CN107660237A - 钼‑硅‑硼合金和其制造方法以及构件 - Google Patents

钼‑硅‑硼合金和其制造方法以及构件 Download PDF

Info

Publication number
CN107660237A
CN107660237A CN201680029931.1A CN201680029931A CN107660237A CN 107660237 A CN107660237 A CN 107660237A CN 201680029931 A CN201680029931 A CN 201680029931A CN 107660237 A CN107660237 A CN 107660237A
Authority
CN
China
Prior art keywords
component
alloy
atoms
atom
molybdenum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201680029931.1A
Other languages
English (en)
Other versions
CN107660237B (zh
Inventor
米夏埃尔·奥特
塞巴斯蒂安·皮格特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Energy Global GmbH and Co KG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of CN107660237A publication Critical patent/CN107660237A/zh
Application granted granted Critical
Publication of CN107660237B publication Critical patent/CN107660237B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C49/00Alloys containing metallic or non-metallic fibres or filaments
    • C22C49/02Alloys containing metallic or non-metallic fibres or filaments characterised by the matrix material
    • C22C49/10Refractory metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/04Alloys based on tungsten or molybdenum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C47/00Making alloys containing metallic or non-metallic fibres or filaments
    • C22C47/14Making alloys containing metallic or non-metallic fibres or filaments by powder metallurgy, i.e. by processing mixtures of metal powder and fibres or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Inorganic Fibers (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Laser Beam Processing (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

通过特殊的钼‑硅‑硼合金的使用和一种使用粉末的特定的制造方法能够实现具有特定的纤维基体结构的构件,所述纤维基体结构能够用于高温应用以及能够低成本地制造。

Description

钼-硅-硼合金和其制造方法以及构件
技术领域
本发明涉及一种特殊的钼-硅-硼合金,一种制造方法和一种构件。
背景技术
Mo-(x)Si-(y)B合金被视为制造用于燃气轮机的热气构件的潜在可行性,其超越了传统的镍基超级合金的使用窗口。所述合金提供高达1973K的使用窗口,以高达2073K的热气温度进行覆层。因此,与迄今使用的合金相比,能够以高达300K来扩展使用范围,结合有效率的相应提高。
所述合金的加工一方面能够通过粉末冶金途径进行,另一方面借助区域熔化进行。尤其由于所产生的温度梯度,区域熔化引起纤维-基体结构的构成,所述纤维-基体结构由于其在高于1273K的温度下突出的蠕变特性而令人印象深刻。
然而,这两种方法仅允许形成简单的样本,使得所述合金的潜力目前不能被充分利用。
发明内容
因此,本发明的目的是解决上述问题。
所述目的通过根据权利要求1的合金,根据权利要求2的方法和根据权利要求4的构件实现。
提出一种借助增材制造法(AM),如选择性激光熔化(SLM)来加工的新型Mo-Si-B合金。此外,借助能量射束,如激光射束与粉末床中的散热条件相结合所进行的加工,允许构成热传导梯度,所述热传导梯度又有利于可选地期望形成纤维-基体结构,在所述纤维-基体结构中各个相作为Moss/Mo5SiB2/Mo3Si结构存在。
在此,(0.5原子%至2原子%)锆(Zr)的可选的合金化引起合金或构件的断裂韧性的有利的提高。
此外,与粉末冶金工艺对比,AM工艺提供了使氧气尽可能远离工件的优点。这对材料特性产生积极影响。
具体实施方式
有利的是用于借助于AM工艺进行的制造工艺的工艺数据:
合金:Mo-(x)Si-(y)B,
其中x=3原子%至19原子%并且y=1原子%至13原子%,
优选x=13原子%至18原子%并且y=8原子%至12原子%,
可选地添加锆(Zr)z=0.5原子%至2原子%,
优选z=1原子%,
粒度:10μm至60μm,气体雾化或研磨,
作为可行的工艺窗口:
扫描速度:400mm/s至2000mm/s,
优选1000mm/s至1500mm/s,
激光功率:80W至250W,
优选100W至170W。

Claims (4)

1.一种钼-硅-硼合金,所述钼-硅-硼合金具有成分Mo-(x)Si-(y)B-(z)Zr,
其中,
x=3原子%至19原子%,
尤其x=13原子%至18原子%,
y=1原子%至13原子%,
尤其y=8原子%至12原子%,以及
可选地z=0.5原子%至2原子%的锆(Zr),
尤其z=1原子%的锆(Zr),
更尤其由Mo-Si-B和可选的锆构成。
2.一种用于制造由钼-硅-硼化物构成的构件的方法,尤其是用于制造由根据权利要求1所述的合金构成的构件的方法,
其中使用增材制造法,
其中将粉末分层地涂覆并且
选择性地通过能量射束,
尤其通过激光射束致密化。
3.根据权利要求2所述的方法,
其中绝大部分的,尤其至少80%的所使用的所述粉末具有10μm至60μm的粒度,
和/或
其中尤其将所述粉末气体雾化或研磨,
和/或
其中使用400mm/s至2000mm/s,尤其1000mm/s至1500mm/s的在衬底和能量射束之间的扫描速度,
和/或
使用80W至250W,尤其100W至170W的所述能量射束的功率,尤其激光射束的功率。
4.一种构件,
所述构件尤其由根据权利要求1所述的合金构成,
所述构件更尤其通过根据权利要求2或3所述的方法制造,
所述构件尤其具有钼-硅-硼化物合金,所述钼-硅-硼化物合金具有纤维-基体结构,尤其具有相Moss/Mo5SiB2/Mo3Si。
CN201680029931.1A 2015-05-26 2016-04-27 钼-硅-硼合金和其制造方法以及构件 Active CN107660237B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102015209583.5A DE102015209583A1 (de) 2015-05-26 2015-05-26 Molybdän-Silizium-Borlegierung und Verfahren zur Herstellung sowie Bauteil
DE102015209583.5 2015-05-26
PCT/EP2016/059342 WO2016188696A1 (de) 2015-05-26 2016-04-27 Molybdän-silizium-borlegierung und verfahren zur herstellung sowie bauteil

Publications (2)

Publication Number Publication Date
CN107660237A true CN107660237A (zh) 2018-02-02
CN107660237B CN107660237B (zh) 2020-09-11

Family

ID=55953121

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680029931.1A Active CN107660237B (zh) 2015-05-26 2016-04-27 钼-硅-硼合金和其制造方法以及构件

Country Status (9)

Country Link
US (1) US10865467B2 (zh)
EP (1) EP3280829B1 (zh)
JP (2) JP6681923B2 (zh)
CN (1) CN107660237B (zh)
BR (1) BR112017023992B8 (zh)
DE (1) DE102015209583A1 (zh)
EA (1) EA036016B1 (zh)
MY (1) MY176581A (zh)
WO (1) WO2016188696A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111041319A (zh) * 2019-12-31 2020-04-21 中国人民解放军空军工程大学 一种强韧抗高温氧化钼合金及其制备的方法
CN113039029A (zh) * 2018-11-19 2021-06-25 普兰西股份有限公司 经添加物方式制造的难熔金属构件,添加物方式制造方法及粉末
CN113275594A (zh) * 2021-05-20 2021-08-20 哈尔滨工程大学 一种高致密度钼合金的选区激光熔化成型制备方法
CN114540814A (zh) * 2022-03-08 2022-05-27 南京理工大学 一种高温耐磨抗氧化涂层

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015209583A1 (de) * 2015-05-26 2016-12-01 Siemens Aktiengesellschaft Molybdän-Silizium-Borlegierung und Verfahren zur Herstellung sowie Bauteil
DE102017217082A1 (de) * 2017-09-26 2019-03-28 Siemens Aktiengesellschaft Pulver aus einer Molybdän, Silizium und Bor enthaltenden Legierung, Verwendung dieses Pulvers und additives Herstellungsverfahren für ein Werkstück aus diesem Pulver
DE102018200287A1 (de) 2018-01-10 2019-07-11 Siemens Aktiengesellschaft Turbomaschineninnengehäuse
DE102018204741A1 (de) * 2018-03-28 2019-10-02 Siemens Aktiengesellschaft Brennstoffzuführeinrichtung
DE102018206359A1 (de) * 2018-04-25 2019-10-31 MTU Aero Engines AG Verfahren zur herstellung eines bauteils aus einer molybdänlegierung unter verwendung additiver verfahren
DE102018113340B4 (de) 2018-06-05 2020-10-01 Otto-Von-Guericke-Universität Magdeburg Dichteoptimierte Molybdänlegierung
AT16308U3 (de) * 2018-11-19 2019-12-15 Plansee Se Additiv gefertigtes Refraktärmetallbauteil, additives Fertigungsverfahren und Pulver
CN113265601A (zh) * 2021-05-19 2021-08-17 武汉德而诗新材料有限公司 一种多层结构油缸用复合材料及其制备方法
AT17662U1 (de) * 2021-11-04 2022-10-15 Plansee Se Bauteil aus Refraktärmetall

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5693156A (en) 1993-12-21 1997-12-02 United Technologies Corporation Oxidation resistant molybdenum alloy
US7005191B2 (en) * 2003-05-01 2006-02-28 Wisconsin Alumni Research Foundation Oxidation resistant coatings for ultra high temperature transition metals and transition metal alloys
AT6955U1 (de) 2003-09-19 2004-06-25 Plansee Ag Ods-molybdän-silizium-bor-legierung
JP4325875B2 (ja) * 2006-11-06 2009-09-02 株式会社日立製作所 摩擦攪拌接合用ツール及び摩擦攪拌接合装置
US9884367B2 (en) * 2011-12-28 2018-02-06 A.L.M.T. Corp. Mo—Si—B-based alloy powder, metal-material raw material powder, and method of manufacturing a Mo—Si—B-based alloy powder
JP5394582B1 (ja) 2012-06-07 2014-01-22 株式会社アライドマテリアル モリブデン耐熱合金
WO2014112151A1 (ja) 2013-01-16 2014-07-24 国立大学法人東北大学 合金およびその製造方法
US9358613B2 (en) * 2013-04-08 2016-06-07 Baker Hughes Incorporated Hydrophobic porous hard coating with lubricant, method for making and use of same
US20150086408A1 (en) * 2013-09-26 2015-03-26 General Electric Company Method of manufacturing a component and thermal management process
DE102015209583A1 (de) * 2015-05-26 2016-12-01 Siemens Aktiengesellschaft Molybdän-Silizium-Borlegierung und Verfahren zur Herstellung sowie Bauteil

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
B. GORR: "High-temperature oxidation behavior of MoeSieB-based and CoeReeCr-based alloys", 《INTERMETALLICS》 *
FANG WANG: "Microstructure and oxidation resistance of laser-remelted Mo–Si–B alloy", 《SCRIPTA MATERIALIA》 *
G. HASEMANN: "Microstructure and creep properties of a near-eutectic directionally solidified multiphase Mo-Si-B alloy", 《INTERMETALLICS》 *
J.H. SCHNEIBEL: "Optimizaton of Mo-Si-B Intermetallic Alloys", 《METALLURGICAL AND MATERIALS TRANSACTIONS A》 *
M KRÜGER: "Influence of processing on the microstructure and mechanical behaviour of Mo-Si-B alloys", 《JOURNAL OF PHYSICS: CONFERENCE SERIES》 *
SHARMA PASWAN: "Isothermal oxidation behaviour of Mo–Si–B and Mo–Si–B–Al alloys in the temperature range of 400–800℃", 《MATERIALS SCIENCE AND ENGINEERING A》 *
YING YANG: "Effects of Ti, Zr, and Hf on the phase stability of Mo_ss + Mo3Si + Mo5SiB2 alloys at 1600℃", 《ACTA MATERIALIA》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113039029A (zh) * 2018-11-19 2021-06-25 普兰西股份有限公司 经添加物方式制造的难熔金属构件,添加物方式制造方法及粉末
CN111041319A (zh) * 2019-12-31 2020-04-21 中国人民解放军空军工程大学 一种强韧抗高温氧化钼合金及其制备的方法
CN113275594A (zh) * 2021-05-20 2021-08-20 哈尔滨工程大学 一种高致密度钼合金的选区激光熔化成型制备方法
CN114540814A (zh) * 2022-03-08 2022-05-27 南京理工大学 一种高温耐磨抗氧化涂层

Also Published As

Publication number Publication date
EA201792138A1 (ru) 2018-04-30
EP3280829B1 (de) 2020-02-26
BR112017023992B8 (pt) 2023-04-25
JP2018523010A (ja) 2018-08-16
JP2020059922A (ja) 2020-04-16
DE102015209583A1 (de) 2016-12-01
CN107660237B (zh) 2020-09-11
US20180135153A1 (en) 2018-05-17
EA036016B1 (ru) 2020-09-14
BR112017023992B1 (pt) 2021-08-03
US10865467B2 (en) 2020-12-15
WO2016188696A1 (de) 2016-12-01
BR112017023992A2 (pt) 2018-07-17
EP3280829A1 (de) 2018-02-14
MY176581A (en) 2020-08-17
JP6681923B2 (ja) 2020-04-15

Similar Documents

Publication Publication Date Title
CN107660237A (zh) 钼‑硅‑硼合金和其制造方法以及构件
Huang et al. Multiscale architecture and superior high‐temperature performance of discontinuously reinforced titanium matrix composites
Zhou et al. A novel titanium alloy manufactured by selective laser melting: Microstructure, high temperature oxidation resistance
Wang et al. Microstructural characteristics and mechanical properties of carbon nanotube reinforced Inconel 625 parts fabricated by selective laser melting
CN105951094B (zh) 一种激光熔覆制备纳米碳管增强涂层的方法
Wang et al. Laser surface remelting of plasma sprayed nanostructured Al2O3–13wt% TiO2 coatings on titanium alloy
Jianing et al. Microstructure characteristics of Ti3Al/TiC ceramic layer deposited by laser cladding
JP2010526204A5 (zh)
CN104480461A (zh) Ni60/SiC复合粉末多道搭接激光熔覆Cr12MoV钢的方法
CN102877060A (zh) 镁合金表面激光熔覆耐磨耐腐蚀涂层用amr合金粉
Cao et al. Laser metal deposition additive manufacturing of TiC/Inconel 625 nanocomposites: Relation of densification, microstructures and performance
JP2017122275A (ja) 被覆物品及び製造方法
CN106191853A (zh) 一种热作模具钢的耐磨减摩金属陶瓷复合涂层工艺
Gao et al. Strengthening mechanism of Y2O3 nanoparticles on microstructure and mechanical properties of the laser additive manufacturing joint for large thickness TC4 titanium alloy
CN101928939A (zh) 一种FenWnC-Co(Y)合金纳米涂层及其制备方法和应用
Bambach et al. Hot working behavior of selective laser melted and laser metal deposited Inconel 718
Makarov et al. Study of the method of obtaining functional interest-metallic coatings based on Ni-Ti reinforced with WC nanoparticles
JP6169566B2 (ja) サーメット被覆材、サーメット被覆材を製造するための合金粉末、およびサーメット被覆材の製造方法
CN105154835B (zh) 一种γ‑TiAl合金表面耐磨损防护涂层及其制备方法
LI et al. Microstructural and Performance Analysis of a Ceramic and Amorphous Reinforced Laser Clad Composite Coating.
Qin et al. Development status of laser cladding technologies
CN104451668A (zh) Cr12MoV钢激光熔覆铁基合金
Islak et al. Effect of boron on micro structure and microhardness properties of Mo-Si-B based coatings produced viatig process
CN105925929A (zh) 一种ZrC-SiC/NiCrMoV热作模具钢涂层制备方法
Eason et al. A structure property processing comparison of cold rolled pm copper and cold gas dynamically sprayed copper

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20220901

Address after: Munich, Germany

Patentee after: Siemens energy Global Ltd.

Address before: Munich, Germany

Patentee before: SIEMENS AG