EP0021850B1 - Tonerde-Reduktionszelle, Verfahren zur Herstellung einer solchen Zelle und ihre Anwendung bei der Herstellung von Aluminium - Google Patents

Tonerde-Reduktionszelle, Verfahren zur Herstellung einer solchen Zelle und ihre Anwendung bei der Herstellung von Aluminium Download PDF

Info

Publication number
EP0021850B1
EP0021850B1 EP80302219A EP80302219A EP0021850B1 EP 0021850 B1 EP0021850 B1 EP 0021850B1 EP 80302219 A EP80302219 A EP 80302219A EP 80302219 A EP80302219 A EP 80302219A EP 0021850 B1 EP0021850 B1 EP 0021850B1
Authority
EP
European Patent Office
Prior art keywords
cell
cathode
titanium
alumina
vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP80302219A
Other languages
English (en)
French (fr)
Other versions
EP0021850A1 (de
Inventor
Richard Hampton Biddulph
Anthony John Wickens
Geoffrey Kenneth Creffield
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
US Borax Inc
Original Assignee
United States Borax and Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United States Borax and Chemical Corp filed Critical United States Borax and Chemical Corp
Priority to AT80302219T priority Critical patent/ATE4331T1/de
Publication of EP0021850A1 publication Critical patent/EP0021850A1/de
Application granted granted Critical
Publication of EP0021850B1 publication Critical patent/EP0021850B1/de
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/66Electroplating: Baths therefor from melts
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/08Cell construction, e.g. bottoms, walls, cathodes

Definitions

  • This invention relates to an improved alumina reduction cell, to methods of producing such a cell, and to the use of the cell in the manufacture of aluminium.
  • Aluminium metal is prepared electrolytically by the reduction of alumina.
  • Conventional alumina reduction cells comprise a vessel having a refractory lining, frequently of carbon, containing, as molten electrolyte, alumina dissolved in fused cryolite.
  • the floor of the cell or vessel is typically made of a carbonaceous material, which not only provides thermal insulation, but also serves as part of the cathode.
  • At least one anode is disposed within the vessel spaced apart from the cathode.
  • aluminium is formed by electrolytic reduction of the alumina.
  • the molten aluminium formed is denser than the cryolite electrolyte and collects as a pool of metal on the floor of the cell.
  • Molten aluminium metal is drained from the cell in order to prevent too deep a pool of aluminium metal forming on the floor of the cell. Quite clearly, the molten aluminium on the floor of the cell cannot be allowed to touch the anodes or short-circuiting of the cell would take place.
  • Molten aluminium does not readily wet carbonaceous materials. This can quite easily be demonstrated by allowing a drop of molten aluminium to contact an untreated surface of a carbonaceous substrate whereupon the aluminium will form a bead or globule and will not spread over the surface of the carbonaceous substrate.
  • the fact that molten aluminium metal does not readily wet or spread over the floor of an alumina reduction cell can cause operating problems.
  • the deeper is the layer of molten aluminium at the bottom of a cell the greater necessarily must be the interelectrode distance. The greater is the inter-electrode distance the lower is the operating efficiency of the cell and the greater is the power requirement of the cell.
  • the layer of molten aluminium formed upon an untreated carbonaceous cell floor is of sufficient thickness to permit thermal or magnetic currents to develop therein, making the layer somewhat unstable and liable to turbulence, so that waves can form in the layer and which can touch an anode and short-circuit the cell.
  • the depth of the layer of molten aluminium at the bottom of a cell may vary from cell to cell, but typically is in the range from 3 to 8 centimetres.
  • the coating is produced by adding to electrolyte within the cell a refractory metal or compound thereof so that, during operation of the cell, a coating of a carbide of the metal forms upon the carbon cathode surface.
  • refractory metal carbides do not provide ideal coatings for carbon substrates in an alumina reduction cell since they are susceptible to thermal shock.
  • U.S. Defensive Publication T993002 discloses the provision of a titanium diboride surface to contact molten aluminium at the bottom of an alumina reduction cell.
  • the titanium diboride surface is provided by refractory tiles secured to a carbonaceous substrate. The tiles are stated to be wettable by molten aluminium and to be chemically inert under the conditions of the electrolytic process.
  • titanium diboride is less susceptible to thermal shock when titanium carbide and a titanium diboride surface would make possible considerable energy savings during operation of the alumina reduction cell
  • the tiles proposed for use in the Defensive Publication are of considerable thickness and therefore necessarily wasteful of titanium diboride, a very expensive material.
  • Japanese Laid-Open Patent Application 1974-67844 discloses a method of coating ferrous metals or their alloys with a titanium diboride layer by electrodeposition from a molten bath of a borate salt containing dissolved titanium.
  • the reference states that the metal or alloy cathode to be used in the method must have a carbon content of less than 0.1 percent if a titanium carbide layer is not to be formed.
  • the invention accordingly provides an aluminium reduction cell comprising a vessel having a refractory lining and at least one anode disposed within said vessel, wherein at least part of the vessel floor severes as a cathode and said cathode comprises a carbon substrate having an adherent surface layer of electrodeposited titanium diboride.
  • the alumina reduction cell of the invention can be prepared by electrodepositing the titanium diboride layer on a carbonaceous cathode in situ in the cell, or by electrodepositing a layer of titanium diboride on at least one of the surfaces of carbonaceous blocks or elements externally of the cell and then installing the blocks or elements in a cell to provide the coated cathode surface.
  • the coated blocks or elements are positioned on the floor of cell and secured thereto with, for example, pitch.
  • An adherent surface layer of titanium diboride is formed in accordance with the invention, either on a carbonaceous cell floor or on constituent carbonaceous blocks or elements, by electrodeposition from a molten electrolyte consisting of a source of boron having titanium or a compound thereof dissolved therein.
  • the carbonaceous cell floor or the blocks or elements serve as cathode and a firmly adherent surface layer forms thereon, with the electrodeposit of titanium diboride faithfully following the surface contours of the cathode.
  • the anode preferably is of carbon since it has been found that better quality electrodeposits are formed with carbon anodes. It is, however, possible to use consumable titanium anodes which dissolve anodically to provide titanium values in the molten electrolyte.
  • titanium anodes When using titanium anodes it is not necessary separately to dissolve a source of titanium in the molten electrolyte. If, however, a source of titanium is to be dissolved in the electrolyte, as for example when using carbon anodes, it is preferred to use titanium dioxide or a titanate as such a source. It is particularly preferred to use an electrolyte containing 2 to 10% by weight of titanium dioxide as a source of titanium.
  • the molten electrolyte must contain a source of boron, and it is preferred to use an anhydrous borate as such a source, more particularly sodium tetraborate (borax) or potassium tetraborate.
  • the molten electrolyte should be sufficiently conductive as to provide adherent electrodeposits of titanium diboride on the carbonaceous cathode and also sufficiently fluid as to permit ready removal from an electrolytic cell.
  • the electrodeposit of titanium diboride is formed in situ in an alumina reduction cell, the electrolyte should be removed and the cell cleaned.
  • the cell voltage should not exceed 2 volts if adherent electrodeposits are to be formed, but the conditions of the electrolysis for the deposition of the titanium diboride layer are otherwise not particularly critical. At voltages above 2 volts the electrodeposit becomes powdery and less adherent. Preferred voltages are from 1.2 to 1.8 volts.
  • the current density can vary over a wide range and suitable values are from 5 to 100 milliamps per cm 2 .
  • the temperature should clearly be one at which the electrolyte is molten and of the requisite conductivity. Suitable temperatures are in the region of 900 to 1000°C. If necessary a flux can be added to the electrolyte to assist in operating at a desired temperature.
  • the electrolyte desirably is agitated to assist in the formation of good quality deposits and agitation can conveniently be provided by means of a rotating anode.
  • the duration of the electrolysis will be dependent to a large extent upon the thickness desired for the titanium diboride surface layer. Prolonging the electrolysis, replenishing the electrolyte as required, will result in the production of thicker electrodeposits. If desired, successive layers can be built up by repeated electrodepositions.
  • the titanium diboride layer can be electrodeposited directly onto an untreated carbonaceous cathode, but an underlayer of a titanium carbide electrodeposit can be provided if desired.
  • the surface layer of titanium diboride on the carbonaceous cathode of the alumina reduction cell of the invention not only is readily wetted by molten aluminium with the advantages referred to above, but also reduces the penetration of the cathode by sodium metal which can be formed during the alumina reduction. When sodium penetrates a carbonaceous cathode it can cause breakdown of the cathode.
  • Na 2 B 4 O 7 was electrolysed using a graphite cathode and a rotating titanium anode for 5 hours at 950°C at 1.5 volts and current density of 30 m.a. cm- 2 . After electrolysis the cathode was washed clean of electrolyte and X-ray diffraction and optical microscopy showed the presence of an adherent titanium diboride layer.
  • An electrolyte containing 2% by weight Ti0 2 and 98% by weight K 2 B 4 O 7 was electrolysed using a graphite cathode and a titanium anode for five hours at 950°C at a voltage of 1.2 volts and a current density 5 m.a. cm- 2 . After electrolysis the remaining electrolyte was removed and X-ray diffraction and optical microscopy showed the graphite cathode to be coated with a layer of titanium diboride with an estimated thickness 20 ,um.
  • K 2 B 4 O 7 was used as an electrolyte with a graphite cathode and titanium anode. This was electrolysed for 4.5 hours at 950°C at 1.5 volts and current density of 35 m.a. cm- 2 . After electrolysis the remaining electrolyte was washed off. X-ray diffraction and optical microscopy showed the presence of a layer of titanium diboride on the surface of the graphite cathode with an estimated thickness 50 ,um.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Catalysts (AREA)

Claims (9)

1. Tonerde-Reduktionszelle in Form einer Wanne mit feuerfester Auskleidung und zumindest einer in die Wanne reichenden Anode, wobei zumindest ein Teil des Wannenbodens als Kathode ausgebildet, ist, dadurch gekennzeichnet, daß die Kathode eine Kohle-Unterlage ist, auf der sich eine festhaftende Schicht von elektrolytisch abgeschiedenem Titandiborid befindet.
2. Verfahren zur Herstellung der Tonerde-Reduktionszelle nach Anspruch 1, dadurch gekennzeichnet, daß in einer Zellen-Wanne mit feuerfester Auskleidung und zumindest einer in die Wanne reichenden Anode, wobei zumindest ein Teil des Wannenbodens aus Kohle oder Kohlenstoff besteht und als Kathode geschaltet ist, eine geschmolzener Elektrolyt aus einer Quelle für Bor, der Titan oder eine Titanverbindung gelöst enthält, bei einer Spannung nicht über 2 V elektrolysiert wird, zur Bildung einer haftenden Schicht aus Titandiborid an der Kathode durch elektrolytische Abscheidung.
3. Verfahren zur Herstellung der Tonerde-Reduktionszelle nach Anspruch 1, dadurch gekennzeichnet, daß durch elektrolytische Abscheidung bei einer Spannung von nicht üver 2 V eine haftende Schicht von Titandiborid auf zumindest einer Fläche einer Vielzahl von Kohleblöcken aus einem geschmolzenen Elektrolyten, bestehend aus einer Quelle für Bor und darin gelöst Titan oder eine Titanverbindung, abgeschieden wird, worauf die so überzogenen Kohleblöcke in den Boden einer Tonerde-Reduktionszelle derart eingebaut werden, daß zumindest eine Fläche dieser Blöcke als Kathodenfläche der Zelle zu wirken vermag.
4. Verfahren nach Anspruch 2 oder 3, dadurch gekennzeichnet, daß als Quelle für Bor wasserfreies Borat angewandt wird.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß das Borat Natrium- oder Kalium-tetraborat ist.
6. Verfahren nach Anspruch 4 oder 5, dadurch gekennzeichnet, daß im Elektrolyt Titandioxid oder ein Titanat gelöst ist und mit Hilfe einer Kohle-Anode elektrolysiert wird.
7. Verfahren nach Anspruch 4 oder 5, dadurch gekennzeichnet, daß mit einer Titan-Opferelektrode elektrolysiert wird, die sich anodisch in einer Schmelze auflöst, die anfänglich aus wasserfreiem Borat bestanden hat.
8. Verfahren nach Anspruch 2 bis 7, dadurch gekennzeichnet, daß die Elektrolyse mit einer Spannung von 1,2 bis 1,8 V durchgeführt wird.
9. Anwendung der Tonerde-Reduktionszelle nach Anspruch 1 oder hergestellt nach einem der Ansprüche 2 bis 8 bei der Aluminiumgewinnung durch Schmelzfluß-Elektrolyse von Aluminiumoxid und Kryolith.
EP80302219A 1979-07-02 1980-07-01 Tonerde-Reduktionszelle, Verfahren zur Herstellung einer solchen Zelle und ihre Anwendung bei der Herstellung von Aluminium Expired EP0021850B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT80302219T ATE4331T1 (de) 1979-07-02 1980-07-01 Tonerde-reduktionszelle, verfahren zur herstellung einer solchen zelle und ihre anwendung bei der herstellung von aluminium.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB7922847 1979-07-02
GB7922847 1979-07-02

Publications (2)

Publication Number Publication Date
EP0021850A1 EP0021850A1 (de) 1981-01-07
EP0021850B1 true EP0021850B1 (de) 1983-07-27

Family

ID=10506221

Family Applications (1)

Application Number Title Priority Date Filing Date
EP80302219A Expired EP0021850B1 (de) 1979-07-02 1980-07-01 Tonerde-Reduktionszelle, Verfahren zur Herstellung einer solchen Zelle und ihre Anwendung bei der Herstellung von Aluminium

Country Status (9)

Country Link
EP (1) EP0021850B1 (de)
JP (1) JPS569384A (de)
AT (1) ATE4331T1 (de)
AU (1) AU530394B2 (de)
CA (1) CA1172991A (de)
DE (1) DE3064396D1 (de)
GR (1) GR67190B (de)
NO (1) NO801986L (de)
NZ (1) NZ194195A (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2558703C2 (ru) * 2013-10-08 2015-08-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Нижегородский государственный технический университет им. Р.Е. Алексеева" НГТУ Способ изготовления футеровки разливочного ковша

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2500488B1 (fr) * 1981-02-24 1985-07-12 Pechiney Aluminium Procede de production d'aluminium selon la technique hall-heroult et cathode en refractaire electroconducteur pour la mise en oeuvre du procede
JPS58501182A (ja) * 1981-07-27 1983-07-21 コモンウェルス・アルミニウム・コ−ポレ−ション アルミニウム還元槽用の耐火性硬質物質−炭素繊維陰極被覆物
DE3375409D1 (en) * 1982-05-10 1988-02-25 Eltech Systems Corp Aluminum wettable materials
US4560448A (en) * 1982-05-10 1985-12-24 Eltech Systems Corporation Aluminum wettable materials for aluminum production
US5028301A (en) * 1989-01-09 1991-07-02 Townsend Douglas W Supersaturation plating of aluminum wettable cathode coatings during aluminum smelting in drained cathode cells
US5227045A (en) * 1989-01-09 1993-07-13 Townsend Douglas W Supersaturation coating of cathode substrate
US5961811A (en) * 1997-10-02 1999-10-05 Emec Consultants Potlining to enhance cell performance in aluminum production
US6616829B2 (en) 2001-04-13 2003-09-09 Emec Consultants Carbonaceous cathode with enhanced wettability for aluminum production
CN102373488A (zh) * 2011-10-26 2012-03-14 中国铝业股份有限公司 一种降低铝电解槽阴极压降的方法
CN109695044B (zh) * 2018-12-18 2020-10-09 广西师范大学 一种具有均匀致密TiB2层的钛基阴极材料及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3827954A (en) * 1969-04-14 1974-08-06 Us Interior Electrodeposition of metallic boride coatings
US3661736A (en) * 1969-05-07 1972-05-09 Olin Mathieson Refractory hard metal composite cathode aluminum reduction cell
DE2305281A1 (de) * 1972-02-04 1973-08-09 Borax Cons Ltd Elektrode fuer die schmelzflusselektrolyse und verfahren zu deren herstellung
CH576005A5 (de) * 1972-03-21 1976-05-31 Alusuisse
US3775271A (en) * 1972-12-18 1973-11-27 Interior Electrolytic preparation of titanium and zirconium diborides using a molten, sodium salt electrolyte
US4093524A (en) * 1976-12-10 1978-06-06 Kaiser Aluminum & Chemical Corporation Bonding of refractory hard metal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2558703C2 (ru) * 2013-10-08 2015-08-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Нижегородский государственный технический университет им. Р.Е. Алексеева" НГТУ Способ изготовления футеровки разливочного ковша

Also Published As

Publication number Publication date
EP0021850A1 (de) 1981-01-07
GR67190B (de) 1981-06-24
ATE4331T1 (de) 1983-08-15
DE3064396D1 (en) 1983-09-01
JPS6343475B2 (de) 1988-08-30
NO801986L (no) 1981-01-05
CA1172991A (en) 1984-08-21
AU5979180A (en) 1981-01-15
AU530394B2 (en) 1983-07-14
NZ194195A (en) 1982-03-30
JPS569384A (en) 1981-01-30

Similar Documents

Publication Publication Date Title
EP0114085B1 (de) Schmelzflusselektrogewinnungsverfahren, Anode und ihre Herstellung
EP0021850B1 (de) Tonerde-Reduktionszelle, Verfahren zur Herstellung einer solchen Zelle und ihre Anwendung bei der Herstellung von Aluminium
US6719890B2 (en) Cathode for a hall-heroult type electrolytic cell for producing aluminum
JPS6036687A (ja) 電解槽及び電解方法
US6719889B2 (en) Cathode for aluminum producing electrolytic cell
US3988216A (en) Method of producing metal strip having a galvanized coating on one side while preventing the formation of a zinc deposit on cathode means
Sibert et al. Electrodeposition of titanium on base metals
US2950233A (en) Production of hard surfaces on base metals
CN109695044B (zh) 一种具有均匀致密TiB2层的钛基阴极材料及其制备方法
US3720590A (en) Method of coating an electrode
US3697390A (en) Electrodeposition of metallic boride coatings
CN101768760A (zh) 一种铝电解用TiB2-TiB/Ti梯度复合多孔阴极材料及其制备方法
SU1356967A3 (ru) Электролизна ванна дл получени алюмини из окиси алюмини
US3515650A (en) Method of electroplating nickel on an aluminum article
JP2009114475A (ja) 電解銅粉製造用電極及び電解銅粉製造用アノード
RU2299278C2 (ru) Способ нанесения смачиваемого покрытия подины алюминиевого электролизера
US3371020A (en) Process for the electrodeposition of metals
AN et al. Electrodeposition of cobalt in an ionic liquid electrolyte at ambient temperature
US4040914A (en) Cathode starting blanks for metal deposition
CN112323099A (zh) 一种镍铬合金表面制备有抗氧化耐腐蚀涂层的惰性阳极
US4483752A (en) Valve metal electrodeposition onto graphite
EP0380645A1 (de) Verfahren zur elektrolytischen herstellung von metallen
EP0058506B1 (de) Bipolares Raffinieren von Blei
Schlain et al. Electrodeposition of titanium diboride coatings
RU2775044C1 (ru) Электролитический способ получения покрытий и изделий из ниобия, легированного танталом

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT CH DE FR GB IT SE

17P Request for examination filed

Effective date: 19810615

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT CH DE FR GB IT LI SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19830727

Ref country code: LI

Effective date: 19830727

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 19830727

Ref country code: CH

Effective date: 19830727

REF Corresponds to:

Ref document number: 4331

Country of ref document: AT

Date of ref document: 19830815

Kind code of ref document: T

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19830901

REF Corresponds to:

Ref document number: 3064396

Country of ref document: DE

Date of ref document: 19830901

ET Fr: translation filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19840615

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19840622

Year of fee payment: 5

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19880701

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19890331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19890401

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST