which in principle corresponds to the adjustment position 2 of FIG.
  • the second working area II of the magnetic signal box comprises the normal operation of the internal combustion engine, in which without a quiet running device, i.e. is injected without fuel leakage or without a reduced fuel injection rate.
  • a partial circle 86 of the circular path of the spherical head 82 comes into effect, which laterally adjoins the first working area I after a certain intermediate area.
  • This pitch circle 86 has a much larger directional component in the axial direction, so that when the ball head 82 rotates, a substantial stroke movement of the ring slide 18 can also be effected.
  • the ring slide At the left end of the second working area II, the ring slide has its highest position corresponding to the maximum injection quantity of the full-load injection quantity. This point is labeled VL.
  • the longitudinal channel 55 lies to the left of the control cross-section 58 at the beginning of the effective delivery stroke, i.e. after passing through the preliminary stroke section sv, and does not come into connection with this control cross-section even after passing through the total delivery stroke.
  • the control opening 58 is further removed from the longitudinal channels, so that leakage in region II is completely eliminated.
  • the ring slide reaches positions corresponding to low load until it is switched off. So here the controller regulates in the usual way.
  • the rotary magnetic interlocking (not shown further here) is controlled by a corresponding control device, which is likewise not discussed or described here, the ball head 82 also being adjusted in rotational jumps for work in working areas I and II can be.
  • the ring slide can assume all possible and necessary positions. Continuous operation is possible in the main operating areas, idling with the silent running device switched on or with a reduced fuel injection rate, and also in the load area, working area II.
  • the magnetic interlocking must perform abrupt rotary movements.
  • the fuel injection pump according to the invention means an improvement in the function in the case of pump pistons that are less structurally loaded, which can be made much slimmer, in particular because of the omission of a second relief channel according to the one prior art.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Claims (15)

  1. Pompe d'injection de carburant pour moteurs à combustion interne, avec un piston de pompe (4) animé dans un cylindre de pompe (3) d'un mouvement d'aller et retour et simultanément d'un mouvement de rotation, jouant alors le rôle de répartiteur du carburant refoulé vers plusieurs emplacements d'injection, et qui délimite dans le cylindre de pompe (3) une chambre de travail de la pompe (6), avec modification de la quantité de carburant injectée refoulée par le piston de pompe par commande de l'ouverture d'un premier orifice de sortie (16) sur la périphérie du piston de pompe, d'un canal de décharge (14) disposé dans le piston de pompe (4) et allant de la chambre de travail (6) de la pompe vers une chambre de décharge (7), au moyen d'un tiroir annulaire (10) susceptible de coulisser axialement sur la piston de pompe (4) à l'intérieur de la chambre de décharge sous l'action d'un régulateur (25) de la quantité de carburant injectée, et qui comporte une première arête de commande (19), laquelle se situe dans un plan radial par rapport à l'axe du piston de pompe, et par l'intermédiaire de laquelle la premier orifice de sortie (16) est susceptible d'être commandé après une course variable de refoulement du piston de pompe, et avec un canal radial (50) allant du canal de décharge (14) à un second orifice de sortie (52) sur la périphérie du piston de pompe dans la zone pouvant être recouverte par le tiroir annulaire (18), lequel pour commander le second orifice de sortie comporte un canal (57) sortant sur sa surface enveloppe interne et qui est relié à la chambre de décharge (7), pompe d'injection de carburant caractérisée en ce qu'il est prévu sur la surface enveloppe interne du tiroir annulaire (18) une gorge annulaire (54, 154) et entre la périphérie du piston de pompe et la surface enveloppe interne du tiroir annulaire, des canaux longitudinaux limités (55, 155) qui sont en communication avec la gorge annulaire (54, 154) et qui, à partir d'une course initiale (sx) du piston de pompe (4) correspondant à la position axiale, dépendant de la charge, du tiroir annulaire (18), sont susceptibles d'être reliés au second orifice de sortie (52), et qui, pendant un angle de rotation limité par la durée de coïncidence d'un des canaux longitudinaux (55) avec un orifice de commande (58; 52) reliant alors le canal radial (50) au canal (57), ré-alisent entre la chambre de travail du piston de pompe (6) et la chambre de décharge (7), une liaison contenant un étranglement de limitation.
  2. Pompe d'injection de carburant selon la revendication 1, caractérisée en ce que le tiroir annulaire (18) est susceptible d'être mis en rotation par un dispositif de mise en rotation (65, 68; 82, 81) et, dans ce cas, la durée de la liaison de l'orifice de commande avec la gorge longitudinale considérée (55) est réglable.
  3. Pompe d'injection de carburant selon la revendication 2, caractérisée en ce que l'orifice de commande est l'orifice de sortie (58) du canal (57) débouchant sur la surface enveloppe interne du tiroir annulaire (18), et en ce que les canaux longitudinaux ou gorges longitudinales (55) sont dans la surface enveloppe du piston de la pompe et que le second orifice de sortie (52) vient en communication avec la gorge annulaire (54) après la course initiale (sx).
  4. Pompe d'injection de carburant selon la revendication 2, caractérisée en ce que l'orifice de commande est le second orifice de sortie (52) sur le piston de la pompe et que les Canaux longitudinaux sont disposés sous la forme de gorges longitudinales (155) sur la surface enveloppe interne du tiroir annulaire (18) et débouchent à leur extrémité côté chambre de travail de la pompe dans la gorge annulaire (154) qui, de son côté, est constamment reliée au canal (57).
  5. Pompe d'injection de carburant selon la revendication 3, caractérisée en ce que la distance axiale (h2) entre l'arête de limitation (61), se situant, côté entraînement du piston de la pompe, de la gorge annulaire (54) et la première arête de commande (19) est Supérieure d'un intervalle de fuite (hl) à la distance axiale (hl) entre le deuxième orifice de sortie (52) et le premier orifice de sortie (16).
  6. Pompe d'injection de carburant selon la revendication 4, caractérisée en ce que la distance axiale entre l'arête de limitation des canaux longitudinaux (155) côté entraînement du piston de la pompe et la première arête de commande (19) est supérieure d'un intervalle de fuite (hl) à la distance axiale entre le second orifice de sortie (52) et le premier orifice de sortie (16).
  7. Pompe d'injection de carburant selon la revendication 4, caractérisée en ce que, lorsque la course de décharge est atteinte (sx, sv), l'arête de commande du second orifice de sortie (52) vient en communication en fonction de l'angle de rotation, avec le canal longitudinal (155) considéré, et après une course de fuite (hl), le premier orifice de sortie (16) atteint la première arête de commande (19).
  8. Pompe d'injection de carburant selon une des revendications 2 à 7, caractérisée en ce que le régulateur (25) de la quantité de carburant injectée, comporte un indicateur de vitesse de rotation (43), qui règle contre l'action d'un agencement A ressort de réglage (42, 29, 28) la position axiale du tiroir an-nulaire (18) par l'intermédiaire d'un levier de réglage (39) et qui comporte un levier de déplacement (35) par l'intermédiaire duquel la sollicitation du levier de réglage(39) par le dispositif à ressort de réglage, peut être modifiée à volonté, et en ce que le levier de déplacement (35) est couplé avec le dispositif de mise en rotation (65) du tiroir annulaire.
  9. Pompe d'injection de carburant selon la revendication 8, caractérisée en ce que, entre le tiroir annulaire (18) et le levier de réglage (39), il est prévu un premier dispositif de couplage permettant un mouvement de rotation sans modification de la course de la première arête de commande, ce dispositif étant constitué par une surface de guidage (41) se situant dans un plan radial par rapport à l'axe du piston de pompe, et par une pièce de glissement (40) guidée sur cette surface de guidage, tandis qu'entre le tiroir annulaire (18) et un organe de pivotement (65, 66) du dispositif de mise en rotation, il est prévu un second dispositif de couplage permettant une course de déplacement sans rotation du tiroir annulaire, ce second dispositif étant constitué par des surfaces de guidage (63) s'étendant en direction de l'axe du piston de la pompe et décalées en direction périphérique de ce piston, ainsi que par une pièce de glissement (65) guidée sur ces surfaces de guidage.
  10. Pompe d'injection de carburant selon la revendication 8 ou la revendication 9, caractérisée en ce que le levier de déplacement (35) pour une position correspondant au début de la zone de charge partielle, lors de la prise en compte de la charge, a amené le tiroir annulaire dans une position de rotation dans laquelle la communication entre la chambre de travail de la pompe et la chambre de décharge (7) par l'intermédiaire de l'orifice de commande, est constamment fermée sur toute la course de refoulement du piston de la pompe.
  11. Pompe d'injection de carburant selon une des revendications 2 à 7, caractérisée en ce que la rotation du tiroir annulaire (18) est actionnée simultanément avec son déplacement par le régulateur de la quantité de carburant injectée.
  12. Pompe d'injection de carburant selon la revendication 11, caractérisée en ce que le régulateur de la quantité de carburant injectée est un mécanisme de réglage à aimant tournant avec un arbre (81) à l'extrémité duquel est placé excentriquement, un organe sphérique d'actionnement (82) qui vient en prise de façon ajustée dans un évidement (83) sur le tiroir annulaire.
  13. Pompe d'injection de carburant selon la revendication 12, caractérisée en ce que sous l'action du dispositif à aimant tournant, commandé par un dispositif de réglage, le tiroir annulaire, pour une modification de la durée du recouvrement du canal longitudinal considéré (55) par l'orifice de commande, est déplacé dans une première zone de fonctionnement (I) dans laquelle l'organe d'actionnement (82) est déplacé sur une partie de cercle s'étendant essentiellement dans un plan radial par rapport à l'axe du piston de la pompe, et pour la modification du réglage de la quantité de carburant injectée dans la zone de charge partielle jusqu'à la zone de pleine charge, le tiroir annulaire est déplacé dans une seconde zone de fonctionnement (II) dans laquelle l'organe d'actionnement (82) est déplacé sur une partie de cercle se raccordant à la partie de cercle de la première zone de fonctionnement et s'étendant essentiellement dans la direction de l'axe du piston de la pompe, tandis qu'à l'intérieur de la seconde zone de fonctionnement (II), les canaux longitudinaux (55) restent constamment séparés de l'orifice de commande (58).
  14. Pompe d'injection de carburant selon la revendication 13, caractérisée en ce que l'orifice de commande est associé de façon telle au canal longitudinal (55) que le mouvement d'arrêt du tiroir annulaire (10) dans la première zone de fonctionnement (I) s'effectue en sens inverse du sens de rotation du piston de la pompe, et le mouvement de réglage vers le bas du tiroir annulaire, pour diminuer la quantité de carburant injectée pour chaque course du piston de la pompe, s'effectue avec sa composante périphérique à l'intérieur de la deuxième zone de fonctionnement (II) dans le sens de rotation du piston de la pompe.
  15. Pompe d'injection de carburant selon la revendication 14, caractérisée en ce que la modification de la quantité injectée dans la première zone de fonctionnement (I) résulte d'une modification de la répartition entre la fraction de refoulement total et la fraction de refoulement en marche silencieuse, auquel cas, la fraction de refoulement total s'établit à partir de la fin de l'injection et se poursuit dans la seconde zone de fonctionnement (II) par modification de la fin du refoulement (FE).
EP19870117819 1986-12-23 1987-12-02 Pompe d'injection de combustible pour moteurs à combustion interne Expired - Lifetime EP0273225B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3644147 1986-12-23
DE19863644147 DE3644147A1 (de) 1986-12-23 1986-12-23 Kraftstoffeinspritzpumpe fuer brennkraftmaschinen

Publications (3)

Publication Number Publication Date
EP0273225A2 EP0273225A2 (fr) 1988-07-06
EP0273225A3 EP0273225A3 (en) 1990-04-25
EP0273225B1 true EP0273225B1 (fr) 1991-08-21

Family

ID=6317034

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19870117819 Expired - Lifetime EP0273225B1 (fr) 1986-12-23 1987-12-02 Pompe d'injection de combustible pour moteurs à combustion interne

Country Status (5)

Country Link
US (1) US4763631A (fr)
EP (1) EP0273225B1 (fr)
JP (1) JPS63167064A (fr)
KR (1) KR880007910A (fr)
DE (2) DE3644147A1 (fr)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3644150C2 (de) * 1986-12-23 1995-11-23 Bosch Gmbh Robert Kraftstoffeinspritzpumpe für Brennkraftmaschinen
DE3644148A1 (de) * 1986-12-23 1988-07-07 Bosch Gmbh Robert Kraftstoffeinspritzpumpe fuer brennkraftmaschinen
DE3644584A1 (de) * 1986-12-27 1988-07-07 Bosch Gmbh Robert Kraftstoffeinspritzpumpe fuer brennkraftmaschinen
DE3644583A1 (de) * 1986-12-27 1988-07-07 Bosch Gmbh Robert Kraftstoffeinspritzpumpe fuer brennkraftmaschinen
DE3870748D1 (de) * 1987-07-25 1992-06-11 Bosch Gmbh Robert Kraftstoffeinspritzpumpe fuer brennkraftmaschinen.
US5364243A (en) * 1989-08-02 1994-11-15 Diesel Kiki Co., Ltd. Fuel injection pump
DE4137072A1 (de) * 1991-11-12 1993-05-13 Bosch Gmbh Robert Kraftstoffeinspritzpumpe fuer brennkraftmaschinen
DE4436416A1 (de) * 1994-10-12 1996-04-18 Bosch Gmbh Robert Kraftstoffeinspritzpumpe
US5870996A (en) * 1998-04-10 1999-02-16 Alfred J. Buescher High-pressure dual-feed-rate injector pump with auxiliary spill port
JP5501272B2 (ja) * 2011-03-08 2014-05-21 日立オートモティブシステムズ株式会社 高圧燃料供給ポンプ

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2142704C3 (de) * 1971-08-26 1974-04-25 Robert Bosch Gmbh, 7000 Stuttgart Kraftstoffeinspritzpumpe für mehrzylindrige Brennkraftmaschinen
JPS5412035A (en) * 1977-06-30 1979-01-29 Diesel Kiki Co Ltd Distirbution type fuel injection pump
JPS6010181B2 (ja) * 1978-01-30 1985-03-15 株式会社ボッシュオートモーティブ システム 分配型燃料噴射ポンプ
JPS54126828A (en) * 1978-03-25 1979-10-02 Diesel Kiki Co Ltd Distribution-type fuel injection pump
JPS5838618B2 (ja) * 1979-11-21 1983-08-24 日産自動車株式会社 分配型燃料噴射ポンプの噴射量制御装置
DE3004460A1 (de) * 1980-02-07 1981-09-10 Robert Bosch Gmbh, 7000 Stuttgart Kraftstoffeinspritzpumpe fuer brennkraftmaschinen
JPS612298Y2 (fr) * 1981-04-18 1986-01-24
DE3326973A1 (de) * 1983-07-27 1985-02-07 Robert Bosch Gmbh, 7000 Stuttgart Kraftstoffeinspritzpumpe fuer brennkraftmaschinen
DE3424883A1 (de) * 1984-07-06 1986-02-06 Robert Bosch Gmbh, 7000 Stuttgart Kraftstoffeinspritzpumpe fuer brennkraftmaschinen
DE3524387A1 (de) * 1984-07-10 1986-01-23 Nissan Motor Co., Ltd., Yokohama, Kanagawa Kraftstoffeinspritzpumpe
DE3429128A1 (de) * 1984-08-08 1986-02-20 Robert Bosch Gmbh, 7000 Stuttgart Kraftstoffeinspritzpumpe fuer brennkraftmaschinen
DE3510221A1 (de) * 1985-03-21 1986-09-25 Robert Bosch Gmbh, 7000 Stuttgart Kraftstoffeinspritzpumpe fuer brennkraftmaschinen
DE3516455A1 (de) * 1985-05-08 1986-11-13 Robert Bosch Gmbh, 7000 Stuttgart Kraftstoffeinspritzpumpe
DE3612068A1 (de) * 1986-04-10 1987-10-15 Bosch Gmbh Robert Kraftstoffeinspritzpumpe fuer brennkraftmaschinen mit abgasrueckfuehrung

Also Published As

Publication number Publication date
DE3644147A1 (de) 1988-07-07
US4763631A (en) 1988-08-16
EP0273225A3 (en) 1990-04-25
KR880007910A (ko) 1988-08-29
DE3772363D1 (de) 1991-09-26
EP0273225A2 (fr) 1988-07-06
JPS63167064A (ja) 1988-07-11

Similar Documents

Publication Publication Date Title
DE3437053C3 (de) Diesel-Kraftstoffeinspritzpumpe
EP0393412B1 (fr) Dispositif d'injection de combustible, en particulier injecteur à pompe, pour moteurs à combustion interne
DE2558790A1 (de) Kraftstoffeinspritzduese fuer brennkraftmaschinen
EP0150471B1 (fr) Pompe d'injection de combustible
DE10155669A1 (de) Vorrichtung zur Steuerung mindestens eines Gaswechselventils
EP0273225B1 (fr) Pompe d'injection de combustible pour moteurs à combustion interne
DE1258187B (de) Kraftstoffeinspritzpumpe fuer Brennkraftmaschinen
DE2926327A1 (de) Mechanisch-hydraulische ventilsteuerung
EP0166995B1 (fr) Pompe d'injection de carburant pour moteurs à combustion interne
EP0178487A2 (fr) Dispositif d'injection de carburant pour moteurs à combustion interne
DE3428174A1 (de) Kraftstoffeinspritzpumpe fuer brennkraftmaschinen
DE3535005C2 (fr)
DE4310457A1 (de) Kraftstoffeinspritzpumpe für Brennkraftmaschinen
DE3524241A1 (de) Kraftstoffeinspritzpumpe fuer brennkraftmaschinen
EP0168586B1 (fr) Pompe d'injection de combustible
DE3236828A1 (de) Brennstoffeinspritzvorrichtung
DE2240289A1 (de) Brennstoffeinspritzvorrichtung
DE3615922C2 (fr)
DE3615919C2 (fr)
EP0341243B1 (fr) Pompe d'injection de carburant pour moteurs a combustion interne
DE3644148A1 (de) Kraftstoffeinspritzpumpe fuer brennkraftmaschinen
EP0461211B1 (fr) Pompe d'injection de carburant
DE3704580A1 (de) Kraftstoffeinspritzpumpe fuer brennkraftmaschinen
EP0273184B1 (fr) Pompe d'injection du carburant pour moteurs à combustion interne
DE3205502C2 (fr)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB IT

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19900914

17Q First examination report despatched

Effective date: 19910204

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

ET Fr: translation filed
REF Corresponds to:

Ref document number: 3772363

Country of ref document: DE

Date of ref document: 19910926

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19911202

RAP4 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: ROBERT BOSCH GMBH

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

GBPC Gb: european patent ceased through non-payment of renewal fee
26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19920831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19920901

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051202