EP0002267A1 - Verfahren zum Herstellen von faserbewehrten Betonformteilen und nach diesem Verfahren hergestellte Formteile - Google Patents

Verfahren zum Herstellen von faserbewehrten Betonformteilen und nach diesem Verfahren hergestellte Formteile Download PDF

Info

Publication number
EP0002267A1
EP0002267A1 EP78101501A EP78101501A EP0002267A1 EP 0002267 A1 EP0002267 A1 EP 0002267A1 EP 78101501 A EP78101501 A EP 78101501A EP 78101501 A EP78101501 A EP 78101501A EP 0002267 A1 EP0002267 A1 EP 0002267A1
Authority
EP
European Patent Office
Prior art keywords
fibers
scrim
fiber
cement
structural elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP78101501A
Other languages
English (en)
French (fr)
Other versions
EP0002267B1 (de
Inventor
Hermann Schemel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0002267A1 publication Critical patent/EP0002267A1/de
Application granted granted Critical
Publication of EP0002267B1 publication Critical patent/EP0002267B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B23/00Arrangements specially adapted for the production of shaped articles with elements wholly or partly embedded in the moulding material; Production of reinforced objects
    • B28B23/0006Arrangements specially adapted for the production of shaped articles with elements wholly or partly embedded in the moulding material; Production of reinforced objects the reinforcement consisting of aligned, non-metal reinforcing elements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/01Reinforcing elements of metal, e.g. with non-structural coatings
    • E04C5/02Reinforcing elements of metal, e.g. with non-structural coatings of low bending resistance
    • E04C5/04Mats
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/07Reinforcing elements of material other than metal, e.g. of glass, of plastics, or not exclusively made of metal
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/07Reinforcing elements of material other than metal, e.g. of glass, of plastics, or not exclusively made of metal
    • E04C5/073Discrete reinforcing elements, e.g. fibres

Definitions

  • the invention relates to a method for producing fiber-reinforced concrete components, in which a lattice-like laid scrim is incorporated into cement masses, and to molded parts produced by this method. "Molded parts” are also to be understood here as building material panels.
  • DD-PS 41 435 a method of the type mentioned is known in which glass fiber strands or rods - preferably prestressed - are embedded in concrete.
  • the glass fiber rods should replace the usual metal reinforcement. By soaking them with suitable resins, the glass fiber rods are protected against chemical attacks and at the same time made dimensionally stable.
  • quartz sand is sprinkled on the soaked bars, or glass fiber strands soaked in resin are wrapped in a spiral.
  • the glass fiber rods merely function as a steel bar take over the reinforcement and where the quartz grains scattered on the glass fiber rods only create the connection between concrete and glass fiber rod, there is no multidirectional elastic reinforcement grid.
  • a reinforcement element for concrete made of glass fiber reinforced plastics is known, in which a grain of quartz powder and fine chippings is attached to the reinforcement element to increase the adhesive strength between the reinforcement element and the concrete, or the reinforcement element is spirally wrapped with profiled strips. Even when using reinforcement elements treated in this way, flexible multidirectional reinforcement grids are not created.
  • asbestos is used as the reinforcing fiber.
  • Cement is used here as a hydraulic binder to process the relatively fine fibers, which are often only a few millimeters long. The process is reminiscent of the manufacture of cardboards. Of a thin cement paste form on a drum fine asbestos cement fleece e, running one above the other, until the desired thickness is obtained. They can then be removed and compressed under pressure.
  • This method can also be successfully used when large amounts of water are added to the asbestos-cement mixture.
  • the binding power of the cement is preserved through the close hydraulic combination with mineral fibers.
  • DE-OS 2 409 231 discloses a process for the production of shaped articles solidified by inorganic binders and reinforced by mineral fibers.
  • surface-area reinforcement mats impregnated with binder glue or mortar which consist of artificial mineral fibers, are placed one above the other and / or next to one another in the fresh, non-set state until the desired reinforcement is achieved.
  • binder glue or mortar which consist of artificial mineral fibers
  • shear-resistant connections of the different fiber mats can be achieved by sewing with mineral fiber bundles.
  • the known method cannot be used to create reinforcement with reinforcement fibers that are perpendicular or transverse to the mats. This means that - due to the nature of the known method - no multidirectional reinforcement with a high degree of fineness can be created.
  • fibers or tissue chips are arranged on this thread structure.
  • the laid scrim can consist of endless fiber filaments or. consist of staple fiber yarns.
  • the fibers can consist of the same materials or of completely different types of fibers if special properties of the concrete are to be achieved. Their length can also be varied. It can range from a few millimeters to many centimeters.
  • some parameters of the reinforcement structure must of course be coordinated with one another: for example, the spacing of the threads of the scrim and the length of the threads on the scrim arranged fibers and their elasticity can be varied.
  • the method is such that the applied fibers experience a multidirectional arrangement, namely in the plane of the thread structure and / or protrude from this plane. If necessary, three-dimensional reinforcement can also be achieved.
  • the product combined from continuous threads and cut fibers remains so open on its surface that it is easily separated from the pulpy cement mass e.g. can be enclosed in an automated process.
  • uncontrolled accumulations of fibers on the scrim are avoided by first providing the scrim with an adhesive and then exposing it to a stream of falling fibers, which then have different, arbitrary orientations on the thread put stuck. Non-stick fibers fall off again. Fiber masses that are difficult to penetrate by cement masses are avoided. According to a different procedure, an air flow can have a supporting effect.
  • Another method variant provides for arranging rollers in order to roughen the fiber pieces lying on the grid and thus to lift fibers or fiber parts out of the plane of this flat structure and then to solidify them with a fixing agent.
  • This can be done easily with a thinly set liquid concrete or with commercially available adhesives e.g. on a plastic basis.
  • the solidification can take place by spraying, by dipping or by doctoring. This method is used in particular when compression of the voluminous reinforcement structure is to be avoided in the subsequent work process.
  • the manufacturing process for the reinforcement structure is not tied to a specific type of fiber.
  • Glass filaments can be used, the high strength of which does not change due to the influences of the cement.
  • synthetic yarns for example made of polypropylene, are also suitable, which above all improve the burst strength of the concrete.
  • a combination of structural steel grids or wire mesh with fibers or fabric chips or fabric strips is also possible or the use of natural fibers, e.g. Sisal. Even those fibers that cannot withstand the aggressive media of the cement are suitable for the lattice structure if the fibers applied have this resistance.
  • the cut fibers or yarns which are intended to supplement the properties of the reinforcement structure, can also be made from the glass fiber type mentioned, from polyamides and other synthetic fibers or from steel fibers or wire consist. It is not important that, for example, a glass fiber laid scrim can only be provided with cut glass fibers and a thread system made of synthetic fibers can only be provided with the same pieces of fiber. With the help of this manufacturing process, it is possible for the first time to incorporate precisely metered mixtures of these fibers with each other into concrete and thus achieve new properties of the products. Another advantage over the known reinforcement methods with fibers results from the fact that partial areas of a component or a plate that are particularly stressed are reinforced.
  • Glass-fiber-reinforced panels can be produced in such a way that they have a very high breaking strength, which allows, for example, nailing.
  • the edge zones of a plate that is nailed can be additionally reinforced using this method.
  • sandwich panels with a hard foam core are mentioned.
  • the rigid foam core can consist, for example, of polystyrene, polyurethane or foamed concrete, foamed concrete in particular being interesting because of its low price. If you bring e.g. A thin layer of cement mortar on polystyrene plates, in which the reinforcement structure described is embedded, creates a stable and stable plate that complements the good thermal insulation properties of the polystyrene through the reinforcement of the strength of the plate surface, without losing the easy processability by woodworking machines.
  • a board made by the method of the invention will preferably be made of cement. But there are also other binders e.g. Plaster in question.
  • the laid scrim according to the invention consists of the longitudinal or warp threads 1 and the transverse or weft threads 2. This scrim was impregnated with pressure sensitive adhesive and then exposed to a stream of fiber parts or fiber chips. The fiber parts 3 adhere to the threads of the scrim with different orientations and form a 'three-dimensional, multidirectional reinforcement structure with this. This is then incorporated into a cement paste using one of the methods already described.
  • FIG. 2 shows a cross section of a building material board produced by the method according to the invention.
  • This consists of an inner carrier layer 10 made of polyurethane foam, on which cement plates 11 reinforced according to the invention are attached on both sides.
  • the polyurethane foam layer is preferably covered with a reinforcement structure consisting of laid scrims and the fiber parts attached to them.
  • liquid cement is sprayed onto the occupied side of the polyurethane foam layer with a nozzle up to a layer thickness of a few millimeters.
  • the thickness of the polyurethane foam layer 10 is approximately one centimeter.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing Of Tubular Articles Or Embedded Moulded Articles (AREA)
  • Laminated Bodies (AREA)
  • Panels For Use In Building Construction (AREA)
  • Reinforcement Elements For Buildings (AREA)

Abstract

Zur Herstellung von faserarmiertem Beton wird zunächst ein gitterartiges, aus Kett- und Schußfäden (1, 2) bestehendes Fadengelege hergestellt. Dieses wird beispielsweise mit Haftkleber benetzt und danach einem Strom von Fasern (3) ausgesetzt, die in unterschiedlicher Ausrichtung an dem Fadengelege haften bleiben, wodurch ein multidirektionales Armierungsgerüst, bestehend aus dem Fadengelege und den daran haftenden Armierungsfasern (3) entsteht. Zusätzlich zu oder anstelle der mit Haftkleber befestigten Fasern (3) kann auch eine Aufrauhung der Fäden des Fadengeleges vorgesehen werden. Das so entstandene Armierungsgerüst wird in Zementmassen eingearbeitet.

Description

  • Die Erfindung betrifft ein Verfahren zum Herstellen von faserbewehrten Betonbauteilen, bei dem ein gitterartiges Fadengelege in Zementmassen eingearbeitet wird sowie nach diesem Verfahren hergestellte Formteile. Unter"Formteilen" sind hierbei auch Baustoffplatten zu verstehen.
  • Aus der DD-PS 41 435 ist ein Verfahren der eingangs genannten Art bekannt, bei dem Glasfaserstränge oder -stäbe - vorzugsweise vorgespannt - in Beton eingebettet werden. Die Glasfaserstäbe sollen dabei die übliche Metallbewehrung ersetzen. Durch Tränken mit geeigneten Harzen werden die Glasfaserstäbe gegen chemische Angriffe geschützt und gleichzeitig formbeständig gemacht. Zur Erhöhung der Haftfestigkeit zwischen Beton und Bewehrungsstab wird auf die getränkten Stäbe Quarzsand gestreut oder es werden diese mit Harz getränkten Glasfaserstränge spiralförmig umwickelt. Bei diesem Verfahren, bei dem die Glasfaserstäbe lediglich die Funktion einer Stahlbewehrung übernehmen und bei dem die auf die Glasfaserstäbe aufgestreuten Quarzkörner lediglich die Verbindung zwischen Beton und Glasfaserstab herstellen, entsteht kein multidirektionales elastisches Armierungsgitter.
  • Aus der DD-PS 39 245 ist ein Bewehrungselement für Beton aus glasfaserverstärkten Plasten bekannt, bei dem zur Erhöhung der Haftfestigkeit zwischen Bewehrungselement und Beton an dem Bewehrungselement eine Körnung aus Quarzmehl und Feinsplitt angebracht wird oder das Bewehrungselement mit Profilbändern spiralförmig umwickelt wird. Auch bei Verwendung derartig behandelter Bewehrungselemente entstehen keine flexiblen multidirektionalen Armierungsgitter.
  • Aus den Unterlagen des deutschen Gebrauchsmusters 70 18 657 sind Metallarmierungsstäbe, vorzugsweise für Kunststoffteile bekannt, die Biegungen aufweisen, durch die die Bewehrungsstäbe im Kunststoff verankert werden.
  • Bei weiteren bekannten Verfahren wird als Verstärkungsfaser Asbest verwendet. Zement dient hier als hydraulisches Bindemittel, um die oft nur wenige Millimeter langen und relativ feinen Fasern zu verarbeiten. Das Verfahren erinnert an die Herstellung von Pappen. Aus einem dünnen Zementbrei bilden sich auf einer Trommel feine Asbest-Zementvliese, die übereinander laufen, bis die gewünschte Dicke erreicht ist. Sie können dann abgenommen und unter Druck verdichtet werden.
  • Dieses Verfahren kann auch bei Zugabe größter Mengen von Wasser zu dem Asbest-Zement-Gemisch erfolgreich angewandt werden. Die Bindekraft des Zementes bleibt durch die enge hydraulische Vereinigung mit mineralischen Fasern erhalten.
  • Glasfasern oder synthetische Fasern lassen sich jedoch nach diesem Verfahren nicht verarbeiten. Hier geht die Bindekraft des Zementes verloren.
  • Aus der DE-OS 2 409 231 Ist ein Verfahren zur Herstellung von durch anorganische Bindemittel verfestigten und durch Mineralfasern verstärkten Raumformkörpern bekannt. Bei diesem bekannten Verfahren werden mit Bindemittelleim oder Mörtel getränkte flächip-e Verstärkungsmatten, die aus künstlichen Mineralfasern bestehen,in frischem nicht abgebundenen Zustand übereinander und/oder nebeneinander gelegt, bis die gewünschte Verstärkung erreicht ist. Es ist ferner bekannt, die Verstärkungsmatten durch Zulegen von Mineralfaserbündeln aus Stapel- oder Endlosfasern gezielt in bestimmten in der Ebene der Matten liegenden Richtungen zu verstärken. Schubfeste Verbindungen zwischen den einzelnen Schichten können durch besondere Formgebung, z.B. durch eine wellenförmige Anordnung der Lagen oder durch Durchstoßen mehrerer Lagen erreicht werden, wobei an den Stanzstellen ein punktförmiges Ineinandergreifen der Schichten erzielt wird. Das Durchstanzen erfolgt zweckmäßigerweise durch Abwalzen mit einer Stachelwalze. Des weiteren können schubfeste Verbindungen der verschiedenen Fasermatten durch Vernähen mit Mineralfaserbündeln erzielt werden.
  • Abgesehen von Stellen, an denen die Fasermatten gegenseitig vernäht oder durchstanzt sind, kann mit dem bekannten Verfahren keine Bewehrung mit senkrecht oder quer zu den Matten liegenden Bewehrungsfasern geschaffen werden. Das bedeutet, daß - bedingt durch die Natur des bekannten Verfahrens - keine multidirektionale Bewehrung mit einem hohen Feinheitsgrad geschaffen werden kann.
  • Die Verarbeitung von Asbest-Fasern führt zu einigen gravierenden Nachteilen. So schränkt die geringe Bruchelastizität die Verwendbarkeit der Produkte ein und der beim Schneiden der Platten entstehende Asbeststaub wirkt extrem krebserregend.
  • Figure imgb0001
    voneinander befinden. Dieser Abstand ist in weiten Grenzen variierbar. Er kann wenige Millimeter betragen oder in einer Größenordnung von z.B. 10 cm liegen. An dieses Fadengerüst werden erfindungsgemäß Fasern oder Gewebeschnitzel angeordnet. Dabei kann das Fadengelege aus endlosen Faserfilamenten oder. aus Stapelfaser-Garnen bestehen. Die Fasern können aus den gleichen Materialien oder aus völlig andersartigen Faserarten bestehen, wenn besondere Eigenschaften des Betons erreicht werden sollen. Auch ihre Länge ist variierbar. Sie kann von wenigen Millimetern bis zu vielen Zentimetern betragen.
  • Um zu erreichen, daß die an dem Fadengelege befestigten Bewehrungsfasern an dem Fadengelege so haften bleiben, daß sie dieses durchragen oder durchdringen, sind selbstverständlich einige Parameter des Bewehrungsgerüstes aufeinander abzustimmen: So können beispielsweise die Abstände der Fäden des Fadengeleges und die Länge der an dem Fadengelege angeordneten Fasern sowie deren Elastizität variiert werden.
  • Das Verfahren ist so beschaffen, daß die aufgebrachten Fasern eine multidirektionale Anordnung erfahren, und zwar in der Ebene des Fadengerüstes und/oder aus dieser Ebene herausragen. Eine dreidimensionale Armierung kann, wenn nötig, ebenfalls erreicht werden. Dabei bleibt das aus durchgehenden Fäden und geschnittenen Fasern kombinierte Produkt an seiner Oberfläche so offen, daß es leicht von der breiigen Zementmasse z.B. in einem automatisierten Arbeitsgang umschlossen werden kann.
  • Gemäß einer vorteilhaften Ausführungsform der Erfindung werden unkontrollierte Faseranhäufungen an dem Fadengelege dadurch vermieden, daß das Fadengelege zunächst mit einem Kleber versehen wird und dann einem Strom von herabfallenden Fasern ausgesetzt wird, die dann mit unterschiedlicher, willkürlicher Ausrichtung an dem Fadengelege haften bleiben. Nicht haftende Fasern fallen wieder ab. Von Zementmassen schwer durchdringbare Fasermassierungen werden vermieden.
    Dabei kann nach einer anderen Verfahrensweise ein Luftstrem unterstützend wirken.
  • Eine weitere Verfahrensvariante sieht vor, Walzen anzuordnen, um die am Gitter liegenden Faserstücke anzurauhen und damit Fasern oder Faserteile aus der Ebene dieses Flächengebildes herauszuheben und dann mit einem fixierenden Mittel zu verfestigen. Dies kann auf einfache Weise mit einem dünn eingestellten Flüssigbeton erfolgen oder mit handelsüblichen Klebern z.B. auf Kunststoffbasis. Die Verfestigung kann durch Besprühen, durch einen Tauchvorgang oder durch Aufrakeln erfolgen. Dieses Verfahren wird besonders dann angewendet, wenn ein Zusammendrücken des voluminösen Armierungsgerüstes im nachfolgenden Arbeitsprozeß vermieden werden soll.
  • Das Herstellungsverfahren für das Armierungsgerüst ist nicht an eine bestimmte Faserart gebunden. Es können Glasfilamente verwendet werden, deren hohe Festigkeit sich durch die Einflüsse des Zementes nicht verändern. Es kommen aber auch synthetische Garne, etwa aus Polypropylen infrage, die vor allem die Berstfestigkeit des Betons verbessern. Eine Kombination von Baustahlgittern oder Maschendraht mit Fasern oder Gewebeschnitzeln bzw. Gewebestreifen ist ebenfalls möglich oder der Einsatz von natürlichen Fasern, wie z.B. Sisal. Selbst solche Fasern, die den aggressiven Medien des Zementes nicht standhalten, kommen für das Gittergerüst infrage, wenn die aufgebrachten Fasern diese Beständigkeit besitzen.
  • Auch die geschnittenen Fasern oder Garne, die die Eigenschaften des Armierungsgerüstes ergänzen sollen, können aus der erwähnten Glasfaserart, aus Polyamiden und anderen synthetischen Fasern oder aus Stahlfasern oder Draht bestehen. Es kommt nicht darauf an, daß z.B. ein Glasfaser-Fadengelege nur mit geschnittenen Glasfasern versehen werden kann und ein Fadensystem aus synthetischen Fasern nur mit gleichen Faserstücken. Mit Hilfe dieses Herstellungsverfahrens wird es erstmals möglich, genau dosierte Mischungen dieser Fasern untereinander in Beton einzuarbeiten und damit neue Eigenschaften der Produkte zu erzielen. Ein weiterer Vorteil gegenüber den bekannten Armierungsverfahren mit Fasern ergibt sich dadurch, daß Teilbereiche eines Bauteils oder einer Platte verstärkt werden, die besonders beansprucht sind. Glasfaserarmierte Platten lassen sich so herstellen, daß eine sehr hohe Bruchfestigkeit gegeben ist, die z.B. ein Nageln erlaubt. Die Randzonen einer Platte, die genagelt wird, lassen sich nach diesem Verfahren zusätzlich verstärken. Ähnliches gilt für Formteile, die sich durch das flexible Armierungsgerüst leicht herstellen lassen und die in den Zonen, in denen sie besonderen Zug- oder Stcßbelastungen ausgesetzt sind, entsprechend stark armiert werden können.
  • Als weiteres Anwendungsbeispiel seien Sandwichplatten mit einem Hartschaumkern erwähnt. Der Hartschaumkern kann beispielsweise aus Polystyrol, Polyurethan oder geschäumtem Beton bestehen, wobei vor allem geschäumter Beton weren seines geringen Preises interessant ist. Bringt man z.B. auf Polystyrolplatten eine dünne Schicht Zementmörtel auf, in die das beschriebene Armierungsgerüst eingebettet ist, so entsteht eine stabile und tragfähige Platte, die die guten wärmedämmenden Eigenschaften des Polystyrols durch die Armierung erzielte Festigkeit der Plattenoberfläche ergänzt, ohne die leichte Verarbeitbarkeit durch Holzbearbeitungsmaschinen zu verlieren.
  • Eine nach dem Verfahren der Erfindung hergestellte Platte wird vorzugsweise aus Zement hergestellt sein. Es kommen aber auch andere Binder z.B. Gips in Frage.
  • Eine Baustoffplatte mit ausgezeichneter Wärmedämmung und gleichzeitig sehr großer mechanischer Festigkeit ergibt sich, wenn gemäß einer besonders vorteilhaften Ausführungsform der Erfindung die Baustoffplatte eine Innenschicht aus Polyrethanschaum enthält.
  • Die Erfindung wird im folgenden anhand von in den Figuren schematisch dargestellten Ausführungsbeispielen näher erläutert.
    Es zeigt:
    • Firur 1 ein Armierungsgerüst gemäß der Erfindung in perspektivischer Ansicht
    • Figur 2 eine Baustoffplatte mit einer Innenschicht aus Polyurethanschaum.
  • Das Fadengelege gemäß der Erfindung besteht aus den Längs-oder Kettfäden 1 und den Quer- oder Schußfäden 2. Dieses Gelege wurde mit Haftkleber getränkt und danach einem Strom von Faserteilen oder Faserschnitzeln ausgesetzt. Die Faserteile 3 haften mit unterschiedlicher Ausrichtung an den Fäden des Fadengeleges und bilden mit diesem ein' dreidimensionales, multidirektionales Armierungsgerüst. Dieses wird anschließend nach einem der bereits geschilderten Verfahren in eine Zementmasse eingearbeitet.
  • Figur 2 zeigt eine nach dem Verfahren gemäß der Erfindung hergestellte Baustoffplatte im Querschnitt. Diese besteht aus einer inneren Trägerschicht 10 aus Polyurethanschaum, auf der beidseitig erfindungsgemäß armierte Zementplatten 11 angebracht sind. Zur Herstellung dieser Platte wird vorzugsweise die Polyurethanschaumschicht mit einem aus Fadengelege und den daran befestigten Faserteilen bestehenden Armierungsgerüst belegt. Danach wird auf die belegte Seite der Polyurethanschaumschicht mit einer Düse Flüssigzement bis zu einer Schichtdicke von wenigen Millimetern aufgesprüht. Die Dicke der Polyurethanschaumschicht 10 liegt größenordnungsmäßig bei einem Zentimeter.

Claims (12)

1. Verfahren zum Herstellen von faserbewehrten Betonbauteilen, bei dem ein gitterartiges Fadengelege in Zementmassen eingearbeitet wird, dadurch gekennzeichnet, daß das Fadengelege mit Haftkleber getränkt und einem Strom von Fasern ausgesetzt wird, die mit ihrer Länge das Fadengelege teilweise durchdringend an ihm haften bleiben.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Fasern mit Hilfe eines Luftstromes dem mit Haftkleber bearbeiteten Fadengelege zugeführt werden.
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Fäden des Fadengeleges aufgerauht werden.
4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß als Fasern und/oder als Fadengelege Streifen aus gewebtem oder gewirktem Material verwendet werden.
5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das mit den Fasern versehene Fadengelege in einen dünnflüssigen, sich verfestigenden Zementbrei eingebettet wird.
6. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das mit den Fasern versehene Fadengelege mit Flüssigbeton übersprüht und vorfixiert wird.
7. Formteil aus Zement, gekennzeichnet durch mindestens ein gitterartiges Fadengelege mit quer oder schräg zur Gitterfläche gerichteten Fasern.
8. Formteil nach Anspruch 7, dadurch gekennzeichnet, daß das Fadengelege und/oder die Faserteile aus synthetischen Garnen, vorzugsweise faserverstärktem Kunststoff, bestehen.
9. Formteil nach Anspruch 7, dadurch gekennzeichnet, daß das Fadengelege und/oder die Faserteile aus natürlichen Fasern, wie Sisal, bestehen.
10.Formteil nach Anspruch 7, dadurch gekennzeichnet, daß das Fadengelege und/oder die Faserteile aus Stahlfasern bestehen.
11.Formteil nach Anspruch 8, dadurch gekennzeichnet, daß es plattenförmig ist und eine Innenschicht aus Polyurethanschaum enthält.
12.Formteil nach Anspruch 8, dadurch gekennzeichnet, daß es zusätzlich eine an sich bekannte Metallarmierung enthält.
EP78101501A 1977-12-02 1978-12-01 Verfahren zum Herstellen von faserbewehrten Betonformteilen und nach diesem Verfahren hergestellte Formteile Expired EP0002267B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2753858 1977-12-02
DE2753858A DE2753858C3 (de) 1977-12-02 1977-12-02 Verfahren zum Herstellen von faserbewehrten Betonformteilen und nach diesem Verfahren hergestellte Formteile

Publications (2)

Publication Number Publication Date
EP0002267A1 true EP0002267A1 (de) 1979-06-13
EP0002267B1 EP0002267B1 (de) 1980-12-10

Family

ID=6025225

Family Applications (1)

Application Number Title Priority Date Filing Date
EP78101501A Expired EP0002267B1 (de) 1977-12-02 1978-12-01 Verfahren zum Herstellen von faserbewehrten Betonformteilen und nach diesem Verfahren hergestellte Formteile

Country Status (5)

Country Link
US (1) US4257993A (de)
EP (1) EP0002267B1 (de)
AT (1) AT359902B (de)
CA (1) CA1089669A (de)
DE (2) DE2753858C3 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0122995A1 (de) * 1982-10-05 1984-10-31 Frank Brian Mercer Verstärkung einer Masse
EP0172028A2 (de) * 1984-08-16 1986-02-19 Mitsui Kensetsu Kabushiki Kaisha Faserverstärkter anorganischer Körper
EP0183526A1 (de) * 1984-11-28 1986-06-04 Permanent Formwork Limited Faserverstärkter Zement
EP0547984A1 (de) * 1991-12-19 1993-06-23 PATURLE COMPOSITES, société anonyme dite: Profil aus Verbundstoff zur Verstärkung von Wänden, Beton oder zur Bodenbefestigung, und Verfahren zur dessen Herstellung
EP0628117A1 (de) * 1992-02-25 1994-12-14 Hexcel Fyfe L L C Gewebe verstärkte betonsäulen.
IT201700080359A1 (it) * 2017-07-17 2019-01-17 Plastiron Srls Rete per rinforzo strutturale e leganti idraulici comprendenti tale rete

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4297414A (en) * 1978-07-07 1981-10-27 Mitsui Petrochemical Industries, Ltd. Reinforcing material for hydraulic substances and method for the production thereof
IE49426B1 (en) * 1980-03-18 1985-10-02 Tegral Technology Ltd Method of making asbestos-free,glass fibre reinforced,cement composite products and the products of such method
DE3325879A1 (de) * 1982-07-27 1984-02-02 Karl 6078 Neu-Isenburg Karner Armierungsgitter aus verschiedenen werkstoffen
US4662946A (en) * 1982-10-05 1987-05-05 Mercer Frank B Strengthening a matrix
DE4002601C2 (de) * 1990-01-30 2002-08-29 Krueger & Schuette Kerapid Vorgefertigtes, transportierbares, selbsttragendes Bauelement, wie Platte, Wand oder Formteil
US5888608A (en) * 1995-08-15 1999-03-30 The Board Of Trustees Of The Leland Stanford Junior University Composite grid/frame structures
WO1997026395A1 (en) * 1996-01-15 1997-07-24 Handelman, Joseph, H. Reinforcing for concrete products and reinforced concrete products
DE19705180C2 (de) * 1997-02-11 2003-06-12 Ispo Gmbh Armierungsgewebe
DE19808078A1 (de) * 1998-02-21 1999-09-16 Holzmann Philipp Ag Vorzugsweise aus Metallteilen bestehende Matte zur Bildung tragender und abdichtender Betonteile
US6976345B2 (en) * 1999-04-05 2005-12-20 Firouzeh Keshmiri Cementitious based structural lumber product and externally reinforced lightweight retaining wall system
WO2004028994A2 (en) * 2002-09-25 2004-04-08 The Intertech Group, Inc. Fiber reinforced cementitious material
WO2005085545A1 (de) 2004-03-03 2005-09-15 Gert Wagener Bewehrungsstab für mineralische baustoffe
AU2005244578B2 (en) * 2004-12-16 2012-03-15 The Austral Brick Company Pty Ltd Reinforced cementitious material product and method of manufacture of the same
DE102008040919A1 (de) * 2008-08-01 2010-02-04 MAX BÖGL Fertigteilwerke GmbH & Co. KG Verfahren zur Herstellung eines Betonbauteiles mit einer polymergetränkten textilen Bewehrung sowie Betonbauteil mit einer polymergetränkten textilen Bewehrung
SI2981658T1 (en) * 2013-04-04 2018-02-28 N. V. Bekaert S.A., Wall-reinforcement structure containing parallel assemblies of joined metal filaments in parallel positions
DE102014000316B4 (de) 2014-01-13 2016-04-07 Goldbeck Gmbh Verbundbauteil aus auf Stahlträgern aufgelagerten Deckenbetonfertigteilen
FR3028447B1 (fr) * 2014-11-14 2017-01-06 Hutchinson Panneau composite a matrice thermodurcissable cellulaire, procede de fabrication et structure de revetement de paroi formee d'un assemblage de panneaux.
WO2020053008A1 (en) * 2018-09-13 2020-03-19 Nv Bekaert Sa Hybrid reinforced layer of sprayed concrete
AU2019240725B1 (en) * 2019-10-07 2020-08-27 Duy Huu Nguyen Fiber-reinforced concrete – guided distribution methods for fibers in conventional construction

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD41435A (de) *
DD39245A (de) *
AT141243B (de) * 1933-10-20 1935-03-25 Leopold Kalousek Verfahren zur Herstellung von Asbestzementkörpern mit einer Faserumhüllung versehenen Drahteinlage.
DE1762244U (de) * 1957-12-23 1958-02-27 Asbestschieferfabrik Braunschw Asbestzement-platte od. dgl. mit metalleinlage.
DE2357557B1 (de) * 1973-11-17 1975-04-10 Friedrich 7407 Moessingen Haarburger Verstärkungseinlage für Leichtbaukörper
DE2409231A1 (de) * 1974-02-27 1975-09-04 Heidelberg Portland Zement Verfahren zur herstellung von durch anorganische bindemittel verfestigten und durch mineralfasern verstaerkten raumformkoerpern

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3489626A (en) * 1957-12-11 1970-01-13 Chemstress Ind Inc Method of making a prestressed,reinforced,resin-crete concrete pipe
US3637457A (en) * 1970-06-08 1972-01-25 Monsanto Co Nylon spun bonded fabric-concrete composite

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD41435A (de) *
DD39245A (de) *
AT141243B (de) * 1933-10-20 1935-03-25 Leopold Kalousek Verfahren zur Herstellung von Asbestzementkörpern mit einer Faserumhüllung versehenen Drahteinlage.
DE1762244U (de) * 1957-12-23 1958-02-27 Asbestschieferfabrik Braunschw Asbestzement-platte od. dgl. mit metalleinlage.
DE2357557B1 (de) * 1973-11-17 1975-04-10 Friedrich 7407 Moessingen Haarburger Verstärkungseinlage für Leichtbaukörper
DE2409231A1 (de) * 1974-02-27 1975-09-04 Heidelberg Portland Zement Verfahren zur herstellung von durch anorganische bindemittel verfestigten und durch mineralfasern verstaerkten raumformkoerpern

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0122995A1 (de) * 1982-10-05 1984-10-31 Frank Brian Mercer Verstärkung einer Masse
EP0172028A2 (de) * 1984-08-16 1986-02-19 Mitsui Kensetsu Kabushiki Kaisha Faserverstärkter anorganischer Körper
EP0172028A3 (en) * 1984-08-16 1988-07-13 Mitsui Kensetsu Kabushiki Kaisha Fibre reinforced inorganic body
EP0183526A1 (de) * 1984-11-28 1986-06-04 Permanent Formwork Limited Faserverstärkter Zement
WO1986003245A1 (en) * 1984-11-28 1986-06-05 Permanent Formwork Limited Improvements in fibre reinforced cement
EP0547984A1 (de) * 1991-12-19 1993-06-23 PATURLE COMPOSITES, société anonyme dite: Profil aus Verbundstoff zur Verstärkung von Wänden, Beton oder zur Bodenbefestigung, und Verfahren zur dessen Herstellung
FR2685368A1 (fr) * 1991-12-19 1993-06-25 Paturle Composites Profile en materiau composite pour le renforcement de parois diverses, et des betons, et pour la consolidation des sols, et son procede de fabrication.
EP0628117A1 (de) * 1992-02-25 1994-12-14 Hexcel Fyfe L L C Gewebe verstärkte betonsäulen.
EP0628117A4 (de) * 1992-02-25 1995-04-19 Hexcel Fyfe L L C Gewebe verstärkte betonsäulen.
US5607527A (en) * 1992-02-25 1997-03-04 Hexcel Corporation Method of making fabric reinforced concrete columns to provide earthquake protection
IT201700080359A1 (it) * 2017-07-17 2019-01-17 Plastiron Srls Rete per rinforzo strutturale e leganti idraulici comprendenti tale rete
EP3431666A1 (de) * 2017-07-17 2019-01-23 Plastiron SRLS Gitter zur strukturellen bewehrung

Also Published As

Publication number Publication date
EP0002267B1 (de) 1980-12-10
DE2753858B2 (de) 1980-03-06
US4257993A (en) 1981-03-24
DE2753858C3 (de) 1980-10-23
AT359902B (de) 1980-12-10
DE2753858A1 (de) 1979-06-07
CA1089669A (en) 1980-11-18
DE2860319D1 (en) 1981-02-19
ATA855778A (de) 1980-04-15

Similar Documents

Publication Publication Date Title
EP0002267B1 (de) Verfahren zum Herstellen von faserbewehrten Betonformteilen und nach diesem Verfahren hergestellte Formteile
EP0071209B1 (de) Verfahren zur Herstellung von faserverstärkten, ein verfestigbares Bindemittel enthaltenden, flächigen Körpern
DE3019917C2 (de) Verfahren zur Herstellung einer Bauplatte
EP0258734B1 (de) Bauplatte im Schichtenaufbau und Verfahren zu ihrer Herstellung
DE2554212A1 (de) Verstaerkte formteile aus lignocellulose und verfahren zu ihrer herstellung
EP0535000B1 (de) Lehmbauplatte und verfahren zu ihrer herstellung
EP0071213A2 (de) Schichtkörper für Bauzwecke und seine Verwendung
DE102013007800A1 (de) Trockenmörtelplatte sowie Verfahren und Vorrichtung zu deren Herstellung
EP0051101B1 (de) Zementplatte, sowie Verfahren und Vorrichtung zu deren Herstellung
DE4133416C2 (de) Verfahren zum Herstellen von Formkörpern, insbesondere von Dämmplatten
DE60017070T2 (de) Oberflächenbewehrung für Träger, Säulen, Platten o. d
EP0126938B1 (de) Formstücke aus hydraulisch abgebundenem Material
CH368740A (de) Verfahren und Anlage zur Herstellung von Baukörpern
EP0640030B1 (de) Verfahren zum herstellen eines leichtbauteiles in platten- oder quaderform
DE4222872C2 (de) Dreischichtige Baustoffplatte auf Gipsbasis und Verfahren zur Herstellung
EP2800845A1 (de) Lehmbauplatte mit zellstruktur und verfahren zu ihrer herstellung
WO1980000232A1 (en) Method for manufacturing insulating construction elements
DE4434012C1 (de) Verfahren zur Herstellung eines im Bauwesen zu verwendenden Dämmformteils
DE1704551B2 (de) Verfahren zum Herstellen von Leicht baustoffen aus Perlen, aus geschäumtem Polystyrol oder einem gleichartigen feinkornigen Isolierstoff
DE102005053104B4 (de) Bauplatte
DE19505969A1 (de) Dämmplatte aus Mineralwolle sowie Verfahren zur Herstellung derselben
EP1936064B1 (de) Fugenband
DE19804770A1 (de) Lärmschutzwände und schallabsorbierende Bekleidungen
DE3039586A1 (de) Metallfasermatte sowie vorrichtung zu ihrer herstellung und verfahren zu ihrer verarbeitung
DE833316C (de) Verfahren zur Herstellung von Kunstholzplatten

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE CH DE FR GB IT NL SE

17P Request for examination filed
ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO MILANO S.P.A.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE CH DE FR GB IT NL SE

REF Corresponds to:

Ref document number: 2860319

Country of ref document: DE

Date of ref document: 19810219

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19821231

Year of fee payment: 5

Ref country code: BE

Payment date: 19821231

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19830125

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19830131

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19831202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Effective date: 19831231

Ref country code: BE

Effective date: 19831231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19840130

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19840701

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19850830

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19891130

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19900216

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19901201

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19910903

EUG Se: european patent has lapsed

Ref document number: 78101501.1

Effective date: 19850605

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT