EP0017969B1 - Unbrennbare äussere Wärmedämmschicht mit Oberflächenbeschichtung - Google Patents

Unbrennbare äussere Wärmedämmschicht mit Oberflächenbeschichtung Download PDF

Info

Publication number
EP0017969B1
EP0017969B1 EP80102032A EP80102032A EP0017969B1 EP 0017969 B1 EP0017969 B1 EP 0017969B1 EP 80102032 A EP80102032 A EP 80102032A EP 80102032 A EP80102032 A EP 80102032A EP 0017969 B1 EP0017969 B1 EP 0017969B1
Authority
EP
European Patent Office
Prior art keywords
insulation layer
thermal
fabric
fibre
wide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP80102032A
Other languages
English (en)
French (fr)
Other versions
EP0017969A2 (de
EP0017969A3 (en
Inventor
Karl-Helmut Ihlefeld
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to AT80102032T priority Critical patent/ATE18080T1/de
Publication of EP0017969A2 publication Critical patent/EP0017969A2/de
Publication of EP0017969A3 publication Critical patent/EP0017969A3/de
Application granted granted Critical
Publication of EP0017969B1 publication Critical patent/EP0017969B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B1/762Exterior insulation of exterior walls
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B2001/7683Fibrous blankets or panels characterised by the orientation of the fibres

Definitions

  • the invention relates to an incombustible thermal insulation layer of mineral fibers to be applied externally to buildings and industrial facilities, such as, for example, oil tanks, which is simultaneously effective as a carrier of a plaster layer or another surface coating.
  • thermal insulation boards made of organic foam such as styrene foam, polyurethane foam and others
  • thermal insulation layers made from such foams are very stiff and hard and can easily transfer the tensile stress of the top layer to the building structure.
  • high strength of the thermal insulation layers made of organic foam also brought considerable disadvantages. Temperature differences of 70 ° C and more can occur on the surface of a building due to solar radiation on the one hand and frost on the other. Normally, this temperature is absorbed and compensated by the building structure, so that there are no significant temperature differences between the building structure and the top layers, so that considerable mechanical stresses occur, which can lead to detachment of the plaster or board material.
  • insulation panels made of organic foam fail when exposed to heat in the event of a fire. Even if such foam panels are flame-retardant, a temperature of only 200 ° C already leads to softening, melting or charring of the material: the applied top layer comes off and endangers the fire-fighting team and other people.
  • the coating with glass fiber fabric is already mentioned in German patent application No. 2 307 577 and in German utility model 7 319 376, although full-surface bonding of the coating with the fiber-lamella layer is provided.
  • the adhesive acts as a separating layer. There is no essential knowledge that only a wide-meshed fiberglass mesh that is only glued along the threads allows the binder and the plaster layers to access the actual load-bearing lamella core.
  • the invention has now set itself the task of developing a thermal barrier coating that meets the stresses described, which does not fail in the event of a fire and allows the use of normal cleaning methods and the application of plate material with binders or adhesives without fear of any damage .
  • the thermal barrier coating consists of mineral fiber slats.
  • Mineral fiber slats are strips of uniform width cut from mineral wool panels, which are rotated by 90 ° and then joined together to form a closed panel. Such plates have a fiber direction perpendicular to the surface, they have a brush-like structure.
  • this is achieved in that a wide-meshed glass fiber grid is used as a one-sided or two-sided coating of the fiber-lamella plate, which is connected to the lamella-strips only along the threads if possible. This leaves the space between the threads of the glass fiber fabric free and allows binder and plaster unhindered access to the surface of the fiber slats.
  • the arrangement of this fiber direction has the following effects:
  • the thermal insulation layer can absorb considerable tensile forces perpendicular to the surface. Values up to 40 N / cm 2 were measured. With such strengths, the anchoring of a top layer on the masonry with the help of a flat connection is more than guaranteed.
  • Such a lamella layer is very flexible under stresses parallel to the surface.
  • the fibers act as small pendulum supports. Changes in the length of the top layer can therefore be absorbed without creating any tension against the subsurface or masonry.
  • any stiff coating whether as plaster or as a glued-on plate, cannot detach from the thermal insulation layer after the effect of temperature changes.
  • Fig. 1 shows schematically the manufacturing process of lamellae and their connection with a glass fiber grid. The grain direction can be seen from the hatching.
  • the commercially available mineral fiber plate (1) is cut into uniformly wide strips (3), the lamellae, by the device (2). They are rotated by 90 ° and strung together to form a lamella web (4).
  • Fig. 4 shows schematically the section of a wall piece provided with the thermal insulation system according to the invention in a layered construction.
  • the thermal insulation layer (4) is fastened to the masonry (10) with the aid of the binder (11).
  • a binder layer (12), which in turn securely holds the cover layer (13), is in turn applied to the thermal insulation layer (4).
  • the layers (12 + 13) can also consist of a two-layer exterior plaster.
  • the thermal barrier coating (4) is shown here, for example, as a rollable slat mat.
  • a wide-mesh fabric or grid (5) is provided with adhesive (6) and applied to the lamella web (4) by a suitable device (7), so that the fabric (5) connected rollable lamella web (8), which is then delivered in roll form.
  • the inventive trick of only providing the wide-mesh fabric (5) with adhesive (6) achieves the situation shown enlarged in FIG. 2a.
  • the wide-mesh grid (5) is provided with adhesive (6) only along the threads, so that the fibers of the lamella plate (4) are exposed between the threads for wetting with other binders (11 + 12).
  • Fig. 2b shows again the integration of the thread of the fabric (5) with adhesive (6) on the lamella (4). 4 means for the practical implementation this means that the binder layers (11 + 12) adhere directly to the fiber lamella (4), although the fabric (5) is glued to the lamella web (4).
  • the wide-meshed grid (5) can consist of plastic fibers, glass fibers or mineral fibers, but not of fibers that can rot, such as hemp, cotton or similar substances.
  • this wide-mesh grid (5) can not only hold the fiber slats (4) together to form units suitable for processing, but can also act as reinforcement for an applied binder or plaster layer (12). This is possible because the binder layer (12) penetrates the wide-mesh fabric (5) and in some cases even completely surrounds it, so that tensions within the binder layer (12) can be taken over by the fabric (5) and thus the formation of cracks in the cover layer (12 + 13) is counteracted.
  • the fabric (5) is cut slightly wider than the lamella web (8) so that a one-sided protrusion (9) is formed, which covers the abutting edges of the lamella webs (8), as in Fig. 4 shown, so that a complete plaster reinforcement is ensured.
  • 3a shows the top view of such a lamella web (8).
  • a fiber lamella web is connected on one side to a wide-mesh grid (5) provided with adhesive (6), as in FIGS. 1 and 3c, a rollable lamella web (8) is produced.
  • Such a panel can be laid and fastened in the same way as the insulation panels made of flammable rigid foam that have been used up to now.
  • Both organic and inorganic substances can therefore be used as the adhesive (6) for connecting the wide-mesh grid (5) to the fiber lamellae (4). It is therefore also possible to use hot-melt adhesives, hot-melt adhesives, solvent-based adhesives, welding tracks, furthermore dispersion adhesives, as well as inorganic hydraulically setting adhesives.
  • the adhesive application (6) shown in FIG. 1 by immersion is only an example.
  • the adhesive can also be applied to the fabric by spraying, rolling on, inserting a welding foil or other devices belonging to the prior art.
  • the setting or hardening process of the adhesive (6) can be accelerated by the action of heat or the application can be carried out in a hot process, the hardening taking place by cooling.
  • Inorganic binders such as phosphate binders can also be reacted by higher temperatures.
  • the pressing process (7) shown in FIG. 1 can be combined with such a heat treatment with the aid of devices belonging to the prior art.
  • alkaline substances such as Portland cement and white lime hydrate can significantly attack mineral fibers, especially glass fibers. This happens in the presence of moisture and can take until the lime is completely carbonized in the cement or lime mortar. This attack can lead to the complete dissolution of the fibers, so that, according to FIG. 4, at the point of contact between the fiber (4) and the binder (11) or plaster (13), the connection can be broken, so that the plaster (13) or the fiber - Slat track (4) drops.
  • mineral fiber lamellae made of basalt fibers, pozzolana fibers or alumina fibers are preferably used for such a thermal insulation system.
  • a zircon glass specially developed as alkali-resistant can also be used as a fiber raw material. Fibers made from these raw materials can be processed in accordance with the invention in connection with alkali-containing binders such as Portland cement or white lime hydrate if so much lime-binding substances are added to these binders that emerging free lime is reliably bound.
  • alkali-containing binders such as Portland cement or white lime hydrate if so much lime-binding substances are added to these binders that emerging free lime is reliably bound.
  • Such lime-binding substances are pozzolans or active silica. Trass, fly ash and others are known as pozzolans, quartz powder or SiO 2 dusts and other SiO 2 compounds can be used as silica.
  • binder (11 + 12) and Plaster layer (13) uses a dispersion binder on the Basis of various known suitable synthetic resins. Such binders and plasters do not attack glass fibers and are weather-resistant. On the other hand, however, these binders and plasters consist of organic substances and disintegrate relatively quickly when exposed to fire.
  • alumina cement can be used as a binder in order to produce suitable connecting layers (11 + 12) and surface coatings (13).
  • Alumina cement does not contain free lime and therefore does not attack glass fibers.
  • any desired insulation layer thickness can be set with a fiber lamella board.
  • Normal mineral wool insulation boards can only be made up to 100 mm thick.
  • the slat strips can be cut to the desired width from any thin raw boards, the width (for example 200 mm) then gives the thickness of the insulation layer made of fiber slats through the turning process.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Acoustics & Sound (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Building Environments (AREA)
  • Glass Compositions (AREA)
  • Laminated Bodies (AREA)

Description

  • Die Erfindung bezieht sich auf eine unbrennbare, aussen auf Gebäude und industrielle Einrichtungen, wie zum Beispiel Öltanks, aufzubringende Wärmedämmschicht aus Mineralfasern, die gleichzeitig als Träger einer Putzschicht oder einer anderen Oberflächen-Beschichtung wirksam ist.
  • Es ist bekannt, Gebäude und andere Objekte von aussen mit Mineral-Faser-Platten oder -Matten gegen Wärmeverluste zu schützen. Dies wird meist in der Weise durchgeführt, dass Platten oder rollbare Matten aus Glas- oder Mineralwolle durch Ankleben, Annageln oder Anschrauben an dem zu isolierenden Objekt befestigt werden, während zusätzlich eine Verkleidung auf einem dafür geeigneten Unterbau (zum Beispiel Zementasbestplatten auf Lattenrost) zum Schutz von Wärmedämmung und Baukörper gegen Witterungseinflüsse angebracht wird. Fachlich wird ein solches System als vorgehängte Fassade bezeichnet. Eine solche Konstruktion ist jedoch sehr aufwendig.
  • Es lag daher nahe, die Mineralfaser-Platten ohne die aufwendige Konstruktion einer vorgehängten Fassade unmittelbar mit einer schützenden Deckschicht zu versehen, die aus Putz oder aufgeklebten Platten bestehen kann. Solche Deckschichten haben jedoch nicht gehalten, weil sich die Mineralfaserplatten infolge ihrer losen Bindung und der parallel zur Oberfläche verlaufenden Faserrichtung sehr leicht spalten lassen. Die Verankerung der Deckschichten am Baukörper ist daher völlig unzureichend.
  • Man hat daher versucht, anstelle der Mineralfaser-Platten Wärmedämmplatten aus organischem Schaum, wie Styrolschaum, Polyurethanschaum und anderen an das zu isolierende Objekt anzukleben oder auch mechanisch zu befestigen und dann mit geeigneten Deckschichten zu versehen. Wärmedämmschichten aus solchen Schäumen sind sehr steif und hart und können die Zug-beanspruchung der Deckschicht leicht auf den Baukörper übertragen. Es hat sich jedoch bald gezeigt, dass die hohe Festigkeit der Wärmedämmschichten aus organischem Schaum gleichzeitig erhebliche Nachteile brachte. Auf der Oberfläche eines Baukörpers können durch Sonneneinstrahlung einerseits und durch Frost andererseits Temperatur-Differenzen von 70 °C und mehr auftreten. Normalerweise wird diese Temperatur vom Baukörper aufgenommen und ausgeglichen, sodass zwischen Baukörper und Deckschichten keine so wesentlichen Temperaturdifferenzen entstehen, dass dadurch erhebliche mechanische Spannungen auftreten, die zur Ablösung des Putzes oder Platten-Materials führen können.
  • Anders ist die Situation jedoch, wenn zwischen Baukörper und Deckschicht eine Wärmedämmschicht vorhanden ist. In diesem Fall bleibt die Baukörper-Temperatur konstant, während die Temperatur der Deckschicht erheblich schwankt, weil der Wärmeübergang und damit der Temperaturausgleich durch die Wärmedämmschicht verhindert wird. Das hat zur Folge, dass die Deckschicht aus Putz oder Plattenmaterial je nach Temperatureinwirkung erheblichen Längenänderungen unterworfen ist, so dass Spannungen entstehen können, die bei unnachgiebigem Untergrund zur Ablösung der Deckschicht führen.
  • Auch das Armieren der Deckschicht aus Putzmörtel mit Glasfasergewebe und das Überdecken der Fugen der Wärmedämmplatten mit Gewebestreifen oder Faservlies konnte diesem Übelstand nicht abhelfen.
  • Aus dem gleichen Grunde kam es auch zu Schäden bei der Verwendung der an sich weichen Mineral-Faser-Platten oder -Matten,. weil hier zwar nicht die Deckschicht von den Platten abriss, jedoch die Platten selber aufspalteten und damit die Haftung der Deckschicht am Gebäude unterbrochen wurde.
  • Weiterhin versagen Dämmplatten aus organischem Schaum bei Hitzeeinwirkung im Brandfall. Selbst wenn solche Schaumstoff-Platten schwerentflammbar eingestellt sind, so führt eine Temperatur von nur 200°C bereits zur Erweichung, zum Abschmelzen oder Verkohlung des Materials: die aufgebrachte Deckschicht löst sich ab und gefährdet die Löschmannschaft und andere Personen.
  • Nun ist bekannt, dass Dämmschichten aus Mineralfasern, bei denen die Faserrichtung senkrecht zur Oberfläche wie bei einer Bürste eingestellt ist, eine sehr hohe Eigenfestigkeit aufweisen. Bereits 1937 wurde in den USA das Patent Nr. 2160 001 angemeldet, das eine belastbare Dämmschicht aus quer zur Plattenebene eingestellten Fasern in Form von Faserstreifen beschreibt. Da man jedoch solche Faserstreifen nicht einzeln am Bau ankleben kann, sondern bei fast allen Anwendungsformen, wie zum Beispiel auch bei der Herstellung von Sandwich-Elementen mit einem Faserkern, Feuerschutztüren usw. eine leicht hantierbare Platte braucht, sind eine Reihe von Vorschlägen gemacht worden, solche Bahnen oder Platten mit einseitiger oder zweiseitiger Kaschierung oder Beschichtung herzustellen. Solche Fa-. ser-Lamellen-Platten oder -Bahnen sind in den folgenden Patentschriften oder -Anmeldungen näher beschrieben:
    • US-Patente Nr. 2 373 500, 2 546 230, 2 949 953, 3012923, 3048513, 3230995, 3345341, 3736215; deutsche Patente Nr. 1047702, 1 459 973, 1 955 624, 2223101, 2 307 577, 2307873, 2 327 428 sowie das deutsche Gebrauchsmuster 7 319 376, sowie weitere Patentschriften mit ähnlichem Inhalt wie die US-A-3 389 518 und die FR-A-2 371 556.
  • Allen diesen Vorschlägen ist eigen, dass die Beschichtung zum Zusammenhalten der Faser- Lamellen-Streifen vollflächig erfolgt, sodass sie immer als Trennschicht zwischen der eigentlichen Faser-Lamellen-Platte und dem zu isolierenden Objekt wirkt, auf dem die Lamellen-Platte oder Lamellen-Rollbahn mit Hilfe eines Bindemittels aufgebracht werden soll. In gleicher Weise wirkt eine solche Beschichtung bei dem Aufbringen der Putzschichten. Weiterhin wird in einigen der genannten Schriften die Verwendung einer Papierbahn als Beschichtung vorgeschlagen. Damit fällt aber im Brandfall das System auseinander.
  • Die Beschichtung mit Glasfasergewebe ist zwar schon in der deutschen Patentanmeldung Nr. 2 307 577 und in dem deutschen Gebrauchsmuster 7 319 376 erwähnt, wobei jedoch eine vollflächige Verklebung der Beschichtung mit der Faser- Lamellen-Schicht vorgesehen ist. Der Klebstoff wirkt als Trennschicht. Es fehlt die wesentliche Erkenntnis, dass nur ein weitmaschiges nur entlang der Fäden verklebtes Glasfaser-Gitternetz den Zutritt des Bindemittels und der Putzschichten zum eigentlichen tragenden Lamellenkern ermöglicht.
  • Die Erfindung hat sich nun die Aufgabe gestellt, eine Wärmedämmschicht zu entwickeln, die den geschilderten Beanspruchungen gerecht wird, die im Brandfall nicht versagt und die Anwendung normaler Putzmethoden sowie die Anbringung von Plattenmaterial mit Bindemitteln beziehungsweise mit Klebstoffen gestattet, ohne dass irgendwelche Schäden zu befürchten sind.
  • Hier setzt nun der erfindungsgemässe Gedanke ein. Um eine dauerhafte, brandsichere Befestigung von Untergrund + Faser-Lamellen-Platte + Putzschicht zu erreichen, muss das Bindemittel und der Putz unmittelbar ohne störende Zwischenschicht mit den Faser-Lamellen in Berührung kommen.
  • Erfindungsgemäss besteht die Wärmedämmschicht aus Mineralfaser-Lamellen. Als Mineralfaser-Lamellen werden aus Mineralwolle-Platten geschnittene gleichmässig breite Streifen bezeichnet, die um 90° gedreht und wieder zu einer geschlossenen Platte zusammengefügt werden. Solche Platten weisen eine Faserrichtung senkrecht zur Oberfläche auf, sie haben eine bürstenartige Struktur.
  • Erfindungsgemäss wird das dadurch erreicht, dass als einseitige oder zweiseitige Beschichtung der Faser-Lamellen-Platte ein weitmaschiges Glasfaser-Gitternetz verwendet wird, das möglichst nur entlang der Fäden mit den Lamellen- Streifen verbunden wird. Damit bleibt der Zwischenraum zwischen den Fäden des Glasfaser-Gewebes frei und ermöglicht Bindemittel und Putz ungehinderten Zutritt zu der Oberfläche der Faser-Lamellen.
  • Die Anordnung dieser Faserrichtung hat die folgenden Wirkungen: Die Wärmedämmschicht kann senkrecht zur Oberfläche erhebliche Zugkräfte aufnehmen. Es wurden Werte bis zu 40 N/cm2 gemessen. Mit solchen Festigkeiten ist die Verankerung einer Deckschicht auf dem Mauerwerk mit Hilfe einer flächigen Verbindung mehr als gewährleistet. Andererseits ist eine solche Lamellenschicht bei Beanspruchungen parallel zur Oberfläche sehr nachgiebig. Die Fasern wirken gleich kleinen Pendelstützen. Daher können Längenänderungen der Deckschicht aufgenommen werden, ohne dass Spannungen gegenüber dem Untergrund oder Mauerwerk entstehen. Somit ist bei einer solchen erfindungsgemässen Wärmedämmung gewährleistet, dass eine beliebigesteife Beschichtung, sei es als Putz oder als aufgeklebte Platte, nach Einwirkung von Temperaturänderungen sich nicht von der Wärmedämmschicht lösen kann.
  • Das erfindungsgemässe Wärmedämmsystem stellt einen erheblichen technischen Fortschritt dar, weil es folgende Eigenschaften in sich vereint:
    • - Beliebig einstellbare Schichtdicke
    • - Zugfeste Verbindung zwischen Untergrund und Oberfläche
    • - Spannungsfreie Kompensation temperaturbedingter Längenänderungen der Oberfläche
    • - Armierung der Oberflächenschicht ohne zusätzlichen Aufwand
    • - Hohe Wärmedämmung
    • - Unbrennbar
    • - Unverrottbare Bestandteile
    • - Offene Porosität = keine Feuchtigkeitsspeicherung
    • - Einfache Befestigung mit bekannten Bindemitteln und handelsüblichem Gerät
    • - Reaktionssichere Verbindung von Fasern und Bindemittel.
  • Zur Erläuterung des erfindungsgemässen Gegenstandes sind die Zeichnungen Fig. 1-4 beigefügt. Fig. 1 zeigt schematisch den Herstellungsvorgang von Lamellen und deren Verbindung mit einem Glasfaser-Gitternetz. Aus den Schraffuren ist die Faserrichtung ersichtlich.
  • Die handelsübliche Mineralfaser-Platte (1) wird durch die Vorrichtung (2) in gleichmässig breite Streifen (3), die Lamellen, geschnitten. Sie werden um 90° gedreht und zu einer Lamellenbahn (4) aneinander gereiht.
  • Fig. 4 zeigt schematisch den Ausschnitt eines mit dem erfindungsgemässen Wärmedämmsystem versehenen Wandstücks in schichtweisem Aufbau. Auf dem Mauerwerk (10) ist die Wärmedämmschicht (4) mit Hilfe des Bindemittels (11) befestigt. Auf der Wärmedämmschicht (4) ist wiederum eine Bindemittelschicht (12) aufgebracht, die wiederum die Deckschicht (13) sicher festhält. Die Schichten (12 + 13) können ebenfalls aus einem zweischichtigen Aussenputz bestehen.
  • Die Wärmedämmschicht (4) ist hier beispielsweise als rollbare Lamellen-Matte gezeigt. Um das zu erreichen, wird erfindungsgemäss, wie in Fig. 1 dargestellt, ein weitmaschiges Gewebe bzw. Gitternetz (5) mit Klebstoff (6) versehen und durch eine geeignete Vorrichtung (7) auf die Lamellenbahn (4) aufgebracht, sodass die mit Gewebe (5) verbundene rollbare Lamellenbahn (8) entsteht, die dann in Rollenform angeliefert wird.
  • Durch den erfindungsgemässen Kunstgriff, nur das weitmaschige Gewebe (5) mit Klebstoff (6) zu versehen, wird die in Fig. 2a vergrössert dargestellte Situation erreicht. Auf der Lamellenbahn (4) ist das weitmaschige Gitternetz (5) nur entlang der Fäden mit Klebstoff (6) versehen, sodass die Fasern der Lamellenplatte (4) zwischen den Fäden zur Benetzung mit anderen Bindemitteln (11 + 12) offen liegen. Fig. 2b zeigt noch einmal vergrössert die Einbindung des Fadens des Gewebes (5) mit Klebstoff (6) auf der Lamelle (4). Für die praktische Ausführung gemäss Fig. 4 bedeutet das, dass die Bindemittelschichten (11 + 12) unmittelbar an den Faser-Lamellen (4) haften, obgleich das Gewebe (5) auf der Lamellenbahn (4) aufgeklebt ist. Das weitmaschige Gitternetz (5) kann aus Kunststoffasern, Glasfasern oder Mineralfasern bestehen, jedoch nicht aus Fasern, die verrotten können, wie Hanf, Baumwolle oder ähnlichen Stoffen.
  • Erfindungsgemäss kann dieses weitmaschige Gitternetz (5) nicht nur die Faserlamellen (4) zu verarbeitungsgerechten Einheiten zusammenhalten, sondern auch als Armierung für eine aufgebrachte Binder- oder Putzschicht (12) wirken. Das ist dadurch möglich, weil die Binderschicht (12) das weitmaschige Gewebe (5) durchdringt und teilweise sogar völlig umschliesst, sodass Spannungen innerhalb der Binderschicht (12) von dem Gewebe (5) übernommen werden können und somit der Rissbildung in der Deckschicht (12 + 13) entgegengewirkt wird.
  • Vorteilhafterweise wird, wie in Fig. 3a-c dargestellt, das Gewebe (5) etwas breiter als die Lamellenbahn (8) zugeschnitten, damit ein einseitiger Überstand (9) entsteht, der die Stosskanten der Lamellenbahnen (8) überdeckt, wie in Fig. 4 dargestellt, sodass eine lückenlose Putzarmierung sichergestellt ist. Fig. 3a zeigt die Aufsicht auf eine solche Lamellenbahn (8).
  • Wird eine Faserlamellenbahn einseitig erfindungsgemäss mit einem mit Klebstoff (6) versehenen weitmaschigen Gitternetz (5) wie in Fig. 1 und Fig.3c verbunden, entsteht eine rollbare Lamellenbahn (8).
  • Wird jedoch die andere Seite der Lamellenbahn ebenfalls auf erfindungsgemässe Weise mit einem weitmaschigen mit Klebstoff (6) versehenen Gitternetz (5) verbunden, so entsteht eine steife Lamellenplatte nach Fig. 3b.
  • Eine solche Platte kann in gleicher Weise verlegt und befestigt werden, wie die bisher üblicherweise verwendeten Dämmplatten aus brennbarem Hartschaum.
  • Da nun erfindungsgemäss nach Fig. 4 die Verankerung der Wärmedämmschicht aus Faserlamellen (4) mit dem Untergrund (10) und die der Deckschichten (13) mit den Faserlamellen (4) unmittelbar mit der Faser (4) erfolgt, können die Klebstoffe (6) zur Verbindung des weitmaschigen Gewebes (5) und der Faser-Lamellen (4) beliebiger Art sein, da sie auf den Zusammenhalt des gesamten Systems keinen Einfluss haben.
  • Es können daher als Kleber (6) zur Verbindung des weitmaschigen Gitternetzes (5) mit den Faser- Lamellen (4) sowohl organische als auch anorganische Substanzen verwendet werden. Daher ist auch die Anwendung von Schmelzklebern, Heissklebern, lösungsmittelhaltigen Klebern, Schweissbahnen, ferner Dispersionsklebern, sowie anorganischen hydraulisch abbindenden Klebern möglich. Die in Fig. 1 gezeigte Klebstoff-Applikation (6) durch Eintauchen ist nur beispielhaft. Ebenso kann der Kleber durch Aufspritzen Aufwalzen, Einlegen einer Schweissfolie oder andere zum Stand der Technik gehörende Vorrichtungen auf das Gewebe aufgetragen werden.
  • Je nach Temperaturbeständigkeit der verwendeten Gewebefasern kann der Abbinde- oder Erhärtungsprozess des Klebers (6) mit Hitzeeinwirkung beschleunigt werden oder der Auftrag im Heissverfahren erfolgen, wobei die Erhärtung durch Abkühlung erfolgt. Ebenso können anorganische Binder, wie Phosphatbinder durch höhere Temperaturen zur Reaktion gebracht werden. Der in Fig. 1 gezeigte Andrückvorgang (7) kann mit Hilfe zum Stand der Technik gehörender Einrichtungen mit einer solchen Hitzebehandlung kombiniert werden.
  • Bei der Auswahl des Binders (11) zwischen Untergrund (10) und Faser-Lamellen (4) sowie des Binders (12) zur Befestigung der Deckschicht (13) beziehungsweise des Putzes (13) auf den Wärme-Dämmbahnen aus Faser-Lamellen (4) sind wesentliche Fakten zu berücksichtigen, um die Beständigkeit solcher Verbindungen sicherzustellen.
  • Die Erfahrung hat gezeigt, dass alkalische Stoffe wie Portland-Zement und Weisskalkhydrat Mineralfasern, insbesondere Glasfasern erheblich angreifen können. Das geschieht bei Anwesenheit von Feuchtigkeit und kann solange dauern, bis der Kalk im Zement- oder Kalkmörtel vollständig karbonisiert ist. Dieser Angriff kann zur vollständigen Auflösung der Fasern führen, sodass es nach Fig. 4 an der Berührungsstelle zwischen Faser (4) und Bindemittel (11) beziehungsweise Putz (13) zur Auflösung der Verbindung kommen kann, sodass der Putz (13) oder die Faser-Lamellenbahn (4) abfällt.
  • Erfindungsgemäss wird dieser Gefahr wie folgt begegnet. Umfangreiche Versuchsreihen haben gezeigt, dass die Intensität einer Alkalireaktion mit Mineralfasern aus verschiedenen Rohstoffen sehr verschieden ist. Am wenigsten resistent sind Glasfasern, wesentlich besser ist das Verhalten von Mineralfasern aus kalkarmem Basalt oder aus Rohstoffen, die nach der Schmelze ein Puzzolan bilden.
  • Daher werden erfindungsgemäss für ein solches Wärmedämmsystem vorzugsweise Mineral- faser-Lamellen aus Basaltfasern, Puzzolanfasern oder Tonerdefasern eingesetzt. Auch lässt sich ein speziell als alkaliresistent entwickeltes Zirkonglas als Faserrohstoff verwenden. Fasern aus diesen Rohstoffen können in Verbindung mit alkalihaltigen Bindemitteln wie Portland-Zement oder Weisskalkhydrat erfindungsgemäss verarbeitet werden, wenn diesen Bindern soviel kalkbindende Stoffe beigegeben werden, dass austretender freier Kalk zuverlässig gebunden wird. Solche kalkbindenden Stoffe sind Puzzolane oder aktive Kieselsäure. Als Puzzolane sind bekannt Trass, Flugasche und andere, als Kieselsäure können Quarzmehl oder Si02-Stäube sowie andere Si02-Verbindungen verwendet werden.
  • Soll eine mögliche Reaktion zwischen Faser- Lamellen-Schichten (4) und Binder (11 + 12) grundsätzlich vermieden werden, insbesondere dann, wenn die Faser-Lamellen-Schicht aus handelsüblicher Glasfaser besteht, so wird als Binder (11 + 12) und als Putzschicht (13) erfindungsgemäss ein Dispersionsbinder verwendet auf der Basis verschiedener bekannter geeigneter Kunstharze. Solche Binder und Putze greifen Glasfasern nicht an und sind witterungsbeständig. Andererseits jedoch bestehen diese Binder und Putze aus organischen Stoffen und zerfallen bei Brandeinwirkung relativ rasch. Soll nun eine besonders temperaturbeständige Befestigung und Beschichtung der Wärmedämmschicht aus Faser- Lamellen (4) erfolgen, so kann erfindungsgemäss als Bindemittel Tonerdeschmelzzement verwendet werden, um geeignete Verbindungsschichten (11 + 12) und Oberflächen-Beschichtungen (13) herzustellen. Tonerdeschmelzzement enthält keinen freien Kalk und greift daher auch Glasfasern nicht an.
  • Ergänzend soll erwähnt werden, dass mit einer Faser-Lamellen-Platte jede gewünschte Dämmschichtdicke einstellbar ist. Normale Dämmplatten aus Mineralwolle können nur bis 100 mm Dikke gefertigt werden. Aus beliebig dünnen Rohplatten können die Lamellen-Streifen in der gewünschten Breite geschnitten werden, die Breite (zum Beispiel 200 mm) ergibt durch den Wendevorgang dann die Dicke der Dämmschicht aus Faser-Lamellen.

Claims (9)

1. Auf Gebäude oder industrielle Einrichtungen aussen aufzubringende unbrennbare Wärmedämmschicht mit Oberflächenbeschichtung in Form von Rollbahnen oder Platten, die aus Glasfaser- oder Mineralfaser-Lamellen (4) bestehen, bei denen die Faserrichtung senkrecht zur Oberfläche eingestellt ist, dadurch gekennzeichnet, däss diese Faser-Lamellen (4) durch mindestens ein weitmaschiges Gewebe (5) auf der Oberfläche verbunden werden, wobei die Verbindung des Gewebes (5) mit den Lamellen (4) durch Klebstoff (6) erfolgt, der nur entlang der Gewebefäden (5) aufgetragen wird, sodass die Zwischenräume zwischen den Gewebefäden (5) nicht vom Klebstoff überdeckt sind, wobei die Wärmedämmschicht so montiert wird, dass das weitmaschige Gewebe (5) sich an der Aussenseite des Gebäudes beziehungsweise der Einrichtung befindet.
2. Wärmedämmschicht nach Anspruch 1, dadurch gekennzeichnet, dass die Faser-Lamellen (4) aus einer weitgehend alkaliresistenten Mineralfaser, wie Basaltfaser, Puzzolanfaser, Tonerdefaser oder Zirkonglas bestehen.
3. Wärmedämmschicht nach Anspruch 1 und 2, dadurch gekennzeichnet, dass das weitmaschige Gewebe (5) auf den Lamellen-Bahnen (4) aus fäulnisbeständigem Material wie Kunstharzfäden, Glasseide, oder Mineralfasern besteht.
4. Wärmedämmschicht nach Anspruch 1-3, dadurch gekennzeichnet, dass das weitmaschige Gewebe (5) nur einseitig auf die Lamellenbahnen (4) aufgebracht wird, sodass eine rollbare Matte entsteht.
5. Wärmedämmschicht nach Anspruch 1- 3, dadurch gekennzeichnet, dass das weitmaschige Gewebe (5) von zwei Seiten auf die Lamellenbahn (4) aufgebracht wird, sodass eine steife Platte aus Lamellenstreifen entsteht.
6. Wärmedämmschicht nach Anspruch 1-5, dadurch gekennzeichnet, dass die aussen liegende Gewebeschicht (5) breiter als die Lamellenbahn (4) zugeschnitten wird, sodass die Stosskanten der Lamellenbahnen oder -platten (4) von der überstehenden Gewebekante (8) überdeckt werden.
7. Wärmedämmschicht nach Anspruch 1-6, dadurch gekennzeichnet, dass zu deren Befestigung und zur Herstellung eines direkt auf die Faser- Lamellen (4) aufgebrachten Aussenputzes (12) Bindemittel verwendet werden, die alkalifrei sind oder keine reaktionsfähige Alkalität aufweisen, wie zum Beispiel Kunstharz-Dispersionsbinder oder -Putze.
8. Wärmedämmschicht nach Anspruch 7, dadurch gekennzeichnet, dass der Binder oder Putz (11) aus einem alkalisch reagierenden Grundstoff wie Weisskalkhydrat, Portlandzement oder aus einer Mischung aus beiden zusammengesetzt ist, dem jedoch in ausreichender Menge kalkbindende Stoffe, wie Puzzolane und/oder Silikate beigegeben werden, sodass austretender oder sich lösender freier Kalk zuverlässig gebunden wird.
9. Wärmedämmschicht nach Anspruch 7, dadurch gekennzeichnet, dass der Binder oder Putz (11) mit Hilfe eines hydraulisch abbindenden, jedochalkalifreien Zementes, wie Tonerdeschmelzzement, hergestellt wird.
EP80102032A 1979-04-20 1980-04-16 Unbrennbare äussere Wärmedämmschicht mit Oberflächenbeschichtung Expired EP0017969B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT80102032T ATE18080T1 (de) 1979-04-20 1980-04-16 Unbrennbare aeussere waermedaemmschicht mit oberflaechenbeschichtung.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2915977 1979-04-20
DE19792915977 DE2915977A1 (de) 1979-04-20 1979-04-20 Unbrennbare aeussere waermedaemmschicht mit oberflaechenbeschichtung

Publications (3)

Publication Number Publication Date
EP0017969A2 EP0017969A2 (de) 1980-10-29
EP0017969A3 EP0017969A3 (en) 1981-01-07
EP0017969B1 true EP0017969B1 (de) 1986-02-19

Family

ID=6068796

Family Applications (1)

Application Number Title Priority Date Filing Date
EP80102032A Expired EP0017969B1 (de) 1979-04-20 1980-04-16 Unbrennbare äussere Wärmedämmschicht mit Oberflächenbeschichtung

Country Status (3)

Country Link
EP (1) EP0017969B1 (de)
AT (1) ATE18080T1 (de)
DE (2) DE2915977A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202011106980U1 (de) 2011-10-20 2011-11-28 Ioannis Kragiopoulos Unbrennbare Bauplatte

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT380293B (de) * 1982-09-09 1986-05-12 Hinteregger Viktor Isolierende, mehrschichtige bahn oder matte
FR2580014A1 (en) * 1985-04-04 1986-10-10 Escot Etienne Method and device for thermal insulation on the inside, conventional plaster coating finish intended for new constructions and for restoration
IT1199777B (it) * 1986-12-12 1988-12-30 R E In S P A Procedimento per la coibentazione di facciate di edifici esistenti e pannello prefabbricato utilizzabile per l'attuazione di detto procedimento
DE3709654C3 (de) * 1987-03-24 2001-08-09 Staudt Brandschutztechnik Gmbh Abschottung von Rohbauöffnungen in brandabschnittsbegrenzenden Bauteilen
DE4032769C2 (de) * 1989-10-30 1996-04-25 Rolf Dr Gueldenpfennig Wärmedämmsystem
GB9004018D0 (en) * 1990-02-22 1990-04-18 Siderise Ltd Manufacture of mineral fibre products in layer form
DE4143387C2 (de) * 1991-10-09 1995-09-28 Rockwool Mineralwolle Verfahren zum Herstellen von Formkörpern, insbesondere von Dämmplatten
DE4133416C3 (de) * 1991-10-09 1998-06-10 Rockwool Mineralwolle Verfahren zum Herstellen von Formkörpern, insbesondere von Dämmplatten
GB9216029D0 (en) * 1992-07-28 1992-09-09 Sto Ind Canada Inc Exterior insulation and finish system
DE4416536C5 (de) * 1994-05-10 2004-03-11 Saint-Gobain Isover G+H Ag Fassade mit Dämmplatten aus Meralwolle, insbesondere für Wärme-Verbundsysteme und hinterlüftete Fassaden
DE59810565D1 (de) * 1997-08-12 2004-02-12 Thueringer Daemmstoffwerke Gmb Verfahren zur Profilierung der Oberfläche eines Verkleidungselements
WO2000000704A1 (de) * 1998-06-30 2000-01-06 Dieter Gessner Dämmelement
DE50110696D1 (de) * 2001-03-01 2006-09-21 Glunz Ag Dämmformkörper, insbesondere Dämmplatte, aus Holzfaserstoff
DE10138069A1 (de) * 2001-08-03 2003-02-20 Saint Gobain Isover G & H Ag Putzträger-Fassadendämmplatte
ATE396242T1 (de) 2004-01-19 2008-06-15 Rockwool Int Verfahren zur herstellung von mineralfaserplatten
FI20065659A (fi) * 2006-10-16 2008-04-17 Paroc Oy Ab Mineraalivillaa olevan lamellimaton valmistusmenetelmiä ja lamellimatto
GB2460720B (en) * 2008-06-12 2013-04-24 Victor Joseph Wigley Improvements to the external insulation of buildings
DE102010014478A1 (de) 2010-04-09 2011-10-13 Sto Ag Wärmedämmverbundsystem sowie Verfahren zur Herstellung eines Wärmedämmverbundsystems
DE202016004149U1 (de) * 2016-07-05 2016-08-25 Kamal Mostafa Bauplatte

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3318063A (en) * 1964-05-26 1967-05-09 Cleveland Fabricating Company Building insulation
US3389518A (en) * 1964-06-09 1968-06-25 Horbach Edwin Resilient cellular wall covering and applying it
FR2349439A1 (fr) * 1976-04-26 1977-11-25 Aragosta Giorgio Enveloppe impermeable et isolante en rouleau pour couverture d'etablissements industriels, frigoriques, de citernes, de parois prefabriquees et pour l'isolement et l'impermeabilisation en general des edifices civils et industriels
DK139441B (da) * 1976-11-19 1979-02-19 Rockwool Int Isoleringselement til udvendig isolering af en ydervæg.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202011106980U1 (de) 2011-10-20 2011-11-28 Ioannis Kragiopoulos Unbrennbare Bauplatte

Also Published As

Publication number Publication date
DE2915977A1 (de) 1980-10-23
DE3071426D1 (en) 1986-03-27
ATE18080T1 (de) 1986-03-15
EP0017969A2 (de) 1980-10-29
EP0017969A3 (en) 1981-01-07

Similar Documents

Publication Publication Date Title
EP0017969B1 (de) Unbrennbare äussere Wärmedämmschicht mit Oberflächenbeschichtung
DE69320803T2 (de) Feuerbeständiger flexiblen Verbundwerkstoff, diesen einschliessendes System, Verfahren zur Herstellung des Verbundwerkstoffes und Verfahren zum Schutz vor Feuer
DE2528207A1 (de) Faserverstaerkte platte und verfahren zu ihrer herstellung
DE19946395A1 (de) Fassadendämmelement
DE102007040654A1 (de) Wärmedämmungsverbundelement
EP1818467A2 (de) Dämmelement und Wärmedämmsystem
EP1650370A2 (de) Dämm- und Brandschutzplatte sowie Verfahren zu deren Einbau
DE3519752A1 (de) Mineralfaserprodukt als daemmplatte oder daemmbahn
DE2925513C2 (de) Wasserisolierende Abdichtungsschicht für mineralische Oberflächen
CH708678A2 (de) Dämmplatte für die Innen- und Aussenisolation von Bauwerken, das Verfahren zu ihrer Herstellung, ihre Verwendung und ein damit isoliertes Bauwerk.
EP1936056A2 (de) Flächiges Bauelement
EP1081301A2 (de) Dämmelement zur Wärme- und/oder Schalldämmung von Gebäudewänden
DE2729232A1 (de) Unbrennbares tragfaehiges leichtbau- element mit daemmstoffschicht ohne waermebruecken
EP0015455B1 (de) Aussenwand-Wärmedämmung
DE3601689A1 (de) Waermedaemmende, nicht brennbare fassadenverkleidung
EP0088284B1 (de) Vorgefertigte Verbundbauplatte
DE212013000014U1 (de) ETICS Fassadensystem
DE19604571C2 (de) Formkörper für die Außendämmung von Bauwerken
DE10232446A1 (de) Verbundmauerstein
DE8500260U1 (de) Dachelement mit hoher luftschalldaemmung
AT364499B (de) Waermeisolierende mauerverkleidung
DE693274C (de) Trockenmauerwerk
EP1896675B1 (de) Klebebewehrung mit brandschutz und ihre herstellungsverfahren
DE102011111588A1 (de) Dämmmaterial und Verfahren zur Herstellung eines Dämmmaterials
DE2705032A1 (de) Bauelement, insbesondere trennwand, decken- oder dachkonstruktion

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LU NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LU NL SE

17P Request for examination filed

Effective date: 19810623

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 18080

Country of ref document: AT

Date of ref document: 19860315

Kind code of ref document: T

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19860224

Year of fee payment: 7

REF Corresponds to:

Ref document number: 3071426

Country of ref document: DE

Date of ref document: 19860327

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19860430

ITF It: translation for a ep patent filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19870430

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19890416

Ref country code: AT

Effective date: 19890416

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19890417

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19890430

Ref country code: CH

Effective date: 19890430

Ref country code: BE

Effective date: 19890430

BERE Be: lapsed

Owner name: IHLEFELD KARL-HELMUT

Effective date: 19890430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19891101

GBPC Gb: european patent ceased through non-payment of renewal fee
NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19891228

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19900103

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 80102032.2

Effective date: 19900412