EA036016B1 - Сплав молибден-кремний-бор и способ его получения, а также деталь - Google Patents

Сплав молибден-кремний-бор и способ его получения, а также деталь Download PDF

Info

Publication number
EA036016B1
EA036016B1 EA201792138A EA201792138A EA036016B1 EA 036016 B1 EA036016 B1 EA 036016B1 EA 201792138 A EA201792138 A EA 201792138A EA 201792138 A EA201792138 A EA 201792138A EA 036016 B1 EA036016 B1 EA 036016B1
Authority
EA
Eurasian Patent Office
Prior art keywords
alloy
molybdenum
silicon
energy beam
powder
Prior art date
Application number
EA201792138A
Other languages
English (en)
Other versions
EA201792138A1 (ru
Inventor
Михаэль ОТТ
Себастьян ПИГЕРТ
Original Assignee
Сименс Акциенгезелльшафт
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Сименс Акциенгезелльшафт filed Critical Сименс Акциенгезелльшафт
Publication of EA201792138A1 publication Critical patent/EA201792138A1/ru
Publication of EA036016B1 publication Critical patent/EA036016B1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/04Alloys based on tungsten or molybdenum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C49/00Alloys containing metallic or non-metallic fibres or filaments
    • C22C49/02Alloys containing metallic or non-metallic fibres or filaments characterised by the matrix material
    • C22C49/10Refractory metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C47/00Making alloys containing metallic or non-metallic fibres or filaments
    • C22C47/14Making alloys containing metallic or non-metallic fibres or filaments by powder metallurgy, i.e. by processing mixtures of metal powder and fibres or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Inorganic Fibers (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Laser Beam Processing (AREA)

Abstract

С применением специального сплава молибден-кремний-бор и определенного способа изготовления, в котором используют порошок, могут быть сформированы детали с определенной волоконно-матричной структурой, которые используются для высокотемпературных применений и могут быть изготовлены экономичным путем.

Description

Изобретение относится к специальному сплаву молибден-кремний-бор, способу получения и детали.
Сплавы Мо-(х^-(у)В предоставляют потенциальную возможность изготовления подверженных воздействию горячих газов деталей для газовой турбины, выходящих за интервал применения классических жаропрочных сплавов на основе никеля. Эти сплавы дают интервал применения до температур горячих газов вплоть до 1973К, а с покрытием - до 2073К. Тем самым возможно расширение сферы применения на величину до 300К с соответствующим повышением эффективности по сравнению с используемыми до сих пор сплавами.
Обработка этих сплавов может проводиться, с одной стороны, по технологии порошковой металлургии, а с другой стороны, с помощью зонной плавки. Как раз зонная плавка благодаря регулируемым температурным градиентам приводит к образованию волоконно-матричной структуры, которая привлекательна своими выдающимися свойствами ползучести при температурах свыше 1273К.
Однако оба способа позволяют формировать только простые опытные образцы, так что потенциал этих сплавов в настоящее время может быть не исчерпан.
Поэтому задачей изобретения является решение вышеуказанной проблемы.
Задача решается посредством сплава по п.1 формулы изобретения, способа по п.3 формулы изобретения и детали по п.5 формулы изобретения.
Предлагается новый сплав Mo-Si-B, обрабатываемый посредством процесса аддитивного производства (АП), такого как селективное лазерное плавление (СЛП). Кроме того, обработка энергетическим пучком, таким как лазерный пучок, в сочетании с условиями теплоотвода в порошковом слое позволяет создавать градиент теплопроводности, который, в свою очередь, благоприятен для возможно желательного формирования волоконно-матричной структуры, в которой имеются отдельные фазы в виде структуры Moss/Mo5SiB2/Mo3Si.
При этом необязательное легирование цирконием (Ζγ) (0,5-2 ат.%) приводит к благоприятному повышению вязкости разрушения сплава или, соответственно, детали.
Кроме того, процесс АП по сравнению с процессом порошковой металлургии обеспечивает то преимущество, что заготовка в наибольшей степени оберегается от воздействия кислорода. Это оказывает позитивное влияние на свойства материала.
Технологические параметры способа изготовления с помощью процесса АП предпочтительно являются следующими:
Сплав: Мо-(х^-(у)В, причем х = 3-19 ат.% и у = 1-13 ат.%, предпочтительно х = 13-18 ат.% и у = 8-12 ат.%, необязательная добавка циркония (Zr) z = 0,5-2 ат.%, предпочтительно z=1 ат.%, размер частиц: 10-60 мкм, получены либо распылением газом, либо размалыванием, в качестве возможного технологического диапазона: скорость сканирования: от 400 до 2000 мм/с, предпочтительно от 1000 до 1500 мм/с, мощность лазера: от 80 до 250 Вт, предпочтительно от 100 до 170 Вт.

Claims (12)

  1. ФОРМУЛА ИЗОБРЕТЕНИЯ
    1. Сплав молибден-кремний-бор-цирконий, имеющий состав Μο-(χ)8ϊ-(υ)Β-(ζ)Ζγ, причем х = от 13 до 18 ат.%, у = от 8 до 12 ат.% и z = от 0,5 до 2 ат.%.
  2. 2. Способ изготовления детали из молибдена-кремния-бора-циркония из сплава по п.1 посредством процесса аддитивного производства, согласно которому порошок сплава наносят на подложку послойно и селективно уплотняют с помощью энергетического пучка.
  3. 3. Способ по п.2, в котором энергетический пучок является лазерным пучком.
  4. 4. Способ по п.2 или 3, в котором по меньшей мере 80% указанного порошка имеет размеры частиц в диапазоне от 10 до 60 мкм, причем порошок получен распылением газом либо размалыванием, а скорость сканирования между подложкой и энергетическим пучком составляет от 400 до 2000 мм/с.
  5. 5. Способ по любому из пп.2-4, в котором указанный порошок имеет размеры частиц в диапазоне от 10 до 60 мкм.
  6. 6. Способ по любому из пп.2-5, в котором скорость сканирования между подложкой и энергетическим пучком составляет от 1000 до 1500 мм/с.
  7. 7. Способ по любому из пп.2-6, в котором мощность энергетического пучка составляет от 80 до 250 Вт.
  8. 8. Способ по любому из пп.2-7, в котором мощность энергетического пучка составляет от 100 до 170 Вт.
    - 1 036016
  9. 9. Деталь, выполненная из сплава по п.1.
  10. 10. Деталь по п.9, изготовленная способом по любому из пп.2-8.
  11. 11. Деталь по п.9 или 10, которая содержит сплав борида молибдена-кремния с волоконноматричной структурой.
  12. 12. Деталь по любому из пп.9-11, которая содержит фазы Moss/Mo5SiB2/Mo3Si.
EA201792138A 2015-05-26 2016-04-27 Сплав молибден-кремний-бор и способ его получения, а также деталь EA036016B1 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015209583.5A DE102015209583A1 (de) 2015-05-26 2015-05-26 Molybdän-Silizium-Borlegierung und Verfahren zur Herstellung sowie Bauteil
PCT/EP2016/059342 WO2016188696A1 (de) 2015-05-26 2016-04-27 Molybdän-silizium-borlegierung und verfahren zur herstellung sowie bauteil

Publications (2)

Publication Number Publication Date
EA201792138A1 EA201792138A1 (ru) 2018-04-30
EA036016B1 true EA036016B1 (ru) 2020-09-14

Family

ID=55953121

Family Applications (1)

Application Number Title Priority Date Filing Date
EA201792138A EA036016B1 (ru) 2015-05-26 2016-04-27 Сплав молибден-кремний-бор и способ его получения, а также деталь

Country Status (9)

Country Link
US (1) US10865467B2 (ru)
EP (1) EP3280829B1 (ru)
JP (2) JP6681923B2 (ru)
CN (1) CN107660237B (ru)
BR (1) BR112017023992B8 (ru)
DE (1) DE102015209583A1 (ru)
EA (1) EA036016B1 (ru)
MY (1) MY176581A (ru)
WO (1) WO2016188696A1 (ru)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015209583A1 (de) * 2015-05-26 2016-12-01 Siemens Aktiengesellschaft Molybdän-Silizium-Borlegierung und Verfahren zur Herstellung sowie Bauteil
DE102017217082A1 (de) * 2017-09-26 2019-03-28 Siemens Aktiengesellschaft Pulver aus einer Molybdän, Silizium und Bor enthaltenden Legierung, Verwendung dieses Pulvers und additives Herstellungsverfahren für ein Werkstück aus diesem Pulver
DE102018200287A1 (de) 2018-01-10 2019-07-11 Siemens Aktiengesellschaft Turbomaschineninnengehäuse
DE102018204741A1 (de) * 2018-03-28 2019-10-02 Siemens Aktiengesellschaft Brennstoffzuführeinrichtung
DE102018206359A1 (de) * 2018-04-25 2019-10-31 MTU Aero Engines AG Verfahren zur herstellung eines bauteils aus einer molybdänlegierung unter verwendung additiver verfahren
DE102018113340B4 (de) 2018-06-05 2020-10-01 Otto-Von-Guericke-Universität Magdeburg Dichteoptimierte Molybdänlegierung
AT16307U3 (de) * 2018-11-19 2019-12-15 Plansee Se Additiv gefertigtes Refraktärmetallbauteil, additives Fertigungsverfahren und Pulver
AT16308U3 (de) * 2018-11-19 2019-12-15 Plansee Se Additiv gefertigtes Refraktärmetallbauteil, additives Fertigungsverfahren und Pulver
CN111041319B (zh) * 2019-12-31 2020-12-08 中国人民解放军空军工程大学 一种强韧抗高温氧化钼合金及其制备的方法
CN113265601A (zh) * 2021-05-19 2021-08-17 武汉德而诗新材料有限公司 一种多层结构油缸用复合材料及其制备方法
CN113275594B (zh) * 2021-05-20 2023-04-18 哈尔滨工程大学 一种高致密度钼合金的选区激光熔化成型制备方法
AT17662U1 (de) * 2021-11-04 2022-10-15 Plansee Se Bauteil aus Refraktärmetall
CN114540814A (zh) * 2022-03-08 2022-05-27 南京理工大学 一种高温耐磨抗氧化涂层

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5693156A (en) 1993-12-21 1997-12-02 United Technologies Corporation Oxidation resistant molybdenum alloy
US7005191B2 (en) * 2003-05-01 2006-02-28 Wisconsin Alumni Research Foundation Oxidation resistant coatings for ultra high temperature transition metals and transition metal alloys
AT6955U1 (de) * 2003-09-19 2004-06-25 Plansee Ag Ods-molybdän-silizium-bor-legierung
JP4325875B2 (ja) * 2006-11-06 2009-09-02 株式会社日立製作所 摩擦攪拌接合用ツール及び摩擦攪拌接合装置
US9884367B2 (en) * 2011-12-28 2018-02-06 A.L.M.T. Corp. Mo—Si—B-based alloy powder, metal-material raw material powder, and method of manufacturing a Mo—Si—B-based alloy powder
JP5394582B1 (ja) 2012-06-07 2014-01-22 株式会社アライドマテリアル モリブデン耐熱合金
JP5876943B2 (ja) * 2013-01-16 2016-03-02 国立大学法人東北大学 合金およびその製造方法
US9358613B2 (en) * 2013-04-08 2016-06-07 Baker Hughes Incorporated Hydrophobic porous hard coating with lubricant, method for making and use of same
US20150086408A1 (en) 2013-09-26 2015-03-26 General Electric Company Method of manufacturing a component and thermal management process
DE102015209583A1 (de) * 2015-05-26 2016-12-01 Siemens Aktiengesellschaft Molybdän-Silizium-Borlegierung und Verfahren zur Herstellung sowie Bauteil

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
GORR B.; WANG L.; BURK S.; AZIM M.; MAJUMDAR S.; CHRIST H.-J.; MUKHERJI D.; R�SLER J.; SCHLIEPHAKE D.; HEILMAIER M.: "High-temperature oxidation behavior of Mo–Si–B-based and Co–Re", INTERMETALLICS., ELSEVIER SCIENCE PUBLISHERS B.V., GB, vol. 48, 31 October 2013 (2013-10-31), GB, pages 34 - 43, XP028668032, ISSN: 0966-9795, DOI: 10.1016/j.intermet.2013.10.008 *
HASEMANN G.; BOGOMOL I.; SCHLIEPHAKE D.; LOBODA P.I.; KR�GER M.: "Microstructure and creep properties of a near-eutectic directionally solidified multiphase Mo–Si", INTERMETALLICS., ELSEVIER SCIENCE PUBLISHERS B.V., GB, vol. 48, 9 December 2013 (2013-12-09), GB, pages 28 - 33, XP028668038, ISSN: 0966-9795, DOI: 10.1016/j.intermet.2013.11.022 *
M KRÜGER; H SAAGE; M HEILMAIER; M BÖNING; H KESTLER: "Influence of processing on the microstructure and mechanical behaviour of Mo-Si-B alloys", JOURNAL OF PHYSICS: CONFERENCE SERIES, INSTITUTE OF PHYSICS PUBLISHING, BRISTOL, GB, vol. 240, no. 1, 9 August 2010 (2010-08-09), GB, pages 12087, XP020195090, ISSN: 1742-6596, DOI: 10.1088/1742-6596/240/1/012087 *
PASWAN, S. ; MITRA, R. ; ROY, S.K.: "Isothermal oxidation behaviour of Mo-Si-B and Mo-Si-B-Al alloys in the temperature range of 400-800^oC", MATERIALS SCIENCE AND ENGINEERING: A, ELSEVIER, AMSTERDAM, NL, vol. 424, no. 1-2, 25 May 2006 (2006-05-25), AMSTERDAM, NL, pages 251 - 265, XP027952589, ISSN: 0921-5093 *
WANG, F. SHAN, A. DONG, X. WU, J.: "Microstructure and oxidation resistance of laser-remelted Mo-Si-B alloy", SCRIPTA MATERIALIA., ELSEVIER, AMSTERDAM., NL, vol. 56, no. 9, 26 February 2007 (2007-02-26), NL, pages 737 - 740, XP005905543, ISSN: 1359-6462, DOI: 10.1016/j.scriptamat.2007.01.025 *

Also Published As

Publication number Publication date
JP2020059922A (ja) 2020-04-16
BR112017023992A2 (pt) 2018-07-17
US10865467B2 (en) 2020-12-15
BR112017023992B1 (pt) 2021-08-03
EP3280829B1 (de) 2020-02-26
WO2016188696A1 (de) 2016-12-01
CN107660237A (zh) 2018-02-02
DE102015209583A1 (de) 2016-12-01
MY176581A (en) 2020-08-17
JP2018523010A (ja) 2018-08-16
BR112017023992B8 (pt) 2023-04-25
EP3280829A1 (de) 2018-02-14
EA201792138A1 (ru) 2018-04-30
JP6681923B2 (ja) 2020-04-15
CN107660237B (zh) 2020-09-11
US20180135153A1 (en) 2018-05-17

Similar Documents

Publication Publication Date Title
EA036016B1 (ru) Сплав молибден-кремний-бор и способ его получения, а также деталь
CN104190930B (zh) 一种同质功能梯度材料及结构的激光增材制造方法
JP5901585B2 (ja) 3次元の製品の製造方法
Hu et al. Experimental investigation on selective laser melting of bulk net-shape pure magnesium
Hu et al. Laser engineered net shaping of quasi-continuous network microstructural TiB reinforced titanium matrix bulk composites: Microstructure and wear performance
Yap et al. Review of selective laser melting: Materials and applications
Bagherifard et al. Cold spray deposition of freestanding inconel samples and comparative analysis with selective laser melting
Chen et al. The fabrication of NiTi shape memory alloy by selective laser melting: a review
RU2590431C2 (ru) Способ изготовления гибридного компонента
CN104368814B (zh) 一种激光金属直接成形高熵合金涡轮发动机热端部件的方法
Ge et al. Effect of process parameters on microstructure of TiAl alloy produced by electron beam selective melting
JP6436513B2 (ja) 治癒活性剤を含む酸化誘起型自己治癒セラミックス組成物、その製法及びその用途、並びに酸化誘起型自己治癒セラミックス組成物の高機能化方法
Wang et al. Recent progress of additive manufactured Ti-6Al-4V by electron beam melting
Liu et al. Microstructure study on selective laser melting yttria stabilized zirconia ceramic with near IR fiber laser
US20190193160A1 (en) Method for generating a component by a power-bed-based additive manufacturing method and powder for use in such a method
JP2015066599A (ja) レーザによる付加的な製造法によって金属製部品を製造する方法
Li et al. Texture evolution, phase transformation mechanism and nanohardness of selective laser melted Ti-45Al-2Cr-5Nb alloy during multi-step heat treatment process
JP2015517450A (ja) セラミック物品およびセラミック物品用の付加処理方法
Brotzu et al. Production issues in the manufacturing of TiAl turbine blades by investment casting
Yao et al. Microstructure and mechanical properties of Ti-6Al-4V components fabricated by laser micro cladding deposition
JP7110334B2 (ja) モリブデン、ケイ素及びホウ素を含有する合金からなる粉末、この粉末の使用並びにこの粉末製のワークピースの付加製造方法
Kotoban et al. Comparative study of selective laser melting and direct laser metal deposition of Ni3Al intermetallic alloy
Zhai et al. Novel forming of Ti-6Al-4V by laser engineered net shaping
Raza et al. A systematic review of Inconel 939 alloy parts development via additive manufacturing process
Zhang et al. Spray forming and thermal processing for high performance superalloys

Legal Events

Date Code Title Description
MM4A Lapse of a eurasian patent due to non-payment of renewal fees within the time limit in the following designated state(s)

Designated state(s): AM AZ KZ KG TJ TM