EA046302B1 - Мобильный расточно-наплавочный комплекс - Google Patents

Мобильный расточно-наплавочный комплекс Download PDF

Info

Publication number
EA046302B1
EA046302B1 EA202391303 EA046302B1 EA 046302 B1 EA046302 B1 EA 046302B1 EA 202391303 EA202391303 EA 202391303 EA 046302 B1 EA046302 B1 EA 046302B1
Authority
EA
Eurasian Patent Office
Prior art keywords
surfacing
boring
drive
complex
longitudinal feed
Prior art date
Application number
EA202391303
Other languages
English (en)
Inventor
Александр Валерьевич Луппов
Original Assignee
Ооо Нпп "Сармат"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ооо Нпп "Сармат" filed Critical Ооо Нпп "Сармат"
Publication of EA046302B1 publication Critical patent/EA046302B1/ru

Links

Description

Изобретение относится к специализированным расточным станкам для восстановления или ремонта изделий путем наплавки металла на внутреннюю поверхность их отверстий с дальнейшей расточкой. Станок предназначен для восстановления цилиндрических отверстий и посадок под валы и подшипники, а также выравнивания соосности цилиндров непосредственно на подлежащем ремонту узле, без необходимости полной разборки агрегата и транспортировки его в ремонтную зону для последующей обработки на стационарных станках.
Из уровня техники известна машина для расточки и наплавки (US6073322A, МПК В23К9/О4, В23К9/28, В23Р6/00, опубл. 13.06.2000). Машина представляет собой универсальный переносной автоматический сверлильно-наплавочный станок для выполнения сверления и сварки внутри и снаружи глухих и сквозных отверстий, содержащий патрубок; три полых вала, расположенных в упомянутом патрубке и расположенных соосно. При этом первый внутренний полый вал расположен внутри второго промежуточного полого вала, а третий вал является внешним, по отношению ко второму промежуточному; валы разделены друг от друга парами роликовых подшипников. Станок дополнительно содержит полый держатель для инструмента со средством для его удерживания, головки для инструмента и сварочной горелки, введенной через первый внутренний полый вал. Рабочие органы станка приводятся в действие тремя двигателями.
Недостатком известного технического решения является то, станок обладает низкой технологичностью, связанной с необходимостью использовать сразу три двигателя для приведения в движение его рабочих органов, при этом двигатель привода вращения не может работать на малых оборотах. Кроме того конструкция приводов требует сложной кинематики узлов привода борштанги - двухскоростного редуктора со сложной системой управления.
Наиболее близким техническим решением к заявленному изобретению и выбранным в качестве прототипа признан мобильный расточно-наплавочный комплекс (RU2421303C2, МПК В23В 39/14, В23К 37/00, опубл. 20.06.2011). Комплекс содержит привод рабочего инструмента в виде борштанги или диэлектрического вала с наплавочной головкой, шасси, установленные на нем приводы механизма вращения и механизма продольной подачи борштанги с соответствующими двигателями, и закрепляемые на обрабатываемой детали, по меньшей мере, два суппорта, из которых один несущий суппорт выполнен с возможностью установки на него шасси, при этом суппорт дополнительно снабжен быстроразъемным конусным соединением шасси с несущим суппортом, имеющим цанговый зажим, установленный во вращающейся втулке суппорта.
Недостатком известного технического решения является его низкая технологичность, связанная со сложностью конструкции мобильного комплекса. Кроме того, в конструкции комплекса не предусмотрены средства числового программного управления, позволяющие управлять комплексом в полуавтоматическом и автоматическом режимах.
Технической задачей, на решение которой направлено заявленное изобретение, является повышение технологичности комплекса, эффективности его использования и точности обработки с его помощью отверстий при одновременном сохранении мобильности, надежности и низкой стоимости.
Указанная задача решена тем, что мобильный расточно-наплавочный комплекс состоит из цанговой передней траверсы, снабженной зажимными винтами и задней траверсы, соединенных левой и правой цилиндрическими направляющими, между которыми на ходовом винте, установлена разъемная цанговая каретка, снабженная зажимными винтами, с закрепленным в ней приводом осевого вращения. Ходовой винт снабжен маховиком ручного перемещения каретки и связан зубчато-ременной передачей с валом двигателя привода продольной подачи, закрепленного на нижнем торце задней траверсы. К приводу осевого вращения и двигателю привода продольной подачи подключены силовые выходы блока управления, выполненного на основе микроконтроллера. Дополнительно на передней и задней траверсах закреплены концевые датчики, выходы которых подключены к измерительным входам блока управления.
Положительным техническим результатом, обеспечиваемым раскрытой выше совокупностью признаков комплекса, является возможность использования в качестве привода осевого вращения сервопривод постоянного тока, электродрель или наплавочный модуль, за счет применения в конструкции комплекса разъемной цанговой каретки, что дает возможность устанавливать в нее приводы осевого вращения в разных исполнениях. Последнее дает возможность выполнять с помощью мобильного комплекса различные технологические операции в зависимости от вида применяемого привода, в частности использовать станок как для выполнения расточных, так и наплавочных операций. Кроме того, применение ходового винта, маховика ручного перемещения каретки, привода продольной подачи, концевых датчиков и блока управления дает возможность выполнять упомянутые технологические операции как в ручном, так и в полуавтоматическом и автоматическом режимах. Таким образом, комплекс повышает эффективность ремонта шарнирного соединения с одной степенью свободы в деталях и узлах крупногабаритных машин и механизмов, таких как экскаваторы, краны, дорожно-строительная техника, а также металлопрокатывающее, горно-шахтное, горнообогатительное и другое оборудование, предполагающее стационарное использование.
Конструкция мобильного расточно-наплавочныого комплекса поясняется чертежами, где на фиг. 1 показан его внешний вид в изометрической проекции со стороны передней траверсы; на фиг. 2 представ
- 1 046302 лен внешний вид комплекса в изометрической проекции со стороны задней траверсы; на фиг. 3 приведен внешний вид привода осевого вращения в виде наплавочного модуля; на фиг. 4 приведена структурная схема блока управления комплексом.
Мобильный расточно-наплавочный комплекс устроен следующим образом.
Комплекс состоит из цанговой передней траверсы 1, снабженной зажимными винтами 2 и задней траверсы 3, соединенных левой и правой цилиндрическими направляющими 4 и 5, между которыми на ходовом винте 6, установлена цанговая каретка 7, снабженная зажимными винтами 8, с закрепленным в ней приводом осевого вращения. Ходовой винт 6 снабжен маховиком 9 ручного перемещения каретки 7 и связан зубчато-ременной передачей 10 с валом двигателя привода продольной подачи 11, закрепленного на нижнем торце задней траверсы 3. К приводу осевого вращения и двигателю привода продольной подачи 11 подключены первый и второй силовые выходы 12 и 13 блока управления, выполненного на основе микроконтроллера 14, при этом к входам упомянутых приводов дополнительно подключены входы блока автоматических выключателей. Дополнительно на передней и задней траверсах 1 и 3 закреплены первый и второй концевые датчики 15 и 16, выходы которых подключены, соответственно, к измерительным входам 17 и 18. Блок управления снабжен пультом оператора, содержащим клавиши Старт и Стоп, а также светодиодные индикаторы текущих режимов работы устройства.
Цилиндрические направляющие 4 и 5 могут быть изготовлены из калиброванных хромированных штоков и установлены в отверстия передней и задней траверс 1 и 3 легкой прессовой посадкой, ходовой винт 6 может иметь трапециевидную или треугольную метрическую резьбу, а отверстия под цилиндрические направляющие 4, 5 и ходовой винт 6 целесообразно выполнять в единой заготовке для передней траверсы 1 и цанговой каретки 7 по одной программе на станке с числовым программным управлением для обеспечения соосности отверстий с дальнейшей резкой заготовки на упомянутые траверсу и каретку.
Микроконтроллер 14 блока управления содержит микропроцессорное ядро 19, соединенное с помощью системной шины с FLASH-памятью программ 20, SRAM-памятью данных 21, многоканальным аналого-цифровым преобразователем ADC 22, универсальным асинхронным приемопередатчиком UART 23, интерфейсом ввода/вывода общего назначения, сгруппированного, по крайней мере, в два GPI/Oпорта ввода-вывода 24 и 25, и модулем подключения SD-карты 26.
К первой и второй линиям аналого-цифрового преобразователя ADC 22 подключены измерительные входы 17 и 18, универсальный асинхронный приемопередатчик UART 23 подключен к Bluetoothмодулю 27, линии первого GPI/O-порта ввода-вывода 24 подключены к первому силовому выходу 12 и второму силовому выходу 13, ко второму GPI/O-порту ввода-вывода 25 подключен пульт оператора и блок автоматических выключателей, а к модулю подключения SD-карты 26 может быть подключено устройство для чтения карт памяти (card reader], в которое установлена и электрически соединена с модулем SD-карта 28.
В качестве привода осевого вращения может быть использован сервопривод постоянного тока 29 с двигателем мощностью 1,5 кВт, снабженным планетарным редуктором, например может быть применен сервопривод модели ADTECH QS7 (сервопривод ADTECH QS7//AliExpress.ru URL: https://h5.aliexpress.ru/item/4000994043979.html (дата обращения: 10.11.2020)), электродрель или наплавочный модуль 30, содержащий корпус 31, с установленной в нем головкой 32 под наплавочную штангу, соединенной зубчато-ременной передачей 33 с валом шагового двигателя 34. Привод продольной подачи 11 может быть выполнен в виде шагового двигателя, при этом силовой выход 12, подключенный к приводу осевого вращения, может быть выполнен комбинированным, включающим в себя сервоконтроллер, управляющий сервоприводом постоянного тока 29, в качестве которого целесообразно применить модуль QS7AA030M, входящий в комплект упомянутого сервопривода ADTECH QS7, и драйвер шагового двигателя, управляющий шаговым двигателем 34 наплавочного модуля 30. Силовой выход 13, подключенный к приводу продольной подачи 11, может представлять собой драйвер шагового двигателя, при этом в качестве упомянутых драйверов может быть использованы цифроаналоговые микрошаговые драйверы модели М880А (драйвер шагового двигателя М880А//CompaactTool.ru URL: https://compacttool.ru/viewtovar.php?id=1826 (дата обращения: 10.11.2020)). В качестве микроконтроллера может быть применена микросхема LPC2478 (Single-chip 16-bit/32-bitmicro; 512 kB flash, Ethernet, CAN, LCD, USB 2.0 device/host/OTG, external memory interface//LPC2478 URL: https://www.nxp.com/docs/en/datasheet/LPC2478.pdf). основанная на микропроцессорном ядре ARM7TDMI-S, работающем на частоте 180 МГц. В качестве Bluetooth-модуля может быть использована сборка НС-05 (Bluetooth модуль НС05//3DiY URL: https://3d-diy.ru/wiki/arduino-moduli/bluetooth-modul-hc-05/).
Мобильный расточно-наплавочный комплекс работает следующим образом.
Первоначально, в зависимости от выполняемой операции (расточка или наплавка), в цанговую каретку 7 устанавливают привод осевого вращения, при этом в первом случае его роль выполняет сервопривод постоянного тока 29 (или электродрель), во втором случае привод представляет собой наплавочный модуль 30. В случае применения вкачестве привода осевого вращения сервопривода постоянного тока 29, последний закрепляется на каретке 7 винтами 8 с помощью крышки 35. В случае применения наплавочного модуля 30 применение крышки не требуется, так как соответствующие фланцы 36 выполнены заодно с корпусом 31 и функцию крышки выполняет сам модуль. В случае выполнения расточной
-

Claims (8)

  1. операции на вал сервопривода или электродрели посредством муфты монтируется расточная головка (на фигурах условно не показаны), в случае выполнения наплавочной операции в головку 32 устанавливается наплавочная штанга, выдвигается на требуемую длину и фиксируется. Затем к приводу продольной подачи 11 и приводу осевого вращения (сервоприводу постоянного тока 29 или шаговому двигателю 34 наплавочного модуля 30 в зависимости от операции) подключают силовые выходы 12 и 13. После выполнения описанных операций наладки комплекса приступают к выполнению расточных или наплавочных технологических операций.
    Как при выполнении расточных, так и при выполнении наплавочных операций микроконтроллер 14 блока управления на основе управляющей программы, хранящейся во FLASH-памяти 20, с использованием SRAM-памяти данных 21 управляет приводом осевого вращения и приводом продольной подачи 11 с помощью линий первого GPI/0-порта 24. При этом для управления скоростью вращения вала сервопривода постоянного тока 29 или шагового двигателя 34 могут использоваться широтно-импульсно модулированные сигналы, а для управления приводом продольной подачи 11 может применяться алгоритм бегущей единицы. Ходовым винтом 6 можно управлять также вручную с помощью маховика 9 ручного перемещения каретки 7 при выключенном двигателе привода продольной подачи 11.
    Во все время работы привода продольной подачи микроконтроллер 14 опрашивает концевые датчики 15 и 16 с целью предотвращения возможного аварийного контакта каретки 7 с передней 1 или задней 3 траверсами. В случае фиксации блоком управления аварийной ситуации он автоматически блокирует приводы комплекса с помощью блока аварийных выключателей.
    Для управления работой комплекса может использоваться как пульт оператора, так и дополнительный выносной пульт, представляющий собой планшетный компьютер, связанный с блоком управления при помощи беспроводного радио-интерфейса интерфейса Bluetooth. Связь с выносным пультом обеспечивается с помощью универсального асинхронного приемопередатчика UART 23 и Bluetooth-модуля 27. Все типовые настройки и режимы работы комплекса, такие как скорость вращения расточной головки или наплавочной штанги, а также скорость перемещения каретки 7 настраиваются и регулируются с помощью упомянутых пультов и могут быть сохранены при необходимости на SD-карте 28 для их дальнейшего использования.
    Таким образом, рассмотренный в настоящем изобретении расточно-наплавочный комплекс, является универсальным мобильным станком для выполнения как расточных, так и наплавочных операций и может эффективно применяться при ремонте и восстановлении отверстий по месту нахождения техники, включая расточку изношенного отверстия для устранения эллипсности, восстановление изношенного отверстия путем наплавки и расточку отверстия под нужный диаметр.
    ФОРМУЛА ИЗОБРЕТЕНИЯ
    1. Мобильный расточно-наплавочный комплекс, содержащий цанговую переднюю траверсу, снабженную зажимными винтами и заднюю траверсу, соединенных левой и правой цилиндрическими направляющими, отличающийся тем, что между направляющими на ходовом винте установлена цанговая каретка, снабженная зажимными винтами, с закрепленным в ней приводом осевого вращения; ходовой винт снабжен маховиком ручного перемещения каретки и связан зубчато-ременной передачей с валом двигателя привода продольной подачи, закрепленного на нижнем торце задней траверсы; к приводу осевого вращения и двигателю привода продольной подачи подключены силовые выходы блока управления, выполненного на основе микроконтроллера; дополнительно на передней и задней траверсах закреплены концевые датчики, выходы которых подключены к измерительным входам блока управления.
  2. 2. Мобильный расточно-наплавочный комплекс по п.1, отличающийся тем, что цилиндрические направляющие изготовлены из калиброванных хромированных штоков.
  3. 3. Мобильный расточно-наплавочный комплекс по п.1, отличающийся тем, что ходовой винт имеет трапециевидную резьбу.
  4. 4. Мобильный расточно-наплавочный комплекс по п.1, отличающийся тем, что ходовой винт имеет треугольную метрическую резьбу.
  5. 5. Мобильный расточно-наплавочный комплекс по п.1, отличающийся тем, что в качестве привода осевого вращения использован сервопривод постоянного тока с двигателем, снабженным планетарным редуктором.
  6. 6. Мобильный расточно-наплавочный комплекс по п.1, отличающийся тем, что в качестве привода осевого вращения использована электродрель.
  7. 7. Мобильный расточно-наплавочный комплекс по п.1, отличающийся тем, что в качестве привода осевого вращения использован наплавочный модуль, содержащий корпус с установленной в нем головкой под наплавочную штангу, соединенной зубчато-ременной передачей с валом шагового двигателя.
  8. 8. Мобильный расточно-наплавочный комплекс по п.1, отличающийся тем, что привод продольной подачи выполнен в виде шагового двигателя.
    -
EA202391303 2020-11-30 2021-11-22 Мобильный расточно-наплавочный комплекс EA046302B1 (ru)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2020139469 2020-11-30

Publications (1)

Publication Number Publication Date
EA046302B1 true EA046302B1 (ru) 2024-02-23

Family

ID=

Similar Documents

Publication Publication Date Title
CN108526954B (zh) 一种钻床用工件夹紧装置
RU2753849C1 (ru) Мобильный расточно-наплавочный комплекс
CN105563215A (zh) 棒材上料辅助设备
CN104384559A (zh) 一种集箱管数控钻床
CN103317345B (zh) 多功能复合数控机床
EA046302B1 (ru) Мобильный расточно-наплавочный комплекс
CN202106430U (zh) 木材铣型加工中心
CN106270627A (zh) 一种自动钻孔装置
RU2760350C1 (ru) Мобильный расточно-наплавочный станок
CN102756233A (zh) 一种焊接变位机
CN211614875U (zh) 一种钻孔打磨一体式数控机床
CN205996532U (zh) 一种刀库机床
JP2014124756A (ja) ボーリングヘッド
CN105500009A (zh) 一种简易腋下拐体加工生产线
CN204234805U (zh) 一种集箱管数控钻床
CN103659427A (zh) 阀杆t型槽自动加工机
CN201799421U (zh) 环模智能自动清理装置
CN221247770U (zh) 一种汽车轴加工装置
CN110690800A (zh) 电机端盖加工设备
CN210819111U (zh) 一种用于对异形工件打磨的工装夹具
CN219169665U (zh) 一种电机轴孔加工工装
CN205587997U (zh) 一种数控加工用快速装夹装置
CN219925088U (zh) 一种新型焊接辅助工装
CN214723175U (zh) 一种基于车床改造的珩磨装置
CN219986284U (zh) 一种便于使用的变电箱打孔装置