EP0020641B1 - Verbesserter g-kräfte-simulator - Google Patents

Verbesserter g-kräfte-simulator Download PDF

Info

Publication number
EP0020641B1
EP0020641B1 EP79901642A EP79901642A EP0020641B1 EP 0020641 B1 EP0020641 B1 EP 0020641B1 EP 79901642 A EP79901642 A EP 79901642A EP 79901642 A EP79901642 A EP 79901642A EP 0020641 B1 EP0020641 B1 EP 0020641B1
Authority
EP
European Patent Office
Prior art keywords
seat
plate
firmness
motion
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP79901642A
Other languages
English (en)
French (fr)
Other versions
EP0020641A1 (de
EP0020641A4 (de
Inventor
Gerald J. Kron
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Singer Co
Original Assignee
Singer Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Singer Co filed Critical Singer Co
Publication of EP0020641A1 publication Critical patent/EP0020641A1/de
Publication of EP0020641A4 publication Critical patent/EP0020641A4/de
Application granted granted Critical
Publication of EP0020641B1 publication Critical patent/EP0020641B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B9/00Simulators for teaching or training purposes
    • G09B9/02Simulators for teaching or training purposes for teaching control of vehicles or other craft
    • G09B9/08Simulators for teaching or training purposes for teaching control of vehicles or other craft for teaching control of aircraft, e.g. Link trainer
    • G09B9/10Simulators for teaching or training purposes for teaching control of vehicles or other craft for teaching control of aircraft, e.g. Link trainer with simulated flight- or engine-generated force being applied to aircraft occupant
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S297/00Chairs and seats
    • Y10S297/08Inflatable bellows

Definitions

  • the present invention relates to the field of simulation devices, and more particularly relates to an improved G-seat system.
  • Motion systems are limited in their ability to provide sustained acceleration information due to the excursion and velocity constraints intrinsic to the system. For high performance tactical aircraft simulators this limitation is particularly apparent. For such simulators, motion systems provide only the leading edge of the simulated acceleration. This is followed by a fading of the perception during the subliminal "washout" phase, during which the motion system restores itself to regain the capability expended in delivering the onset cue.
  • the G-seat directly addresses the haptic-somatic sensory system, which consists of the muscle, joint, and flesh pressure receptors employed in perceiving physiological changes due to sustained acceleration.
  • the versatility provided by the Advanced G Seat mosaic surface allows controlled variations in seat pan heave or sink, pitch, roll, contouring and, by way of the active clam-shell aircells, area of flesh contact. Also provided are backrest cushion translation, attitude reorientation (tip and tilt) and contouring.
  • the surface shape, or contour variations provide the pilot with localized pressure change sensations on his body, corresponding, e.g., to his being pushed into the seat during high acceleration.
  • Each of the above g seats inventions are an extremely significant milestone in terms of midrange g-level cueing, particularly the Advanced G Seat which has been employed in a number of tactical aircraft simulators with considerable success.
  • the seat system of the present invention provides highly improved subjective "feel" of the g-loading effects being simulated. Very strong localized pressure sensations are provided, greatly expanding the dynamic range of perceived g loading, while at the same time the seat feels like an integrated structure. Fewer driven elements are employed while band pass is increased to 10 hertz or more thus providing onset cueing capability. Further, buffeting cues can be provided directly by way of the seat system thus eliminating the need for a separate shaker system. These improvements are accomplished while at the same time retaining the compatible cue generation capability and cockpit fidelity which characterized the first generation g-seats.
  • a second unitary, substantially rigid surface is provided for supporting the back of a seated subject and a third firmness cell is located between said second surface and the back of the subject.
  • Two additional movable surface elements may also be provided in association with the lower portion of said second surface to provide enhanced area of contact over to the lower back of the subject.
  • g-seat system 10 of the present invention is shown in Fig. 1. It is comprised of two basic elements-a seat pan assembly 12 and a backrest assembly 14. These are mounted on a frame 16 which may, in turn, be mounted, e.g., in an aircraft simulator. Seatbelt 18 can also be seen in Fig. 1.
  • Fig. 1 shows a g-seat system with firmness cells 82,128 folded back to reveal moving plates 62, 92.
  • actuator assemblies vary the position and attitude of these plates to produce body excursions appropriate to the motion being simulated, in a manner that will be more fully described hereinafter.
  • Seat pan 21, shown in Fig. 1 houses seat pan assembly 12.
  • radial elements 108, 110, firmness cells 82, 128, thigh range 78 and tuberosity blocks 80 are also shown in Fig. 1 radial elements 108, 110, firmness cells 82, 128, thigh range 78 and tuberosity blocks 80, all of which will be explained more fully hereinafter.
  • Seat pan assembly 12 is shown in exploded view in Fig. 2. As shown, assembly base plate 20 supports three hydraulic actuator sub- assemblies: left and right side actuator assemblies 22, 23, and forward actuator assembly 24. These actuator assemblies all connect to longitudinal actuator assembly plate 40 by way of push rods 38. The actuator assemblies drive the seat pan plate in a vertical direction and thus provide the plate with vertical (heave) motion as well as pitch and roll. Also incorporated with side actuator assemblies 22, 23 are separate seatbelt actuator assemblies 25 and 26 which will be described more fully hereinafter.
  • a seat stabilizer assembly 68 is connected to it.
  • This assembly shown in partial cut-away in Fig. 2 is housed in housing 70 and is mounted by way of bracket 71 to base plate 20 through cut-out 76.
  • the top of the assembly is a brace 74.
  • This brace is connected by way of a trunnion arrangement to a sleeve 75 which permits brace 74 to pitch and roll only with respect to sleeve 75.
  • Sleeve 75 is free only to slide up and down a pair of vertical shafts, or rails, 72 which are mounted in housing 70, as shown.
  • brace 74 As plate 40 pitches, rolls and heaves, brace 74, connected to it, is likewise caused to move with it in the same way.
  • the stabilizer assembly 68 prevents this.
  • Longitudinal movement capability for the seat pan plate 62 is provided by way of a longitudinal actuator assembly 56 housed in a cut out of plate 40.
  • This assembly shown in Fig. 2, comprises actuator housing 58 and an actuator/LVDT sub- assembly therein (not shown) connected to plate 40 by way of bearing shafts 60. Housing 58 is free to move along bearing shafts 60 in the longitudinal direction shown by arrow 61.
  • Upper plate 62 is attached to housing 58, for example by way of screws 63 which pass through to threaded holes 64 in the housing 58, as shown in Fig. 2. Plate 62 rests on wear strips 66 which are mounted on plate 40.
  • Longitudinal drive capability for the upper plate 62 is cascaded by way of longitudinal actuator assembly 56 onto the pitch, roll and heave capabilities provided by actuators 22, 23, 24.
  • a unique firmness cell 82 is mounted on top of upper plate 62, contoured to fit over thigh ramps 78 and tuberosity blocks 80.
  • This thin, pneumatic pancake cell is designed to be normally inflated at just enough pressure to bearly hold the buttocks of the seated subject off of the plate 62. By deflating cell 82 the buttocks may be completely lowered onto the plane, or, by partially deflating the cell, partially lowered onto the plate.
  • Cell 82 has two parts, a left 82A and a right 82B to permit selective lowering of each buttock of the subject.
  • a pair of low, passive blocks 80 placed at the rear of the plate, directly beneath the ischial tuberosities, the primary skeletal protrusions of the buttocks of the seated subject. These blocks provide an increased dynamic range of perceived seat pressure by stimulating the deep flesh pressure receptors in this region as the subject is permitted to sink onto the seat plate 62 when the firmness cell is deflated.
  • Cut-out 63 in the front of plate 62 duplicates the cut out of an actual tactical aircraft seat and allows room for the control stick.
  • Fabric cover 84 covers the seat pan assembly 12 and provides complete environmental fidelity for the pilot. A complete description of the principles of operation of the seat pan is given below.
  • Fig. 3 shows a detailed view of actuator sub- assembly 23.
  • actuator chassis 28 supports a hydraulic actuator 30 which is pivotably mounted thereto. Near the base of actuator 30 a servo valve 31 is mounted. Valve 31 drives actuator 30 in a manner well known in the art.
  • Piston 32 of actuator 30 is connected to bell crank assembly 34 which translates the relatively horizontal force of the output from actuator 30 to a moment on bell crank arm 36 and causes offset arm 36A to rotate.
  • Offset arm 36A is connected by way of a bell-type bushing 37 to push rod 38 which in turn is connected by way of a ball joint to longitudinal actuator assembly plate 40, as can best be seen in Fig. 2.
  • activation of actuator 30 drives push rod 38 in the vertical direction.
  • All 3 actuators 22, 23, 24, acting in concert provide pitch, roll and heave capabilities to seat pan plate 62.
  • Piston 32 is also connected to a linear variable differential transformer (“LVDT") 42, e.g., model SS-207, commercially available from Collins, Inc.
  • LVDT 42 provides an electrical signal corresponding to the position of piston 32 to permit closed-loop operation of actuator 22.
  • a seat belt actuator sub-assembly 26 Associated with actuator sub-assembly 23 is a seat belt actuator sub-assembly 26.
  • One end of seat belt 18 is driven by piston 44 of actuator 46 which likewise is driven by a servo valve 47 and is connected to an LVDT 48 for closed loop operation.
  • a similar seat belt actuator sub-assembly 25 is provided in conjunction with actuator sub- assembly 22 for the drive of the other end of seat belt 18.
  • All actuator sub-assemblies used in seat system , 10 employ a similar servo valve/actuator/LVDT/ bell crank arrangement to provide highly compact yet strong and accurate drive sources for seat pan assembly 12 and backrest assembly 14. This permits seat 10 to be constructed with a high degree of visual fidelity, as all moving components are compactly arranged in a seat pan and backrest assembly no larger than that of the seat of the aircraft sought to be simulated.
  • Fig. 4 shows an exploded view of backrest assembly 14.
  • Three actuator assemblies a left 86, a right 87, and a top sub-assembly 88, are mounted on rear plate 89, as shown.
  • Push rods 91 connect actuator sub-assemblies 86, 87, 88 to movable backrest plate 92 in a manner identical to push rods 38 in seat pan assembly 12.
  • Stabilization is effected, however, by three “sandwiched hinge" stabilizer subassemblies 94, 96, 98 shown in Fig. 4.
  • Left and right stabilizer sub-assemblies 94, 96 are positioned so that their respective hinge pin axes are at right angles to that of bottom stabilizer subassembly 98.
  • Each "hinge” 100 is connected to a stabilizer brace element 102 by way of a ball and socket joint (not shown).
  • the three stabilizer elements acting in concert thus prohibit lateral and vertical motion in the backrest plate 92 while permitting pitch, roll and surge motion in accordance with the movement of actuator sub-assemblies 86, 87, 88.
  • Movable backrest plate 92 supports a lower backrest radial assembly 100, as shown.
  • Radial elements 108, 110 are pivotably connected to plate 102, and when driven provide lower back area of flesh contact cues, as will be more fully described hereinafter.
  • a fabric cover (not shown) covers the assembly and, as in the seat pan assembly 12, provides environmental fidelity for the pilot.
  • Fig. 5 shows lower backrest radial assembly 100 in detail.
  • Radial support plate 102 supports left and right radial actuator assemblies 104, 106 which drive left and right radial elements 108, 110, respectively.
  • Radial elements 108, 110 are pivotably connected to plate 102, as by hinges 112, 114.
  • Actuators 104, 106 like the other actuators employed in the present invention, are comprised of a cylinder 116, servo valve 118, bell crank assembly 120 and LVDT 122, as shown. Activation of actuators 104, 106 moves the radial elements in a pivoting fashion, as shown by phantom lines 124, 126.
  • Support plate 102 attaches to backrest plate 92, as shown in Fig. 4; radial elements 108, 110 are driven to provide lower back area of flesh contact cues.
  • Fig. 6 shows a block diagram of the control system for actuator assembly 23.
  • Actuator 30 is driven by servo valve 31 which receives hydraulic fluid under pressure from pump 140 and an electrical control signal from summation amplifier 142.
  • Valve 31 is designed to receive a "zero" signal at steady state.
  • Summing amplifier 142 receives three signals: a pre-applied "erect signal” 144, a command signal 146 and a feedback signal 148. At start-up, erect signal 144 is applied to amplifier 142 to set the actuator 30 to a mid-point position.
  • a computer 150 calculates seat position and attitude information in the course of a simulated "flight" in a manner well known in the art.
  • Computer 150 drives a linkage 152 which generates command signal 146 by way of well-known digital-to-analog conversion techniques.
  • This command signal 146 is applied to amplifier 142 which passes the signal to valve 31.
  • the piston rod of actuator 30 moves in response and LVDT 42 follows this motion.
  • a signal 148 opposite in polarity to command signal 146 is generated and applied to amplifier 142.
  • feedback signal 148 is equal in magnitude to command signal 146, servo valve 31 shuts off and actuator 30 stops.
  • On/off solenoid 156 may be provided to tie into a safety shut down system.
  • Maintenance potentiometer 158 may be provided to permit manual actuator control.
  • Fig. 6 shows the system switched to the maintenance mode. All hydraulic actuators used in the present invention are controlled in the manner described above.
  • the firmness bladder control system shown in Fig. 7 operates analogously to the hydraulic actuator control system.
  • computer 150 drives linkage 152 which supplies a command signal 164 to a summation amplifier 166 which, in turn, controls a pneumatic flow valve 168.
  • Valve 168 drives booster manifold 170 which in turn controls the pressure in firmness bladder 82A, 82B or 128.
  • a pressure transducer 172 supplies a feedback signal 174 to amplifier 166 to close the loop.
  • a bias signal 176 establishes a reference pressure signal.
  • a maintenance potentiometer 178 may be provided, as in the hydraulic system.
  • a compressor 180 and vacuum pump 182 connect to the input and output ports of the valve 168 and, the booster 170 to provide high speed inflation and deflation, while on/off solenoids 184,186 are provided to turn the pneumatic system on and off.
  • the seat is maintained at a neutral point which is formed when the seat pan plate and backrest plate are at the midpoint of their ranges, the lap belt is in the normal state of "buckled up" tension, and all firmness cells are inflated to a nominal point causing the body to be supported just adjacent to the moving plates 62 and 92.
  • haptic-somatic system stimuli may be generated to create the appropriate perception of the G forces which the aircraft being simulated would produce.
  • skeletal attitude shifts may be effected, and with them eye perspective is caused to change as well. Muscle changes tend to follow skeletal attitude shifts.
  • flesh pressure gradient changes may be effected. Under an appropriate program the coordinated changes in the various elements can produce simulated acceleration effects quite useful to the subject pilot.
  • vibration and buffet cues are generated by the seat pan assembly itself.
  • Signals for both continuous cues such as stall buffet, background rumble and runway rumble as well as discrete cues such as touchdown bumps and discrete aero buffet are generated in computer 150 by techniques well known in the art, and are applied to the seat actuators along with other control signals in the manner described above.
  • the G-seat drive uses a three axis reference coordinate system: the longitudinal axis of the aircraft forms the X axis, with positive in the forward direction; the vertical axis is the Z axis, with positive being down; and the lateral axis is the Y axis, with right being positive.
  • a forward thrust will be represented by a +X for example.
  • this reference coordinate system is centered at the cockpit of a simulated aircraft; the aircraft coordinate system will be centered generally at some central point of the aircraft.
  • the seatpan top plate translates up and down as a function of Z axis acceleration. Positive Z acceleration (negative G's) produces increased top plate elevation 203. Negative 2 (positive G's) acceleration results in decreased top plate elevation 202.
  • the seat pan top plate also has the capability of fore and aft movement as a function of X-axis acceleration. For positive X acceleration (thrusting) the top plate translates forward 200 and for negative X acceleration (braking) the top plate translates aft 201. This provides a scrubbing cue of the buttocks against the seat cushion.
  • the backrest plate translates as a function of X-axis acceleration. For positive X acceleration, the backrest plate translates forward 200, while for negative X acceleration, it translates aft 201.
  • the seat pan top plate and backrest plate reorient irr the pitch and roll axes.
  • the seat pan plate undergoes pitch attitudinal change for X axis accelerations.
  • For positive X acceleration the seat pan plate pitches up, and the backrest plate pitches bottom forward, top aft 200.
  • the orientation reverses for negative X acceleration 201.
  • the radial elements complement the backrest top plate motions for both X and Y axis accelerations and aircraft roll.
  • the elements provide an increased area of contact cue in the vicinity of the lower back. They are driven such that the elements transverse an arc of zero to fifty degrees in relation to the backrest top plane, through a neutral (approximately 25°) mid-point corresponding to zero acceleration.
  • the two elements are driven together from their neutral point in proportion to the magnitude of X-axis acceleration.
  • X acceleration positive X acceleration, the angle between the elements and backrest plate increases 200.
  • negative acceleration the angle decreases 201.
  • the elements are driven differentially.
  • the angle of one element increases as the angle of the other decreases.
  • the inclination is the opposite of that of the backrest plate, that is, as the backrest plate rolls left, for example, the angle of the right element decreases while that of the left increases 300, and vice versa 301.
  • the pressure of the seat pan and backrest firmness bladders is varied as a function of simulated aircraft acceleration.
  • the pressure is varied unidirectionally; the pressure is decreased from the neutral point. Inflation above the neutral point does not occur.
  • the neutral point is that pressure which corresponds to the threshold of contact between the pilot's body and the cushion top plates.
  • the pressure in the bladders decreases, causing a flesh pressure redistribution.
  • both cells of the seatpan bladder simultaneously deflate. This causes more of the seat pan top plate to come into flesh contact. This contact is particularly noticeable due to the presence of the thigh ramps and tuberosity blocks.
  • the lap belt drive may respond to four different sources of information.
  • First is the orientation of the external force acceleration projection on the XZ plane relative to the seat axis. This includes the effect of the gravity component in the Z axis direction. Both actuators are driven simultaneously from this input. For conditions of loss of lift or braking, the lap belt contracts. For conditions of increase lift or thrusting, belt extension occurs.
  • a second source is the orientation of the gravity vector projection on the XZ relative to seat axis. This may be used to cause the lap belt to contract as the seat and aircraft pitch over to a point where the pilot is inverted, and to relax again as an upright attitude is approached. Again, both actuators are driven simultaneously.
  • the positions of the seat pan and backrest top plates serve as the third input to the lap belt drive.
  • the positions are used to calculate a factor that decouples seat plate movement and lap belt movement.
  • the last input is a response to Y-axis acceleration and roll input.
  • This causes a differential lap belt drive, one actuator extending while the other retracts.
  • the sign convention is opposite to that of the seat roll orientation sign convention. That is, e.g., for rightward acceleration the right lap belt actuator contracts and left lap belt actuator extends. This creates a scrubbing effect across the pilot's midsection as the aircraft undergoes lateral acceleration or rolls right or left.
  • the present invention offers many advantages over the prior art g-seats.
  • In departing from the mosaic element cushion approach potential distractions from multiple elements movements are eliminated; the present invention feels like an integrated structure.
  • by reducing the number of driven elements software and linkage demands are reduced.
  • Very strong localized pressure sensations are available with the use of firmness cells, particularly when used in conjunction with the passive tuberosity blocks.
  • the need for active thigh panels to provide area of flesh contact cues is eliminated by the use of passive ramps in conjunction with the firmness cells.
  • the lower backrest radial elements provide very strong area of contact cues for vertical and longitudinal acceleration.
  • differential lap belt drive allows inclusion of lateral as well as longitudinal and vertical belt cueing.
  • using the seat pan assembly to provide buffet cueing can eliminate the need for a separate shaker such as that disclosed in U.S. Patent No. 4,030,208.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Physics & Mathematics (AREA)
  • Educational Administration (AREA)
  • Educational Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Seats For Vehicles (AREA)

Claims (17)

1. G-Sitz zur Verwendung in Simulatoren für Fahrzeugbewegung und Fahrzeugmanöver, mit einem:
a. dynamischen Sitzsystem mit:
1. einer ersten Sitzfläche (62) für das Gesäß des Benutzers, wobei diese Sitzfläche (62) mit linken und rechten zugeordneten Oberflächenelementen (78) versehen ist, die sich in Längsrichtung links und rechts erstrecken zur Berührung der Schenkel des Benutzers an der Außenseite;
2. einer ersten Einrichtung zum wahlweisen Verändern der Position und Stellung der ersten Sitzfläche, um eine gewünschte Körperauslenkung des Benutzers zu erzeugen;
3. einer zweiten Einrichtung zum Verändern der wahrgenommenen Sitzhärte und der Fläche, die mit dem Körper des Benutzers in Berührung kommt; und
b. einer dritten Einrichtung zum Koordinieren der Wirkung der ersten sowie der zweiten Einrichtung zum Erzeugen von Körperauslenkungen, Variationen der wahrgenommenen Sitzhärte und der Fläche, die mit dem Körper in Kontakt steht, vergleichbar mit denen in einem betriebenen Fahrzeug,

dadurch gekennzeichnet, daß die erste Sitzfläche (62) einheitlich und im wesentlichen steif ist und daß die zweite Einrichtung eine erste und eine zweite Festigkeitszelle (82A, 82B) aufweist, die sich zwischen der ersten Sitzfläche (62) und den zugeordneten Oberflächenelementen (78) und dem Gesäß des Benutzers befinden, und zwar jeweils einer auf jeder Seite der ersten Sitzfläche (62), links und rechts.
2. G-Sitz nach Anspruch 1, dadurch gekennzeichnet, daß die linken und die rechten zugeordneten Oberflächenelemente (78) praktisch keilförmig geformt sind und von der Mitte der Fläche ansteigen.
3. G-Sitz nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die zugeordneten Oberflächenelemente (78) in einer festen räumlichen Lage zu der ersten Sitzfläche (62) liegen.
4. G-Sitz nach einem der vorergehenden Ansprüche, dadurch gekennzeichnet, daß die erste Einrichtung die erste Stizfläche (62) bildet und drei Freiheitsgrade der Bewegung ermöglicht.
5. G-Sitz nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die erste Einrichtung eine Anzahl fluidgetriebener Betätigungsglieder (22, 23, 24) aufweist.
6. G-Sitz nach Anspruch 4, dadurch gekennzeichnet, daß die drei Bewegungsmöglichkeiten eine vertikale Bewegung, eine Neigungsbewegung und eine Rollbewegung umfassen.
7. G-Sitz nach Anspruch 4, dadurch gekennzeichnet, daß die erste Einrichtung ferner eine Antriebseinrichtung zum Bewegen der ersten Sitzfläche in einer Längsrichtung umfaßt.
8. G-Sitz nach Anspruch 7, dadurch gekennzeichnet, daß die Antriebsmöglichkeit in Längsrichtung mit den drei anderen Bewegungsmöglichkeiten kaskadiert ist.
9. G-Sitz nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Festigkeitszellen (82A, 82B) im wesentlichen flache, aufblasbare Blasen bilden, die an die Kontur der ersten Sitzfläche (62) und der zugeordneten Oberflächenelemente (78) angepaßt sind.
10. G-Sitz nach einem der vorhergehenden Ansprüche, gekennzeichnet durch eine dritte Antriebseinrichtung zum Erzeugen einer Vibrationsbewegung der ersten Sitzfläche (62), derart, daß der Benutzer diskrete und kontinuierliche Vibrationseindrücke empfängt, wie sie in einem Flugzeug während des Fluges auftreten.
11. G-Sitz nach einem der vorhergehenden Ansprüche, gekennzeichnet durch eine dynamische Rückenlehne mit folgenden Teilen:
a. einer zweiten, einheitlichen, im wesentlichen festen Stützfläche (92) zum Stützen des Rückens des Benutzers;
b. einer vierten Einrichtung zum wahlweisen Ändern der Lage und Stellung der zweiten Stützfläche (92), so daß sich eine gewünschte Körperauslenkung des Benutzers ergibt; und
c. einer dritten Festigkeitszelle (128), die zwischen der zweiten Stützfläche (92) und dem Rücken des Benutzers angeordnet ist, und wobei die dritte Einrichtung die Tätigkeit der vierten Einrichtung und der dritten Festigkeitszelle (128) mit der ersten Einrichtung und den ersten und zweiten Festigkeitszellen (82A, 82B) koordiniert, um Auslenkungen des Körpers und Veränderungen in der wahrgenommenen Kontaktfläche mit dem Körper zu schaffen, die denen in einem betriebenen Fahrzeug vergleichbar sind.
12. G-Sitz nach Anspruch 11, dadurch gekennzeichnet, daß die vierte Einrichtung so beschaffen ist, daß die zweite Stützfläche (92) drei Freiheitsgrade der Bewegung aufweist.
13. G-Sitz nach Anspruch 11 oder 12, dadurch gekennzeichnet, daß die vierte Einrichtung eine Anzahl fluidgetriebener Betätigungsglieder (86, 87, 88) aufweist.
14. G-Sitz nach Anspruch 11 bis 13, gekennzeichnet durch zwei weitere zusätzliche Oberflächenelemente (108, 110), die dem unteren Bereich der zweiten Stützfläche (92) zugeordnet sind und eine vergrößerte Berührungsfläche für den unteren Gesäßbereich des Benutzers ergeben.
15. G-Sitz nach Anspruch 14, dadurch gekennzeichnet, daß die beiden zusätzlichen Oberflächenelemente (108, 110) getrennt bewegbar angeordnet sind im unteren Bereich der zweiten Stützfläche (92).
16. G-Sitz nach Anspruch 15, dadurch gekennzeichnet, daß die getrennt bewegbaren Oberflächenelemente (108, 110) schwenkbar auf der zweiten Stützfläche (92) gelagert sind, und daß der Sitz ferner mit einer fünften Einrichtung versehen ist zum getrennten und wahlweisen Ändern der Position der getrennt bewegbaren Oberflächenelemente (108, 110), um einen Eindruck einer variablen Berührungsfläche des Körpers zu ergeben.
17. G-Sitz nach Anspruch 16, dadurch gekennzeichnet, daß die fünfte Einrichtung eine Anzahl fluidgetriebener Betätigungsglieder (104, 106) umfaßt.
EP79901642A 1978-11-14 1979-11-06 Verbesserter g-kräfte-simulator Expired EP0020641B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US05/960,525 US4321044A (en) 1978-11-14 1978-11-14 Advanced G cueing system
US960525 1978-11-14

Publications (3)

Publication Number Publication Date
EP0020641A1 EP0020641A1 (de) 1981-01-07
EP0020641A4 EP0020641A4 (de) 1982-09-10
EP0020641B1 true EP0020641B1 (de) 1985-08-28

Family

ID=25503284

Family Applications (1)

Application Number Title Priority Date Filing Date
EP79901642A Expired EP0020641B1 (de) 1978-11-14 1979-11-06 Verbesserter g-kräfte-simulator

Country Status (6)

Country Link
US (1) US4321044A (de)
EP (1) EP0020641B1 (de)
JP (1) JPH0141992B2 (de)
CA (1) CA1126014A (de)
DE (1) DE2967506D1 (de)
WO (1) WO1980001011A1 (de)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4592588A (en) * 1983-08-04 1986-06-03 Tachikawa Spring Co., Ltd. Vehicle seat
US4603902A (en) * 1984-02-21 1986-08-05 Cosco, Inc. Foldable high chair
US4589695A (en) * 1984-03-28 1986-05-20 Tachikawa Spring Co., Ltd. Vehicle seat
US4634083A (en) * 1984-09-11 1987-01-06 Cae Electronics Ltd. Helicopter seat isolation system
US4634178A (en) * 1984-12-10 1987-01-06 Carney Steven H Adaptable seating device
GB2179605B (en) * 1985-08-27 1988-11-16 Singer Link Miles Ltd Motion simulator
US4707027A (en) * 1986-02-28 1987-11-17 General Motors Corporation Pneumatically cushioned vehicle seat(s) and apparatus and method to adjust the same
US4826247A (en) * 1986-09-26 1989-05-02 The Boeing Company System for assisting a fighter pilot in checking the six-o'clock position
JPH053080Y2 (de) * 1987-09-30 1993-01-26
KR930025040U (ko) * 1992-05-26 1993-12-16 쥐. 하지드 로우랜드 지속성 피동 운동시스템에서 피이드백을 제공하는 방법과 장치
US5637076A (en) * 1992-05-26 1997-06-10 Ergomedics, Inc. Apparatus and method for continuous passive motion of the lumbar region
US5583844A (en) * 1993-06-19 1996-12-10 The Walt Disney Company Programming device and method for controlling ride vehicles in an amusement attraction
US5344211A (en) * 1993-08-05 1994-09-06 Riyaz Adat Adjustable backrest
US5403238A (en) * 1993-08-19 1995-04-04 The Walt Disney Company Amusement park attraction
EP0670745B1 (de) * 1993-08-19 1998-10-07 The Walt Disney Company FAHRZEUG FüR DYNAMISCHES FAHRGESCHäFT
US5473990A (en) * 1993-08-19 1995-12-12 The Walt Disney Company Ride vehicle control system
US20030040361A1 (en) * 1994-09-21 2003-02-27 Craig Thorner Method and apparatus for generating tactile feedback via relatively low-burden and/or zero burden telemetry
US5498161A (en) * 1994-09-23 1996-03-12 Northrop Grumman Corporation Anti-G suit simulator
GB9713339D0 (en) * 1997-06-24 1997-08-27 Cranfield Aerospace Limited G-seat
US5980255A (en) * 1998-03-16 1999-11-09 Cae Electronics Ltd. Seat for motion simulator and method of motion simulation
GB9824499D0 (en) * 1998-11-10 1999-01-06 Denne Phillip R M Improvements in simulators
GB0016059D0 (en) * 2000-06-30 2000-08-23 Denne Phillip R M Improvements in motion simulators
US20060250007A1 (en) * 2005-04-21 2006-11-09 Sergey Anikin Thigh support device
US7255396B1 (en) * 2007-01-19 2007-08-14 Sergey Anikin Ergonomic thigh support and method of uniformly distributing pressure on the thigh surface of a seated person
US8827709B1 (en) 2008-05-08 2014-09-09 ACME Worldwide Enterprises, Inc. Dynamic motion seat
US9762105B2 (en) * 2013-03-15 2017-09-12 II Randolph J. Crowson Hinged motion transducer
KR101676021B1 (ko) * 2014-07-14 2016-11-29 주식회사 바로텍시너지 이중화 및 중첩 기능을 갖는 시뮬레이터용 g시트 장치
IT201600079351A1 (it) * 2016-07-28 2018-01-28 Vi Grade Ag Apparato per la simulazione di guida e relativo procedimento
EP3564928A1 (de) 2018-05-03 2019-11-06 Christian Berghold-Markom Vorrichtung zur simulation von bewegung
US20200003002A1 (en) * 2018-06-29 2020-01-02 Keith A. Walter Security device for a window frame
CA3127954A1 (en) * 2019-01-31 2020-08-06 Assured IT Pty Ltd A motion simulation apparatus
WO2021108529A1 (en) * 2019-11-25 2021-06-03 Clearmotion Acquisition I Llc Force bias device for an actuator system
US11608182B2 (en) 2020-04-07 2023-03-21 Ami Industries, Inc. Lateral support system for ejection seat

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB918705A (en) * 1960-07-13 1963-02-20 William Helmore Improvements in or relating to mechanisms for simulating the movement of vehicles
GB979495A (en) * 1962-06-21 1965-01-06 William Helmore Improvements in or relating to mechanisms for simulating the movement of vehicles
US3270440A (en) * 1963-02-08 1966-09-06 Goodyear Aerospace Corp Seat for flight motion simulator
US3352029A (en) * 1966-05-11 1967-11-14 Melpar Inc Motion system for flight simulation
FR1539717A (fr) * 1967-06-19 1968-09-20 Peugeot Dossier de siège, notamment pour véhicule automobile
US4059909A (en) * 1972-02-09 1977-11-29 The Singer Company Neural receptor augmented G seat system
FR2278295A1 (fr) * 1974-07-18 1976-02-13 Kerstholt Fritz Chaise a dossier
US3983640A (en) * 1974-11-06 1976-10-05 The Singer Company Advanced G seat for aircraft simulation
US4030207A (en) * 1975-12-02 1977-06-21 The Singer Company G-seat with skin tension cue generator
US4030208A (en) * 1976-01-15 1977-06-21 The Singer Company Seat vibration system for simulating aircraft buffeting
US4164079A (en) * 1977-08-31 1979-08-14 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Seat cushion to provide realistic acceleration cues to aircraft simulator pilot

Also Published As

Publication number Publication date
EP0020641A1 (de) 1981-01-07
WO1980001011A1 (en) 1980-05-15
JPS55500922A (de) 1980-11-06
DE2967506D1 (en) 1985-10-03
JPH0141992B2 (de) 1989-09-08
CA1126014A (en) 1982-06-22
EP0020641A4 (de) 1982-09-10
US4321044A (en) 1982-03-23

Similar Documents

Publication Publication Date Title
EP0020641B1 (de) Verbesserter g-kräfte-simulator
US3983640A (en) Advanced G seat for aircraft simulation
US20050069839A1 (en) Apparatus for producing or enhancing a perceived sensation of motion
US5669773A (en) Realistic motion ride simulator
US5597359A (en) Audience motion platform
US4030207A (en) G-seat with skin tension cue generator
US5980255A (en) Seat for motion simulator and method of motion simulation
EP0094950A1 (de) Flugsimulator für segelflugzeug
EP1266369A1 (de) Bewegungssimulator mit einer auswechselbaren einheit
KR101985788B1 (ko) 가상현실 비행모션시뮬레이션 시스템
EP3278323A1 (de) Bewegungsanordnung
KR20010089432A (ko) 모의실험장치
US4164079A (en) Seat cushion to provide realistic acceleration cues to aircraft simulator pilot
EP3917631B1 (de) Bewegungssimulationsgerät
JP3407404B2 (ja) 耐加速度用訓練装置
RU206260U1 (ru) Платформа подвижная для авиасимулятора
Bose et al. Improved g-cueing system
KR20230165423A (ko) 중력모의 사출좌석 시스템
JP2793678B2 (ja) 擬似体験装置
CA1211534A (en) Helicopter seat isolation system
JP2793663B2 (ja) 擬似体験装置
JPH08262972A (ja) 模擬操縦用座席
ITRM20000648A1 (it) Dispositivo di comando per simulatori di volo.
JPH03210292A (ja) 疑似体験装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19800819

AK Designated contracting states

Designated state(s): DE FR GB

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE FR GB

REF Corresponds to:

Ref document number: 2967506

Country of ref document: DE

Date of ref document: 19851003

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19870801

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19981008

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19981020

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 19991105

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Effective date: 19991105