EP0000933B1 - Mousses de polyuréthanes hydrophobes, procédé pour leur préparation et leur application dans l'absorption d'huiles et de composés hydrophobes contenant éventuellement de l'halogène flottant sur l'eau - Google Patents

Mousses de polyuréthanes hydrophobes, procédé pour leur préparation et leur application dans l'absorption d'huiles et de composés hydrophobes contenant éventuellement de l'halogène flottant sur l'eau Download PDF

Info

Publication number
EP0000933B1
EP0000933B1 EP78100702A EP78100702A EP0000933B1 EP 0000933 B1 EP0000933 B1 EP 0000933B1 EP 78100702 A EP78100702 A EP 78100702A EP 78100702 A EP78100702 A EP 78100702A EP 0000933 B1 EP0000933 B1 EP 0000933B1
Authority
EP
European Patent Office
Prior art keywords
compounds
water
polyurethane foams
hydrophobic
polyhydroxy compounds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP78100702A
Other languages
German (de)
English (en)
Other versions
EP0000933A1 (fr
Inventor
Wolfgang Dr. Jarre
Rolf Dr. Wurmb
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of EP0000933A1 publication Critical patent/EP0000933A1/fr
Application granted granted Critical
Publication of EP0000933B1 publication Critical patent/EP0000933B1/fr
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0014Use of organic additives
    • C08J9/0028Use of organic additives containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/68Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water
    • C02F1/681Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water by addition of solid materials for removing an oily layer on water
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/2805Compounds having only one group containing active hydrogen
    • C08G18/281Monocarboxylic acid compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/36Hydroxylated esters of higher fatty acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/38Low-molecular-weight compounds having heteroatoms other than oxygen
    • C08G18/3819Low-molecular-weight compounds having heteroatoms other than oxygen having nitrogen
    • C08G18/3823Low-molecular-weight compounds having heteroatoms other than oxygen having nitrogen containing -N-C=O groups
    • C08G18/3825Low-molecular-weight compounds having heteroatoms other than oxygen having nitrogen containing -N-C=O groups containing amide groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0014Use of organic additives
    • C08J9/0023Use of organic additives containing oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/20Carboxylic acid amides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0041Foam properties having specified density
    • C08G2110/005< 50kg/m3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0083Foam properties prepared using water as the sole blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S521/00Synthetic resins or natural rubbers -- part of the class 520 series
    • Y10S521/905Hydrophilic or hydrophobic cellular product

Definitions

  • the invention relates to polyurethane foams with densities of 5 to 26.5 g / liter which, owing to their hydrophobic character and their content of closed and open cells, are particularly suitable for the absorption of oil and, if appropriate, halogen-containing, hydrophobic compounds in water.
  • polyurethane foams from polyisocyanates, polyhydroxy compounds, optionally chain extenders, auxiliaries and additives is known from numerous patent and literature publications. For example, we would like to refer to the monographs by JH Saunders and KC Frisch, High Polymers, Volume XVI "Polyurethanes" Part I and II (Interscience Publishers, New York), and R. Vieweg and A. Höchtlen, Kunststoff-Hanbuch, Volume VII , Polyurethane, Carl Hanser Verlag, Kunststoff.
  • open-cell foams made of polyurethanes, urea-formaldehyde condensates, polystyrene, cellulose acetate and others for oil absorption from water surfaces.
  • open-cell foams made of polyurethanes, urea-formaldehyde condensates, polystyrene, cellulose acetate and others for oil absorption from water surfaces.
  • US Pat. No. 3,779,908 a dispersion of crude oil in water is allowed to flee through a flexible, open-cell foam for oil absorption.
  • Oleophilic semi-hard to hard foams are further distributed according to US Pat. No. 3,886,067 on oil-containing water surfaces and, after oil absorption on the foam, collected and removed again.
  • the object of the present invention was to develop polyurethane foams which do not have these disadvantages.
  • the polyurethane foams should be quickly produced on site from polyurethane systems that are space-saving in liquid form and therefore inexpensive to transport.
  • polyurethane foams are particularly suitable for absorbing oil and halogen-containing hydrophobic solvents from water if they are hydrophobic and at the same time have closed and open cells in certain proportions.
  • hydrophobic polyurethane foams according to the invention are made both by the prepolymer process and preferably by the one-shot process from organic polyisocyanates, polyhydroxy compounds, blowing agents, catalysts, optionally chain extenders, auxiliaries and additives with the additional use of lipophilic compounds, preferably based on fatty acids and / or Fatty acid derivatives, advantageously produced on site.
  • Linear and / or branched hydroxyl-containing polyethers having molecular weights of from about 300 to about 10,000, preferably from about 1,000 to about 6,000 and hydroxyl numbers from about 700 to about 20, preferably from 200 to 40, are expediently used as the polyhydroxy compounds.
  • the hydroxyl-containing polyethers are prepared by reacting one or more, optionally substituted, alkylene oxides having 2 to 4 carbon atoms in the alkylene radical with a starter molecule which contains at least two active hydrogen atoms bonded.
  • alkylene oxides are: tetrahydrofuran, 1,2- and 2,3-butylene oxide and preferably propylene oxide. Mixtures of propylene oxide and ethylene oxide with an ethylene oxide content, preferably less than 20% by weight, based on the total weight of the mixture, can also be used.
  • the alkylene oxides can be used individually, alternately in succession or as mixtures.
  • starter molecules are: water, aliphatic and aromatic dicarboxylic acids, such as adipic acid and terephthalic acid, and preferably dihydric and polyhydric alcohols, such as ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 1-hexanediol , 6, glycerin, trimethylolpropane, 2,4,6-hexanetriol, pentaerythritol, sorbitol and sucrose.
  • dihydric and polyhydric alcohols such as ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 1-hexanediol , 6, glycerin, trimethylolpropane, 2,4,6-hexanetriol, pentaerythritol, sorbitol and sucrose.
  • the polyhydroxy compounds used are preferably di- and tri-functional hydroxyl-containing polypropylene oxides with molecular weights of 2,000 to 6,000.
  • Suitable lipophilic compounds are, for example, optionally substituted, saturated and / or unsaturated aliphatic fatty acids with 10 to 25, preferably 12 to 20 carbon atoms in the molecule and their derivatives, preferably their esters with 2 to 20 carbon atoms in the alcohol radical and amides. Lipophilic fatty acid esters and amides which contain isocyanate-reactive groups and are thus incorporated into the polyurethane foam structure are particularly preferred.
  • Examples include: fatty acids such as capric, lauric, myristic, palmitic, stearic, arachinic, lignoceric, palmitic, oleic, ricinoleic, linoleic and linolenic acids; Fatty acid esters, such as castor oil, tall oil and adducts of the fatty acid and propylene and / or ethylene oxides and fatty acid amides, such as oleic acid mono- and diethanolamide, ricinoleic mono- and diethanolamide and their N, N-dialkylamides, such as ricinoleic acid dimethylaminopropylamide.
  • fatty acids such as capric, lauric, myristic, palmitic, stearic, arachinic, lignoceric, palmitic, oleic, ricinoleic, linoleic and linolenic acids
  • Fatty acid esters such as castor oil, tall oil and
  • polyhydroxy compounds and lipophilic compounds are used in molar proportions from 1: 3 to 1:20, preferably from 1: 6 to 1:15 and in particular from about 1:10 to produce the hydrophobic polyurethane foams according to the invention.
  • chain extenders in addition to the higher molecular weight polyhydroxy compounds.
  • the chain extenders have molecular weights less than 300, preferably from 80 to 200, and preferably have two active hydrogen atoms.
  • the polyurethane foams according to the invention are preferably produced without the use of chain extenders.
  • Water is used as the blowing agent, which reacts with isocyanate groups to form carbon dioxide. If the hydrophobic polyurethane foams according to the invention are produced by the prepolymer process, it has proven to be advantageous to foam the prepolymer having NCO end groups under water, that is to say in the presence of a large excess of water.
  • the quantitative ratio of water molecule to NCO group of the prepolymer can accordingly be as large as desired, but the value should not be less than about 5: 1. For example, molar ratios of water to NCO group in the prepolymer from 8: 1 to 1,000: 1 and larger have proven successful.
  • hydrophobic polyurethane foams according to the invention are produced by the one-shot process, it may be advantageous, depending on the type of polyhydroxy compounds and lipophilic compounds used, to mix the water used as blowing agent with a solubilizer.
  • Suitable solubilizers are all organic solvents with boiling points of 20 ° to 110 ° C., preferably 30 ° to 70 ° C., which are infinitely miscible with water and inert to isocyanate groups under the reaction conditions. Examples include acetone, methyl ethyl ketone, dioxane and tetrahydrofuran; acetone is preferably used.
  • the water is mixed with the solubilizer in such amounts that the weight ratio of water to solubilizer is 1: 1 to 10: 1, preferably 2: 1 to 4: 1.
  • the polyurethane foams according to the invention can be produced directly on site in the water. In these cases it has proven advantageous to accelerate the reaction between the polyhydroxy compounds, the water, optionally chain extenders and the lipophilic compounds, provided that these Zerewitinoff contain active groups bound in the molecule, and the highly reactive catalysts known to the organic polyisocanates, for example tertiary ones Amines, such as dimethylbenzylamine, N-methyl- or N-ethylmorpholine, dimethylpiperazine, 1,2-dimethylimidazole, 1-azabicyclo (3,3,0) octane and preferably triethylene diamine and metal salts such as tin dioctoate , Lead octoate and tin diethylhexoate and preferably tin (II) salts and dibutyltin dilaurate, and preferably mixtures of tertiary amines and organic tin salts.
  • Amines such as dimethylbenzylamine,
  • the amount to be used is determined empirically depending on the reactivity of the chosen catalyst or the catalyst mixture determined by constitution. If the polyurethane foams according to the invention are produced on site by the one shot process, the catalysts and amounts must be selected such that the starting times at reaction temperatures from 0 ° to 35 ° C. are approximately 2 to 10 seconds, preferably 2 to 5 seconds.
  • the start time (creamtime) is the time of the trouble-free pourability of the foamable mixture, ie the time available from mixing to the start of a visible reac tion, in which mixing of the starting materials, discharge from the mixing element and spraying of the reaction mass must be carried out.
  • polyurethane block foams are produced from the starting components mentioned above using conventional catalysts for the production of block foam, which as such are spread out on the oil-containing water surface, can be collected and pressed out after the absorption of oil, or can be comminuted and used as a filling material for absorption columns can.
  • Auxiliaries and additives can also be incorporated into the reaction mixture. Examples include stabilizers, hydrolysis protection agents, pore regulators and surface-active substances.
  • surface-active substances are considered which serve to support the homogenization of the starting materials and, if appropriate, are also suitable for regulating the cell structure of the foams.
  • examples include siloxane-oxyalkylene copolymers and other organopolysiloxanes, oxyethylated alkylphenols, oxyethylated fatty alcohols, paraffin oils, castor oil or castor oil esters and Turkish red oil, which are used in amounts of 0.2 to 6 parts by weight per 100 parts by weight of polyisocyanate.
  • the polyurethane foams according to the invention can be produced by the prepolymer and preferably by the one-shot process.
  • a mixture of polyhydroxy compound, lipophilic compound, water and optionally chain extender with the organic polyisocyanate in the presence of auxiliaries and additives is usually used at temperatures from 0 ° to 35 °, preferably 15 ° to 25 ° ° C implemented in such amounts that the ratio of Zerewitinoff active hydrogen atoms of the polyhydroxy compounds, lipophilic compounds and optionally chain extenders to the NCO group of the polyisocyanate is 0.7 to 1.3: 1, preferably approximately 1: 1, and the ratio of all Zerewitinoff active hydrogen atoms bonded to polyhydroxy compound, lipophilic compound, optionally chain extender and water to the NCO group of the polyisocyanate is approximately 1.3 to 5: 1, preferably 1.5 to 3: 1.
  • the starting components can be fed in individually and mixed intensively in the mixing chamber.
  • hydrophobic polyurethane foams according to the invention on water and the separation of those containing 01 and / or halogen; Polyurethane foams impregnated with hydrophobic solvents from the water surface are made with the aid of known devices which are expediently installed on ships or in aircraft. ,
  • the prepolymers containing NCO groups are advantageously atomized under water
  • Suitable polymer solvents are preferably those which are readily miscible with the prepolymer containing NCO groups and the oil to be absorbed, for example methylene chloride, toluene, cyclohexane, hexane and others
  • the foamable prepolymer mixture is expanded with simultaneous foaming by the carbon dioxide formed during the reaction of the prepolymers containing NCO groups with water, and the expanding and already expanded material rises to the surface of the water d absorbs the overlying oil or solvent layer from below.
  • the polyurethanes impregnated with oil and optionally halogen-containing, hydrophobic solvents can then be separated from the water surface using known methods.
  • the prepolymers containing NCO groups the polyisocyanates and mixtures of polyhydroxy compounds and lipophilic compounds mentioned above are reacted in the presence of any auxiliaries and additives in amounts such that the ratio of NCO groups to total hydroxyl of the mixture is 50: 1 to 2: 1, preferably 15: 1 to 5: 1.
  • hydrophobic polyurethane foams according to the invention have a high absorption capacity for.
  • Oil for example crude, heating and diesel oil and for halogen if necessary containing hydrophobic compounds, for example solvents such as hexane, benzene, toluene, aniline, chloroform, carbon tetrachloride, dichloroethane and hexachiorcyclopentadiene.
  • the prepolymer solution containing NCO groups is then atomized under water.
  • the specific weight of the prepolymer containing NCO groups is 1.3546 g / cm 3 without solvent.
  • the density of the prepolymer solution can be varied from 0.922 to 1.333 g / cm 3 by mixing the prepolymer with organic solvents.
  • the tests show the very high oil absorption capacity of the foams according to the invention in comparison to conventional rigid and flexible foams.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Emergency Medicine (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Claims (3)

1. Polyuréthanes alvéolaires hydrophobes, pour l'absorption d'huile et/ou de composés hydrophobes, éventuellement halogénés, à partir d'eau, préparés par réaction de polyisocyanates organiques avec des composés polyhydroxy, en présence d'eau comme gonflant et de catalyseurs, ainsi qu'éventuellement des composés lipophiles, des allongeurs de chaîne, des auxiliaires et des additifs, caractérisés par le fait que les polyuréthanes alvéolaires:
a) possèdent und densité de 5 à 26,5 g/litre,
b) ont un pourcentage de cellules fermées de 3 à 30% et de cellules ouvertes de 97 à 70%, rapporté au nombre total de cellules, et
c) ont été préparés en utilisant, comme composés polyhydroxy des polyéthers à groupes hydroxyle, linéaires et/ou ramifiés, de poids moléculaires de 300 à 10 000, qui ont été obtenus par polymérisation de tétrahydrofurane, 1,2- et 2,3-butylènoxyde, propylènoxyde ou mélanges de propylènoxyde et d'éthylénoxyde, d'une teneur en éthylènoxyde inférieure à 20% en poids, rapportée au poids total du mélange.
2. Polyuréthanes alvéolaires hydrophobes selon la revendication 1, caractérisés par le fait que:
c) on utilise, comme composés polyhydroxy des polypropylènoxydes à groupes hydroxyle, di-à trifonc- tionnels, de poids moléculaires de 2000 à 6000.
3. Polyuréthanes alvéolaires hydrophobes selon la revendication 1, préparés par le procédé "one-shot" en présence de composés lipophiles, caractérisés par le fait que:
a) ils possédent une densité de 6,8 à 18 g/litre,
d) on utilise, comme composés lipophiles, des acides gras aliphatiques, saturés et/ou insaturés, éventuellement saturés, ayant 10 à 25 atomes de carbone, ainsi que leurs esters ayant 2 à 200 atomes de carbone dans le reste alcool, et des amides, avec la condition que:
e) le rapport molaire entre les quantités de composés polyhydroxy, et de composés lipophiles est de 1/3 à 1/20 et
f) les composants de départ sont mis en réaction en quantités telles que:
i) le rapport entre les divers atomes d'hydrogène actifs de Zerewitinoff, liés aux composés polyhydroxy, l'eau, les composés lipophiles et éventuellement l'agent d'allongement de chaîne, et les groupes NCO des liolyisocyanates est de 0,7 à 1,3:1, et
ii) le rapport entre les atomes d'hydrogène actifs de Zerewitinoff, liés aux composés polyhydroxy, les composés lipophiles et éventuellement l'agent d'allongement de chaîne, et les groupes NCO des polyisocyanates est de 0,7 à 1,3:1.
EP78100702A 1977-08-25 1978-08-18 Mousses de polyuréthanes hydrophobes, procédé pour leur préparation et leur application dans l'absorption d'huiles et de composés hydrophobes contenant éventuellement de l'halogène flottant sur l'eau Expired EP0000933B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19772738268 DE2738268A1 (de) 1977-08-25 1977-08-25 Hydrophobe polyurethanschaumstoffe zur oelabsorption
DE2738268 1977-08-25

Publications (2)

Publication Number Publication Date
EP0000933A1 EP0000933A1 (fr) 1979-03-07
EP0000933B1 true EP0000933B1 (fr) 1983-03-30

Family

ID=6017233

Family Applications (1)

Application Number Title Priority Date Filing Date
EP78100702A Expired EP0000933B1 (fr) 1977-08-25 1978-08-18 Mousses de polyuréthanes hydrophobes, procédé pour leur préparation et leur application dans l'absorption d'huiles et de composés hydrophobes contenant éventuellement de l'halogène flottant sur l'eau

Country Status (4)

Country Link
US (1) US4237237A (fr)
EP (1) EP0000933B1 (fr)
JP (1) JPS5450099A (fr)
DE (2) DE2738268A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6759080B2 (en) 1999-09-17 2004-07-06 3M Innovative Properties Company Process for making foams by photopolymerization of emulsions
US7138436B2 (en) 2001-06-13 2006-11-21 3M Innovative Properties Company Uncrosslinked foams made from emulsions

Families Citing this family (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2901335A1 (de) * 1979-01-15 1980-07-31 Basf Ag Verfahren zur abtrennung von hydrophoben organischen fluessigkeiten aus wasser
US4310424A (en) * 1980-07-23 1982-01-12 Champion International Corporation Apparatus and method for removing suspended solids from a stream
NZ199916A (en) * 1981-03-11 1985-07-12 Unilever Plc Low density polymeric block material for use as carrier for included liquids
US4764282A (en) * 1986-09-26 1988-08-16 The Uniroyal Goodrich Tire Company Disposal of toxic and polymeric wastes
DE3711416A1 (de) * 1987-04-04 1988-05-19 Stuermer & Schuele Ohg Verfahren zur reinigung von wasser und vorrichtung dafuer
DE3718856A1 (de) * 1987-06-05 1988-12-22 Heinz Schnieders Wasser-aufbereitungsanlage fuer mit umweltschaedlichen, organischen substanzen, wie z.b. chlorierten kohlenwasserstoffen, verunreinigtes wasser
US4929359A (en) * 1988-01-26 1990-05-29 The United States Of America As Represented By The United States Department Of Energy Treatment of concentrated industrial wastewaters originating from oil shale and the like by electrolysis polyurethane foam interaction
US5074709A (en) * 1990-01-29 1991-12-24 Stensland Gary E Device and method for containing fluid spills
US5114272A (en) * 1990-07-02 1992-05-19 Brunhoff Frederic P Detachable boom and method for its use
US5248436A (en) * 1991-02-25 1993-09-28 Kovaletz Mark P Method for dispensing a fluidic media for treatment of waterborne spilled petroleum
DK0561760T3 (da) * 1992-03-20 1999-05-25 Monsanto Co Ekstraktion af organiske forbindelser fra vandige opløsninger
US5507949A (en) * 1992-03-20 1996-04-16 Monsanto Company Supported liquid membrane and separation process employing same
US6764603B2 (en) 1992-08-07 2004-07-20 Akzo Nobel Nv Material for extracting hydrophobic components dissolved in water
CA2103742C (fr) * 1992-08-11 2001-07-17 Robert Ziolkowski Greenley Polymere polyamphiphile solide utile dans un procede de separation
US5527834A (en) * 1994-11-30 1996-06-18 Inoac Corporation Waterproof plastic foam
GB2324798B (en) * 1997-05-01 1999-08-18 Ici Plc Open celled cellular polyurethane products
AU8728798A (en) * 1997-07-23 1999-02-16 Huntsman Ici Chemicals Llc Foam for absorbing hydrophobic liquids
US6100363A (en) * 1998-03-13 2000-08-08 Basf Corporation Energy absorbing elastomers
DE19928676A1 (de) 1999-06-23 2000-12-28 Basf Ag Polyisocyanat-Polyadditionsprodukte
US6353037B1 (en) 2000-07-12 2002-03-05 3M Innovative Properties Company Foams containing functionalized metal oxide nanoparticles and methods of making same
US6747068B2 (en) 2001-02-15 2004-06-08 Wm. T. Burnett & Co. Hydrophobic polyurethane foam
WO2002088213A1 (fr) * 2001-05-01 2002-11-07 Atlas Roofing Corporation Mousses plastiques thermodurcissables a alveoles fermees et procedes de production de ces mousses au moyen d'acetone et d'eau utilises comme agents gonflants
US7169318B1 (en) * 2003-03-18 2007-01-30 Hall Richard H Imbibed organic liquids, especially halogenated organics
DE102004013827A1 (de) * 2004-03-16 2005-10-06 Bulling, Walter Verfahren zum Herstellen eines Elementes aus weichelastischem PU-Schaumkunststoff und danach hergestelltes Element
WO2005113659A2 (fr) * 2004-05-13 2005-12-01 Smart, Robert, P. Mousses de poly (p-pheneylene 2-6 benzobisoxazole)
CA2640381A1 (fr) * 2006-03-14 2007-09-20 Huntsman International Llc Composition formee a partir d'un diisocyanate et d'une monoamine et procede servant a preparer celle-ci
DE102007020910A1 (de) 2007-04-27 2008-11-06 Erich Kumpf Verfahren zum Herstellen eines Formstücks aus weichelastischem PU-Schaumkunststoff und danach hergestelltes Formstück zur Absorption von Kontaminationsstoffen im Wasser
US8313527B2 (en) 2007-11-05 2012-11-20 Allergan, Inc. Soft prosthesis shell texturing method
US8506627B2 (en) 2008-08-13 2013-08-13 Allergan, Inc. Soft filled prosthesis shell with discrete fixation surfaces
CA2733925C (fr) * 2008-08-13 2019-01-15 Allergan, Inc. Coque souple de prothese remplie avec des surfaces de fixation discretes
US9050184B2 (en) 2008-08-13 2015-06-09 Allergan, Inc. Dual plane breast implant
DE102009000578A1 (de) * 2009-02-03 2010-08-12 Alexander Noskow Polyurethansorbens zur Entfernung von Kohlenwasserstoffen und Verfahren zur Reinigung von mit Kohlenwasserstoffen verunreinigten wässrigen Umgebungen und festen Oberflächen, welches das Polyurethansorbens verwendet
US20110093069A1 (en) 2009-10-16 2011-04-21 Allergan, Inc. Implants and methdos for manufacturing same
US9044897B2 (en) 2010-09-28 2015-06-02 Allergan, Inc. Porous materials, methods of making and uses
US8877822B2 (en) 2010-09-28 2014-11-04 Allergan, Inc. Porogen compositions, methods of making and uses
US8889751B2 (en) 2010-09-28 2014-11-18 Allergan, Inc. Porous materials, methods of making and uses
US9138309B2 (en) 2010-02-05 2015-09-22 Allergan, Inc. Porous materials, methods of making and uses
US9205577B2 (en) 2010-02-05 2015-12-08 Allergan, Inc. Porogen compositions, methods of making and uses
US11202853B2 (en) 2010-05-11 2021-12-21 Allergan, Inc. Porogen compositions, methods of making and uses
EP2390275A1 (fr) 2010-05-27 2011-11-30 Basf Se Éponges en polyuréthane oléophiles dotées de bonnes propriétés mécaniques
US9023908B2 (en) 2010-05-27 2015-05-05 Basf Se Oil-absorbent polyurethane sponges with good mechanical properties
WO2012024600A1 (fr) * 2010-08-20 2012-02-23 Allergan, Inc. Matériaux implantables
US8616272B2 (en) 2010-08-20 2013-12-31 Baker Hughes Incorporated Downhole water-oil separation arrangement and method
US9115580B2 (en) 2010-08-20 2015-08-25 Baker Hughes Incorporated Cellular pump
DE102011007479A1 (de) * 2011-04-15 2012-10-18 Evonik Goldschmidt Gmbh Zusammensetzung, enthaltend spezielle Amide und organomodifizierte Siloxane, geeignet zur Herstellung von Polyurethanschäumen
BRPI1103089A2 (pt) * 2011-06-02 2012-07-10 Laurencio Cuevas Perlaza material absorvente para emprego na remoção de efluentes oleosos e processo para produção de material absorvente para emprego na remoção de efluentes oleosos
US8801782B2 (en) 2011-12-15 2014-08-12 Allergan, Inc. Surgical methods for breast reconstruction or augmentation
CN102786647B (zh) * 2012-06-01 2014-05-07 江苏瑞丰科技实业有限公司 一种可生物降解聚氨酯吸油材料及其制备方法
EP2677030A1 (fr) 2012-06-21 2013-12-25 Latvijas Valsts Koksnes kimijas instituts Mousses rigides et flexibles de polyurethane comme composite obtenues a partir de matieres premieres de bois et a utiliser comme support pour immobiliser des micro-organismes produisant des enzymes lignolytiques
CA2895083A1 (fr) 2012-12-13 2014-06-19 Allergan, Inc. Dispositif et procede de fabrication d'un implant mammaire a surface variable
US9724669B2 (en) 2013-02-14 2017-08-08 The Research Foundation For The State University Of New York Modified hydrophobic sponges
US9931611B2 (en) 2013-11-04 2018-04-03 The Research Foundation For The State University Of New York Modified hydrophobic sponges
CA2949231A1 (fr) 2014-05-16 2015-11-19 Allergan, Inc. Coque souple de prothese remplie a texture variable
US10092392B2 (en) 2014-05-16 2018-10-09 Allergan, Inc. Textured breast implant and methods of making same
CN104163934A (zh) * 2014-07-29 2014-11-26 江苏大学 一种多孔疏水亲油海绵的制备方法
CA3045033A1 (fr) 2016-11-29 2018-06-07 Salvatore A. Diloreto Isolation de construction en mousse pistolee pour applications exterieures
CN107892759A (zh) * 2017-10-19 2018-04-10 苏州无为环境科技有限公司 一种脂肪酸修饰的超疏水聚氨酯泡沫吸油材料的制备方法
CN108192322A (zh) * 2017-12-04 2018-06-22 张芸 一种疏水亲油型聚氨酯海绵的制备方法
CN108587122A (zh) * 2018-03-23 2018-09-28 长沙小新新能源科技有限公司 一种高吸油高回弹海绵及其制备方法
WO2021150174A1 (fr) * 2020-01-20 2021-07-29 Özerden Plasti̇k Sanayi̇ Ve Ti̇caret Anoni̇m Şi̇rketi̇ Mousse de polyuréthane de faible densité utilisant de l'huile de ricin fonctionnalisée

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE960855C (de) * 1954-08-20 1957-03-28 Bayer Ag Verfahren zur Herstellung von Urethan-Gruppen enthaltenden Schaumstoffen
US3165483A (en) * 1961-02-23 1965-01-12 Mobay Chemical Corp Skeletal polyurethane foam and method of making same
US3505250A (en) * 1966-09-08 1970-04-07 Mobay Chemical Corp Polyurethane plastics
US3476933A (en) * 1966-10-21 1969-11-04 Westinghouse Electric Corp Large-celled polyurethane foam
US3487927A (en) 1967-10-02 1970-01-06 Standard Oil Co Method and apparatus for separating water and oil
US3567663A (en) * 1968-01-05 1971-03-02 Scott Paper Co Low permeability polyurethane foam and process for the manufacture thereof
DE1944679A1 (de) * 1969-09-03 1971-03-04 Collo Rheincollodium Koeln Gmb Verfahren und Einrichtungen zur Beseitigung von OElverschmutzungen od.dgl.
US3679058A (en) * 1970-01-27 1972-07-25 Millard F Smith Oil collection boom
US3886067A (en) * 1970-02-03 1975-05-27 Salvatore W Miranda Process for controlling oil slicks
US3617551A (en) * 1970-03-18 1971-11-02 Standard Oil Co Apparatus and process for purifying oil-contaminated water
US3681237A (en) * 1971-03-26 1972-08-01 Membrionics Corp Oil spillage control process
GB1319747A (en) 1971-04-06 1973-06-06 Monsanto Res Corp Porous resinous bodies
CA996037A (en) * 1972-02-22 1976-08-31 John Jay Plastic foam filter
US3779908A (en) * 1972-03-17 1973-12-18 Continental Oil Co Coalescence of water and oleophilic liquid dispersions by passage through a permeable, oleophilic liquid equilibrated, foam of polyurethane
AT313206B (de) * 1972-03-20 1974-02-11 Peter Jakubek Dipl Ing Dr Tech Verfahren zum Reinigen von mit spezifisch leichteren Flüssigkeiten verunreinigten Flüssigkeiten sowie Vorrichtung zur Durchführung des Verfahrens
US3959191A (en) * 1973-01-11 1976-05-25 W. R. Grace & Co. Novel hydrophobic polyurethane foams
US3953406A (en) * 1973-01-26 1976-04-27 California Institute Of Technology Water-insoluble, swellable polyurethanes
US3888766A (en) * 1973-03-09 1975-06-10 Uniroyal Inc Oil sorption material
US3917528A (en) * 1973-05-29 1975-11-04 Sorbent Sciences Corp Foraminous composition for removal of oleophilic material from the surface of water
US3884848A (en) * 1973-11-14 1975-05-20 Tenneco Chem Manufacture of membrane-free nonlustrous polyurethane foam

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6759080B2 (en) 1999-09-17 2004-07-06 3M Innovative Properties Company Process for making foams by photopolymerization of emulsions
US7138436B2 (en) 2001-06-13 2006-11-21 3M Innovative Properties Company Uncrosslinked foams made from emulsions

Also Published As

Publication number Publication date
JPS5450099A (en) 1979-04-19
US4237237A (en) 1980-12-02
EP0000933A1 (fr) 1979-03-07
DE2738268A1 (de) 1979-03-08
DE2862213D1 (en) 1983-05-05

Similar Documents

Publication Publication Date Title
EP0000933B1 (fr) Mousses de polyuréthanes hydrophobes, procédé pour leur préparation et leur application dans l&#39;absorption d&#39;huiles et de composés hydrophobes contenant éventuellement de l&#39;halogène flottant sur l&#39;eau
EP0296449B1 (fr) Procédé de préparation de mousses souples de polyuréthanes durcissables à froid
EP0013412B1 (fr) Procédé pour la séparation de liquides organiques hydrophobes de l&#39;eau
DE4303556C1 (de) Harte Polyurethane oder Polyurethanschaumstoffe
DE2542217C2 (de) Fester Polyurethanschaumstoff und Verfahren zu seiner Herstellung
DE3818769A1 (de) Fluessige polyisocyanatmischungen, ein verfahren zu ihrer herstellung und ihre verwendung zur herstellung von polyurethan-weichschaumstoffen
WO1995014730A1 (fr) Procede de production de mousses de polyurethane dures
DE2711735C2 (fr)
EP0004879B1 (fr) Procédé de préparation de mousses de polyuréthane flexibles en utilisant comme polyisocyanate un mélange modifié par de l&#39;uréthane de diisocyanate de diphénylméthane et de polyméthylène-polyisocyanate de polyphényle ayant une teneur de 55 à 85 pour-cent en poids d&#39;isomères de diisocyanate de diphénylméthane
EP0004617B1 (fr) Procédé de préparation de mousses de polyuréthane flexibles possédant des propriétés de support de charge et d&#39;absorption de chocs améliorées à base de MDI brut ayant une teneur de 55 à 85 pour cent en poids de diisocyanate de diphénylméthane et de polyesterols
EP0624619B1 (fr) Polyuréthanes rigides hydrophobes
DE69010982T2 (de) Polyurethan-Weichschaumstoffe sowie Verfahren zu deren Herstellung.
DE2644956A1 (de) Ternaere gemische und deren verwendung
EP0550901B1 (fr) Compositions liquides de polyisocyanates à faible coloration, leur procédé de préparation et leur utilisation dans la fabrication de mousses rigides de polyuréthane à faible coloration
DE1078322B (de) Verfahren zur Herstellung von Urethangruppen enthaltenden Schaumstoffen
DE1924302A1 (de) Verfahren zur Herstellung von Urethangruppen und Biuretgruppen aufweisenden Kunststoffen
EP0099531A2 (fr) Solutions de silicates alcalins stabilisées, procédé pour leur préparation, leur utilisation pour la fabrication de matériaux mousses à partir d&#39;organosilicates et procédé pour la préparation de ces organosilicates mousses
EP0903360B1 (fr) Mousses polyester-polyuréthane hydrophiliques, un procédé pour leur préparation et leur utilisation comme produits d&#39;absorption de l&#39;humidité
DE2032174A1 (de) Verfahren zur Herstellung von flammfesten, Urethangruppen aufweisenden Hartschaumstoffen
DE10111823A1 (de) Verfahren zur Herstellung von Polyurethan-Weichschaumstoffen
DE69128694T2 (de) Flexible Polyurethanschaumstoffe und Verfahren zu ihrer Herstellung
EP0625997B1 (fr) Composes aminocarbonate et leur utilisation comme catalyseurs
EP0358075B1 (fr) Procédé de préparation de produits moulés de mousse souple de polyuréthane durcissable à chaleur
EP0017948B1 (fr) Procédé de préparation de polyuréthanes alvéolaires
DE2542218C2 (de) Fester Polyurethanschaumstoff und Verfahren zu seiner Herstellung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE DE FR GB

17P Request for examination filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE DE FR GB

REF Corresponds to:

Ref document number: 2862213

Country of ref document: DE

Date of ref document: 19830505

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19840719

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19840720

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19840930

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19880818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19880831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19880901

BERE Be: lapsed

Owner name: BASF A.G.

Effective date: 19880831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19890428

GBPC Gb: european patent ceased through non-payment of renewal fee
REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT