EP0032082A2 - Transducteur électroacoustique à dôme actif - Google Patents

Transducteur électroacoustique à dôme actif Download PDF

Info

Publication number
EP0032082A2
EP0032082A2 EP80401785A EP80401785A EP0032082A2 EP 0032082 A2 EP0032082 A2 EP 0032082A2 EP 80401785 A EP80401785 A EP 80401785A EP 80401785 A EP80401785 A EP 80401785A EP 0032082 A2 EP0032082 A2 EP 0032082A2
Authority
EP
European Patent Office
Prior art keywords
membrane
transducer according
housing
radiating
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP80401785A
Other languages
German (de)
English (en)
Other versions
EP0032082A3 (en
EP0032082B1 (fr
Inventor
Hugues Facoetti
Philippe Menoret
Francois Micheron
Patrick Petit
Pierre Ravinet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thomson CSF SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson CSF SA filed Critical Thomson CSF SA
Priority to AT80401785T priority Critical patent/ATE3607T1/de
Publication of EP0032082A2 publication Critical patent/EP0032082A2/fr
Publication of EP0032082A3 publication Critical patent/EP0032082A3/fr
Application granted granted Critical
Publication of EP0032082B1 publication Critical patent/EP0032082B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers
    • H04R17/005Piezoelectric transducers; Electrostrictive transducers using a piezoelectric polymer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/02Diaphragms for electromechanical transducers; Cones characterised by the construction
    • H04R7/12Non-planar diaphragms or cones
    • H04R7/127Non-planar diaphragms or cones dome-shaped
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/26Damping by means acting directly on free portion of diaphragm or cone
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2307/00Details of diaphragms or cones for electromechanical transducers, their suspension or their manufacture covered by H04R7/00 or H04R31/003, not provided for in any of its subgroups
    • H04R2307/029Diaphragms comprising fibres
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S310/00Electrical generator or motor structure
    • Y10S310/80Piezoelectric polymers, e.g. PVDF

Definitions

  • the present invention relates to transmitters and receivers of acoustic waves in which a transducer element of non-developable form is used to convert an alternating electric voltage into vibrations or vice versa. It relates more particularly to loudspeakers and microphones in which the dome-shaped membrane is constituted by a self-supporting structure made of polymer material. The concave and convex faces of this structure are coated with electrodes forming a capacitor. The transducer effect implemented in these structures is manifested throughout the extent of the electro-sensitive zones located between the electrodes, which makes it possible to produce fully active domes.
  • the polymeric materials used to manufacture the active domes are in the form of homogeneous or bimorphic films, the thicknesses of which are generally between a few tens and a few hundred microns.
  • the final shape can be obtained by thermoforming or by electroforming.
  • Self-supporting structures with very thin walls can also be obtained by molding or coating.
  • the dome obtained has good mechanical resistance due to the self-supporting properties which. set it apart from a flat film of comparable thickness. Nevertheless, by exerting a thrust in the center of the convex face of a dome, one can create a mechanically stable knockout which completely distorts the electroacoustic properties. This buckling phenomenon is reversible, but to regain the initial shape it is necessary to exert a thrust in the opposite direction to that which caused the knockout. In practice, the user does not have access to the convex face of a dome-shaped membrane, which implies a delicate disassembly of the transducer when its membrane has been accidentally smashed.
  • the convex radiating face of an active dome can be protected by a grid, but this means is ineffective when the knockout results from an overpressure.
  • certain knock-outs can cause breakages such that the dome can no longer fully return to its original shape.
  • parasitic vibratory modes can appear and give rise to irregular deformations by standing waves.
  • the vibration of an active dome tends to amplify by resonance in a narrow range of the acoustic spectrum, which is detrimental to good sound reproduction.
  • the control of the frequency response characteristic of an active polymer dome is based on a damping of its own resonance and on those which can be made to act by acoustic coupling.
  • the modest efficiency of the piezoelectric polymer transducers does not make it possible to envisage a purely electric damping of the resonances which is both simple to implement and sufficiently effective.
  • the present invention proposes to associate with a - self-supporting active structure made of polymer material an elastic support that is acoustically permeable and conforms to the shape of its concave face.
  • the pressure exerted by this support ensures resistance to the knockouts of the dome and contributes to its mechanical and acoustic damping.
  • the subject of the invention is an electroacoustic transducer comprising a rigid casing capped by a self-supporting active radiating membrane made of polymer material having at least one bulge, characterized in that the casing contains an elastic support that is acoustically permeable and conforms to the shape of the concave parts of the internal face of. radiant membrane; the shape taken by the support face of the support being determined by the proper shape of the radiating membrane.
  • an electroacoustic transducer capable of operating as a loudspeaker, earpiece or microphone. It comprises a self-supporting active membrane obtained by thermoforming, electroforming, molding or coating a film 3 of piezoelectric polymer material. The film 3 is coated on its two faces with conductive deposits 1 and 2 forming capacitor electrodes.
  • the membrane 1, 2, 3 is in the form of a dome, for example a spherical cap with center 0 and radius of curvature R.
  • the membrane assembly is electrically equivalent to a capacitor and when applied between the electrodes an alternating electric voltage, this active structure vibrates according to a thickness mode accompanied by a tangential alternating elongation mode.
  • the membrane 1, 2, 3 covers a rigid housing 8 and is fixed by its periphery to the edge of the housing 8 by means of a metal flange 4
  • a metal ring 7 placed in an annular housing of the edge of the housing 8 serves to establish electrical contact with the electrode 2 which forms the concave face of the membrane.
  • the ring 7 is electrically connected to a terminal 6.
  • the collar 4 which pinches the periphery of the membrane also serves as an elastic connection for the electrode 1 which forms the convex face of the membrane.
  • a terminal 5 is fixed to the flange 4.
  • the interior of the housing 8 communicates with the exterior through an orifice 9 which serves to balance the static pressures acting on either side of the membrane 1, 2, 3.
  • the volume inside the case is partially filled with absorbent material 10 to prevent the establishment of standing waves.
  • the volume 11 immediately adjacent to the electrode 2 is an air cushion at the static pressure of the air medium 12 in which the acoustic waves emitted or received propagate.
  • the frequency response characteristic of the electroacoustic transducer depends on the diameter D of the vibrating piston constituted by the radiating membrane 1, 2, 3, the compliance and the inertia thereof, as well as the acoustic impedance constituted by the case. 8.
  • the acoustic impedance of the box 8 is reduced to an acoustic capacity resulting from the volume of air enclosed and the active surface of the vibrating piston; the absorbent material 10 increases this capacity and introduces damping; the balancing hole 9 connects in parallel an acoustic inertia placed in series with an acoustic resistance.
  • the membrane shown in Figure 1 consists of a homogeneous film of piezoelectric polymer material.
  • the piezoelectric effect is of dipolar origin.
  • the materials which can be used to make the membrane are polymers such as polyvinylidene fluoride PVF 2 , polyvinyl fluoride once substituted PVF and polyalkyl chloride, copolymers such as the copolymer of polyvinylidene fluoride and polyethylene tetrafluoride can also be used.
  • the manifestation of the piezoelectric properties is linked to a preliminary treatment which includes an intense electric polarization phase preceded or not by a mechanical stretching phase.
  • the membrane shown in FIG. 1 can be substituted for the one whose cross-section is given in FIG. 2.
  • the membrane of Figure 2 is of the bimorph type. It comprises two layers of polymer materials 13 and 14 which adhere perfectly to each other.
  • the layers 13 and 14 can be made of dielectric materials devoid of piezoelectric properties. At least one of these layers has undergone an electrical charge implantation treatment producing an excess of permanent charge.
  • an alternating excitation voltage is applied to electrodes 1 and 2
  • the action of electrostatic forces produces elongations which can be made different by an appropriate choice of materials and excess charge.
  • bending torques M are obtained which cause an alternating curvature of the membrane.
  • a bimorph membrane can be produced using an electrically charged polyethylene tetrafluoride film which adheres perfectly to a polyvinyl chloride film.
  • the bimorph structures can be made wholly or in part of piezoelectric polymer materials.
  • FIG. 3 shows schematically most of the structures which have just been described.
  • the housing 8 which contains a volume of air is capped by an active self-supporting membrane whose shape at rest is represented by the dotted line 15.
  • This membrane vibrates in as a whole when it is subjected to an electrical or acoustic excitation.
  • phenomena of standing waves can give rise, at certain frequencies, to parasitic vibrations 17 (curve in phantom).
  • the membrane may undergo permanent depression 16 under the effect of an accidental push acting on the convex face. As the membrane is fixed on the housing 8, it is not possible to erase this depression since; without delicate disassembly, there is no access to the concave face.
  • FIG. 4 we can see a sectional view of an electroacoustic transducer according to the invention. It comprises a housing 8 made of insulating material provided with a bottom 26 equipped with connection terminals 27 and 28.
  • a membrane 18 similar to those of FIGS. 1 or 2 covers a circular opening situated at the top of the housing 8.
  • the membrane 18 rests on the rim of the circular opening of the housing 8 via a recessed metal ring 21. It is pinched by its planar annular periphery by means of a metal collar 4.
  • the electrodes which cover the faces of the membrane 18 are electrically connected to the collar 4 and to the ring 21 and these metal parts are in turn connected to the output terminals of a voltage step-up transformer 29.
  • Input terminals of the transformer 29 are connected to the terminals 27.and 28 which pass through the bottom of the housing 26,
  • the case 8 immediately encloses an acoustically permeable elastic support under the membrane 18.
  • This elastic support comprises at least two elements which are the cushion 19 and the grid 20, but these elements which are lightly pressed against the internal face of the membrane 18 are not lift elements.
  • the membrane 18 is self-supporting and it imposes its shape on the cushion 19 thanks to the convex shape of the grid 20.
  • a plan view of the grid 20 is given in FIG. 5.
  • the texture of the materials used to make the cushion 19 is illustrated by FIGS. 7 and 8. As shown in FIG. 7, it is possible to use a low density felt mattress whose packing has been stabilized with the aid of a binder, but which has retained a high porosity and good acoustic permeability.
  • FIG. 8 shows a mattress of cellular material with communicating cells; due to the low density, the open partitioning is reduced to its simplest expression, i.e. a three-dimensional network of meshes. Mention may be made of various polymer foams such as polyurethane and polyester.
  • the cushion 20 being slightly compressed between the membrane 18 and the grid 20, it is the convex shape given to the latter which determines, with the concave shape of the membrane 18, the thickness of the cushion 20. This thickness can vary from center to the periphery of the membrane, or on the contrary be uniform if the center of curvature of the membrane 18 coincides with that of the grid 20.
  • the grid 20 is fixed by the inside of the housing against the rim which delimits the circular opening capped by the membrane.
  • a washer 22 held in place by the spacer 30 which bears on the bottom of the case 26 ensures the clamping of the periphery of the grid 20, because of the acnustic permeability of the membrane support 18, it is possible to envisage mounting inside the housing another self-supporting active membrane such as 24.
  • This internal membrane 24 is clamped between two contact rings 23 and 25 which are interposed between the washer 22 and the spacer 30.
  • the rings 23 and 25 are also connected to the transformer 29, so that the two membranes can cooperate with the sound radiation.
  • the interior of the case 8 can be lined with absorbent material 40 to increase its acoustic capacity and to fight against standing waves.
  • the mechanical compliance of the grid 20 and its mass can be chosen to form a mechanical resonator coupled to the membrane 18 by the cushion 19
  • the grid 20 can be produced from a polyvinyl chloride lattice having a thickness of 2 mm and diamond-shaped meshes whose diagonals measure 6 mm and 4.5 mm.
  • the cushion 19 is then constituted by two superimposed discs cut from a polyester wool mattress having a load-free thickness of 3mm.
  • a membrane 18 having a piston diameter D of 7 cm one of the discs has a diameter of 7 cm and the other a diameter of 4 cm.
  • the distance between the membrane 18 and the grid 20 is of the order of 3 mm, which ensures the compression of the superimposed discs.
  • FIG. 6 two readings of the frequency response curve corresponding to the transducer of FIG. 4 can be seen with the dimensions which have just been indicated.
  • the sound pressure level SPL was measured with a microphone placed in the axis of the transducer at a distance of 30 cm from the membrane 18.
  • the electrical excitation power or white noise is adjusted to an effective watt.
  • Curve 31 gives the response of the transducer of Figure 4 without the support 19, 20 and without the membrane 24, the curve 32 gives the response of the same transducer fitted this time with the support 19, 20, it can be seen that the natural resonance of the membrane 18 which extends between 10 and 18 kHz is flatter in presence of cushion 20 which improves the response in this region of the acoustic spectrum.
  • the response is also improved between 0.63 and 5 kHz, because the resonance of the membrane support is used to accentuate its vibrational amplitude.
  • the dip which occurs on the curve 32 between 2 kHz and 5 kHz can be filled by introducing the own radiation from the membrane 24 which can be designed to radiate in this region of the spectrum.
  • the membrane support according to the invention it has been possible to verify experimentally that the transducer has a high impact resistance, since the membrane 18 recovers its shape after a fall on its convex face.
  • the membrane 18 also withstands finger pressure well.
  • the cushion 19 introduces a mechanical coupling which cooperates with the dissipative properties of the material constituting this cushion.
  • the cushion also acts as a coupling element between the membrane 18 and the resonant structure that constitutes the grid 20. It is therefore possible to mechanically increase the ability to radiate from the membrane in another region of the acoustic spectrum. than the one where its own resonance is located.
  • the acoustic permeability of the cushion 19, grid 20 assembly also provides acoustic coupling with the other passive or active impedances which are contained in the casing 8.
  • the acoustic transparency can go hand in hand with the air permeability of the cushion and of the grid supporting this cushion, but it can also be eliminated when replacing the grid with a self-supporting shell of good mechanical compliance and of low mass and when a closed cell foam is used as a cushion.
  • the two elements of the elastic membrane support Can be melted into one, for example by treating with one suitable binder one of the faces of a fiber cushion so that it fulfills the function of a grid or a wall thin carrier.
  • the proposed device naturally extends to structures which provide a static pressure of non-uniform value along the membrane. This effect can result from the choice of an inhomogeneous thickness without load of the damping cushion and / or of a shape of the grid such that the interval separating it from the membrane varies in thickness.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Piezo-Electric Transducers For Audible Bands (AREA)
  • Diaphragms For Electromechanical Transducers (AREA)
  • Transducers For Ultrasonic Waves (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
  • Thermistors And Varistors (AREA)
  • Oscillators With Electromechanical Resonators (AREA)

Abstract

L'invention se rapporte aux transducteurs électroacoustiques utilisant une membrane rayonnante active autoportante en matériau polymère. L'invention a pour objet un transducteur dans lequel un support élastique (19, 20) fixé au boitier (8) coiffé par la membrane rayonnante (18) épouse la forme des parties concaves de la membrane (18), afin de s'opposer à l'enfoncement définitif de la membrane par une poussée accidentelle agissant sur un renflement de sa face extérieure. L'invention s'applique notamment à la réalisation de haut parleurs, d'écouteurs et de microphones.

Description

  • La présente invention se rapporte aux émetteurs et récepteurs d'ondes acoustiques dans lesquels un élément transducteur de forme non développable sert à convertir une tension électrique alternative en vibrations ou vice-versa. Elle concerne plus particulièrement les hauts parleurs et microphones dans lesquels la membrane en forme de dôme est constituée par une structure autoportante en matériau polymère. Les faces concave et convexe de cette structure sont revêtues d'électrodes formant condensateur. L'effet transducteur mis en oeuvre dans ces structures se manifeste dans toute l'étendue des zones électrosensibles situées entre les électrodes, ce qui permet de réaliser des dômes entièrement actifs. Les matériaux polymères utilisés pour fabriquer les dômes actifs se présentent sous la forme de films homogènes ou bimorphes dont les épaisseurs sont généralement comprises entre quelques dizaines et quelques centaines de microns. Dans ce cas, la forme définitive peut être obtenue par thermoformage ou par électroformage. On peut également obtenir des structures autoportantes à parois très minces par moulage ou par enduction.
  • Quelle-que soit la technique de fabrication ptilisée. le dôme obtenu possède une bonne tenue mécaaique du fait des propriétés autoportantes qui. le distinguent d'un film plan d'épaisseur comparable. Néanmoins, en exerçant une poussée au centre de la face convexe d'un dôme, on peut créer un défoncement mécaniquement stable qui dénature complètement les propriétés électroacoustiques. Ce phénomène de flambage est réversible, mais pour retrouver la forme initiale il est nécessaire d'exercer une poussée en sens contraire de celle qui a occasionné le défoncement. En pratique, l'utilisateur n'a pas accès à la face convexe d'une membrane en forme de dôme, ce qui implique un démontage délicat du transducteur lorsque sa membrane a, été accidentellement défoncée. Pour pallier cet inconvénient, on peut protéger la face rayonnante convexe d'un dôme actif par une grille, mais ce moyen est inopérant lorsque le défoncement résulte d'une surpression. D'ailleurs, certains défoncements peuvent provoquer des brisures telles que le dôme ne puisse plus reprendre complètement sa forme initiale. En plus des défoncements accidentels qui peuvent se produire en cours d'usage d'un transducteur électroacoustique à dôme actif, il y a lieu de signalerque des modes vibratoires parasites peuvent se manifester et donner lieu à des déformations irrégulières par ondes stationnaires. D'autre- part, la vibration d'un dôme actif tend à s'amplifier par résonnance dans une plage étroite du spectre acoustique, ce qui est préjudiciable à une bonne reproduction sonore. Le contrôle de la caractéristique de réponse en fréquence d'un dôme actif en polymère est basé sur un amortissement de sa résonance propre et sur celles que l'on peut faire agir par couplage acoustique. Cependant, le rendement modeste des transducteurs à polymères piézoélectriques ne permet pas d'envisager un amortissement purement électrique des résonances qui soit à la fois simple à mettre en oeuvre et suffisament efficace.
  • En vue de pallier les inconvénients énumérés ci- dessus, la présente invention propose d'associer à une - structure active autoportante en matériau polymère un appui élastique perméable acoustiquement et épousant la forme de sa face concave. La pression exercée par cet appui assure la résistance aux défoncements du dôme et participe à son amortissement mécanoacoustique.
  • L'invention a pour objet un transducteur électroacoustique comprenant un boitier rigide coiffé par une membrane rayonnante active autoportante en matériau polymère présentant au moins un renflement, caractérisé en ce que le boitier renferme un support élastique perméable àcoustiquement et épousant la forme des parties concaves de la face interne de.la membrane rayonnante ; la forme prise par la face d'appui du support étant déterminée par la forme propre de la membrane rayonnante.
  • L'invention sera mieux comprise au moyen de la description ci-après et des figures annexées parmi lesquelles :
    • - la figure 1 est une vue en coupe d'un transducteur électroacoustique comportant une membrane en polymère piézoélectrique ;
    • - la figure 2 est une vue en coupe d'une membrane bimorphe ;
    • - la figure 3 illustre le défoncement d'une membrane en forme de dôme et ses modes vibratoires parasites ;
    • - la figure 4 est une vue en coupe d'un transducteur électroacoustique selon l'invention ;
    • - la figure 5 est une vue en plan d'une grille thermoformée ;
    • - la figure 6 indique, les réponses en fréquence avec ou sans support de membrane ;
    • - les figures 7 et 8 représentent des structures compressibles perméables acoustiquement.
  • Sur la figure 1, on peut voir un transducteur électroacoustique susceptible de fonctionner en haut parleur, en écouteur ou en microphone. Il comprend une membrane active autoportante obtenue par thermoformage, électroformage, moulage ou enduction d'un film 3 de matériau polymère piézoélectrique. Le film 3 est revêtu sur ses deux faces de dépôts conducteurs 1 et 2 formant des électrodes de condensateur. La membrane 1, 2, 3 se présente sous la forme d'un dôme, par exemple une calotte sphérique de centre 0 et de rayon de courbure R. L'ensemble membrane est électriquement équivalent à un condensateur et lorsqu'on applique entre les électrodes une tension électrique alternative, cette structure active vibre selon un mode d'épaisseur accompagné d'un mode d'allongement alterné tangentiel. La membrane 1, 2,3 coiffe un boîtier rigide 8 et elle est fixée par son pourtour sur le rebord du boitier 8 au moyen d'une collerette métallique 4 Un anneau métallique 7 placé dans un logement annulaire du rebord du boitier 8 sert à établir un contact électrique avec l'électrode 2 qui forme la face concave de la membrane. L'anneau 7 est relié électriquement à une borne 6. La collerette 4 qui pince le pourtour de la membrane sert également de connexion élastique pour léélectrode 1 qui forme la face convexe de la membrane. Une borne 5 est fixée à la collerette 4. L'intérieur du boitier 8 communique avec l'extérieur par un orifice 9 qui sert à équilibrer les pressions statiques agissant de part et d'autre de la membrane 1, 2, 3. Le volume intérieur du boitier est partiellement rempli de matériau absorbant 10 pour empêcher l'établissement d'ondes stationnaires. Le volume 11 immédiatement voisin de l'électrode 2 est un coussin d'air à la pression statique du milieu aérien'12 dans lequel se propagent les ondes acoustiques émises ou reçues. La caractéristique de réponse en fréquence du transducteur électroacoustique dépend du diamètre D du piston vibrant constitué par la membrane rayonnante 1, 2, 3 de la compliance et de l'inertance de celle-ci, ainsi que de l'impédance acoustique constituée par le boitier 8. L'impédance acoustique du boitier 8 se ramène à une capacité acoustique résultant du volume d'air enfermé et de la surface active du piston vibrant ; le matériau absorbant 10 accroit cette capacité et introduit un amortissement ; le trou d'équilibrage 9 branche en parallèle une inertance acoustique mise en série avec une résistance acoustique.
  • La membrane représentée sur la figure 1 est constituée par un film homogène de matériau polymère piézoélectrique. L'effet piézoélectrique est d'origine dipolaire. Les matériaux utilisables pour confectionner la membrane sont des polymères tels que le polyfluorure de vinylidène PVF2, le polyfluorure de vinyle une fois substitué PVF et le polychlorure de yÀnyle, On peut également mettre en oeuvre des copolymères tel que le copolymère de polyfluorure de vinylidène et de polytetrafluorure d'éthylène`. La manifestation des propriétés piézoélectriques est liée à un traitement préalable qui comporte une phase de polarisation électrique intense précédée ou non d'une phase d'étirage mécanique.
  • Sans s'écarter du domaine de l'invention, on peut substituer à la membrane représentée sur la figure 1, celle dont la vue en coupe est donnée sur la figure 2.
  • La membrane de la figure 2 est du type bimorphe. Elle comporte deux couches de matériaux polymères 13 et 14 qui adhèrent parfaitement l'une à l'autre. Les couches 13 et 14 peuvent être faites de matériaux diélectriques dépourvus de propriétés piézoélectriques. L'une au moins de ces couches a subi un traitement d'implantation de charges électriques produisant un excès de charge permanent. Lorsqu'on applique aux électrodes 1 et 2 une tension d'excitation alternative, l'action des forces électrostatique produit des allongements que l'on peut rendre différents par un choix -approprié des matériaux et des excès de charge. En présence d'un allongement différentiel proportionnel aux champs électriques excitateurs, on obtient des couples de flexion M qui provoquent une incurvation alternée de la membrane. A titre d'exemple non limitatif, une membrane bimorphe peut être réalisée en utilisant un film de polytétrafluorure d'éthylène chargé électriquement qui adhère parfaitement à un film de polychlorure de vinyle. Bien entendu, les structures bimorphes peuvent être constituées en tout ou en partie de matériaux polymères piézoélectriques.
  • La figure 3 schématise l'essentiel des structures qui viennent d'être décrites. Le boitier 8 qui renferme un volume d'air est coiffé par une membrane active autoportante dont la forme au repos est représentée par la ligne pointillée 15. Cette membrane vibre dans son ensemble lorsqu'elle est soumise à une excitation électriaue ou acoustique, Cependant, du fait de la fixation périphérique, des phénomènes d'ondes stationnaires peuvent donner naissance, à certaines fréquences, à des vibrations parasites 17 (courbe en trait mixte). En outre, la membrane peut subir un enfoncement perma--.nent 16 sous l'effet d'une poussée accidentelle agissant sur la face convexe. Comme la membrane est fixée sur le boitier 8, il n'est pas possible d'effacer cet enfoncement puisque;sans démontage délicat,on n'a pas accès à la face concave. Un tel enfoncement peut résulter d'une manipulation maladroite de l'utilisateur, mais il peut également résulter d'une surpression sur la face convexe de la membrane. Quoiqu'il en soit, il faut considérer que la caractéristique autoportante des surfaces non développables telles que calottes sphériques, tronc conique à profil droit ou exponentiel, à ondulations concentriques va de pair avec une réduction sensible de l'épaisseur des membranes (quelques dizaines à quelques centaines de microns). Il en résulte que ces membranes sont vulnérables à l'enfoncement de leurs parties convexes.
  • Sur la figure 4, on peut voir une vue en coupe d'un transducteur électroacoustique conforme à l'invention. Il comprend un boitier 8 en matière isolante muni d'un fond 26 équipé de bornes de connexion 27 et 28. Une membrane 18 semblable à celles des figures 1 ou 2 recouvre une ouverture circulaire située au sommet du boitier 8. La membrane 18 repose sur le rebord de l'ouverture circulaire du boitier 8 par l'intermédiaire d'un anneau métallique encastré 21. Elle est pincée par son pourtour annulaire plan au moyen d'une collerette métallique 4. Ainsi, les électrodes qui recouvrent les faces de la membrane 18 sont électriquement reliées à la collerette 4 et à l'anneau 21 èt ces pièces métalliques sont à leur tour reliées aux bornes de sortie d'un transformateur 29 élévateur de tension. Les bornes d'entrée du transformateur 29 sont reliées aux bornes 27.et 28 qui traversent le fond de boîtier 26,
  • Conformément à l'invention, le bottier 8 renferme immédiatement sous la membrane 18 un support élastique perméable acoustiquement. Ce support élastique comprend au moins deux éléments qui sont le coussin 19 et la grille 20, mais ces éléments qui sont légèrement pressés contre la face interne de la membrane 18 ne sont pas des éléments sustentateurs. En effet, la membrane 18 est autoportante et elle impose sa forme au coussin 19 grâce à la forme bombée de la grille 20. Une vue en plan de la grille 20 est donnée sur la figure 5. La texture des matériaux employés pour réaliser le coussin 19 est illustrée par les figures 7 et 8. Comme le montre la figure 7, on peut utiliser un matelas de feutre à faible densité dont le tassement a été stabilisé à l'aide de liant, mais qui a conservé une forte porosité et une bonne perméabilité acoustique.
  • A titre d'exemple, on peut citer les laines de verre utilisées dans le domaine de l'isolation thermique ou acoustique. La figure 8 montre un matelas de matière alvéolaire à cellules communicantes ; du fait de la faible densité le cloisonnement ouvert se réduit à sa plus simple expression, c'est à dire.un réseau tridimensionnel de mailles. On peut citer diverses mousses de polymères tels que le polyuréthane et le polyester. Le coussin 20 étant légèrement comprimé entre la membrane 18 et la grille 20, c'est la forme bombée donnée à celle-ci qui détermine avec la forme concave de la membrane 18 l'épaisseur du coussin 20. Cette épaisseur peut varier du centre à la périphérie de la membrane, ou au contraire être uniforme si le centre de courbure de la membrane 18 coincide avec celui de la grille 20. La grille 20 est fixée par l'intérieur du boitier contre le rebord qui délimite l'ouverture circulaire coiffée par la membrane. Une rondelle 22 maintenue en place par l'entretoise 30 qui prend appui sur le fond de boitier 26 assure le pincage du pourtour de la grille 20, Du fait de la perméabilité acnustique du support de membrane 18, on peut envisager de monter à l'intérieur du boitier une autre membrane active autoportante telle que 24. Cette membrane interne 24 est pincée entre deux couronnes de prise de contact 23 et 25 qui sont intercalées entre la rondelle 22 et l'entretoise 30. Les couronnes 23 et 25 sont également raccordées au transformateur 29, afin que les deux membranes puissent coopérer au rayonnement sonore. L'intérieur du boitier 8 peut être garni de matière absorbante 40 pour accroître sa capacité acoustique et lutter contre les ondes stationnaires. La compliance mécanique de la grille 20 et sa masse peuvent être choisies pour former un résonateur mécanique couplé à la membrane 18 par le coussin 19
  • A titre d'exemple non limitatif la grille 20 peut être réalisée à partir d'un treillis de polychlorure de vinyle ayant une épaisseur de 2 mm et des mailles en losange dont les diagonales mesurent 6 mm et 4,5mm. Le coussin 19 est alors constitué par deux disques superposés découpés dans un matelas de laine polyester ayant une épaisseur sans charge de 3mm. Pour une membrane 18 ayant un diamètre de piston D de 7 cm, l'un des disques a un diamètre de 7 cm et l'autre un diamètre de 4 cm. La distance entre la membrane 18 et la grille 20 est de l'ordre de 3 mm ce qui assure la compression des disques superposés.
  • Sur la figure 6, on peut voir deux relevés de courbe de réponse en fréquence correspondant au transducteur de la figure 4 avec les dimensions qui viennent d'être indiquées. Le niveau de pression acoustique SPL a été mesuré avec un microphone placé dans l'axe du transducteur à une distance de 30 cm, de la membrane 18. La puissance électrique d'excitation ou bruit blanc est ajustée à un watt efficace. La courbe 31 donne la réponse du transducteur de la figure 4 sans le support 19, 20 et sans la membrane 24, La courbe 32 donne la réponse du même transducteur équipé cette fois du support 19, 20, On voit que la résonance propre de la membrane 18 qui s'étend entre 10 et 18 kHz est plus plate en présence du coussin 20 ce qui améliore la réponse dans cette région du spectre acoustique. La réponse est également améliorée entre 0,63 et 5 kHz, car on utilise la résonance du support de membrane pour accentuer son amplitude vibratoire. Le creux qui se produit sur la courbe 32 entre 2kHz et 5kHz peut être comblé en introduisant le rayonnement propre de la membrane 24 qui peut être conçue pour rayonner dans cette région du spectre.
  • Grâce à la présence du support de membrane conforme à l'invention, on a pu vérifier expérimentalement que le transducteur possédait une grande résistance aux chocs, puisque la membrane 18 recouvre sa forme après une chute sur sa face convexe. La membrane 18 résiste également bien à une pression du doigt. En ce qui concerne l'amortissement des vibrations parasites de la membrane 18, le coussin 19 introduit un couplage mécanique qui coopère avec les propriétés dissipatives de la matière constituant ce coussin.
  • Le coussin joue aussi le rôle d'élément de couplage entre la membrane 18 et la structure résonante que constitue la grille 20. Il est donc possible d'ac- croitre mécaniquement l'aptitude à rayonner de la membrane dans une autre région du spectre acoustique que celle où se situe sa propre résonance. La perméabilité acoustique de l'ensemble coussin 19, grille 20 apporte aussi un couplage acoustique avec les autres impédances passives ou actives qui sont contenues-dans le boitier 8.
  • Bien que l'on ait décrit dans ce qui précède et représenté sur les dessins, les caractéristiques essentielles de la présente invention appliquées à des modes de réalisation préférés de celle-ci, il est évident que l'homme de l'art peut y apporter toute modification de forme ou de détail qu'il juge utiles, sans pour autant sortir du cadre de l'invention.
  • En particulier, la transparence acoustique peut aller de pair avec une perméabilité à l'air du coussin et de la grille supportant ce coussin, mais elle peut aussi être supprimée lorsqu'on substitue à la grille une coque autoportante de bonne compliance mécanique et de faible masse et lorsqu'on utilise comme coussin une mousse alvéolaire à cellules fermées.
  • Les deux éléments du support élastique de membrane Peuvent être fondus en un seul, par exemple en traitant par un liant approprié l'une des faces d'un coussin en fibres pour qu'elle remplisse la fônction d'une grille ou d'une paroi mince porteuse.
  • Le dispositif proposé s'étend bien naturellement aux structures qui procurent une pression statique de valeur non-uniforme le long de la membrane. Cet effet peut résulter du choix d'une épaisseur inhomogène sans charge du coussin amortisseur et/ou d'une forme de la grille telle que l'intervalle séparant celle-ci de la membrane varie d'épaisseur.
  • Il est également possible de prendre en sandwich la membrane 18 entre deux supports 19, 20 l'un de ces supports s'étendant à l'extérieur du bottier 8 du transducteur électroacoustique.

Claims (12)

1, Transducteur électroacoustique comprenant un bottier rigide (8) coiffé par une membrand (1, 2, 3) rayonnante active autoportante en matériau polymère présentant au moins un renflement, caractérisé en ce que le boitier (8) renferme un support élastique (19, 20) perméable acoustiquement et épousant la forme des parties concaves de la face interne de la membrane rayonnante (1, 2, 3) ; la forme prise par la face d'appui du support (19, 20) étant déterminé par la forme propre de la membrane rayonnante (1, 2, 3).
2. Transducteur selon la revendication 1, caractérisé en ce que le support élastique (19, 20) comporte une grille (20) reliée mécaniquement au boitier (8) et un coussin compressible (19) pincé entre la face interne de la membrane et cette grille.
3. Transducteur selon la revendication 1, caractérisé en ce que le support élastique comporte un coussin compressible (19) ayant l'une de ses faces rigidifiée par un liant ; la face rigidifiée étant fixée au boitier (8).
4. Transducteur selon l'une quelconque des revendications 2 et 3, caractérisé en ce que le coussin (19) est réalisé dans un matériau composé.de fibres enchevêtrées minérales ou synthétiques.
5. Transducteur selon l'une quelconque des revendications 2 et 3, caractérisé en ce que le coussin(19) est réalisé dans un matériau organique de type cellulaire.
6. Transducteur selon la revendication 5, caractérisé en ce que les cellules composant le matériau organique sont communicantes. 1
7. Transducteur selon la revendication 5, caractérisé en ce que les cellules composant le matériau organique sont fermées.
8. Transducteur selon l'une quelconque des revendications 1 à 7, caractérisé en ce que le boitier (8) renferme au moins un élément rayonnant actif (24). couplé acoustiquement à la membrane (18) coiffant le boitier (8),
9. Transducteur selon l''une quelconque des revendications 1 à 8, caractérisé en ce que la membrane rayonnante (18) épouse la forme d'un dôme ayant sa convexité tourner vers l'extérieur du boitier (8).
10. Transducteur selon l'une quelconque des revendications 1 à 9, caractérisé en ce qu'il comporte extérieurement au boîtier un second support élastique perméable acoustiquement et coopérant avec le premier support élastique de façon à coincer la membrane rayonnante (18).
11. Transducteur selon l'une quelconque des revendications 1 à 10, caractérisé en ce qu'il comporte au moins une membrane rayonnante (1, 2, 3) en matériau polymère piézoélectrique.
12. Transducteur selon l'une quelconque des revendications 1 à 10, caractérisé en ce qu'il comporte au moins une membrane rayonnante (1, 2, 13, 14) du type bimorphe.
EP80401785A 1980-01-08 1980-12-12 Transducteur électroacoustique à dôme actif Expired EP0032082B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT80401785T ATE3607T1 (de) 1980-01-08 1980-12-12 Elektroakustischer wandler mit aktiver kalotte.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8000311 1980-01-08
FR8000311A FR2473242A1 (fr) 1980-01-08 1980-01-08 Transducteur electroacoustique a dome actif

Publications (3)

Publication Number Publication Date
EP0032082A2 true EP0032082A2 (fr) 1981-07-15
EP0032082A3 EP0032082A3 (en) 1981-07-29
EP0032082B1 EP0032082B1 (fr) 1983-05-25

Family

ID=9237325

Family Applications (1)

Application Number Title Priority Date Filing Date
EP80401785A Expired EP0032082B1 (fr) 1980-01-08 1980-12-12 Transducteur électroacoustique à dôme actif

Country Status (8)

Country Link
US (1) US4440983A (fr)
EP (1) EP0032082B1 (fr)
JP (1) JPS56103597A (fr)
AT (1) ATE3607T1 (fr)
CA (1) CA1158987A (fr)
DE (1) DE3063551D1 (fr)
DK (1) DK5081A (fr)
FR (1) FR2473242A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0072288A2 (fr) * 1981-08-11 1983-02-16 Thomson-Csf Transducteur électroacoustique à polymère piézoélectrique

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5033093A (en) * 1990-01-17 1991-07-16 Peavey Electronics Corporation Compact microphone and method of manufacture
DE3009068A1 (de) * 1980-03-10 1981-09-24 Reinhard Dipl.-Ing. Lerch Piezopolymer-wandler mit fester membranunterstuetzung
US4503564A (en) * 1982-09-24 1985-03-05 Seymour Edelman Opto-acoustic transducer for a telephone receiver
DE3320935A1 (de) * 1983-06-09 1984-12-13 Siemens AG, 1000 Berlin und 8000 München Ultraschall-sensor
FR2563959B1 (fr) * 1984-05-04 1990-08-10 Lewiner Jacques Perfectionnements aux transducteurs electro-acoustiques a electret
FR2603422B1 (fr) * 1986-08-27 1988-12-30 Inst Francais Du Petrole Procede pour realiser des capteurs piezo-electriques continus de sensibilite accrue et capteurs realises suivant le procede
DE3732412A1 (de) * 1987-09-25 1989-04-13 Siemens Ag Ultraschallwandler mit astigmatischer sende-/empfangscharakteristik
US5450497A (en) * 1992-05-11 1995-09-12 Linaeum Corporation Audio transducer improvements
JPH09163498A (ja) * 1995-10-06 1997-06-20 Murata Mfg Co Ltd 球体型圧電スピーカ
US6563930B1 (en) * 1996-12-04 2003-05-13 Murata Manufacturing Co., Ltd. Speaker
JP3134835B2 (ja) * 1997-12-27 2001-02-13 株式会社村田製作所 スピーカ
US6243475B1 (en) * 1997-05-28 2001-06-05 Murata Manufacturing Co., Ltd. Speaker
US6121716A (en) * 1997-07-11 2000-09-19 The United States Of America As Represented By The United States Department Of Energy Apparatus and method for prevention of cracking in welded brittle alloys
US20030036746A1 (en) 2001-08-16 2003-02-20 Avi Penner Devices for intrabody delivery of molecules and systems and methods utilizing same
JP3555505B2 (ja) * 1999-06-16 2004-08-18 株式会社村田製作所 スピーカ
JP4363554B2 (ja) * 1999-10-08 2009-11-11 タイコエレクトロニクスアンプ株式会社 二輪車ライダー用スピーカ内蔵ヘルメット
US6937736B2 (en) * 2001-08-06 2005-08-30 Measurement Specialties, Inc. Acoustic sensor using curved piezoelectric film
JP2005106529A (ja) * 2003-09-29 2005-04-21 Hosiden Corp 圧電型振動センサ
US7176602B2 (en) * 2004-10-18 2007-02-13 Ssi Technologies, Inc. Method and device for ensuring trandsducer bond line thickness
CA2589268A1 (fr) 2004-11-24 2006-06-01 Abraham Penner Dispositif medical implantable presentant un transducteur acoustique integre
JP4049179B2 (ja) * 2005-05-25 2008-02-20 オンキヨー株式会社 スピーカー振動板およびスピーカー構造体
CN101305640A (zh) * 2005-11-09 2008-11-12 Nxp股份有限公司 用于优化电声换能器频率响应的装置
DE102005061343B4 (de) * 2005-12-21 2010-11-25 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Ultraschallwandler mit selbsttragender Anpassschicht sowie Verfahren zur Herstellung
US7912548B2 (en) 2006-07-21 2011-03-22 Cardiac Pacemakers, Inc. Resonant structures for implantable devices
JP2009544366A (ja) * 2006-07-21 2009-12-17 カーディアック ペースメイカーズ, インコーポレイテッド 金属製キャビティが植え込まれた医療器具に用いる超音波トランスデューサ
US7652411B2 (en) * 2006-09-18 2010-01-26 Medicis Technologies Corporation Transducer with shield
US8334637B2 (en) * 2006-09-18 2012-12-18 Liposonix, Inc. Transducer with shield
US8825161B1 (en) 2007-05-17 2014-09-02 Cardiac Pacemakers, Inc. Acoustic transducer for an implantable medical device
JP2010528814A (ja) 2007-06-14 2010-08-26 カーディアック ペースメイカーズ, インコーポレイテッド 多素子音響再充電システム
WO2009012783A2 (fr) * 2007-07-25 2009-01-29 Lars Goller Holding Aps Membrane de haut-parleur d'aigus à cône
US7658263B2 (en) * 2008-04-03 2010-02-09 Mann + Hummel Gmbh Device for noise transmission in a motor vehicle
US8630435B2 (en) * 2008-08-08 2014-01-14 Nokia Corporation Apparatus incorporating an adsorbent material, and methods of making same
US8011469B2 (en) * 2009-12-18 2011-09-06 Mann & Hummel Gmbh Tunable sound transmission device for a motor vehicle
US8794373B1 (en) * 2013-03-15 2014-08-05 Bose Corporation Three-dimensional air-adsorbing structure
DE102014209073A1 (de) * 2014-05-14 2015-11-19 Sennheiser Electronic Gmbh & Co. Kg Elektrostatischer elektroakustischer Wandler
WO2018079583A1 (fr) * 2016-10-28 2018-05-03 ソニー株式会社 Transducteur électroacoustique et dispositif transducteur électroacoustique

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2496307A (en) * 1944-06-23 1950-02-07 Albert G Perkins Milk flow control for milking machines
JPS51131315A (en) * 1975-05-10 1976-11-15 Hitachi Zosen Corp Microphone
DE2742133A1 (de) * 1976-09-21 1978-03-23 Int Standard Electric Corp Elektroakustischer wandler
EP0002161A2 (fr) * 1977-11-17 1979-05-30 Thomson-Csf Dispositif transducteur piezoélectrique et son procédé de fabrication

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3424873A (en) * 1964-07-15 1969-01-28 Lincoln Walsh Coherent-sound loudspeaker
US3496307A (en) * 1967-12-30 1970-02-17 Nippon Musical Instruments Mfg Loudspeaker
US4045695A (en) * 1974-07-15 1977-08-30 Pioneer Electronic Corporation Piezoelectric electro-acoustic transducer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2496307A (en) * 1944-06-23 1950-02-07 Albert G Perkins Milk flow control for milking machines
JPS51131315A (en) * 1975-05-10 1976-11-15 Hitachi Zosen Corp Microphone
DE2742133A1 (de) * 1976-09-21 1978-03-23 Int Standard Electric Corp Elektroakustischer wandler
EP0002161A2 (fr) * 1977-11-17 1979-05-30 Thomson-Csf Dispositif transducteur piezoélectrique et son procédé de fabrication

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN, Vol. 1, No. 34, 31 Mars 1977, page 1793B76 & JP-A-51 131315 (HITACHI ZOSEN K.K.) 15 Novembre 1976 * Paragraphe 1 * *
RADIO MENTOR ELECTRONIC, Vol. 40, No. 8, 8 Aout 1974 Berlin DE "Mehr vom Hochpolymer-Piezowandler" page 318 * Page 318, colonne de gauche, alinea 3 a fin colonne de droite; figures * *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0072288A2 (fr) * 1981-08-11 1983-02-16 Thomson-Csf Transducteur électroacoustique à polymère piézoélectrique
FR2511570A1 (fr) * 1981-08-11 1983-02-18 Thomson Csf Transducteur electroacoustique a polymere piezoelectrique
EP0072288A3 (en) * 1981-08-11 1983-04-06 Thomson-Csf Electro-acoustic transducer with piezo-electric polymer
US4535205A (en) * 1981-08-11 1985-08-13 Thomson-Csf Electroacoustic transducer of the piezoelectric polymer type

Also Published As

Publication number Publication date
EP0032082A3 (en) 1981-07-29
DE3063551D1 (en) 1983-07-07
ATE3607T1 (de) 1983-06-15
CA1158987A (fr) 1983-12-20
EP0032082B1 (fr) 1983-05-25
US4440983A (en) 1984-04-03
FR2473242B1 (fr) 1982-10-01
FR2473242A1 (fr) 1981-07-10
JPS56103597A (en) 1981-08-18
DK5081A (da) 1981-07-09

Similar Documents

Publication Publication Date Title
EP0032082B1 (fr) Transducteur électroacoustique à dôme actif
EP0002161B1 (fr) Dispositif transducteur piezoélectrique et son procédé de fabrication
EP0072288B1 (fr) Transducteur électroacoustique à polymère piézoélectrique
KR20120064984A (ko) 압전 스피커
FR2569931A1 (fr) Elements piezoelectriques vibrants et transducteurs piezoelectriques electroacoustiques utilisant de tels elements
JP2003244783A (ja) 防水型電気音響変換器及びこれを備えた携帯型電子機器
US3118979A (en) Electrostatic transducer
EP0180518A1 (fr) Transducteur électroacoustique à diaphragme piézoélectrique
FR2476957A1 (fr) Transducteur acoustique
EP0817164B1 (fr) Structures d'absorption de bruit et parois constituées de ces structures
TW518904B (en) Transducer
JPH09252496A (ja) 圧電式イヤホン
FR2540325A1 (fr) Hydrophone de vitesse
JP3270616B2 (ja) 受波型圧電素子
FR2722934A1 (fr) Projecteur acoustique pour l'emission de signaux acoustiques
FR2511571A1 (fr) Transducteur electroacoustique a condensateur a dielectrique solide polarise
FR2693070A1 (fr) Transducteurs électro-acoustiques électrodynamiques à bobine mobile.
WO2010112747A1 (fr) Panneau acoustique destine a recevoir, emettre ou absorber des sons
US20060072772A1 (en) Piezoelectric loudspeaker
RU2088045C1 (ru) Электроакустический преобразователь
JP7099110B2 (ja) 電気音響変換装置
CA2314633A1 (fr) Hydrophone a faible taux de distorsion
JPS6058638B2 (ja) 圧電変換器
FR2542550A1 (fr) Transducteur electroacoustique a correction acoustique integree
FR2474800A1 (fr) Transducteur electro-acoustique a membrane en forme d'anneau spherique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): AT BE CH DE GB IT LU NL SE

AK Designated contracting states

Designated state(s): AT BE CH DE GB IT LU NL SE

17P Request for examination filed

Effective date: 19810817

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH DE GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 3607

Country of ref document: AT

Date of ref document: 19830615

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3063551

Country of ref document: DE

Date of ref document: 19830707

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19830922

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19831231

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19840930

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19841022

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19841123

Year of fee payment: 5

Ref country code: CH

Payment date: 19841123

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19841129

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19841231

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19851212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19851213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19851231

Ref country code: CH

Effective date: 19851231

Ref country code: BE

Effective date: 19851231

BERE Be: lapsed

Owner name: THOMSON-CSF

Effective date: 19851231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19860701

GBPC Gb: european patent ceased through non-payment of renewal fee
NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19860902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19881118

EUG Se: european patent has lapsed

Ref document number: 80401785.3

Effective date: 19860902