EP0000902B1 - Procédé de préparation de sels d'hydroxylammonium - Google Patents

Procédé de préparation de sels d'hydroxylammonium Download PDF

Info

Publication number
EP0000902B1
EP0000902B1 EP78100631A EP78100631A EP0000902B1 EP 0000902 B1 EP0000902 B1 EP 0000902B1 EP 78100631 A EP78100631 A EP 78100631A EP 78100631 A EP78100631 A EP 78100631A EP 0000902 B1 EP0000902 B1 EP 0000902B1
Authority
EP
European Patent Office
Prior art keywords
zone
reaction mixture
reaction
liquid
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP78100631A
Other languages
German (de)
English (en)
Other versions
EP0000902A1 (fr
Inventor
Guenther Dr. Rapp
Erwin Thomas
Dieter Dr. Wolf
Heribert Kuerten
Peter Dr. Zehner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6016499&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0000902(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by BASF SE filed Critical BASF SE
Publication of EP0000902A1 publication Critical patent/EP0000902A1/fr
Application granted granted Critical
Publication of EP0000902B1 publication Critical patent/EP0000902B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/082Compounds containing nitrogen and non-metals and optionally metals
    • C01B21/14Hydroxylamine; Salts thereof
    • C01B21/1409Preparation
    • C01B21/1418Preparation by catalytic reduction of nitrogen oxides or nitrates with hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/2455Stationary reactors without moving elements inside provoking a loop type movement of the reactants
    • B01J19/2465Stationary reactors without moving elements inside provoking a loop type movement of the reactants externally, i.e. the mixture leaving the vessel and subsequently re-entering it
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/26Nozzle-type reactors, i.e. the distribution of the initial reactants within the reactor is effected by their introduction or injection through nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00087Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements outside the reactor
    • B01J2219/00103Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements outside the reactor in a heat exchanger separate from the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00105Controlling the temperature by indirect heating or cooling employing heat exchange fluids part or all of the reactants being heated or cooled outside the reactor while recycling
    • B01J2219/0011Controlling the temperature by indirect heating or cooling employing heat exchange fluids part or all of the reactants being heated or cooled outside the reactor while recycling involving reactant liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00761Details of the reactor
    • B01J2219/00763Baffles
    • B01J2219/00765Baffles attached to the reactor wall
    • B01J2219/00777Baffles attached to the reactor wall horizontal

Definitions

  • the invention relates to a process for the preparation of hydroxylammonium salts by catalytic reduction of nitrogen monoxide with hydrogen in dilute aqueous solutions of mineral acids in the presence of suspended platinum catalysts at elevated temperature, the reaction mixture being circulated.
  • the aim is therefore to achieve the highest possible space-time yield with a small reaction volume, if possible without using stirring devices.
  • DE-AS 11 93 923 describes a procedure in which the reaction is carried out in a sieve tray column, the reaction solution being continuously pumped around.
  • a reaction method working according to the mammoth pump principle is used.
  • DE-OS 15 42 219 a method of operation is already known in which an intimate gas-liquid-solid mixture is brought about by nozzles and the dispersion is introduced tangentially into the reaction zone. The procedures listed above are still in need of improvement with regard to the space-time yields achieved.
  • This technical problem is solved in a process for the preparation of hydroxylammonium salts by catalytic reduction of nitrogen monoxide with hydrogen in dilute aqueous solutions of mineral acids in the presence of suspended platinum catalysts at elevated temperature with recycling of the reaction mixture, the nitrogen monoxide and hydrogen located in the gas space above the reaction zone containing gas mixture by at least one liquid jet of the circulating reaction mixture directed from top to bottom and emerging from a nozzle opening, into at least one circulation zone located on both sides in the reaction zone, which extends in the direction of the incoming liquid jet and is covered by the reaction solution, , which redirects the unreacted gas-containing reaction mixture emerging from the circulation zone at the bottom, in the annular zone surrounding the circulation zone on the outside, and at the same time returns gas-poor reaction mixture from a separation zone located below the reaction zone.
  • the new process has the advantage that better space-time yields, based on nitrogen oxide, are achieved under the pressures used in each case. This means that higher throughputs can be achieved with devices of existing size, or smaller devices can be selected for a given throughput. Furthermore, the new method has the advantage that it can be easily transferred to a larger scale.
  • Strong mineral acids such as hydrochloric acid, nitric acid, sulfuric acid or phosphoric acid, are generally used. Their acidic salts, such as ammonium bisulfate, are also suitable. Sulfuric acid is particularly preferably used. Usually. one assumes 4 to 6 normal aqueous acids and the acid concentration does not drop below 0.2 normal in the course of the reaction.
  • the reaction is preferably carried out at temperatures from 30 to 80 ° C. Temperatures of 40 to 60 ° C. have proven particularly effective.
  • the reaction generally takes place at atmospheric pressure. However, it has proven advantageous to carry out the reaction under increased pressure, e.g. up to 300 bar.
  • Supported catalysts are advantageously used as platinum catalysts; Carbon carriers have proven particularly useful. Platinum is of particular technical importance Supported graphite catalysts. Such a catalyst advantageously contains 0.3 to 5% by weight of platinum.
  • the supported catalysts are present in a fine distribution so that they are suspended in the reaction medium.
  • the catalysts additionally contain one or more elements of the 5th and / or 6th main group of the periodic system with an atomic weight> 31, furthermore lead and / or mercury as poisoning agents.
  • Suitable catalysts and their preparation are described, for example, in DE-PS 1088037, DE-PS 920 963, 956 038, 945 752. 1 to 400 g of supported platinum catalyst are generally used per liter of aqueous mineral acid.
  • the gas mixture containing hydrogen and nitrogen monoxide in the gas space above the reaction zone is separated by at least one liquid jet of the circulating reaction mixture, which is directed downwards and emerges from a nozzle opening and essentially consists of aqueous mineral acid, catalyst, optionally from already formed hydroxylammonium salts and any By-products, as well as dissolved and / or finely divided gases, are introduced into at least one circulation zone located in the reaction zone and open on both sides, which extends in the direction of the incoming liquid jet and is completely covered by the aqueous reaction mixture.
  • the gas mixture can also contain gases formed as by-products such as N z O and inerts.
  • the circulation zone is a tube inserted vertically centrally into the reaction zone.
  • the circulation zone or circulation zones are open on both sides and extend in the direction of the incoming liquid jet or jets.
  • the circulation zone is also completely covered by the reaction mixture.
  • the reaction zone generally has a height to diameter ratio of 2 to 30: 1, preferably 5 to 15: 1.
  • the diameter ratio of the circulation zone to the reaction zone is generally about 0.7 to 0.1 and is preferably around 0. 5.
  • the velocity of the liquid jet introduced is advantageously from 5 to 40 m / sec, preferably from 10 to 30 m / sec.
  • the amount of recycled reaction solution is usually from 10 to 500, in particular 100 to 400 m 3 / m 3 of the reaction zone and hour.
  • the speed of the liquid in the circulation zone should advantageously be a factor of 1 to 6, preferably 2 to 4 times as large as in the annular zone surrounding the circulation zone. In this way, the gas content in the circulation zone and in the annular zone are approximately the same size and the density differences are small.
  • the nozzle opening is advantageously at a distance from the upper end of the circulation zone which is 0.1 to 3 times, preferably 0.3 to 0.9 times the diameter of the circulation zone.
  • the reaction mixture emerging from the bottom of the circulation zone and the gas mixture not used up to that point are redirected.
  • the deflection is brought about by a deflection plate arranged transversely below the circulation zone. This is advantageously at a distance from the lower end of the circulation zone which is 0.1 to 1.0 times, preferably 0.2 to 0.7 times the diameter of the circulation zone. Unused gas mixture and part of the liquid rise in the ring-shaped zone surrounding the circulation zone.
  • the liquid reaction mixture is moved down again in the circulation zone by the liquid jet entering from above, and at the same time the gas mixture located above the liquid level is introduced into the circulation zone and finely distributed by the liquid jet directed downwards.
  • the gas input from the gas phase above the liquid level is automatically regulated according to the invention by immersing the nozzle mouth of the nozzle opening in the liquid, i.e. if the liquid level is lower, more gas is introduced until the liquid level rises and vice versa, if the liquid level is above the nozzle mouth, less gas is introduced so that the liquid level lowers.
  • the content of finely divided gas bubbles in the reaction mixture can also be regein in a simple manner. This is expediently done in such a way that the amount of liquid in the reaction zone is lowered by draining off after the circulation has been started. It is then entered until the liquid level has reached the nozzle opening.
  • the liquid level does not increase due to the increased supply of liquid reaction mixture, but rather through increased gas absorption, which is present in the liquid in a fine distribution.
  • a gas content (gas hold-up) of 5 to 50%, based on the liquid reaction mixture, is advantageously maintained in the liquid reaction mixture in the reaction zone.
  • the fresh gas supply can also advantageously take place under the deflection plate at the point where the reaction mixture is deflected.
  • a power in the reaction zone maintains density of 1 to 50, in particular 5 to 30 kW / m 3 of liquid reaction mixture located in the reaction zone.
  • the necessary power density is brought into the reaction mixture by the liquid jets. It is a function of the circulation rate and the pressure drop at the nozzle opening.
  • a separation zone Immediately below the reaction zone is a separation zone, in which entrained gas bubbles separate from the liquid reaction mixture. The gas bubbles move upward against the liquid flow, while the liquid reaction mixture is drawn off and returned to the nozzle opening or openings.
  • a jet drive in which the. Nozzle works from top to bottom.
  • the driving jet brings energy for the circulation in the reactor. Since the nozzle mouth lies on the surface of the liquid, the driving stream introduces gas into the liquid, which is very finely dispersed in the circulation pipe. As a result, the slip between liquid and gas is very small and a high circulation speed is generated.
  • the propellant jet therefore only introduces so much gas that the liquid level reaches the nozzle opening. This also limits the gas content in the liquid and can never become so large that the circulation of the gas-liquid flow in the reactor can be at risk of collapsing due to the formation of large bubbles.
  • the advantage of the process according to the invention is accordingly the uniform distribution of gas and also of the suspended catalyst in the entire reaction zone. When the reactor is switched off, the nozzle opening cannot become blocked by the deposited catalyst.
  • the process is suitable for continuous and discontinuous working methods.
  • the aqueous mineral acid to be reacted optionally in a mixture with hydroxylamine salts, is continuously introduced into the reaction zone.
  • the reaction product is continuously removed from the external liquid circulation. Amounts of catalyst removed with the reaction liquid are supplemented by appropriate additions of catalyst to the liquid feed.
  • the desired gas hold-up can be regulated by varying the liquid inflow or outflow. The gas hold-up can e.g. by determining the apparent density of the liquid-solid gas mixture or the amount of liquid in the reaction space.
  • Hydroxylammonium salts are used for the production of cyclohexanone oxime, a precursor for the production of caprolactam.
  • an immersion jet device consisting of a reactor vessel (1) with circulation pipe (2) and baffle plate (3) and an external liquid circulation (4) with pump (5) and heat exchanger (6) for removing the heat of reaction and immersion jet nozzle (7) .
  • Gas supply (8, 9) and gas discharge (10) 4, 3 n sulfuric acid and 40 g of a platinum-graphite catalyst with a content of 0.5 wt.% Pt are added per liter of sulfuric acid used.
  • a gas mixture consisting of 36% by volume NO and 63% by volume H 2 (residual inert gas) is introduced into the reactor at 40 ° C.
  • the escaping exhaust gas is measured and analyzed.
  • the reaction is terminated, separating the hydroxyl 'aminiösung off from the catalyst and the amount of hydroxylamine formed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Claims (5)

1. Procédé de préparation de sels d'hydroxylammonium par réduction catalysée de l'oxyde azotique par l'hydrogène dans une solution aqueuse diluée d'un acide minéral à température accrue et en présence d'un catalyseur au platine en suspension, le mélange réactionnel circulant en circuit, caractérisé en ce que l'on fait passer le mélange gazeux, contenant de l'oxyde azotique et de l'hydrogène, se trouvant dans la partie du réacteur surmontant la zone de réaction et remplie de produits gazeux, à l'aide d'au moins un jet de la solution réactionnelle circulant en circuit, injecté de haut en bas par une tuyère, dans au moins une zone de circulation s'étendant dans la direction d'injection du jet de liquide et ouverte des deux côtés, située dans la zone de réaction et entièrement noyée dans le mélange réactionnel, tandis que le mélange réactionnel contenant les produits gazeux n'ayant pas réagi, sortant de l'extrémité inférieure de la zone de circulation, est dévié et ramené à travers une zone annulaire, entourant la zone de circulation, dans la partie supérieure du réacteur avec recyclage simultané de mélange réactionnel pauvre en produits gazeux, provenant d'une zone de séparation disposée sous la zone de réaction.
2. Procédé suivant la revendication 1, caractérisé en ce que l'introduction de l'oxyde azotique et de l'hydrogène s'effectue au niveau de l'embouchure de la tuyère d'injection.
3. Procédé suivant la revendication 1, caractérisé en ce que l'introduction de l'oxyde azotique et de l'hydrogène s'effectue à un niveau disposé juste en dessous de l'endroit de déviation du mélange réactionnel sortant de la zone de circulation.
4. Procédé suivant l'une quelconque des revendications 1 à 3, caractérisé en ce que, dans la zone de réaction, le mélange réactionnel contient entre 5 et 5096 en volume de produits gazeux.
5. Procédé suivant l'une quelconque des revendications 1 à 4, caractérisé en ce que, dans la zone de réaction, la densité de puissance est maintenue entre 1 et 50 kilowatts par m3 de mélange réactionnel liquide contenu dans cette zone de réaction.
EP78100631A 1977-08-16 1978-08-09 Procédé de préparation de sels d'hydroxylammonium Expired EP0000902B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2736872 1977-08-16
DE2736872A DE2736872B2 (de) 1977-08-16 1977-08-16 Verfahren zur Herstellung von Hydroxylammoniumsalzen

Publications (2)

Publication Number Publication Date
EP0000902A1 EP0000902A1 (fr) 1979-03-07
EP0000902B1 true EP0000902B1 (fr) 1980-07-23

Family

ID=6016499

Family Applications (1)

Application Number Title Priority Date Filing Date
EP78100631A Expired EP0000902B1 (fr) 1977-08-16 1978-08-09 Procédé de préparation de sels d'hydroxylammonium

Country Status (5)

Country Link
US (1) US4192856A (fr)
EP (1) EP0000902B1 (fr)
JP (1) JPS5448700A (fr)
DE (2) DE2736872B2 (fr)
IT (1) IT1097942B (fr)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5759828A (en) * 1980-09-29 1982-04-10 Kao Corp Preparation of sugar oxide
DE3107702A1 (de) * 1981-02-28 1982-09-16 Basf Ag, 6700 Ludwigshafen Verfahren zur kontinuierlichen herstellung von hydroxylammoniumsalzen
DE3130305A1 (de) * 1981-07-31 1983-02-17 Basf Ag, 6700 Ludwigshafen Verfahren zur herstellung von hydroxylammoniumsalzen
DE3445904C2 (de) * 1984-12-15 1986-12-04 Dynamit Nobel Ag, 5210 Troisdorf Verfahren und Vorrichtung zur Durchführung von heterogenen, stofftransportlimitierten Reaktionen
ATE106275T1 (de) * 1988-08-24 1994-06-15 Exxon Research Engineering Co Verbesserter kontakt zwischen mehreren unterschiedlichen fluidphasen in einem senkrecht angeordneten reaktor.
EP1137623B1 (fr) 1998-12-12 2003-06-04 Basf Aktiengesellschaft Procede pour la production d'amines
AT410406B (de) * 2001-09-17 2003-04-25 Andritz Ag Maschf Verfahren und vorrichtung zur belüftung einer flüssigkeit mit gas
CN101804317B (zh) * 2010-04-02 2012-10-17 南京大学 一种多相催化塔式碰撞流反应器
DE102017002307A1 (de) * 2017-03-10 2018-09-13 Rosenberger Hochfrequenztechnik Gmbh & Co. Kg Innenleiter-element
WO2020014211A1 (fr) * 2018-07-09 2020-01-16 Blue Cube Ip Llc Buse d'éjecteur pour améliorer la rétention de gaz dans un réacteur gaz-liquide

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2414142A (en) * 1944-01-17 1947-01-14 Bonard Claude Manufacture of hydroxylamine
FR1003261A (fr) * 1946-12-30 1952-03-17 I G Farbenindustrie Ag En Diss Procédé de fabrication d'ammonium imidodisulfoné
DE956038C (de) * 1954-04-01 1957-01-10 Basf Ag Verfahren zur Herstellung von Hydroxylammoniumsalzen
BE634876A (fr) * 1962-07-13
CH453316A (de) * 1964-11-10 1968-06-14 Inventa Ag Verfahren zur Herstellung von Hydroxylamin durch katalytische Hydrierung von Stickoxyd und Vorrichtung zur Durchführung dieses Verfahrens
DE1767201C3 (de) * 1968-04-11 1979-01-25 Hoechst Ag, 6000 Frankfurt Verfahren zur Herstellung von Amidosulfonsäure
CH507023A (de) * 1968-11-14 1971-05-15 Inventa Ag Verfahren zur Ausführung von katalytischen Gasreaktionen im Mehrphasensystem
NL6908934A (en) 1969-06-12 1970-12-15 Hydroxylamine preparation without commin - ution of catalyst
BE790131A (fr) * 1971-10-14 1973-04-16 Basf Ag Procede et dispositif de melange de liquides
CH584163A5 (fr) * 1973-07-17 1977-01-31 Inventa Ag
CH583588A5 (fr) * 1973-10-10 1977-01-14 Inventa Ag
US3954946A (en) * 1974-07-18 1976-05-04 Inventa Ag Fur Forschung Und Patentverwertung, Zurich Process for reacting nitric oxide with hydrogen
DE2516284C3 (de) * 1975-04-14 1978-04-13 Burdosa, Herwig Burgert, 6301 Roedgen Schlaufenreaktor
US4166840A (en) * 1975-12-24 1979-09-04 Fisons Limited Process for producing ammonium phosphate from ammonia and wet process phosphoric acid
DE2645780C2 (de) * 1976-10-09 1982-10-07 Basf Ag, 6700 Ludwigshafen Verfahren zum Begasen einer Flüssigkeit in einem Umlaufreaktor und zum Verhindern des Entmischens von nicht abreagiertem Gas aus der Flüssigkeit

Also Published As

Publication number Publication date
US4192856A (en) 1980-03-11
EP0000902A1 (fr) 1979-03-07
DE2860073D1 (en) 1980-11-13
IT7826690A0 (it) 1978-08-10
JPS5448700A (en) 1979-04-17
IT1097942B (it) 1985-08-31
DE2736872A1 (de) 1979-02-22
DE2736872B2 (de) 1979-07-19

Similar Documents

Publication Publication Date Title
DE60109678T2 (de) Nachrüstreaktor mit Gas-Flüssigkeitsejektor und Monolithkatalysator
DE69511756T2 (de) Herstellung von Terephthalsäure unter Verwendung der Abdampfungskühlung
DE69425811T2 (de) Herstellung von Terephthalsäure
DE2645780C2 (de) Verfahren zum Begasen einer Flüssigkeit in einem Umlaufreaktor und zum Verhindern des Entmischens von nicht abreagiertem Gas aus der Flüssigkeit
DE69017924T2 (de) Herstellung von Isopropanol.
DE69302739T2 (de) Zweistufiges Verfahren zur Herstellung von Oximen in einer Flüssigphase
WO2000030743A1 (fr) Reacteur pour effectuer en continu des reactions gaz-liquide, liquide-liquide ou gaz-liquide-solide
EP0000902B1 (fr) Procédé de préparation de sels d'hydroxylammonium
DE69816576T2 (de) Verfahren zur regenerierung in einem blasensäule-reaktor mit zugrohr des sich darin befindenen katalysators
EP1073608B1 (fr) Procede de production de peroxyde d'hydrogene par synthese directe
EP3235560A1 (fr) Procede d'execution d'une reaction sous catalyse heterogene
EP2190806A2 (fr) Procédé et dispositif d'oxydation de composés organiques
EP1334062B1 (fr) Procede continu d'hydrogenation
WO2009024446A2 (fr) Procédé et dispositif d'oxydation de composés organiques
EP0947493B1 (fr) Procédé pour l'hydrogénation sélective en phase liquide de composés carbonyles alpha,bèta-insaturés
EP0555697A1 (fr) Procédé de préparation de carbonates de dialkyle
DE1557018A1 (de) Verfahren und Vorrichtung zum Vermischen von Gasen und Fluessigkeiten mit einem fluessigen Medium
DE10106482A1 (de) Hydroformylierung
WO2003078369A1 (fr) Oxydation de o-xylol en acide o-tolyle et en autres produits d'oxydation par apport progressif d'un gaz contenant de l'oxygene
DE2421407B1 (de) Verfahren zur Herstellung von Butindiol
DE3328771A1 (de) Verfahren zur kontinuierlichen herstellung von sauerstoff enthaltenden verbindungen
DE1542219B2 (de) Verfahren und vorrichtung zur hydrierung von stickoxyd zu hydroxylamin
DE60111063T2 (de) Verfahren zur herstellung von aromatischen aminen
DE1667100B2 (de) Verfahren zum Durchführen von Stoff- und/oder Wärmeübergangsvorgängen zwischen Gasen und Flüssigkeiten in einem Blasensäulenreaktor
DE2124472A1 (de) Verfahren zur Herstellung von ungesättigten Nitrilen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE CH DE FR GB NL

17P Request for examination filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE CH DE FR GB NL

REF Corresponds to:

Ref document number: 2860073

Country of ref document: DE

Date of ref document: 19801113

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

26 Opposition filed

Opponent name: NAAMLOZE VENNOOTSCHAP DSM

Effective date: 19810403

R26 Opposition filed (corrected)

Opponent name: NAAMLOZE VENNOOTSCHAP DSM

Effective date: 19810403

KL Correction list

Free format text: 81/01

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 19830916

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19970722

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19970728

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19970801

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19970805

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19970808

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19970818

Year of fee payment: 20

BE20 Be: patent expired

Free format text: 980809 *BASF A.G.

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 19980808

Ref country code: CH

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 19980808

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 19980809

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Effective date: 19980808

NLV7 Nl: ceased due to reaching the maximum lifetime of a patent

Effective date: 19980809