EP0009603B1 - Verfahren und Vorrichtung zur Herstellung von Metallbändern - Google Patents

Verfahren und Vorrichtung zur Herstellung von Metallbändern Download PDF

Info

Publication number
EP0009603B1
EP0009603B1 EP79103096A EP79103096A EP0009603B1 EP 0009603 B1 EP0009603 B1 EP 0009603B1 EP 79103096 A EP79103096 A EP 79103096A EP 79103096 A EP79103096 A EP 79103096A EP 0009603 B1 EP0009603 B1 EP 0009603B1
Authority
EP
European Patent Office
Prior art keywords
cooling body
jet
molten metal
relative movement
reservoir
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP79103096A
Other languages
English (en)
French (fr)
Other versions
EP0009603A1 (de
Inventor
Hans-Reiner Dr. Hilzinger
Hans Dr. Hillmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vacuumschmelze GmbH and Co KG
Original Assignee
Vacuumschmelze GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19782842421 external-priority patent/DE2842421C2/de
Priority claimed from DE19782846628 external-priority patent/DE2846628C2/de
Application filed by Vacuumschmelze GmbH and Co KG filed Critical Vacuumschmelze GmbH and Co KG
Priority to AT79103096T priority Critical patent/ATE1086T1/de
Publication of EP0009603A1 publication Critical patent/EP0009603A1/de
Application granted granted Critical
Publication of EP0009603B1 publication Critical patent/EP0009603B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0611Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars formed by a single casting wheel, e.g. for casting amorphous metal strips or wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/10Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying using centrifugal force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Definitions

  • the invention relates to a method for producing metal strips, in particular from an amorphous metal alloy, wherein a jet of the molten metal hits the rapidly moving surface of a heat sink and solidifies there, and a device for carrying out this method.
  • metal strips with an amorphous structure are produced by quenching a corresponding melt so quickly, typically at a cooling rate of about 10 6 ° C./s, that solidification occurs without crystallization.
  • cooling surfaces for the jet of molten metal can. serve, for example, the inner or outer surface of a rotating roller or an endlessly rotating belt.
  • the thickness of the strips obtained in this way can be, for example, a few hundredths of a millimeter, the width can be a few millimeters (see, for example, US Pat. No. 905,758, DE-A-26 06 581, DE-A-27 19 710 and DE-A-27 46 238).
  • an increasing waviness of the heat sink surface occurs after a short operating time, which is noticeable as a surface irregularity, such as depressions and increased roughness, on the belt surface.
  • the invention has for its object to reduce the heat load of the heat sink in a method of the type mentioned. At the same time, the surface quality of the strips produced is to be improved and premature breaking due to embrittlement is to be avoided.
  • melt jet and heat sink are additionally moved relative to one another transversely to the direction of the melt jet and transversely to the direction of movement of the heat sink.
  • a device for carrying out the method according to the invention with a heat sink, the surface of which rotates around at least one axis, and a storage container for the molten metal alloy can be designed accordingly in such a way that the storage container and heat sink relative to one another transversely to the direction of the melt jet emerging from the storage container and transversely to Direction of movement of the heat sink are displaceable.
  • the heat sink is preferably a rapidly rotating cooling roller, since it is particularly easy to handle and has a relatively large mass. In the case of prolonged operation, it may be advantageous to provide additional cooling of the cooling roll. To do this, it is sufficient to direct an inert gas or air flow against the surface of the rotating cooling roll.
  • the cooling roller preferably consists of this material because of the high thermal conductivity of pure copper.
  • the cooling roller can also consist of any other material with a relatively high thermal conductivity, such as copper-beryllium or steel alloys.
  • Typical speeds for the longitudinal movement of the cooling surface of a cooling roll are generally in the range from about 10 to 60 m / s. However, a lower speed of the heat sink is generally sufficient for the production of metal strips with a polycrystalline structure.
  • the preferred speed of the relative movement between the melt jet and the cooling roll depends on the width of the metal strip produced.
  • a speed in the range between 1 mm / s and 5 cm / s is particularly suitable for narrow strips, for example up to a maximum width of 10 mm, while speeds of 5 cm / s to 30 cm / s can be used particularly advantageously with wider strips . If, on the other hand, you are working in the production of very narrow strips at a speed of Relative movement in the range of 5 to 30 cm / s, there is a risk that the bands are curved like a saber.
  • the relative speed is therefore preferably at least two orders of magnitude lower than the surface speed of the heat sink.
  • the molten jet can repeatedly drive over as large a surface area of the moving heat sink as possible, particularly in the case of larger amounts of melt, it is also advantageous if means are provided for periodically changing the direction of the relative movement.
  • correspondingly arranged electrical contacts can reverse the direction of movement when the melt jet approaches an end of the region.
  • the maximum range for the relative movement of the melt jet transverse to its direction of flow is limited by the width of the heat sink surface. However, it will generally be chosen to be somewhat smaller.
  • the method according to the invention can be carried out in a manner known per se in air, in an inert atmosphere, for example nitrogen or argon, or under vacuum.
  • an improved uniformity of the metal strip produced can be achieved because the oxidizing attack of the atmospheric oxygen is switched off.
  • the device can therefore advantageously have a vacuum chamber in which the reservoir for the melt and the heat sink are arranged.
  • the storage container 15 containing the molten metal and the moving cooling roller 11 are arranged in a vacuum chamber 10 which is connected to a vacuum pump by a feed, not shown.
  • the cooling roller 11 is driven via a shaft 12 by an electric motor 14 with speed control located outside the vacuum chamber.
  • a corresponding rotary leadthrough into the interior of the vacuum chamber is designated by 13.
  • the storage container 15, which is surrounded by an induction heating winding 16, is mounted on a subframe 17 which can move on guide rails 18 transversely to the longitudinal direction of the storage container.
  • the subframe 17 is driven via a drive spindle 19 by an electric motor 20 which is also located outside the vacuum chamber 10.
  • the respective direction of movement of the subframe 17 can be reversed, contacts 22 triggering a change in the direction of rotation of the electric motor 20 .
  • an opening 23 for example a nozzle, at the lower end of the supply. container 15, the melt stream of the liquid metal can escape and then hit the surface of the rotating cooling roller 11, where it solidifies into a continuous belt.
  • an alloy of the composition Fe 4, N 'was 40 p B I4, are used whose melting temperature is about 950 ° C and their crystallization temperature at about 360 ° C.
  • the melt in the quartz storage tank was increased to approximately by an induction heating winding. Heated 1000 ° C and then pressed through a nozzle.
  • the molten jet of this alloy hit the surface of a rapidly rotating chill roll made of oxygen-free copper, where it solidified into a solid band.
  • the longitudinal speed of the cooling roll surface was set at about 30 m / s. During the outflow, the molten jet was moved transversely to its outflow direction.
  • the maximum deflection of this movement was approximately 15 cm.
  • the speed of the melt jet moving relative to the rotating cooling roll was set at 15 cm / s.
  • the amorphous metal strip produced by the described method was 5 mm wide and had a uniform surface without any ripple.
  • the width of the metal strip to be produced should be covered in about 0.2 to 1 s by the relative movement of the melt jet to the heat sink.
  • speeds of the relative movement of 1 to 5 mm / s are advantageous for bands of 1 mm width and speeds of the relative movement of between 1 and 5 cm / s are advantageous for bands of 10 mm width.
  • the method and the device according to the invention are particularly suitable for metal alloys which, after rapid cooling from the melt, have an amorphous structure. Since these alloys are metastable, a reduced cooling rate due to increasing heating of the surface of the heat sink to a temperature near or above the so-called critical crystallization temperature inevitably leads to the embrittlement of the strips.
  • the method according to the invention and the audible device can also be applied to polycrystalline metal alloys if the advantage of strip production directly from the melt is also important.
  • the device according to the invention can also be modified in a manner known per se by using the inside of a rotating roller, two counter-rotating rollers or an endlessly rotating belt as the heat sink.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Continuous Casting (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zur Herstellung von Metallbändern, insbesondere aus einer amorphen Metallegierung, wobei ein Strahl des schmelzflüssigen Metalls auf die schnell bewegte Oberfläche eines Kühlkörpers trifft und dort erstarrt, und eine Vorrichtung zur Durchführung dieses Verfahrens.
  • Verfahren, die eine Herstellung von Metallbändern direkt aus der Schmelze gestatten, sind bekannt. So werden beispielsweise Metallbänder mit amorpher Struktur dadurch hergestellt, daß man eine entsprechende Schmelze so rasch abschreckt, typischerweise mit einer Abkühlgeschwindigkeit von etwa 106 °C/s, daß ein Erstarren ohne Kristallisation eintritt. Als bekannte Kühlflächen für den Strahl des schmelzflüssigen Metalls können. beispielsweise die innere oder äußere Oberfläche einer rotierenden Walze oder eines endlos umlaufenden Bandes dienen. Die Dicke der auf diese Weise erhaltenen Bänder kann beispielsweise einige Hundertstel mm, die Breite einige mm betragen (vgl. z. B. US--A-905 758, DE-A-26 06 581, DE-A-27 19 710 und DE-A-27 46 238).
  • Es hat sich nun herausgestellt, daß bei der Herstellung derartiger Metallbänder, insbesondere im kontinuierlichen Betrieb, die Wärmebelastung der Kühlfläche durch das Auftreffen größerer Mengen des schmelzflüssigen Metalls auf die gleiche Umfangslinie ein großes Problem darstellt. Es besteht dabei nämlich die Gefahr, daß sich die Oberflächentemperatur des Kühlkörpers erhöht, wodurch wiederum die Abkühlungsgeschwindigkeit des schmelzflüssigen Metalls verringert wird. Dadurch kann eine Versprödung des Bandes eintreten, die zum Bruch führen kann.
  • Zur rascheren Abfuhr der Wärme kann man zwar eine entsprechende Wasserkühlung im Innern des Kühlkörpers vorsehen. Dies ist aber verhältnismäßig aufwendig.
  • Ferner tritt bei den bekannten Vorrichtungen schon nach einer kurzen Betriebszeit eine zunehmende Welligkeit der Kühlkörperoberfläche auf, die sich als eine Oberflächenunregelmäßigkeit, wie beispielsweise Vertiefungen und erhöhte Rauhigkeit, auf der Bandoberfläche bemerkbar macht.
  • Der Erfindung liegt die Aufgabe zugrunde, bei einem Verfahren der eingangs genannten Art die Wärmebelastung des Kühlkörpers zu verringern. Gleichzeitig soll die Oberflächenbeschaffenheit der hergestellten Bänder verbessert und ein vorzeitiges Brechen infolge Versprödung vermieden werden.
  • Erfindungsgemäß wird dies dadurch erreicht, daß Schmelzstrahl und Kühlkorper zusätzlich relativ zueinander quer zur Richtung des Schmelzstrahls und quer zur Bewegungsrichtung des Kühlkörpers bewegt werden.
  • Eine Vorrichtung zur Durchführung des erfindungsgemäßen Verfahrens mit einem Kühlkörper, dessen Oberfläche um wenigstens eine Achse umläuft, und einem Vorratsbehälter für die schmelzflüssige Metallegierung kann entsprechend derart ausgebildet werden, daß Vorratsbehälter und Kühlkörper relativ zueinander quer zur Richtung des aus dem Vorratsbehälter austretenden Schmelzstrahls und quer zur Bewegungsrichtung des Kühlkörpers verschiebbar sind.
  • Es hat sich gezeigt, daß das Verfahren und die zugehörige Vorrichtung gemäß der Erfindung in vorteilhafter Weise die Wärmebelastung des Kühlkörpers bei kontinuierlichem Betrieb erheblich reduzieren, da der Strahl des schmelzflüssigen Metalls innerhalb der Zeit für eine kritische Erwärmung immer wieder auf eine neue Umfangslinie des Kühlkörpers auftrifft.
  • Als besonders günstig hat es sich erwiesen, wenn der Kühlkörper fest angeordnet ist und der Schmelzstrahl bewegt wird. Für die kontinuierliche Herstellung von Metallbändern ist est ferner günstig, wenn die Geschwindigkeit der Relativbewegung klein gegenüber der Oberflächengeschwindigkeit des Kühlkörpers ist. Vorzugsweise ist der Kühlkörper eine schnell rotierende Kühlwalze, da diese besonders einfach zu handhaben ist und eine relativ große Masse besitzt. Bei längerem Betrieb kann es günstig sein, eine zusätzliche Kühlung der Kühlwalze vorzusehen. Hierzu reicht es aber aus, eine Inertgas- oder Luftströmung gegen die Oberfläche der rotierenden Kühlwalze zu richten.
  • Ferner ist es vorteilhaft, wenn die Kühlwalze wegen der hohen Wärmeleitfähigkeit reinen Kupfers bevorzugt aus diesem Material besteht. Grundsätzlich kann die Kühlwalze jedoch auch aus jedem beliebigen anderen Material mit relativ hoher Wärmeleitfähigkeit bestehen, wie beispielsweise Kupfer-Beryllium- oder Stahllegierungen.
  • Typische Geschwindigkeiten für die Längsbewegung der Kühloberfläche einer Kühlwalze liegen in der Regel im Bereich von etwa 10 bis 60 m/s. Für die Herstellung von Metallbändern mit polykristalliner Struktur genügt jedoch im allgemeinen eine geringere Geschwindigkeit des Kühlkörpers.
  • Die vorzugsweise zu wählende Geschwindigkeit der Relativbewegung zwischen Schmelzstrahl und Kühlwalze hängt von der Breite des hergestellten Metallbandes ab. Eine Geschwindigkeit im Bereich zwischen 1 mm/s und 5 cm/s eignet sich vornehmlich für schmale Bänder, etwa bis zu einer Maximalbreite von 10 mm, während Geschwindigkeiten von 5 cm/s bis 30 cm/s besonders günstig bei breiteren Bändern angewandt werden können. Arbeitet man dagegen bei der Herstellung sehr schmaler Bänder mit einer Geschwindigkeit der Relativbewegung im Bereich von 5 bis 30 cm/s, so besteht die Gefahr, daß die Bänder säbelartig gekrümmt werden. Generell ist also die relative Geschwindigkeit vorzugsweise mindestens um zwei Größenordnungen kleiner als die Oberflächengeschwindigkeit des Kühlkörpers.
  • Damit der schmelzflüssige Strahl insbesondere bei größeren Schmelzmengen einen möglichst großen Oberflächenbereich des bewegten Kühlkörpers wiederholt überfahren kann, ist es ferner vorteilhaft, wenn Mittel zur periodischen Richtungsänderung der Relativbewegung vorgesehen sind. So könne beispielsweise entsprechend angeordnete elektrische Kontakte bei Annäherung des Schmelzstrahls an ein Bereichsende für die Umkehrung der Bewegunsrichtung sorgen. Der maximale Bereich für die Relativbewegung des Schmelzstrahls quer zu dessen Fließrichtung ist durch die Breite der Kühlkörperoberfläche begrenzt. Er wird jedoch im allgemeinen etwas kleiner gewählt werden.
  • Das Verfahren nach der Erfindung kann in an sich bekannter Weise an Luft, in einer inerten Atmosphäre, beispielsweise Stickstoff oder Argon, oder unter Vakuum durchgeführt werden. Insbesondere bei Anwendung eines Vakuums kann eine verbesserte Gleichmäßigkeit des erzeugten Metallbandes erreicht werden, weil hierbei der oxidierende Angriff des Luftsauerstoffs ausgeschaltet ist. Die Vorrichtung kann daher vorteilhaft eine Vakuumkammer besitzen, in der der Vorratsbehälter für die Schmelze und der Kühlkörper angeordnet sind.
  • Anhand einer Figur, die schematisch eine Ausführungsform der erfindungsgemäßen Vorrichtung darstellt, und anhand eines Ausführungsbeispiels soll die Erfindung noch näher erläutert werden.
  • Bei der in der Figur gezeigten Vorrichtung sind der das schmelzflüssige Metall enthaltende Vorratsbehälter 15 und die bewegte Kühlwalze 11 in einer Vakuumkammer 10 angeordnet, die durch eine nicht gezeigte Zuführung mit einer Vakuumpumpe verbunden ist. Die Kühlwalze 11 wird über eine Welle 12 von einem außerhalb der Vakuumkammer befindlichen Elektromotor 14 mit Drehzahlregelung angetrieben. Eine entsprechende Drehdurchführung in das Innere der Vakuumkammer ist mit 13 bezeichnet. Der Vorratsbehälter 15, der mit einer Induktionsheizwicklung 16 umgeben ist, ist auf einem Fahrschemel 17 montiert, der sich auf Führungsschienen 18 quer zur Längsrichtung des Vorratsbehälters bewegen kann. Angetrieben wird der Fahrschemel 17 über eine Antriebsspindel 19 von einem ebenfalls außerhalb der Vakuumkammer 10 befindlichen Elektromotor 20. Bei Berührung eines der Kontakte 21 kann die jeweilige Bewegungsrichtung des Fahrschemels 17 umgekehrt werden, wobei Kontakte über eine Steuerung 22 eine Änderung der Drehrichtung des Elektromotors 20 auslösen. Durch eine Öffnung 23, beispielsweise eine Düse, am unteren Ende des Vorrats- . behälters 15 kann der Schmelzstrahl des flüssigen Metalls austreten und dann auf die Oberfläche der rotierenden Kühlwalze 11 treffen, wo er sich zu einem kontinuierlichen Band verfestigt.
  • Zur Herstellung eines Metallbandes mit amorpher Struktur wurde eine Legierung der Zusammensetzung Fe4,N'40 p I4B, verwendet, deren Schmelztemperatur bei etwa 950°C und deren Kristallisationstemperatur bei etwa 360°C liegt. Die im Vorratsbehälter aus Quarz befindliche Schmelze wurde durch eine Induktionsheizwicklung auf etwa. 1000°C erhitzt und dann durch eine Düse gepreßt. Der schmelzflüssige Strahl dieser Legierung traf auf die Oberfläche einer schnell rotierenden Kühlwalze aus sauerstofffreiem Kupfer, wo er zu einem festen Band erstarrte. Die Geschwindigkeit der Kühlwalzenoberfläche in Längsrichtung war auf etwa 30 m/s eingestellt. Während des Ausfließens wurde der schmelzflüssige Strahl quer zu seiner Ausflußrichtung bewegt. Die maximale Auslenkung dieser Bewegung, deren Richtung durch Kontakte an den Bereichsgrenzen umgekehrt werden konnte, betrug etwa 15 cm. Die Geschwindigkeit des relativ zu der rotierenden Kühlwalze bewegten Schmelzstrahls war auf 15 cm/s eingestellt. Das nach dem beschriebenen Verfahren erzeugte amorphe Metallband war 5 mm breit und wies eine gleichmäßige Oberfläche ohne jegliche Welligkeit auf.
  • Bei weiteren Versuchen zeigte sich, daß gelegentlich säbelartige Krümmungen der Bänder auftraten. Es wurde dann die Relativbewegung von 15 cm/s auf 1 cm/s verringert. Die so hergestellten 5 mm breiten Bänder wiesen keine säbelartigen Krümmungen mehr auf. Weitere Versuche ergaben, daß höhere Relativgeschwindigkeiten bei der Herstellung breiterer Metallbänder günstig sind.
  • In der Regel kann man also davon ausgehen, daß die Breite des herzustellenden Metallbandes in etwa 0,2 bis 1 s durch die Relativbewegung des Schmelzstrahls zum Kühlkörper überstrichen werden sollte. So sind beispielsweise für Bänder von 1 mm Breite Geschwindigkeiten der Relativbewegung von 1 bis 5 mm/s und für Bänder von 10 mm Breite Geschwindigkeiten der Relativbewegung zwischen 1 und 5 cm/s günstig.
  • Das Verfahren und die Vorrichtung nach der Erfindung eignen sich insbesondere für Metallegierungen, die nach raschem Abkühlen aus der Schmelze eine amorphe Struktur aufweisen. Da diese Legierungen metastabil sind, führt eine verminderte Abkühlgeschwindigkeit infolge zunehmender Erwärmung der Oberfläche des Kühlkörpers auf eine Temperatur nahe oder oberhalb der sogenannten kritischen Kristallisationstemperatur unweigerlich zu der Versprödung der Bänder. Außerdem kann das erfindungsgemäße Verfahren und die zugehörige Vorrichtung auch bei polykristallinen Metallegierungen angewendet werden, wenn es ebenfalls auf den Vorteil einer Bandherstellung direkt aus der Schmelze ankommt.
  • Die erfindungsgemäße Vorrichtung kann in an sich bekannter Weise auch dadurch abgewandelt werden, daß man als Kühlkörper die Innenseite einer rotierenden Walze, zwei gegeneinander drehende Walzen oder ein endlos umlaufendes Band verwendet.

Claims (13)

1. Verfahren zur Herstellung von Metallbändern, insbesondere aus einer amorphen Metallegierung, wobei ein Strahl des schmelzflüssigen Metalls aus einem Vorratsbehälter (15) auf die schnell bewegte Oberfläche eines Kühlkörpers (11) trifft und dort erstarrt, dadurch gekennzeichnet, daß Schmelzstrahl. und Kühlkörper (11) zusätzlich relativ zueinander quer zur Richtung des Schmelzstrahls und quer zur Bewegungsrichtung des Kühlkörpers (11) bewegt werden.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Richtung der zusätzlichen Relativbewegung periodisch geändert wird.
3. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß der Schmelzstrahl bewegt wird.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Geschwindigkeit der Relativbewegung höchstens ein Hundertstel der Oberflächengeschwindigkeit des Kühlkörpers (11) beträgt.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Breite des herzustellenden Metallbandes in etwa 0,2 bis 1 s durch die Relativbewegung des Schmelzstrahls zum Kühlkörper (11) überstrichen wird.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß die Geschwindigkeit der Relativbewegung zwischen 1 mm/s und 5 cm/s gewählt wird.
7. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß die Geschwindigkeit der Relativbewegung 5 bis 30 cm/s beträgt.
8. Vorrichtung zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 7 mit einem Kühlkörper (11), dessen Oberfläche um wenigstens eine Achse umläuft, und einem Vorratsbehälter (15) für die schmelzflüssige Metallegierung, dadurch gekennzeichnet, daß Vorratsbehälter (15) und Kühlkörper (11) relativ zueinander quer zur Richtung des aus dem Vorratsbehälter (15) austretenden Schmelzstrahls und quer zur Bewegunsrichtung des Kühlkörpers (11) verschiebbar sind.
9. Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, daß der Vorratsbehälter (15) gegenüber dem fest angeordneten Kühlkörper (11) verschiebbar ist.
10. Vorrichtung nach einem der Ansprüche 8 oder 9, dadurch gekennzeichnet, daß als Kühlkörper (11) eine Walze vorgesehen ist.
11. Vorrichtung nach Anspruch 10, dadurch gekennzeichnet, daß die Kühlwalze aus hochwärmeleitfähigem Kupfer besteht.
12. Vorrichtung nach einem der Ansprüche 8 bis 11, dadurch gekennzeichnet, daß die Richtung der Relativbewegung periodisch änderbar ist.
13. Vorrichtung nach einem der Ansprüche 8 bis 12, dadurch gekennzeichnet, daß Vorratsbehälter (15) und Kühlkörper (11) in einer Vakuumkammer (10) angeordnet sind.
EP79103096A 1978-09-29 1979-08-23 Verfahren und Vorrichtung zur Herstellung von Metallbändern Expired EP0009603B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT79103096T ATE1086T1 (de) 1978-09-29 1979-08-23 Verfahren und vorrichtung zur herstellung von metallbaendern.

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE2842421 1978-09-29
DE19782842421 DE2842421C2 (de) 1978-09-29 1978-09-29 Verfahren und Vorrichtung zur Herstellung von Metallbändern
DE19782846628 DE2846628C2 (de) 1978-10-26 1978-10-26 Verfahren zur Herstellung von Metallbändern
DE2846628 1978-10-26

Publications (2)

Publication Number Publication Date
EP0009603A1 EP0009603A1 (de) 1980-04-16
EP0009603B1 true EP0009603B1 (de) 1982-05-26

Family

ID=25775884

Family Applications (1)

Application Number Title Priority Date Filing Date
EP79103096A Expired EP0009603B1 (de) 1978-09-29 1979-08-23 Verfahren und Vorrichtung zur Herstellung von Metallbändern

Country Status (4)

Country Link
US (1) US4293023A (de)
EP (1) EP0009603B1 (de)
CA (1) CA1129169A (de)
DE (1) DE2962959D1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6024247A (ja) * 1983-07-18 1985-02-06 Unitika Ltd 液体急冷金属製品の連続製造方法
FR2700282B1 (fr) * 1993-01-13 1995-03-03 Seva Procédé et installation de fabrication de rubans métalliques amorphes par hypertrempe.
FR2732628B1 (fr) * 1995-04-05 1997-05-30 Seva Installation et procede de fabrication de ruban ou de fibre metallique amorphe par hypertrempe
JP2007111711A (ja) * 2005-10-18 2007-05-10 Denso Corp 箔ろう材の製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2899728A (en) * 1959-08-18 Method and apparatus for forming metal
US3297436A (en) * 1965-06-03 1967-01-10 California Inst Res Found Method for making a novel solid metal alloy and products produced thereby
GB1549124A (en) * 1976-05-04 1979-08-01 Allied Chem Chill roll castin of continuous filament
US4077462A (en) * 1976-06-30 1978-03-07 Allied Chemical Corporation Chill roll casting of continuous filament
AU503857B2 (en) * 1976-10-22 1979-09-20 Allied Chemical Corp. Continuous casting of metal strip
GB1595628A (en) * 1977-03-07 1981-08-12 Furukawa Electric Co Ltd Method of producing amorphous metal tapes
FR2393635A1 (fr) * 1977-06-06 1979-01-05 Michelin & Cie Procede de fabrication de fil metallique ondule pour armer des materiaux composites
JPS6038225B2 (ja) * 1977-09-12 1985-08-30 ソニー株式会社 非晶質合金の製造方法

Also Published As

Publication number Publication date
US4293023A (en) 1981-10-06
CA1129169A (en) 1982-08-10
DE2962959D1 (en) 1982-07-15
EP0009603A1 (de) 1980-04-16

Similar Documents

Publication Publication Date Title
DE3638901C2 (de)
DE2759736C2 (de) Verwendung einer Schlitzdüse und eines Kühlkörpers
DE2746238C2 (de) Vorrichtung zum Stranggießen eines dünnen Metallstreifens
DE2606581C3 (de) Verfahren zum Stranggießen eines Metallegierungsfadens und Verwendung von Metallegierungen hierfür
DE3018290C2 (de) Verfahren und Vorrichtung zum Herstellen feinkörniger Gußstücke
DE2719710C2 (de) Verfahren und Vorrichtung zum Abstreifen eines fadenartigen Metallstranges
DE2462387A1 (de) Verfahren und vorrichtung zum stranggiessen von faeden oder draehten
DE2837432C2 (de) Verfahren zum Stranggießen einer amorphen Legierung mittels Gießwalzen
EP0026812B1 (de) Vorrichtung zur Herstellung von amorphen Metallbändern
EP0009603B1 (de) Verfahren und Vorrichtung zur Herstellung von Metallbändern
DE3528891C2 (de)
DE2842421C2 (de) Verfahren und Vorrichtung zur Herstellung von Metallbändern
DE2812600C2 (de) Vorrichtung zur Herstellung von Granalien
DE19528291A1 (de) Verfahren und Vorrichtung zum Herstellen von Partikeln aus gerichtet erstarrten Gußkörpern
DE2824776C3 (de) Verfahren zum SRANGGIE;EN VON DRAHTFÖRMIGEN Verstärkungselementen
DE2950406A1 (de) Vorrichtung zum herstellen eines metallbandes
DE19626732A1 (de) Vorrichtung und Verfahren zum Herstellen und Recyclen von Sputtertargets
DE3444955A1 (de) Vorrichtung und verfahren zur herstellung mikrokristalliner metallischer werkstoffe
DE3876499T2 (de) Vorrichtung zur herstellung von nadelfoermigem metallgranulat.
DE3128063A1 (de) Verfahren und vorrichtung zum stranggiessen eines festen metallstreifens
DE3784826T2 (de) Anlage zur herstellung einer duennen metallschicht.
AT224692B (de) Verfahren zur Erzeugung eines Kristalls aus einem Einkristallmaterial
CH668721A5 (de) Verfahren und vorrichtung zum giessen von metallbaendern direkt aus der schmelze.
DE1458014A1 (de) Verfahren und Vorrichtung zur Herstellung von Kugel-Partikeln aus einem geschmolzenen Material
EP0231216A1 (de) Verfahren und vorrichtung zum giessen von kristallinen metallbändern

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT NL SE

17P Request for examination filed
ITF It: translation for a ep patent filed

Owner name: ING. ZINI MARANESI & C. S.R.L.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT NL SE

REF Corresponds to:

Ref document number: 1086

Country of ref document: AT

Date of ref document: 19820615

Kind code of ref document: T

REF Corresponds to:

Ref document number: 2962959

Country of ref document: DE

Date of ref document: 19820715

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19821125

Year of fee payment: 4

EN Fr: translation not filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19831125

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19900705

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19900801

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19900807

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19900808

Year of fee payment: 12

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19900831

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19901012

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19901015

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19910823

Ref country code: AT

Effective date: 19910823

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19910824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Effective date: 19910831

Ref country code: BE

Effective date: 19910831

BERE Be: lapsed

Owner name: VACUUMSCHMELZE G.M.B.H.

Effective date: 19910831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19920301

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19920501

EUG Se: european patent has lapsed

Ref document number: 79103096.8

Effective date: 19920306

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT