EP0011095B1 - Circuit électrique pour la synchronisation du moment d'impact du marteau de frappe avec l'arrivée du caractère sur le point d'impression - Google Patents

Circuit électrique pour la synchronisation du moment d'impact du marteau de frappe avec l'arrivée du caractère sur le point d'impression Download PDF

Info

Publication number
EP0011095B1
EP0011095B1 EP79103100A EP79103100A EP0011095B1 EP 0011095 B1 EP0011095 B1 EP 0011095B1 EP 79103100 A EP79103100 A EP 79103100A EP 79103100 A EP79103100 A EP 79103100A EP 0011095 B1 EP0011095 B1 EP 0011095B1
Authority
EP
European Patent Office
Prior art keywords
print
voltage
circuit
circuit arrangement
arrangement according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP79103100A
Other languages
German (de)
English (en)
Other versions
EP0011095A1 (fr
Inventor
Karl Heinz Schaller
Klaus Arendt
Werner Hasler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Business Machines Corp
Original Assignee
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Business Machines Corp filed Critical International Business Machines Corp
Publication of EP0011095A1 publication Critical patent/EP0011095A1/fr
Application granted granted Critical
Publication of EP0011095B1 publication Critical patent/EP0011095B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J9/00Hammer-impression mechanisms
    • B41J9/44Control for hammer-impression mechanisms
    • B41J9/52Control for hammer-impression mechanisms for checking the operation of print hammers

Definitions

  • the invention relates to a circuit arrangement for the synchronization of the time of impact of print hammers in a type printer working with a flying impression, in particular line printer, with the time of occurrence of a print type to be printed at the desired print position, with means for detecting or determining deviations from operating parameters, such as, for. B. the supply voltage and the temperature of the print hammer magnets, by a voltage-dependent delay element switched between the trigger pulse generator and the print hammer control logic.
  • the speed of the print medium is determined by a synchronous motor, so it depends on the frequency consistency of the network. By striking one or more hammers, however, the belt is braked more or less each time and must be accelerated again.
  • the permeability of the cores of the print hammer magnets and the print hammers is not only temperature-dependent, but can also deviate within permissible manufacturing tolerances exhibit. The same applies to the print type carrier. Influences of air humidity and air pressure are also to be mentioned.
  • the arrangement is preferably substantially improved in that when the number of carbon copies to be created and the pressure strength required for this are additionally determined, the parameters determined are determined according to the relationship are summarized, where ⁇ l is the velocity.
  • the residual ripple of the voltage supply circuit of the print hammer magnets can advantageously be introduced as a further parameter.
  • the path of the type band over time is shown purely schematically in FIG. 1, individual types being indicated equidistantly in this case, although this is not absolutely necessary.
  • a printing position with the so-called printing window WP is indicated, ie the location at which the printing type located on the type tape must meet the printing hammer hitting the type tape at a certain point in time. Up to this point, the print hammer has traveled a certain distance in a certain time during its flight.
  • a trigger pulse is indicated purely schematically, which in this case is taken from the type band, and the trigger time for the print hammer and the switch-on time THO of the print hammer magnet, which coincides with the acceleration time, can also be seen.
  • the condition for an exact impression of the character to be printed is therefore an exact alignment between the point of impact of the printing hammer with the printing type arranged on the type tape or, in other words, the time synchronization between the time of impact of the printing hammer with the time of occurrence of the type of print to be printed in the printing position.
  • the width WP of the print window is approximately 2.54 mm and that the speed of the type tape is approximately 2.8 m per second. From this, the maximum time deviation, which is possible without cutting off individual parts of a character to be printed, can be calculated to be about 60 microseconds.
  • FIG. 2 the parts of a type printer 1 that are essential here can be seen purely schematically, with a printing type tape 2, which in this case consists of a metal tape from which the individual printing types are etched out.
  • a sensing element 4 This sensing element is made adjustable in relation to the sensible marks for delivering a clock pulse. In the present case, it is a question of magnetically sensible marks and a magnetic sensing element.
  • the clock pulses sensed by the sensing element 4, which are also to be referred to as trigger pulses are fed to a trigger pulse amplifier 5, the output signals of which, in and of themselves, are readily available.
  • a print hammer control logic 7 could be supplied, to which the data and the print control signals are supplied, and which then cause the stop on the type tape 2 and thus the print on a record carrier in accordance with the information to be printed via the connected 132 print hammer magnets 8.
  • a variable time delay 6 is activated in this connection, which is triggered by a control signal VS.
  • a voltage source 9 for the print hammer magnets is shown purely schematically, which supplies the print hammer magnet supply voltage and which, depending on the load due to the number of operated print hammer magnets, can fluctuate between 34.5V and 30.5V.
  • a temperature sensor 10 which senses the temperature prevailing at the hammer magnets, which in the present example can be between approximately 13 ° and 70 ° C.
  • a sensing device for the stroke strength 11 is provided, which can be adjusted to different form thicknesses or number of copies, as is indicated here, for example, by the numbers 1-6.
  • a transmitter for the pressure activity 12 is provided, which provides a measure of the actually used printing time and thus a measure of the duty cycle.
  • Another parameter sensor or sensor 13 is indicated in order to demonstrate that other variables can be sensed and processed.
  • sensing elements or sensors are capable of delivering absolute values, but that for practical reasons differential values should be used here, i. H. that only deviations from a presettable voltage, deviations from a predefined temperature, deviations from the impact strength for a layer of paper without copies and deviations from an average assumed printing activity are to be used for control purposes.
  • the voltage values picked up by the sensing elements 9 and 10 are fed to a nonlinear circuit which combines these values according to a nonlinear equation.
  • ⁇ A is a variable which is dependent on the printing activity and which is determined from the discharge occurring during the printing breaks and the charging of a charge storage device taking place during the printing process.
  • the velocity, - that is, the setting for more than one copy and the required impact energy play a significant role.
  • the signal 41 is processed from a setting in a further stage of the circuit 14, the nonlinear positioning equation now being as follows
  • ⁇ J is included in the weighted sum formation once immediately and once after multiplication by ⁇ V.
  • the setting for the impact strength 11 which is represented here by a closed and an open switch, is sent as a digital, two-bit signal once to the pressure strength control 16 and once to the form strength sensing circuit 19
  • Compressed strength control 16 which, depending on the setting for the stroke strength, emits a signal at 11, by means of which the width of the pulse supplied to the printer control is changed. If only one copy, ie no carbon copy, is to be made, the width of the pulse delivered to the bonus control is not changed.
  • the temperature or the temperature difference LlT is also determined in the same way.
  • the temperature could also be measured on each individual print hammer magnet, ie on its magnetic coil. It is immediately apparent that this would be an excessive effort.
  • a temperature sensing device for all printing hammer magnets was jointly constructed in such a way that a temperature sensing rail is arranged in the immediate vicinity of the row of all printing hammer magnets, the temperature of which can be measured in the usual way. However, this gives an average value dependent on the temperature of the print hammer solenoid coils.
  • This measured value is fed to a temperature sensing amplifier 18.
  • a temperature adjuster 25 is connected to this, with which a reference value for a reference temperature can be set via a reference voltage V REF .
  • the output signals of the voltage sensing amplifier 17 and the temperature sensing amplifier 18 are fed to an analog multiplier circuit in which the values of ⁇ V and ⁇ T are multiplied with one another and occur on the output side as a signal ⁇ V ⁇ dT.
  • the output signals of the voltage sensing amplifier and the temperature sensing amplifier are fed directly to a summation circuit 24, in which a weighted summation is carried out. Weighted sum formation is understood to mean that the individual values supplied to this sum-forming circuit 24 are each multiplied by a device-specific coefficient.
  • a bias adjuster 26 is connected to this circuit. On the other hand, this bias can also be tapped at a fixed resistor.
  • the signal NON-PRINT TIME which indicates the printing activity, is supplied to the start-up correction circuit 21.
  • a charge storage element is discharged whenever it is not being printed and charged during the printing process. Discharge and charging take place over the course of a decaying expotential function.
  • the expression ⁇ A determined in this circuit is then also provided with a weighting in the summation circuit 24, ie multiplied by the factor K 6 .
  • an actuating voltage is obtained which is supplied to the voltage-controlled delay element 27.
  • the clock pulse taken from the type band by the sensing element 4 is fed to a trigger pulse amplifier 22 and also reaches the voltage-controlled delay element 27 as a trigger pulse.
  • this delay element there is now a delay of this trigger pulse which is dependent on the actuating voltage, and the output of this voltage-controlled delay element 27 then occurs delayed trigger pulse.
  • a trigger pulse is derived, which is then delayed for synchronization between the print hammer and the print type when printing a character in a predetermined printing position to such an extent that a correct print is made. It is of course also possible to determine a center position and to shift the trigger pulse from this position with a medium delay both in the direction of a smaller and in the direction of a larger delay.
  • the setting for more than one copy can also be supplied as an input signal to a circuit for the form strength.
  • the binary input signal for the form strength is converted into an analog signal.
  • the output signal ⁇ V coming from the voltage sensing amplifier 17 is fed to another input of the form strength circuit.
  • the signal ⁇ V ⁇ l occurs by multiplication, which is fed to a further input of the weighted sum-forming circuit.
  • equation (2) an input voltage is obtained from these input signals of the sensing elements, which in turn is fed to the voltage-controlled delay element 27 for a corresponding delay of the trigger pulse.
  • This delayed trigger pulse is then fed to the print hammer control logic in accordance with FIG. 2 and, in conjunction with the data and the printer control, causes a corresponding excitation of one or more of the print hammer magnets 8 for printing the characters on the recording medium.
  • the voltage supply 23 shown in FIG. 3 is provided for this part of the electronics.
  • Fig. 4 shows a partial view of the print hammer assembly.
  • a temperature sensing rail 28 is on attached to a solid support plate 29 and carries on its other side the print hammer magnets 30, which are arranged in two rows one above the other. Furthermore, two rows of printing hammers 31 can be seen.
  • a transistor 32 which senses the temperature of the rail, is inserted into the holder in an electrically insulated manner in the temperature sensing rail 28 and senses the temperature of the rail, which is a measure of the average temperature of all printing hammer magnets. It has been shown that this type of temperature determination represents a good compromise, because the average temperature in each case arises fairly quickly because of the good heat conduction of the temperature sensing rail. On the other hand, there is a certain delay due to the heat transfer from the print hammer magnets 30 to the temperature sensing rail 28.
  • FIG. 5 to 8 show details of the circuit blocks shown in FIG. 3, the functions of which are to be described with reference to these figures.
  • the circuit groups highlighted by dashed borders and provided with the reference symbols of FIG. 3 can be seen.
  • the signal coming from the sensing element 11 shown here as two switches is fed as a 2-bit signal to the inverters 33, 35 as a voltage drop across the resistors R101 and / or R104.
  • the output 12 of the inverter 33 or the output 8 of the inverter or none of the outputs is grounded. Accordingly, one of the two resistors or both resistors are connected in parallel with R106 at the junction of R115 and R119 in FIG.
  • FIG. 5 also shows the regulated voltage supply 23 attached to the circuit card itself, which, however, does not require an individual description.
  • the temperature sensing amplifier 18 shown in FIG. 1 receives its input signal from the temperature sensor 10, a heat-sensitive semiconductor element, namely a PNP transistor, built into the temperature sensing rail 31 in an electrically insulated manner. This voltage is fed to the negative input of a differential amplifier 37, at the positive input of which there is an adjustable reference voltage which corresponds to a predetermined temperature.
  • the output signal V T of this differential amplifier is fed once to the analog multiplier circuit 20 as the signal ⁇ T and reaches the input of a multiplier circuit 39 via the inverting input of an operational amplifier 38.
  • the positive input of the operational amplifier 38 is connected to ground via R126.
  • the non-inverting input of the differential amplifier 40 is connected to a positive potential of, for example, +5.2 volts via a resistor R125.
  • the signal ⁇ V ⁇ T is then obtained at the output of the multiplier circuit 39.
  • the output signal .DELTA.T of the temperature sensing amplifier 18 together with the output signals of the form sensing circuit 19 and the voltage sensing circuit 17 are fed to the input of the sum-forming circuit 24 shown in FIG.
  • the signal (printing time) is fed via an inverter 40 and a bias voltage divider 41 with the resistors R154, R155 and R156 to the one terminal of a charge storage device C105 and the non-inverting input of a negative feedback operational amplifier 42, the inverting input of which via a negative feedback resistor R133 at the output of the operational amplifier 42 connected.
  • This point is connected via a further resistor R153 to the connection point of the voltage steep resistors 154, 155.
  • the charge store C105 is discharged during the signal (printing time), ie when not printing, and is charged during the signal (printing time), ie when actually printing.
  • the control voltage V s is first supplied to the control input of two monostable multivibrators 44 and 45.
  • the trigger pulse coming from the sensing element 4, FIG. 3 is coupled into the biased second input of the trigger circuit 44 via a first inverter stage 46.
  • this signal is coupled in an inverter stage 47 into the biased second input of the flip-flop 45.
  • the coupling takes place each time via a coupling capacitor C111 or C113.
  • the output signal of the first flip-flop 44 reaches the control input of a bistable JK flip-flop 48, the Q output of which is at the J input, while the K input is grounded.
  • the output signal of the flip-flop 44 is also via an inverter at the reset input of a further bistable, self-latching JK flip-flop 48, the control input of which is connected to the output of the second monostable flip-flop 45 while it is Q -Output is connected to the J input and the K input is grounded.
  • the Q output of the JK multivibrator 49 is also connected to the reset input of the bistable multivibrator 48.
  • the control voltage V s at the input of the voltage-controlled delay element 27 is an analog voltage, the magnitude of which controls the time delay of the trigger pulse.
  • This control voltage can, within certain limits, the time constant of the monostable multivibrators 44 and 45, which are in themselves determined by RC elements C110, R136 or C107, R135 and thus change the pulse duration of the output pulses of these multivibrators.
  • the circuit works as follows.
  • the trigger pulse sets the monostable multivibrator 44 with its leading edge.
  • the trailing edge of the trigger pulse then sets the monostable multivibrator 45.
  • the output pulse of the multivibrator 44 initially resets the bistable multivibrator 49 via an inverter stage 50.
  • the trailing edge of the output pulse of the multivibrator 44 sets the bistable multivibrator 48 at its control input.
  • the bistable multivibrator 49 is set at the control input by this pulse trailing edge.
  • an output signal is generated at output Q, which resets bistable multivibrator 48.
  • both the leading edge and the trailing edge of the output pulse emitted by the bistable multivibrator 48 depend on the controllably delayed trailing edge of the output pulses of the monostable multivibrators 44 and 45, respectively. This results in a practically uniform delay of the trigger pulse, which depends on the size of the control voltage Vs.

Landscapes

  • Impact Printers (AREA)

Claims (12)

1. Circuit pour la synchronisation de l'instant d'impact des marteaux d'impression dans une imprimante du type à la volée, en particulier une imprimante de lignes, avec l'instant d'arrivée d'un caractère à imprimer sur la position d'impression désirée, avec des moyens pour respectivement détecter et déterminer les variations des paramètres de fonctionnement, comme par exemple la tension d'alimentation et la température des électroaimants des marteaux d'impression, à l'aide d'un élément de retard (6, 27) dépendant de la tension et connecté entre un générateur d'impulsions de déclenchement (2 à 5) et une logique de commande du marteau d'impression (7), caractérisé en ce que:
les valeurs ainsi déterminées sont combinées avec une valeur dynamique variant exponentiellement en fonction du temps, selon la relation :
Figure imgb0009
Λ T est la température des électro-aimants des marteaux d'impression,
Δ V est la tension appliquée aux électro-aimants des marteaux d'impression,
Λ A est un paramètre dépendant de l'activité d'impression, qui est déterminé à partir de la décharge exponentionnelle pendant les pauses d'impression et de la charge exponentielle d'un élément d'emmagasinage de charge durant le processus d'impression,
K1, K2, K3, et K6 étant des coefficients spécifiques du dispositif, et
en ce que la tension de commande (Δ DLY) ainsi déterminée sert de tension de commande pour l'élément de retard (6; 27) commandé par la tension.
2. Circuit selon la revendication 1, caractérisé en ce que pour déterminer en outre le nombre de copies à produire et la force de frappe requise, les paramètres obtenus sont combinés selon la relation:
Figure imgb0010
ou Δ est force de frappe.
3. Circuit selon la revendication 1 ou 2, caractérisé en ce qu'on introduit comme paramètre supplémentaire l'ondulation résiduelle de la tension d'alimentation des électro-aimants du marteau d'impression.
4. Circuit selon la revendication 1, caractérisé en ce que les températures de tous les électro-aimants des marteaux d'impression sont détectées simultanément.
5. Circuit selon la revendication 4, caractérisé en ce qu'un rail de détection de température (28) est disposé au voisinage immédiat de toutes les bobines des électroaimants des marteaux d'impression.
6. Circuit selon la revendication 5, caractérisé en ce que le rail de détection de température comporte un détecteur de température (32) déterminant la température des différents électro-aimants des marteaux d'impression.
7. Circuit selon la revendication 1, caractérisé en ce que le détecteur de tension (9) et le détecteur de température (10) des électro-aimants des marteaux d'impression sont chacun connectés à un amplificateur de détection (17, 18) et en ce qu'il est prévu en outre un circuit de sommation (24), formant une somme pondérée, dont les entrées sont connectées aux sorties des deux amplificateurs de détection (17,18) et d'un circuit de correction de mise en route (21) qui, commandé par les signaux d'activité d'impression (temps d'impression), fournit le terme de correction dynamique K6Δ A.
. 8. Circuit selon la revendication 7, caractérisé en ce que le circuit de correction de mise en route, commandé par les signaux d'activité d'impression (temps d'impression), comporte un condensateur (C 105) qui est déchargé par ces signaux pendant les instants de pause d'impression et est chargeé pendant des instants d'impression et donne ainsi une indication de l'activité d'impression.
9. Circuit selon les revendications 2 et 7, caractérisé en ce qu'il comporte un circuit de détection (19) de l'épaisseur du support d'impression, aux entrées duquel sont appliqués le signal indiquant le nombre de copies et déterminant la force de frappe Λ 1 et le signal de sortie (Δ V) de l'amplificateur de détection de tension (17) et dont la sortie fournit le produit Δ V. Δ directement au circuit de sommation (24).
10. Circuit selon la revendication 7 ou 8, caractérisé en ce que l'élément de retard (27) commandé par tension est commandé par le signal de sortie du circuit de sommation (24).
11. Circuit selon la revendication 9, caractérisé en ce que le nombre de copies indiqué et l'épaisseur du support d'impression, respectivement provoque l'émission d'un signal par des éléments de détection (11), ce signal étant appliqué d'une part à la commande de la force de frappe (16) et d'autre part au circuit de détection (19) de l'épaisseur du support d'impression.
12. Circuit selon la revendication 1, caractérisé en ce que le circuit de détection (19) de l'épaisseur du support d'impression comporte un convertisseur numérique-analogique pour le signal indiquant l'épaisseur du support d'impression et le nombre de copies respectivement et constitue un étage de multiplication analogique fournissant le produit Δ V · Δ I, la sortie du circuit de détection (19) étant connectée à une autre entrée du circuit de sommation (24) fournissant une somme pondérée.
EP79103100A 1978-11-10 1979-08-23 Circuit électrique pour la synchronisation du moment d'impact du marteau de frappe avec l'arrivée du caractère sur le point d'impression Expired EP0011095B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2848786 1978-11-10
DE2848786A DE2848786C3 (de) 1978-11-10 1978-11-10 Schaltungsanordnung für die Synchronisierung der Auftrittszeitpunkte von Druckhammeraufschlag mit dem Eintreffen der Drucktype an der Druckstelle

Publications (2)

Publication Number Publication Date
EP0011095A1 EP0011095A1 (fr) 1980-05-28
EP0011095B1 true EP0011095B1 (fr) 1982-06-23

Family

ID=6054323

Family Applications (1)

Application Number Title Priority Date Filing Date
EP79103100A Expired EP0011095B1 (fr) 1978-11-10 1979-08-23 Circuit électrique pour la synchronisation du moment d'impact du marteau de frappe avec l'arrivée du caractère sur le point d'impression

Country Status (9)

Country Link
US (1) US4259903A (fr)
EP (1) EP0011095B1 (fr)
JP (1) JPS6044158B2 (fr)
AU (1) AU526955B2 (fr)
BR (1) BR7907256A (fr)
CA (1) CA1124882A (fr)
DE (2) DE2848786C3 (fr)
ES (1) ES484142A1 (fr)
IT (1) IT1188795B (fr)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3100189C2 (de) * 1980-01-12 1985-02-28 Hitachi Koki Co., Ltd., Tokio/Tokyo Verfahren und Schaltungsanordnung zur Einstellung des Druckzeitpunktes für einen Drucker
US4407193A (en) * 1980-06-16 1983-10-04 International Business Machines Corporation Solenoid impact print hammer with uniform free flight time
JPS58211477A (ja) * 1982-06-02 1983-12-08 Fujitsu Ltd プリンタのハンマタイミング制御方式
DE3278701D1 (en) * 1982-12-28 1988-07-28 Ibm Control system for resetting the print hammers of a printer
US4665371A (en) * 1983-10-27 1987-05-12 Ncr Corporation Character spacing circuit for controlling print hammer firing
US4806031A (en) * 1986-08-15 1989-02-21 Dataproducts Corporation Uniform print density and registration in an impact printer
US4743821A (en) * 1986-10-14 1988-05-10 International Business Machines Corporation Pulse-width-modulating feedback control of electromagnetic actuators
GB8903592D0 (en) * 1989-02-16 1989-04-05 Boots Co Plc Therapeutic agents
JP2985999B2 (ja) * 1993-02-04 1999-12-06 株式会社高取育英会 重み付き加算回路
US5383399A (en) * 1993-09-27 1995-01-24 Ncr Corporation Zero hammer adjustment drum printer control technique
JP3762988B2 (ja) * 2002-07-09 2006-04-05 独立行政法人産業技術総合研究所 クロック信号タイミング調整のための遅延回路を有するデジタル回路

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3513774A (en) * 1968-07-01 1970-05-26 Ibm Printer hammer compensation
US3712212A (en) * 1971-11-12 1973-01-23 Burroughs Corp Variable printer intensity control
US4156283A (en) * 1972-05-30 1979-05-22 Tektronix, Inc. Multiplier circuit
FR2205003A5 (fr) * 1972-10-26 1974-05-24 Honeywell Bull Soc Ind
US3866533A (en) * 1972-12-26 1975-02-18 Ibm Electrical print impression control
FR2249538A5 (en) * 1973-10-24 1975-05-23 Honeywell Bull Soc Ind Printing machine hammer energy control - has adjustable time delay between hammers and impulse generator
FR2249537A5 (en) * 1973-10-24 1975-05-23 Honeywell Bull Soc Ind Printing machine hammer electric supply - has temperature correction attachment with Wheatstone bridge regulating impulse generator
US4027761A (en) * 1975-10-21 1977-06-07 Ncr Corporation Matrix print head impact energy control
US4103617A (en) * 1977-01-10 1978-08-01 Ncr Canada Ltd. - Ncr Canada Ltee Hammer energy impact control using read only memory
US4083299A (en) * 1977-01-24 1978-04-11 C. Itoh Electronics, Inc. Electromagnetic striking members selectively actuated in time from alternating current power
JPS53105334A (en) * 1977-02-25 1978-09-13 Nippon Soken Nonnlinear calculating circuit
US4149120A (en) * 1977-04-06 1979-04-10 Endress & Hauser Gmbh & Co. Circuit arrangement for linearizing the output signal of a test sensor
US4162131A (en) * 1977-11-02 1979-07-24 General Electric Company Drive circuit for printing head
NL177294C (nl) * 1977-11-03 1985-09-02 Philips Nv Drukker, voorzien van een slaginrichting met opnemer.
US4189246A (en) * 1977-12-22 1980-02-19 International Business Machines Corporation Variable print-hammer control for on-the-fly-printing

Also Published As

Publication number Publication date
DE2848786B2 (de) 1980-08-28
AU5263679A (en) 1980-05-15
AU526955B2 (en) 1983-02-10
DE2848786A1 (de) 1980-05-14
IT7927053A0 (it) 1979-11-06
CA1124882A (fr) 1982-06-01
IT1188795B (it) 1988-01-28
DE2963166D1 (en) 1982-08-12
US4259903A (en) 1981-04-07
ES484142A1 (es) 1980-08-16
JPS5567876A (en) 1980-05-22
DE2848786C3 (de) 1981-05-21
BR7907256A (pt) 1980-07-22
JPS6044158B2 (ja) 1985-10-02
EP0011095A1 (fr) 1980-05-28

Similar Documents

Publication Publication Date Title
DE2360323C2 (de) Schaltungsanordnung zur Steuerung der Anschlagstärke in Druckern
DE2360013C2 (de) Phasenkorrekturschaltung für einen Tintenstrahlschreiber
EP0011095B1 (fr) Circuit électrique pour la synchronisation du moment d'impact du marteau de frappe avec l'arrivée du caractère sur le point d'impression
DE1136861B (de) Anordnung zur Abtastung von Zeichen
DE2629096B2 (de) Steuerschaltung für einen Schrittmotor
DE2457327B2 (de) Phasensynchronisierer fur einen Tintenstrahlschreiber
DE2425679C3 (de) Vorrichtung zum Erzeugen und selektiven Ablenken von Flüssigkeitströpfchen
DE3033911C2 (de) Punktzeilendrucker
DE2848910A1 (de) Antriebssystem zur steuerung der bewegung eines gliedes
DE2844468A1 (de) Elektrische antriebsanordnung fuer die druckelement-betaetigungseinrichtungen eines mehrelement-matrixdruckers
DE1774872A1 (de) Vorrichtung zum Drucken aufeinanderfolgender Zeichen auf ein streifenfoermiges Material
DE3219214C2 (fr)
DE2815906C2 (fr)
EP0890140B1 (fr) Procede et circuit pour l'impression d'une image imprimee
DE3115121C2 (fr)
DE3233425C2 (fr)
DE2940019C2 (fr)
DE2648828C3 (de) Vorrichtung zum Betätigen von Elektromagneten
DE3020847A1 (de) Elektronische steuer- und regelanordnung fuer den antrieb einer treibrolle einer rotationsgravur-druckpresse
DE2405315A1 (de) Druckhammersteuerung
DE1438842B2 (de) Elektrische regeleinrichtung zur steuerung der vorschubge schwindigkeit eines informationstraegers
DE2806360C3 (de) Schaltung zum laufenden Bestimmen des Zeitpunktes der Tröpfchenaufladung in einem Tintenstrahldrucker
DE2511260B2 (de) Schaltungsanordnung in einer Strickmaschine
DE2406310A1 (de) Thermische kopiervorrichtung fuer die vervielfaeltigung von magnetbaendern
EP0134258B1 (fr) Dispositif de contrôle du temps de vol de marteaux d'impression dans une imprimante à percussion

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE CH DE FR GB NL SE

17P Request for examination filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE CH DE FR GB NL SE

REF Corresponds to:

Ref document number: 2963166

Country of ref document: DE

Date of ref document: 19820812

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19830503

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19840630

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19890725

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19890726

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19890831

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19890831

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19891129

Year of fee payment: 11

BERE Be: lapsed

Owner name: INTERNATIONAL BUSINESS MACHINES CORP.

Effective date: 19890831

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19900704

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19900824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Effective date: 19900831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19910301

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19910430

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19910823

GBPC Gb: european patent ceased through non-payment of renewal fee
EUG Se: european patent has lapsed

Ref document number: 79103100.8

Effective date: 19910410

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT