EP0002877A2 - Verfahren zur Gewinnung von Methan - Google Patents

Verfahren zur Gewinnung von Methan Download PDF

Info

Publication number
EP0002877A2
EP0002877A2 EP78200398A EP78200398A EP0002877A2 EP 0002877 A2 EP0002877 A2 EP 0002877A2 EP 78200398 A EP78200398 A EP 78200398A EP 78200398 A EP78200398 A EP 78200398A EP 0002877 A2 EP0002877 A2 EP 0002877A2
Authority
EP
European Patent Office
Prior art keywords
coal
pressure
cavities
borehole
seam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP78200398A
Other languages
English (en)
French (fr)
Other versions
EP0002877B1 (de
EP0002877A3 (en
Inventor
Johannes Wilhelmus Maria Steeman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stamicarbon BV
Original Assignee
Stamicarbon BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stamicarbon BV filed Critical Stamicarbon BV
Publication of EP0002877A2 publication Critical patent/EP0002877A2/de
Publication of EP0002877A3 publication Critical patent/EP0002877A3/xx
Application granted granted Critical
Publication of EP0002877B1 publication Critical patent/EP0002877B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F7/00Methods or devices for drawing- off gases with or without subsequent use of the gas for any purpose
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • E21B43/2605Methods for stimulating production by forming crevices or fractures using gas or liquefied gas
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/30Specific pattern of wells, e.g. optimising the spacing of wells
    • E21B43/305Specific pattern of wells, e.g. optimising the spacing of wells comprising at least one inclined or horizontal well

Definitions

  • the invention relates to a method for producing methane simultaneously from a plurality of coal seams by forming a column system above and below a certain seam and by means of which at least one at least partially cased borehole methane is discharged.
  • the amount of methane that is released in this way and can be partially recovered is usually a multiple of the amount of methane that will come from the seam itself. This is possible because there are other seams and coal corrugations in the cracked rock package above and below, each of which releases a certain amount of methane via the column system. If the geological structure of the seam bundle is known, a number of parameters - mostly changing for each field - can be used to calculate exactly how much methane is expected to be released via the column system (see, among others) Geologie en Mijnbouw, 41, 1962, pp. 55 to 57).
  • An advantage of the recovery of methane present in seams is that it is released in almost pure form and can be recovered as such; this is in contrast to the gas that is generated when coal is burned in situ.
  • the present invention has for its object to simultaneously extract methane from several seams and coal reefs without the need for a conventional extraction process dig is by forming in the rock package in which they are located, in a manner known per se from the classic underground coal mining, a crevice system through which the seams can degas and then discharging the released gas through at least one borehole.
  • this can be accomplished by drilling at least one borehole from above into a previously determined seam, after which a number of holes can be passed through the borehole or the boreholes and / or with the aid of the borehole or the boreholes Cavities separated by coal peaks are created until the coal peaks remaining between the cavities and the hanging area suddenly collapse under the influence of the static rock pressure, after which the methane released is extracted from the spaces in which there is no high pressure via at least one borehole. " suddenly” is understood to mean that the hanging part collapses within a few minutes to about a day.
  • the cavities are preferably under a pressure which forms a counterpressure to the static rock pressure, in such a way that the coal collisions do not collapse at a specific ratio of cavity width and coal collision width. Finally, the pressure is reduced so far that the coal piles collapse and the hanging thing collapses. According to one embodiment of the invention, the intervening coal puffs are destroyed by means of explosives.
  • the remaining excess pressure is preferably below 0.1 MPa.
  • a mining device according to the American patent 3,961,824 or embodiments derived therefrom is very well suited for this.
  • the device consists of a scraper system with shots that are inserted into the borehole when stretched and arranged in a zigzag shape.
  • the on Shots arranged in this manner are moved back and forth so that the scratches (or other means for releasing the coal) located on the joints of the shots can detach the wall of the borehole and thus the coal.
  • the coal thus released is discharged through the same borehole with the help of flushing liquid.
  • the length and width of the part of the room whose coal is mined in this way can be adjusted.
  • No generally applicable values can be given for the width of the cavity to be used and the interstices of coal. These depend, among other things, on the composition and the mechanical-physical properties of the overburden up to a few 10 m above the cavity, on the mechanical-physical properties of the coal, on the natural crack formation and on the (hydrostatic) (counter) pressure used.
  • the properties of rock and coal can be determined from the cores of the hole concerned. Then one can, taking into account the depth and the associated static rock pressure and the (hydrostatic) (counter) Pressure to calculate the dimensions to be used. These values can also be determined or controlled empirically.
  • the release of the hydrostatic (counter) pressure can be done in a very simple manner by one or more of the chambers with a gas, for. B. air, methane or nitrogen, drained under pressure through a separate pipe through the borehole. It is necessary that the collapse area that forms is drained as well as possible so that the pressure is so low that the seams can release the adsorbed gas as completely as possible. Of course, it is also possible to pump out the existing water in a different way using means known from the oil industry, if necessary through a separate borehole. It is also necessary to keep the collapse area water-free continuously or discontinuously if it is connected to a natural water inflow.
  • a gas for. B. air, methane or nitrogen
  • the methane adsorbed in the seams and coal reefs will escape and use the crevice system and the collapse area to find a way to the bottom of one or more of the boreholes with a slight excess pressure, and it can then be extracted in almost pure form at the mouth become.
  • the invention takes advantage of the fact that a large number of seams and coal reefs can give off methane through the formation of a fissure system and essentially consists of suddenly forming such a fissure system by e.g. under (hydrostatic) pressure initially forms a cavity system made up of chambers and pillars and this suddenly collapses when the pillars collapse.
  • a borehole 3 is drilled from the earth's surface 1 with the aid of a drilling rig 2. This borehole is deflected at a certain height via a seam 4 such that a part 5a of the borehole 3 strikes the seam 4 at a small angle at a point 6a, after which drilling continues in the plane of the seam 4.
  • the part which was drilled in the plane of the seam 4 is now expanded to a chamber 7a with the aid of the system already described or another system.
  • the length of this chamber 7a, of which the front surface shows a cross section in the drawing, can be several 100 m long.
  • a second borehole 5b is then drilled in a known manner from the borehole 3 and expanded into a chamber 7b in the plane of the seam 4.
  • a third part 5c drilled deflected and a chamber 7c created.
  • a lot of chambers can be formed around the borehole 3. All of this happens under possibly increased hydrostatic pressure to prevent premature collapse.
  • the width of the chambers and the width of the interposed coals 8a, 8b etc. are calculated in advance taking into account the factors already described, including the hydraulic pressure used.
  • this collapse area which can have a length and a width of several 100 m
  • the column system already described forms, through which a seam 9 methane enters the collapse area A, B, C, D can deliver, which can be extracted from there via at least one of the holes 5a, 5b and 5c and the borehole 3 for days.
  • the coal bursts can spontaneously decay even under the influence of the methane adsorbed in the coal and release the gas, in analogy to the sudden outbursts of firedamp (see Geologie en Mijnbouw, 41, 1962, p. 79 ff).
  • the borehole 3 can be arranged such that it is outside the fracture area of the hollow (s) formed due to the possible deflectability room and is not affected by it.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Piles And Underground Anchors (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Gewinnung von Methan gleichzeitig aus mehreren Flözen, indem oberhalb und unterhalb eines Flözes ein Spaltensystem gebildet und über dieses mit Hilfe von zumindest einem wenigstens teilweise verrohrten Bohrloch Methan abgeführt wird. Von über Tage aus wird bis in ein vorher hierzu bestimmtes Flöz zumindest ein Bohrloch eingebracht, wonach in dem Flöz eine Anzahl durch Kohlenstöße getrennte Hohlräume erzeugt wird, bis die zwischen den Hohlräumen verbliebenen Kohlenstöße und das Hangende unter dem Einfluß des statischen Gebirgsdrucks plötzlich zusammenstürzen. Aus den Räumen, in denen kein hoher Druck herrschen soll, wird das dann freiwerdende Methan über zumindest ein Bohrloch gewonnen. Vorzugsweise wird in den entstehenden Hohlräumen ein Druck aufrechterhalten, der einen Gegendruck zum statischen Gebirgsdruck bildet, und zwar derart, daß die Kohle bei einer bestimmten Breite der Hohlräume und einer bestimmten Breite der zwischenliegenden Stöße nicht hereinbricht. Nach Fertigstellung der Hohlräume wird dieser Druck so weit verringert, daß die Kohlenstöße zu Bruch gehen und das Hangende zusammenstürzt. Die Kohlenstöße können auch mittels Sprengstoff zerstört werden.

Description

  • Die Erfindung betrifft ein Verfahren zur Gewinnung von Methan gleichzeitig aus mehreren Kohlenflözen, indem oberhalb und unterhalb eines bestimmten Flözes ein Spaltensystem gebildet und über dieses mit Hilfe von zumindest einem wenigstens teilweise verrohrten Bohrloch Methan abgeführt wird.
  • Es ist bekannt, daß beim Einstürzen eines Hohlraums, der durch Entfernung eines Flözes gebildet wurde, in dem oberhalb aber auch unterhalb des eingestürzten Hohlraums befindlichen Gestein ein mehr oder weniger senkrechtes Spaltensystem gebildet wird und die Gesteinsschichten sich durch Senkung etwas voneinander trennen ('bedseparation'). Auf diese Weise entsteht ein ausgedehntes System von Spalten, durch die unabgebaute Flöze und Kohlenriffel, die sich im Bereich des Spaltensystems befinden, das in ihnen adsorbierte Methan mindestens teilweise in den gebildeten Hohlraum abgeben können, sofern dort ein Druck herrscht, der niedriger ist als der Druck des in den betreffenden Flözen adsorbierten Methans. Das Spaltensystem erstreckt sich normalerweise bis etwa 120 m über und etwa 100 m unter dem abgebauten Flöz (siehe Geologie en Mijnbouw, 41, 1962, S. 41 bis 44 und S. 53).
  • Es ist möglich und bekannt, das auf diese Weise freiwerdende Methan zumindest teilweise zu gewinnen, indem man in das gespaltene Gestein mindestens ein Bohrloch einbringt und das Methan, das sich im Spaltensystem befindet, über das wenigstens teilweise verrohrte Bohrloch abführt (siehe u. a. Geologie en Mijnbouw, 41, 1962, S. 59 bis 61).
  • Die Methanmenge, die auf diese Weise frei wird und teilweise gewonnen werden kann, beträgt meistens ein Vielfaches der Methanmenge, die aus dem weggenommenen Flöz selbst stammen wird. Dies ist möglich, weil in dem rissigen Gesteinspaket oberhalb und unterhalb andere Flöze und Kohlenriffel vorhanden sind, die je für sich über das Spaltensystem eine gewisse Menge Methan abgeben. Wenn der geologische Aufbau des Flözpakets bekannt ist, läßt sich anhand einer Anzahl von - für jedes Feld meistens wechselnden - Parametern genau berechnen, wieviel Methan erwartungsgemäß über das Spaltensystem freiwerden wird (siehe u. a. Geologie en Mijnbouw, 41, 1962, S. 55 bis 57).
  • Es ist bekannt, daß sich unter fast dem ganzen niederländischen Gebiet und großen Teilen der Nordsee in Teufen von 1000 m bis 5000 m ein Kohlenpaket mit einer Mächtigkeit von mindestens 20 m befindet, gemessen als die Gesamtmächtigkeit aller dort vorhandenen Flöze und Kohlenriffel. Auf einer Fläche von z. B. 100 x 100 km = 10 10 m2 befindet sich dann eine Steinkohlenmenge von 2 x 1011 m 3 = 200 Milliarden m3. Wenn man annimmt, daß im Durchschnitt 10 m3 CH4 je m3 Kohle adsorbiert sind (für das Peel-Gebiet wurden ca. 10 m3 CH4 je m3 Kohle ermittelt, in Südlimburg ca. 17 m3 CH4 je m3 Kohle, siehe den Bericht der Peelcommissie, Verhandelingen van het K.N.G.M.B. Mijnbouwkundige serie, Band 5, S. 83), so sind auf dieser Fläche 2 x 1012 m3 CH4 = 2000 Milliarden m3 CH4 in der Kohle adsorbiert. Dies ist eine Menge, die derjenigen des Gasvorkommens in Groningen entspricht, welches eines der größten Vorkommen darstellt. Das Methanvorkommen unter dem gesamten Gebiet der Niederlande und Teilen der Nordsee beträgt somit ein Vielfaches des Vorkommens in Groningen. Sollte es möglich sein, wenigstens einen Teil dieses Methans zu gewinnen, so wird in den Niederlanden auf lange Sicht kein Mangel an Erdgas auftreten. Ähnliche Verhältnisse findet man auch in einigen anderen europäischen Ländern vor.
  • Ein Vorteil der Gewinnung von in situ in Flözen vorhandenem Methan ist, daß es in nahezu reiner Form frei wird und als solches gewonnen werden kann; dies im Gegensatz zu dem Gas, das bei der Verbrennung von Steinkohle in situ entsteht.
  • Es ist bereits bekannt, in Steinkohle adsorbiertes Gas durch Steigerung der Permeabilität eines Flözes oder des unmittelbar oberhalb eines Flözes befindlichen Gebirges über Bohrlöcher zu gewinnen. Methoden hierfür sind aus der Erdölindustrie bekannt. Beispiele hierfür sind die sog. hydraulische Frac-Behandlung oder das hydraulische Heben des Deckgebirges eines Flözes und Versetzen des Raums mit Sand, wie dies u. a. in der Schachtanlage Klarenthal im Saarland geschehen ist (siehe u. a. Annales des Mines de Belgique, 1, 1976, S. 25). Diese Methoden sind für die Entgasung eines einzigen Flözes zweckmäßig. Handelt es sich um viele Flöze sind diese Methoden jedoch durch die häufige Wiederholung des gleichen Verfahrens sehr aufwendig.
  • Der vorliegenden Erfindung liegt die Aufgabe zugrunde, Methan gleichzeitig aus mehreren Flözen und Kohlenriffeln zu gewinnen, ohne daß ein konventionelles Gewinnungsverfahren notwendig ist, indem man in dem Gesteinspaket, in dem sich diese befinden, auf eine aus dem klassischen Steinkohlenbergbau unter Tage an sich bekannte Weise ein Spaltensystem bildet, über welches sich die Flöze entgasen können, und das freiwerdende Gas anschließend durch zumindest ein Bohrloch abführt.
  • Nach der Erfindung kann dies bewerkstelligt werden, indem von über Tage aus bis in ein vorher dazu bestimmtes Flöz zumindest ein Bohrloch eingebracht wird, wonach in dem betreffenden Flöz durch das Bohrloch oder die Bohrlöcher und/oder mit Hilfe des Bohrlochs oder der Bohrlöcher solange eine Anzahl durch Kohlenstöße getrennte Hohlräume erzeugt wird, bis die zwischen den Hohlräumen verbliebenen Kohlenstöße und das Hangende unter dem Einfluß des statischen Gebirgsdrucks plötzlich zusammenstürzen, wonach aus den Räumen, in denen kein hoher Druck herrscht, das freiwerdende Methan über zumindest ein Bohrloch gegewonnen wird. Unter "plötzlich" wird verstanden, daß das Hangende innerhalb einiger Minuten bis etwa einem Tag hereinbricht.
  • Vorzugsweise stehen die Hohlräume unter einem Druck, der einen Gegendruck zum statischen Gebirgsdruck bildet, und zwar derart, daß die Kohlenstöße bei einem bestimmten Verhaltnia von Hohlraumbreite und Kohlenstoßbreite nicht zusammenstürzen. Schließlich wird der Druck so weit herabgesetzt, daß die Kohlenstöße zusammenstürzen und das Hangende hereinbricht. Gemäß einer Ausführungsform der Erfindung werden die zwischenliegenden Kohlenstöße mittels Sprengstoff zerstört.
  • Es geht hervor, daß der restliche Überdruck vorzugsweise unter 0,1 MPa liegt.
  • Obwohl man bei der Ausübung des erfindungsgemäßen Verfahrens die Hohlräume durch partielle Verbrennung der Kohle, Lösen, Extraktion u. dgl. bilden kann, sind diese Methoden wegen der dafür zu erfüllenden Bedingungen weniger gut geeignet. So benötigt man ziemlich viele Bohrlöcher, und es lassen sich die erforderlichen Abmessungen der Hohlräume und Kohlenstöße weniger gut unter Kontrolle halten. Vorzugsweise wird so gearbeitet, daß die Hohlräume unter hydraulischem Gegendruck erzeugt werden.
  • Es ist vorteilhaft, die Hohlräume mit mechanischen Mitteln zu erzeugen. Sehr gut geeignet hierfür ist ein Abbaugerät nach der amerikanischen Patentschrift 3,961,824 oder davon abgeleitete Ausführungsformen. Das Gerät besteht aus einer Kratzeranlage mit Schüssen, die in gestrecktem Zustand in das Bohrloch eingebracht und darin zickzackförmig angeordnet werden. Die auf diese Weise angeordneten Schüsse werden hin- und herbewegt, so daß die Kratzer (oder andere Mittel zum Lösen der Kohle), die sich auf den Gelenken der Schüsse befinden, die Wand des Bohrlochs und somit die Kohle loslösen können. Die so gelöste Kohle wird mit Hilfe von Spülflüssigkeit durch das gleiche Bohrloch abgeführt. Die Länge und die Breite des Raumteiles, dessen Kohle auf diese Weise abgebaut wird, ist einstellbar. Durch die Wahl eines geeigneten Hohlraumsystems, wie z. B. in Abb. 1 der amerikanischen Patentschrift 3,961,824 dargestellt, kann man die gestellten Bedingungen erfüllen.
  • Für die anzuwendende Breite des Hohlraums und der zwischenliegenden Kohlenstöße lassen sich keine allgemein gültigen Werte angeben. Diese hängen u. a. von der Zusammensetzung und den mechanisch-physikalischen Eigenschaften des Deckgebirges bis einige 10 m über dem Hohlraum, von den mechanisch-physikalischen Eigenschaften der Kohle, von der natürlichen Rißbildung sowie von dem benutzten (hydrostatischen) (Gegen-)Druck ab. Die Eigenschaften von Gestein und Kohle kann man aus Kernen der betreffenden Bohrung ermitteln. Anschließend kann man, unter Berücksichtigung der Teufe und des damit zusammenhängenden statischen Gebirgsdrucks und des zu benutzenden (hydrostatischen) (Gegen-) Drucks, die zu benutzenden Abmessungen berechnen. Diese Werte können auch empirisch bestimmt bzw. kontrolliert werden.
  • Die Aufhebung des hydrostatischen (Gegen-)Drucks kann auf sehr einfache Weise erfolgen, indem man eine oder mehrere der Kammern mit einem Gas, z. B. Luft, Methan oder Stickstoff, über eine separate.Leitung durch das Bohrloch unter Druck entleert. Es ist erforderlich, daß das sich dabei bildende Einsturzgebiet so gut wie möglich entwässert wird, damit der Druck so niedrig ist, daß die Flöze das adsorbierte Gas möglichst ganz abgeben können. Selbstverständlich ist es auch möglich, das vorhandene Wasser auf anderem Wege mit aus der Ölindustrie bekannten Mitteln, erforderlichenfalls durch ein separates Bohrloch, abzupumpen. Auch ist es nötig, das Einsturzgebiet kontinuierlich oder diskontinuierlich wasserfrei zu halten, wenn es mit einem natürlichen Wasserzufluß in Verbindung steht.
  • Gleich nach dem Einsturz wird das in den Flözen und Kohlenriffeln adsorbierte Methan austreten und sich über das Spaltensystem sowie das Einsturzgebiet mit einem geringen Überdruck einen Weg zur Sohle von einem oder mehreren der Bohrlöcher suchen, und es kann anschließend in nahezu reiner Form an der Mündung gewonnen werden.
  • Die Erfindung macht sich die Tatsache zunutze, daß eine große Anzahl von Flözen und Kohlenriffeln durch Bildung eines Spaltensystems Methan abgeben kann, und besteht im wesentlichen darin, ein solches Spaltensystem plötzlich zu bilden, indem man z.B. unter (hydrostatischem) Druck zunächst ein aus Kammern und Pfeilern aufgebautes Hohlraumsystem bildet und dies durch zusammenbrechen der Pfeiler plötzlich einstürzen läßt.
  • Die Erfindung wird anhand einer Zeichnung näher erläutert. Von der Erdoberfläche 1 aus wird mit Hilfe einer Bohranlage 2 ein Bohrloch 3 gebohrt. Dieses Bohrloch wird in gewisser Höhe über ein Flöz 4 derart abgelenkt, daß ein Teil 5a des Bohrlochs 3 unter einem kleinen Winkel bei einem Punkt 6a auf das Flöz 4 auftrifft, wonach in der Ebene des Flözes 4 weiter gebohrt wird. Der Teil, der in der Ebene des Flözes 4 gebohrt wurde, wird nun mit Hilfe der bereits beschriebenen Anlage oder einer anderen Anlage zu einer Kammer 7a erweitert. Die Länge dieser Kammer 7a, von der die Vorderfläche in der Zeichnung einen Querschnitt zeigt, kann mehrere 100 m lang sein.
  • Anschließend wird vom Bohrloch 3 aus auf bekannte Weise ein zweites Bohrloch 5b abgelenkt gebohrt und in der Ebene des Flözes 4 zu einer Kammer 7b erweitert. Auf gleiche Weise wird auch ein dritter Teil 5c abgelenkt gebohrt und eine Kammer 7c erzeugt. Auf dieselbe Weise kann um das Bohrloch 3 noch eine Menge Kammern gebildet werden. Dies alles geschieht unter evtl. erhöhtem hydrostatischem Druck, um ein vorzeitiges Hereinbrechen zu verhindern. Zwischen den Kammern 7a, 7b und 7c befinden sich Kohlenstöße 8a und 8b und evtl. weitere nicht dargestellte Stöße und Kammern. Die Breite der Kammern und die Breite der zwischenliegenden Kohlenstöße 8a, 8b usw. wird unter Berücksichtigung der bereits beschriebenen Faktoren, darunter auch dem benutzten hydraulischen Druck, vorher berechnet. Nach Fertigstellung der Kammern wird der hydraulische Druck weggenommen, evtl. mit Hilfe von Gasdruck über ein hier nicht gezeichnetes Rohr durch das Bohrloch 3, bis in eine oder mehrere der Kammern 7. Die zu erwartende Folge ist, daß die Zwischenwände 8a und 8b unter dem Einfluß des statischen Gebirgsdrucks hereinbrechen und das Hangende der Kammern 7a, 7b und 7c plötzlich einstürzt. Auf diese Weise bildet sich ein Einsturzgebiet, das in der Zeichnung durch Punkte A, B, C und D begrenzt wird. Oberhalb und unterhalb dieses Einsturzgebiets, das eine Länge und eine Breite von mehreren 100 m haben kann, bildet sich das bereits beschriebene Spaltensystem, durch das ein Flöz 9 Methan in den Einsturzraum A, B, C, D abgeben kann, das von dort aus über mindestens eines der Löcher 5a, 5b und 5c und dem Bohrloch 3 über Tage gewonnen werden kann. Bemerkt wird, daß die Kohlenstöße dank der plötzlichen Druckentspannung selbst unter dem Einfluß des in der Kohle adsorbierten Methans spontan zerfallen können und das Gas abgeben, in Analogie zu den plötzlichen Schlagwetterausbrüchen (siehe Geologie en Mijnbouw, 41, 1962, S. 79 ff).
  • Bei Anwendung eines hohen hydrostatischen Drucks wird man die mit der Spülung mitgerissene Kohle durchschleusen müssen, um den Druck an Ort und Stelle aufrechtzuerhalten. Derartige Schleusen sind aus dem Bereich des hydraulischen Kohlentransports in vielen Varianten bekannt.
  • Das folgende Rechenbeispiel gibt einen Eindruck, wie groß in einem bestimmten Fall die zu erwartenden Methanmengen sein können. Es wird angenommen, daß von einem Flözpaket, dessen Flöze je m3 15 m3 adsorbiertes CH4 enthalten,ein Flöz 4 von 1 m Mächtigkeit größtenteils abgebaut wird und das bearbeitete Gebiet einstürzt. Oberhalb dieses Flözes 4 sollen sich in 10, 20, 30, 40 bzw. 80 m Entfernung fünf weitere Flöze mit einer Mächtigkeit von 0,8 m, 1,5 m, 1,0 m, 0,5 m bzw. 1,5 m befinden. Unter demselben Flöz 4 sollen sich in 10, 20, 40, 60 bzw. 80 m Entfernung ebenfalls fünf Flöze mit einer Mächtigkeit von 0,8 m, 1,5 m, 1,0 m, 0,5 m bzw. 1,5 m befinden. Nach der u. a. in Geologie en Mijnbouw, 41, 1962 angegebenen Methode kann berechnet werden, daß gut 70 m3 CH 4 je m2 Einsturzgebiet freiwerden. Auf ein so geschaffenes Einsturzgebiet von 200 x 300 m fallen somit 4 x 106 m3 CH4 an. Da auch noch Kohle abgebaut wird (angenommen von den vorhandenen 6 x 10 m eine Menge von 3 x 10 m3; der Rest bleibt als Kohlenstöße und Verluste zurück), so stellt sich heraus, daß nach Abzug der Ausbeute dieser abgebauten ca. 3 x 104 m3 Kohle die restlichen Kosten zur Gewinnung des Methans gering sind.
  • Bemerkt wird, daß vom Bohrloch 3 aus das gleiche Verfahren für mehrere Flözpakete verwendet werden kann. Wenn das ganze stratigrafische Profil mit den Abständen und Mächtigkeiten der Flöze und Kohlenriffel und die zu erwartenden Methaninhalte bekannt sind, so lassen sich mit Hilfe des Computers die am besten geeigneten Flözpakete und die abzubauenden Flöze ziemlich einfach und genau bestimmen.
  • Schließlich wird darauf hingewiesen, daß das Bohrloch 3 so angeordnet werden kann, daß es aufgrund der möglichen Ablenkbarkeit außerhalb des Bruchgebiets des (der) gebildeten Hohlraums (räume) liegt und dadurch nicht beeinträchtigt wird.

Claims (13)

1. Verfahren zur Gewinnung von Methan gleichzeitig aus mehreren Flözen, indem oberhalb und unterhalb eines Flözes ein Spaltensystem gebildet und über dieses mit Hilfe von zumindest einem wenigstens teilweise verrohrten Bohrloch Methan abgeführt wird, dadurch gekennzeichnet, daß von über Tage aus bis in ein vorher hierzu bestimmtes Flöz zumindest ein Bohrloch eingebracht wird, wonach in dem betreffenden Flöz durch das Bohrloch oder die Bohrlöcher und/oder mit Hilfe des Bohrlochs oder der Bohrlöcher solange eine Anzahl durch Kohlenstöße getrennte Hohlräume erzeugt wird, bis die zwischen den Hohlräumen verbliebenen Kohlenstöße und das Hangende unter dem Einfluß des statischen Gebirgsdrucks plötzlich zusammenstürzen, wonach aus den Räumen, in denen kein hoher Druck herrscht, das freiwerdende Methan über zumindest ein Bohrloch gewonnen wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß in den entstehenden Hohlräumen ein Druck aufrechterhalten wird, der einen Gegendruck zum statischen Gebirgsdruck bildet, und zwar derart, daß die Kohle bei einer bestimmten Breite der Hohlräume und einer bestimmten Breite der zwischenliegenden Stöße nicht hereinbricht und nach Fertigstellung der Hohlräume der Gegendruck so weit verringert wird, daß die Kohlenstöße zu Bruch gehen und das Hangende in die Hohlräume stürzt.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der restliche Überdruck weniger als 0,1 MPa beträgt.
4. Verfahren nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, daß der Gegendruck ein hydrostatischer Druck ist.
5. Verfahren nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, daß die Hohlräume durch partielles Verbrennen, Lösen oder Extrahieren der Kohle gebildet werden.
6. Verfahren nach den Ansprüchen 1 bis 4, dadurch gekennzeichnet, daß die Hohlräume mit Hilfe von an sich bekannten mechanischen Mitteln gebildet werden.
7. Verfahren nach den Ansprüchen 1 bis 5, dadurch gekennzeichnet, daß die Breite der Hohlräume und die der zwischenliegenden Kohlenstöße anhand der Zusammensetzung und der mechanisch-physikalischen Eigenschaften des Deckgebirges bis zu einigen 10 m über den Hohlräumen, ferner der mechanisch-physikalischen Eigenschaften der Kohle, der natürlichen Spaltung sowie des benutzten (Gegen-)Drucks ermittelt werden.
8. Verfahren nach den Ansprüchen 1 bis 6, dadurch gekennzeichnet, daß die Eigenschaften des Gebirges und der Kohle aus Kernen der betreffenden Bohrung ermittelt werden und unter Berücksichtigung der Teufe und des sich daraus ergebenden statischen Gebirgsdrucks und des zu benutzenden (Gegen-)Drucks anschließend die zu benutzenden Abmessungen errechnet werden.
9. Verfahren nach den Ansprüchen 1 bis 7, dadurch gekennzeichnet, daß der hydrostatische Druck zunächst über eine separate Leitung durch das Bohrloch durch einen Gasdruck ersetzt wird, der schließlich abgebaut wird.
10. Verfahren nach den Ansprüchen 1 bis 9, dadurch gekennzeichnet, daß das gebildete Einsturzgebiet wasserfrei gehalten wird.
11. Verfahren nach den Ansprüchen 1 bis 10, dadurch gekennzeichnet, daß zum Freihalten von Wasser ein zusätzliches Bohrloch verwendet wird.
12. Verfahren nach den Ansprüchen 1 bis 11, dadurch gekennzeichnet, daß das Verfahren nach einem oder mehreren der vorangehenden Ansprüche durch dasselbe Bohrloch in mehreren Flözpaketen ausgeführt wird.
13. Verfahren nach Anspruch 1 bis 12, dadurch gekennzeichnet, dass die Zwischenliegenden Kohlenstösse mittels Sprengstoff zerstört werden.
EP78200398A 1978-01-02 1978-12-30 Verfahren zur Gewinnung von Methan Expired EP0002877B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NL7800005 1978-01-02
NL7800005A NL7800005A (nl) 1978-01-02 1978-01-02 Werkwijze voor het in situ winnen van methaan uit zich op grote diepte bevindende koollagen.

Publications (3)

Publication Number Publication Date
EP0002877A2 true EP0002877A2 (de) 1979-07-11
EP0002877A3 EP0002877A3 (en) 1979-08-08
EP0002877B1 EP0002877B1 (de) 1981-08-05

Family

ID=19830073

Family Applications (1)

Application Number Title Priority Date Filing Date
EP78200398A Expired EP0002877B1 (de) 1978-01-02 1978-12-30 Verfahren zur Gewinnung von Methan

Country Status (4)

Country Link
US (1) US4245699A (de)
EP (1) EP0002877B1 (de)
DE (1) DE2860925D1 (de)
NL (1) NL7800005A (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0027678A1 (de) * 1979-10-19 1981-04-29 Noval Technologies Ltd Verfahren zur Gewinnung von Methan aus Kohleflözen
EP0228891A2 (de) * 1985-12-23 1987-07-15 Canadian Hunter Exploration Ltd. Verfahren zur Ausrüstung eines Produktionsbohrloches für die Gewinnung von Gas aus einem Kohlenflöz
CN103046949A (zh) * 2013-01-15 2013-04-17 中国矿业大学 一种偏置气液两相射流割缝增透装置及方法
CN106640020A (zh) * 2016-11-24 2017-05-10 安徽理工大学 高瓦斯低透气性煤层增加煤层透气性的方法
CN109630099A (zh) * 2018-10-29 2019-04-16 中国矿业大学 一种煤层气水平井塌孔造洞穴卸压开采模拟试验方法
PL424889A1 (pl) * 2018-03-14 2019-09-23 Andrzej Czechowski Sposób odmetanowania górotworu, zwłaszcza w kopalniach węgla

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4452489A (en) * 1982-09-20 1984-06-05 Methane Drainage Ventures Multiple level methane drainage shaft method
US4544037A (en) * 1984-02-21 1985-10-01 In Situ Technology, Inc. Initiating production of methane from wet coal beds
US4665990A (en) * 1984-07-17 1987-05-19 William Perlman Multiple-stage coal seam fracing method
US4566539A (en) * 1984-07-17 1986-01-28 William Perlman Coal seam fracing method
US4651836A (en) * 1986-04-01 1987-03-24 Methane Drainage Ventures Process for recovering methane gas from subterranean coalseams
US4978172A (en) * 1989-10-26 1990-12-18 Resource Enterprises, Inc. Gob methane drainage system
US5411098A (en) * 1993-11-09 1995-05-02 Atlantic Richfield Company Method of stimulating gas-producing wells
US5417286A (en) * 1993-12-29 1995-05-23 Amoco Corporation Method for enhancing the recovery of methane from a solid carbonaceous subterranean formation
US5419396A (en) * 1993-12-29 1995-05-30 Amoco Corporation Method for stimulating a coal seam to enhance the recovery of methane from the coal seam
US5400856A (en) * 1994-05-03 1995-03-28 Atlantic Richfield Company Overpressured fracturing of deviated wells
US5474129A (en) * 1994-11-07 1995-12-12 Atlantic Richfield Company Cavity induced stimulation of coal degasification wells using foam
US5944104A (en) * 1996-01-31 1999-08-31 Vastar Resources, Inc. Chemically induced stimulation of subterranean carbonaceous formations with gaseous oxidants
US5669444A (en) * 1996-01-31 1997-09-23 Vastar Resources, Inc. Chemically induced stimulation of coal cleat formation
US5964290A (en) * 1996-01-31 1999-10-12 Vastar Resources, Inc. Chemically induced stimulation of cleat formation in a subterranean coal formation
US5865248A (en) * 1996-01-31 1999-02-02 Vastar Resources, Inc. Chemically induced permeability enhancement of subterranean coal formation
US5967233A (en) * 1996-01-31 1999-10-19 Vastar Resources, Inc. Chemically induced stimulation of subterranean carbonaceous formations with aqueous oxidizing solutions
WO2001077628A1 (en) * 2000-04-11 2001-10-18 Welldog, Inc. In-situ detection and analysis of methane in coal bed methane formations with spectrometers
US6412556B1 (en) 2000-08-03 2002-07-02 Cdx Gas, Inc. Cavity positioning tool and method
US6824224B1 (en) * 2002-06-19 2004-11-30 Cimarron Technology, Ltd. Coalbed methane extraction process
DE10242775A1 (de) * 2002-09-14 2004-04-08 Alstom (Switzerland) Ltd. Verfahren zum Betrieb einer Abgasreinigungsanlage sowie Vorrichtung zur Durchführung des Verfahrens
US7051809B2 (en) * 2003-09-05 2006-05-30 Conocophillips Company Burn assisted fracturing of underground coal bed
US20060201715A1 (en) * 2003-11-26 2006-09-14 Seams Douglas P Drilling normally to sub-normally pressured formations
US20060201714A1 (en) * 2003-11-26 2006-09-14 Seams Douglas P Well bore cleaning
US7163063B2 (en) 2003-11-26 2007-01-16 Cdx Gas, Llc Method and system for extraction of resources from a subterranean well bore
US7419223B2 (en) * 2003-11-26 2008-09-02 Cdx Gas, Llc System and method for enhancing permeability of a subterranean zone at a horizontal well bore
US7225872B2 (en) * 2004-12-21 2007-06-05 Cdx Gas, Llc Perforating tubulars
US7353877B2 (en) * 2004-12-21 2008-04-08 Cdx Gas, Llc Accessing subterranean resources by formation collapse
WO2006069177A2 (en) * 2004-12-21 2006-06-29 Cdx Gas, Llc Accessing subterranean resources by formation collapse
US7182157B2 (en) * 2004-12-21 2007-02-27 Cdx Gas, Llc Enlarging well bores having tubing therein
CN103267984B (zh) * 2013-05-28 2015-11-25 山东科技大学 一种极近距离煤层/群的判别方法
CN106644732B (zh) * 2016-10-14 2023-12-05 宋世元 顶板垮落监测试验系统
CN107083961B (zh) 2017-05-10 2019-04-26 中国矿业大学 基于压裂圈的强地压巷道应力转移方法
CN112593912B (zh) * 2020-12-14 2022-05-17 山西晋城无烟煤矿业集团有限责任公司 一种煤层气水平井动力扩径卸压增透抽采方法
CN112593911B (zh) * 2020-12-14 2022-05-17 山西晋城无烟煤矿业集团有限责任公司 一种煤矿地面水平井分段动力掏煤扩径方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR964503A (de) * 1950-08-18
US3814480A (en) * 1973-03-23 1974-06-04 Continental Oil Co Method of controlling gas accumulation in underground mines
DE2434408A1 (de) * 1973-07-17 1975-02-13 Eek Wouter Hugo Van Verfahren und vorrichtung zur gewinnung von mineralien
US3934649A (en) * 1974-07-25 1976-01-27 The United States Of America As Represented By The United States Energy Research And Development Administration Method for removal of methane from coalbeds
FR2338987A1 (fr) * 1976-01-22 1977-08-19 Exxon Research Engineering Co Procede de recuperation d'hydrocarbures a partir de charbon

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1559316A (de) * 1967-07-10 1969-03-07
US3650564A (en) * 1970-06-15 1972-03-21 Jacobs Associates Mining method for methane drainage and rock conditioning
US3743353A (en) * 1971-12-20 1973-07-03 P Lupinsky Modified l furniture structure
US3961824A (en) * 1974-10-21 1976-06-08 Wouter Hugo Van Eek Method and system for winning minerals
US4089374A (en) * 1976-12-16 1978-05-16 In Situ Technology, Inc. Producing methane from coal in situ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR964503A (de) * 1950-08-18
US3814480A (en) * 1973-03-23 1974-06-04 Continental Oil Co Method of controlling gas accumulation in underground mines
DE2434408A1 (de) * 1973-07-17 1975-02-13 Eek Wouter Hugo Van Verfahren und vorrichtung zur gewinnung von mineralien
US3934649A (en) * 1974-07-25 1976-01-27 The United States Of America As Represented By The United States Energy Research And Development Administration Method for removal of methane from coalbeds
FR2338987A1 (fr) * 1976-01-22 1977-08-19 Exxon Research Engineering Co Procede de recuperation d'hydrocarbures a partir de charbon

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Mai 1975, Seiten 75-80 PERROTTE & QUINQUET. "Introduction du "Trackless" aux mines de Soumont". *
ZEITSCHRIFT "COAL AGE", Vol. 80, No. 8, Juli 1975 New York, U.S.A. MAURICE DEUL: "Speeding coal mining operations by recovering and utilising methane from coal beds", Seiten 104-106. *
ZEITSCHRIFT ANNALES DES MINES, Mai 1975, Zeilen 27-48 Paris E. TINCELIN. "Les mines de fer de Lorraine. Les resultats de l'experience et les perspectives d'avenir. * Seite 30, II.3.1. * *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0027678A1 (de) * 1979-10-19 1981-04-29 Noval Technologies Ltd Verfahren zur Gewinnung von Methan aus Kohleflözen
EP0228891A2 (de) * 1985-12-23 1987-07-15 Canadian Hunter Exploration Ltd. Verfahren zur Ausrüstung eines Produktionsbohrloches für die Gewinnung von Gas aus einem Kohlenflöz
EP0228891A3 (en) * 1985-12-23 1988-09-14 Canadian Hunter Exploration Ltd. Method of completing production wells for the recovery of gas from coal seams
CN103046949A (zh) * 2013-01-15 2013-04-17 中国矿业大学 一种偏置气液两相射流割缝增透装置及方法
CN103046949B (zh) * 2013-01-15 2014-11-19 中国矿业大学 一种偏置气液两相射流割缝增透装置及方法
CN106640020A (zh) * 2016-11-24 2017-05-10 安徽理工大学 高瓦斯低透气性煤层增加煤层透气性的方法
PL424889A1 (pl) * 2018-03-14 2019-09-23 Andrzej Czechowski Sposób odmetanowania górotworu, zwłaszcza w kopalniach węgla
CN109630099A (zh) * 2018-10-29 2019-04-16 中国矿业大学 一种煤层气水平井塌孔造洞穴卸压开采模拟试验方法
CN109630099B (zh) * 2018-10-29 2021-07-27 中国矿业大学 一种煤层气水平井塌孔造洞穴卸压开采模拟试验方法

Also Published As

Publication number Publication date
DE2860925D1 (en) 1981-11-05
NL7800005A (nl) 1979-07-04
US4245699A (en) 1981-01-20
EP0002877B1 (de) 1981-08-05
EP0002877A3 (en) 1979-08-08

Similar Documents

Publication Publication Date Title
EP0002877B1 (de) Verfahren zur Gewinnung von Methan
DE60219689T2 (de) Verfahren zum bohren eines produktionbohrloches ohne bohrlochperforieren und -packen
DE2649488C2 (de) Verfahren zur Gewinnung von Erdöl aus einer unterirdischen Formation
DE2924493A1 (de) Zerklueftungs-vorerwaermungs-oelgewinnungsverfahren
EP0471158B1 (de) Anlage zur Sicherung einer Deponie gegen vagabundierendes Austreten von Sickerwasser und verfahrensmässige Massnahmen
DE3404455C2 (de) Verfahren zur Untertagevergasung von Kohlenflözen
DE3047803A1 (de) "schachtverfahren fuer den abbau einer erdoelfuehrenden schicht mit sohlenwasser"
DE2047239C3 (de) Verfahren zum Abbau einer ein KaIimineral enthaltenen Formation mittels Lösungsmittel
DE3047625A1 (de) "schachtverfahren fuer den abbau von erdoellagerstaetten"
DE1277774B (de) Verfahren zur Erdoelgewinnung
DE2712869C2 (de) Verfahren zum Vermeiden von Wassereinbrüchen in untertägige Hohlräume
DE1934170A1 (de) Verfahren zum Eindaemmen und Entfernen von in das Erdreich eingedrungenem Mineraloel
DE3037807C2 (de) Verfahren zur Erweiterung eines Gebirgshohlraumes
DE3441993A1 (de) Verfahren zur untertagevergasung einer folge von flach und geneigt gelagerten kohlenfloezen
DE1533634A1 (de) Verfahren zur Gewinnung von Kohlenwasserstoffen aus unterirdischen,kohlenwasserstoffhaltigen Formationen
DE3140027C2 (de) Verfahren zum Vorrichten und Vergasen eines Kohleflözes in großer Teufe
DE936561C (de) Verfahren fuer das Abteufen von Schaechten
DE1815960C (de) Verfahren zur Gewinnung von Kohle im Untertagebetrieb
DE10320401B4 (de) Verfahren zur Grubengasgewinnung
DE3612468A1 (de) Verfahren zum herstellen eines filterbrunnens und filterbrunnen mit grossem fassungsraum
DE1103263B (de) Verfahren zur Herstellung von unterirdischen Speicherraeumen in Formationen durch Aufloesen des Gesteins
DE856282C (de) Verfahren und Vorrichtung zur Hereingewinnung von Kohle
DE20714C (de) Methode der Anwendung von Explosivstoffen zum Durchbrechen von Grubengängen, Stollen etc
DD205947A1 (de) Verfahren zur herstellung von vertikalen wasserfassungsanlagen im lockergestein
DE1195694B (de) Verfahren zum Abbau unterirdischer Lagerstaetten

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): BE DE FR GB

AK Designated contracting states

Designated state(s): BE DE FR GB

17P Request for examination filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE DE FR GB

REF Corresponds to:

Ref document number: 2860925

Country of ref document: DE

Date of ref document: 19811105

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19831109

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19831130

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19831201

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19841231

BERE Be: lapsed

Owner name: STAMICARBON B.V.

Effective date: 19841230

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19850830

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19850903

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19881117

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT