JP2017122275A - 被覆物品及び製造方法 - Google Patents

被覆物品及び製造方法 Download PDF

Info

Publication number
JP2017122275A
JP2017122275A JP2016238075A JP2016238075A JP2017122275A JP 2017122275 A JP2017122275 A JP 2017122275A JP 2016238075 A JP2016238075 A JP 2016238075A JP 2016238075 A JP2016238075 A JP 2016238075A JP 2017122275 A JP2017122275 A JP 2017122275A
Authority
JP
Japan
Prior art keywords
coating
substrate
article
feedstock
spraying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016238075A
Other languages
English (en)
Other versions
JP6904690B2 (ja
Inventor
アンドリュー・ジョセフ・デトアー
Joseph Detor Andrew
レオナルド・アデルスタジン
Ajdelsztajn Leonardo
トーマス・マイケル・ビグロー
Michael Bigelow Thomas
リチャード・ディドミジオ
Richard Didomizio
アンドリュー・ウィリアム・エムゲ
William Emge Andrew
ジェームズ・アンソニー・ルード
James Anthony Ruud
マイケル・ジェームズ・ウェイマー
Michael J Weimer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of JP2017122275A publication Critical patent/JP2017122275A/ja
Application granted granted Critical
Publication of JP6904690B2 publication Critical patent/JP6904690B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/073Metallic material containing MCrAl or MCrAlY alloys, where M is nickel, cobalt or iron, with or without non-metal elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0433Nickel- or cobalt-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/07Alloys based on nickel or cobalt based on cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/123Spraying molten metal
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/129Flame spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/007Preventing corrosion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/08Heating, heat-insulating or cooling means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/142Thermal or thermo-mechanical treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/05Light metals
    • B22F2301/052Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/15Nickel or cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/20Refractory metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/45Rare earth metals, i.e. Sc, Y, Lanthanides (57-71)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/115Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by spraying molten metal, i.e. spray sintering, spray casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/009Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of turbine components other than turbine blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/08Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools with one or more parts not made from powder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/90Coating; Surface treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/24Rotors for turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/17Alloys
    • F05D2300/175Superalloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/17Alloys
    • F05D2300/177Ni - Si alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/60Properties or characteristics given to material by treatment or manufacturing
    • F05D2300/611Coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12931Co-, Fe-, or Ni-base components, alternative to each other
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12944Ni-base component

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Powder Metallurgy (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

【課題】
皮膜の存在に起因する性能不良を最小化する被覆物品、並びにかかる物品を製造するための方法を提供すること。
【解決手段】
物品は、析出強化合金を含む基材と、該基材上に配置された皮膜とを備える。合金は、a)1以上のモードが約100nm未満のサイズに対応するマルチモード粒径分布を有するガンマプライム型析出物の集団、又はb)約300nm未満の中央値サイズを有するガンマダブルプライム型析出物の集団を含む。皮膜は、2以上の元素を含み、複数の旧粒子をさらに含む。皮膜の少なくとも一部は、急速凝固アーチファクトを実質的に有さない。該物品を製作するための方法、及び該物品を製作するために有用な粉体の処理のための方法もまた提供される。
【選択図】 図1

Description

本開示は、一般に、保護材料で被覆された物品に関する。より具体的には、本開示は、高温での使用のための耐酸化性及び耐食性皮膜で被覆された物品、並びにかかる物品の製造方法に関する。
例えばガスタービン組立体構成部品のような高温用途で用いられる材料は、典型的には高温で優れた機械的性質を示すように最適化される。この最適化は、高温腐食及び酸化に対する材料の耐性をある程度犠牲にすることが多い。かかる材料で作られた構成部品の全体としての性能を改善するために、種々のタイプの皮膜を塗工して構成部品の表面の性質を強化することが多い。例えば、ニッケル基超合金で作られた基材は、いわゆる「MCrAlX」皮膜と呼ばれる耐酸化性材料、すなわち、クロム、アルミニウム、及び(総称的にMで表される)ニッケル、コバルト、及び鉄のうちの1つ又はそれ以上を含む皮膜で被覆することができる。皮膜の随意の「X」成分は、存在する場合、典型的には、材料の特定の性質を強化するために追加される1つ又はそれ以上の追加元素、例えばイットリウム、希土類元素、又は反応性元素である。
MCrAlX及びその他の皮膜は典型的には熱間溶射技術を用いて塗工される。例えば、燃焼熱間溶射(combustion thermal spray)装置が現在用いられており、粒子の溶融又は部分的溶融及び基材上への加速により、金属皮膜を生成する。かかる装置は、燃焼プロセスを用いて、粒子の融点より高いガス温度及び粒子に速度を与えるガス圧を発生させる。燃焼熱間溶射プロセスが直面する1つの共通の問題は、溶射される金属粉体が酸化され易いことである。皮膜の成形性を改善し、皮膜の脆性を小さくするには、金属皮膜中に存在する酸素の量を減らすことが重要である。
実質的に材料をその融点より高温に加熱することなく材料の稠密な堆積を形成することを可能にするために、同一出願人に譲渡された米国特許出願番号第12/790,170号に開示されているような燃焼冷間溶射(combustion cold spray)技術が開発されている。これらの技術は、魅力的な結果をもたらしてはいるが、これらの技術を用いて被覆された物品は、特定の条件下で最適以下の機械的性質を示した。従って、皮膜の存在に起因する性能不良(performance debit)を最小化する被覆物品、並びにかかる物品を製造するための方法が要求されている。
本発明の目的は、皮膜の存在に起因する性能不良を最小化する被覆物品、並びにかかる物品を製造するための方法を提供することである。
米国特許第8043718号明細書
本発明の実施形態は、この要求及び他の要求を満たすために提供される。一実施形態は物品である。該物品は、析出強化合金を含む基材と、該基材上に配置された皮膜とを備える。該合金は、a)1以上のモードが約100nm未満のサイズに対応するマルチモード粒径分布を有するガンマプライム型析出物の集団、又はb)約300nm未満の中央値サイズを有するガンマダブルプライム型析出物の集団を含む。皮膜は、2以上の元素を含み、複数の旧粒子をさらに含む。皮膜の少なくとも一部は、急速凝固アーチファクトを実質的に有さない。
別の実施形態は、ある量の金属粉体を熱処理することを含む方法であり、該粉体は、2以上の元素を含む微粒子と、該微粒子内に存在する複数の急速凝固アーチファクトとを有し、熱処理は、粉体から実質的に全ての急速凝固アーチファクトを除去するのに効果的な時間及び温度の組合せで行われ、それにより所望の粒子粒径分布を有する被処理粉体が形成される。被処理粉体は、上述のような被覆物品を製造するために用いることができる。
別の実施形態は、供給原料を吹付けすることにより基材上に皮膜を配置することを含む方法であり、該供給原料は、2以上の元素を含む複数の微粒子を含み、急速凝固アーチファクトを実質的に有さない該複数の微粒子の少なくとも一部を有しており、供給原料を吹付けすることは、供給原料中の微粒子の実質的に大部分を溶融しない堆積技術を用いることを含み、基材は、析出強化合金を含み、該合金は、a)1以上のモードが約100nm未満のサイズに対応するマルチモード粒径分布を有するガンマプライム型析出物の集団、又はb)約300nm未満の中央値サイズを有するガンマダブルプライム型析出物の集団を含む。
本発明のこれら及び他の特徴、態様、及び利点は、図中、同様の符号が同様の部分を示す添付図面を参照しながら以下の詳細な説明を読むと更に理解できるであろう。
本発明の例証的、非限定的な実施形態の略断面図。
本明細書及び請求項全体を通じてここで使用される近似表現は、関連する基本的機能の変更をもたらすことなく、許容範囲内で変わることのできるあらゆる定量的表現を修飾するのに適用することができる。従って、「約」及び「実質的に」などの1以上の用語により修飾される値は、指定される厳密な値に限定されるものではない。場合によっては、近似表現は、値を測定するための計器の精度に対応することができる。ここで、及び明細書及び請求項全体を通じて、範囲限界は組合せ及び/又は置き換えが可能であり、このような範囲は前後関係又は表現がそうでないことを示していない限り、識別され、ここに包含される部分範囲全てを含む。
以下の本明細書及び特許請求の範囲において、単数形「a」、「an」、及び「the」は、前後関係から別段の明確な指示がない限り、複数形態を含む。本明細書で使用される用語「又は」は、排他的であることを意味せず、言及した構成要素の少なくとも1つが存在することを示し、前後関係から明らかに別の意味を示さない限り、言及した構成要素の組合せが存在することができる場合を含む。
本明細書で使用される用語「することができる」及び「であってもよい」とは、一連の状況内で起こる可能性があること、或いは、特定の特性、特徴又は機能を有することを示し、及び/又は修飾される動詞に関連する技量、能力、又は可能性の1つ又はそれ以上を表現することにより別の動詞を修飾する。従って、「することができる」及び「であってもよい」の使用は、場合によっては、修飾用語が適切ではない、可能ではない、又は好適ではない場合もあることを考慮に入れながら、修飾の用語が示された技量、機能、又は利用に明らかに適切であり、可能であり、又は好適であることを示している。
本明細書で使用される用語「皮膜」は、下にある基材の少なくとも一部の上に連続的に又は不連続に配置された材料を示す。さらに、用語「皮膜」は、配置された材料の厚さが必ずしも均一であることを意味するものではなく、配置された材料は、均一な厚さ又は可変の厚さを有することができる。用語「皮膜」は、皮膜材料の単層を示すことができ、又は皮膜材料の複数の層を示すことができる。皮膜材料は、複数の層の間で同じであってもよく又は異なっていてもよい。
CoNiCrAlY材料などのMCrAlX材料の皮膜は、超合金基材に所望の耐酸化性及び耐食性を与える。しかしながら、超合金基材が燃焼冷間溶射高速空気燃料(HVAF)技術によってMCrAlX材料で被覆された場合、被覆された試験片は、皮膜なしの試験片に比べて、特定の温度及び応力範囲で劣った低サイクル疲労寿命を示した。実際、MCrAlX型皮膜などのオーバーレイ皮膜の塗工に関連付けられるこの基材の機械的性質の低下の問題は、多年にわたって技術文献で十分に裏付けられてきた。本発明者は、この低サイクル疲労寿命における不良が少なくとも部分的に皮膜内の脆性相の存在によるものであることを発見した。これらの相は、試験中に亀裂開始部位をもたらした。更なる分析は、これらの相が、皮膜を生成するために用いられた受け入れた状態のままの(as−received)粉体中に存在していた、又は超合金基材上に堆積後の皮膜の熱処理中に形成された、そのどちらかであることを立証した。
これらのMCrAlX皮膜中のこの有害相含量の問題の発生源は、結局のところ、粉体を形成するために用いられた製造プロセスに遡った。これらの材料は、霧化によって形成され、この場合、ノズルを通して所望の組成の溶融金属を噴霧して液体金属の小滴を形成し、これを急速に凝固して固体粒子を形成する。MCrAlX材料のような高度に合金化された材料の凝固は、樹枝状結晶の形成、樹枝状結晶領域と樹枝状結晶間領域との間の顕著な化学的偏析の発生、及びシグマ相のような有害な樹枝状結晶間相の形成を含むがこれらに限定されない幾つかの特有の特徴をもたらす。化学的偏析に起因する高度合金化材料の急速凝固のこれらの特徴は、金属加工の分野で公知であり、本明細書ではまとめて「急速凝固アーチファクト」と呼ぶ。
MCrAlX皮膜を生成するために用いられるHVAFに基づくプロセスは、一般に、供給原料として用いられる粉体粒子の実質的な部分を溶融しないので、結果として、皮膜は、受け入れた状態のままの粉体中に存在する急速凝固アーチファクトを保持していた。皮膜材料中の高度の化学的偏析は、その後の被覆物品の熱処理中のアーチファクト相の保持に有利な条件を与えた。被覆後の熱処理のための時間及び温度の組合せは、超合金基材の温度感受性により制限されたが、熱処理又は保守中に十分な高温及び/又は長い曝露時間の熱曝露が起こった場合、一般に、高レベルの化学的偏析は、シグマ相及びアルファ−クロムといった所望されない金属間相の形成をさらに促進し得る。さらに、供給原料粒子の実質的な部分を溶融する典型的な熱間溶射プロセスで生成された皮膜は、溶射堆積プロセス中に起こる急速冷却に起因した堆積時の供給原料粒子の凝固から急速凝固アーチファクトを得ることになる。
超合金は、高温、例えば800℃付近で望ましい強度及びその他の機械的性質を有するものとして工業界において公知である。これらの性質は、典型的には大部分が、金属間析出物の量、サイズ、及び粒径分布、粒度、並びに粒子モルホロジーといった、合金のミクロ組織の特定の特徴によって制御される。これらの特徴は、温度の影響を受け易いことが知られている。超合金の主要な強化析出相のソルバス温度付近又はそれを上回る温度への実質的な熱偏位(thermal excursion)は、例えば、析出サイズ及びモルホロジー特性を変化させ、ひいてはこれが成分の性質を変化させることになる。
MCrAlX皮膜から急速凝固アーチファクトを除去するために必要な温度は、超合金基材の機械的性質に顕著な損害を与えることなく被覆物品に適用することができる温度よりも高かった。それゆえ、本発明者は、従来のプロセスの上記短所を克服する物品を生成するために本明細書で説明するような技術を開発した。結果として、本明細書で説明する実施形態による物品は、超合金担持基材などの熱感受性基材を備え、これはその所望のミクロ組織を保持し、さらにまた合金材料で作られた皮膜を担持し、これは、典型的には著しい高温熱処理を受けたことに起因した状態にあり、すなわち、従来の粉体製造プロセスとそれに関連した霧化による溶融物からの急速凝固とのアーチファクトである、及び/又は、従来の熱間溶射プロセスと堆積によるその溶融粒子からの急速凝固とのアーチファクトである、有害な金属間相、樹枝状結晶構造、及び付随する化学的偏析を実質的に有さないミクロ組織を有している。
ここで図1を参照すると、物品100は、基材110と、基材110上に配置された皮膜120とを備える。物品100は、ターボ機械部品などの高温運用に有用である。一実施形態では、物品100は、ガスタービン組立体の構成部品、例えばタービンディスクである。
基材110は、析出強化合金を含み、これは合金を強化するように機能する析出物の1つ又はそれ以上の集団を含む合金を意味する。ニッケル基超合金及びニッケル−鉄基超合金などの超合金は、析出強化合金の例である。ニッケル基超合金の例として、Rene88、Rene88DT、Rene104、Rene65、Rene95、RR1000、Udimet500、Udimet520、Udimet700、Udimet720、Udimet720LI、Waspaloy、Astroloy、Discaloy、AF115、ME16、N18、及びIN100として当該分野で知られる合金が挙げられるがこれらに限定されない。他の超合金組成物は、米国特許出願番号第12/474,580号及び第12/474,651号に記載されているものを含む。超合金の更なる例は、IN718、IN725、及びIN706として当該分野で知られているものを含むがこれらに限定されない。
多くの超合金材料において、有意な強化部分は、いわゆるガンマプライム型析出物によって与えられる。より詳細には、ガンマプライム型析出物の集団は、集団の1以上のモードが約100nm未満、例えば約10nm〜約50nmのサイズに対応する、マルチモード粒径分布を有する。かかるマルチモード分布は、例えばタービンディスク用途に用いられるニッケル基超合金に特徴的であり、この場合、析出物粒径分布内の識別可能なモードは、しばしば一次、二次、及びときには三次ガンマプライムに起因する。この状態にある超合金ミクロ組織は、合金が個別の合金に応じて約800℃を超える温度まで加熱された場合、分布内の微細なガンマプライムの粗大化を受けやすい。
さらに、IN718、IN706、及びIN725といったその他の超合金では、有意な強化部分は、いわゆるガンマダブルプライム型析出物によって与えられる。より詳細には、ガンマダブルプライム型析出物の集団は、約300nm未満、例えば約10nm〜約150nmの中央値サイズを有する。微細なガンマダブルプライムは、これらの合金において所望のレベルの高温特性を得るのに非常に重要であるが、この状態にあるミクロ組織は、合金が個別の合金に応じて約600℃を超える温度まで加熱された場合、分布内の微細なガンマダブルプライムの粗大化を受けやすい。
皮膜120は、2以上の元素を含む。皮膜は、1つより多くの元素を含むので、部分的には構成元素の性質及び処理の詳細に応じて、潜在的に凝固中に化学的偏析を受けやすい。一般に、材料中の構成元素の数が増えるにつれて、材料の凝固が何らかの化学的偏析を受ける可能性が高くなる。
皮膜120は、複数の旧粒子界面(prior particle boundary)をさらに含み、このことは、皮膜が、スパッタリング、電子ビーム物理蒸着、化学蒸着、及びその他の基材上への粉体粒子の加速を伴わない他の方法ではなく、熱間溶射方法を用いて堆積されたものであることを示唆する。上述の燃焼冷間溶射技術の使用は、粒子を実質的に固体状態で維持するので、結果として、それら粒子界面において互いに付着した変形した旧粒子を含む皮膜が得られる。これらの界面は、一般に、完成した皮膜内で顕微鏡を用いて見ることができる。
特に、皮膜120の少なくとも一部は、樹状結晶及び樹状結晶様構造、樹状結晶領域と樹状結晶間領域との間の顕著な化学的偏析、及び有害な樹状結晶間相といった急速凝固アーチファクトを実質的に有さない。幾つかの実施形態では、この部分は皮膜の約10体積%以上であり、特定の実施形態では、皮膜の約50体積%以上である。具体的な実施形態では、この部分は皮膜の約70体積%以上である。皮膜120のこの部分のミクロ組織は、供給原料として霧化合金粉体を用いた従来の燃焼冷間溶射プロセスから製造された皮膜からの予想を上回る化学平衡を示唆している。これは、得られる皮膜120内で、より少ない亀裂開始部位及びより高い延性をもたらし、物品100の機械的性能の改善に役立つ。
幾つかの実施形態では、皮膜120は、アルミニウム、クロム、及びMを含む組成物を含み、ここでMはニッケル、コバルト、及び鉄のうちの1つ又はそれ以上を含むものとして定義される。具体的な実施形態では、皮膜組成は、超合金基材が有するよりも高度の耐酸化性及び/又は耐食性を与えるように設計される。この点に関する皮膜組成物の環境抵抗は、超合金組成に比べて高レベルのアルミニウム及び/又はクロムによって提供されることが多い。例えば、幾つかの実施形態では、皮膜組成物は、基材110中のアルミニウム濃度より高濃度のアルミニウムを含む。特定の実施形態では、皮膜120は、約2重量%以上の濃度のアルミニウムを含み、具体的な実施形態では、アルミニウム濃度は約5重量%以上である。幾つかの実施形態では、皮膜組成物は、約10重量%以上の濃度のクロムを含む。具体的な実施形態では、皮膜組成物は、約5重量%以上のアルミニウム及び約10重量%以上のクロムを含む。M成分(ニッケル、コバルト、鉄、又はそれらの組合せ)は、典型的にはアルミニウム及びクロムよりも高レベル、例えば約50重量%以上のレベルで存在する。
皮膜組成物は、他の元素をさらに含むことができる。MCrAlY組成物は典型的な例であり、ここで上述の組成物は、イットリウムを、しばしば約3重量%未満、例えば約1重量%未満の量で、さらに含む。より一般的には、幾つかの実施形態では、組成物は「MCrAlX」組成物であり、これは、M(先に定義した通り)、クロム、アルミニウム、及び随意のXを含むことを意味し、ここでXは、イットリウム、レニウム、タンタル、モリブデン、希土類元素、及び/又は、ハフニウム、ジルコニウム、又はシリコンなどのいわゆる反応性元素などの、1つ又はそれ以上の追加元素を含む。特定の実施形態では、皮膜は、CoNiCrAlY組成物を含む。このタイプの材料は当該分野で公知であり、商業的に容易に入手できる。CoNiCrAlY組成物の一例は、以下を含む(全ての百分率は皮膜の重量に対するものである)。すなわち、約28%〜約35%のニッケル、約17%〜約25%のクロム、約5%〜約15%のアルミニウム、及び約0.01%〜約1%のイットリウムを含み、残りの中には他の合金元素及び不可避的不純物と共にコバルトが存在する。
特に、特定の実施形態では、MCrAlX材料などの皮膜120の材料は、ガンマ相(面心立方ニッケルリッチ相)及びベータ相(組成式NiAlの規則的体心立方相)を含む。ベータ相は、酸化に対する高い耐性によって特徴付けられるが、一般には超合金組成物中には存在しない。他方、霧化された状態のままのMCrAlX材料は、しばしば非常に高含量、例えば90体積%以上のベータ相を含む。本発明の幾つかの実施形態では、皮膜120は、約10体積%以上であるが、約90体積%を超えない、特定の実施形態では約75体積%を超えない、ベータ相を含む。具体的な実施形態では、皮膜120は、ベータ相を約10体積%〜約60体積%の範囲で含む。典型的には、受け入れた状態のままのMCrAlX粉体を例えば供給原料として用いて相当な部分のガンマ相を得ることは、その製造中の粉体の急速凝固のため困難である。全く対照的に、本発明の幾つかの実施形態による皮膜120は、約10体積%以上、特定の実施形態では、約25体積%以上のガンマ相を含む。具体的な実施形態では、ガンマ相は、約40体積%以上の濃度で存在する。さらに、幾つかの実施形態では、皮膜は、約10体積%〜約75体積%の範囲のベータ相と、約25体積%以上のガンマ相を含む。さらに、皮膜120のミクロ組織は、有害な金属間相が著しく少ない。幾つかの実施形態では、ガンマ相及びベータ相(これらの相の前述の濃度範囲の任意の組合せを含む)を含む皮膜120は、また、1体積%未満のシグマ相も有する。これらのミクロ組織属性は、基材110上の皮膜の存在に起因する機械的性質の不良を実質的に低減する。
上記のように、皮膜120は、その著しく低レベルの急速凝固欠陥により、一般的には熱処理された材料に関連付けられる、例えば偏析効果が温度及び時間での拡散により散逸することを可能にするような、ミクロ組織属性を有する。他方、基材材料は、その微細な析出構造により、一般的に析出ソルバス温度付近の温度まで加熱されていない材料に関連付けられるミクロ組織属性を有する。皮膜120がMCrAlXのような高温材料を含む例において、この対照は注目すべきものであり、なぜなら、もし物品が従来法で製造されたものであったとすれば、MCrAlX材料の急速凝固アーチファクトを転化するために必要な熱処理は、必然的に被覆物品を温度まで加熱することを伴い、そのことが基材110のミクロ組織を実質的に変化させることになるためである。
さらに、皮膜と基材が界面で接する物品100と形態が類似した被覆物品の典型的な高温熱処理では、界面に相互拡散ゾーンが発生する。元素は一般にそれぞれの濃度が低い領域に向かって拡散するので、このゾーンは、熱処理中の拡散の結果として発生する。基材及び皮膜内の種々の元素の相対濃度並びに皮膜及び基材材料内でのこれらの元素の相対拡散速度に依存して、この相互拡散ゾーンは、皮膜内に、基材内に、又は両方に延在していくことができる。この開示の目的では、相互拡散ゾーンは、これが基材内、皮膜内、又は両方に延在していても、いずれも皮膜と基材との間に位置しているものとして説明される。
本発明の物品100の処理においては皮膜120から急速凝固欠陥を除去するために実質的な熱処理は必要とされないので、例えば、相互拡散ゾーン形成のための推進力は、本発明の実施形態による皮膜120及び基材110と同様のミクロ組織属性を達成するためには実質的な熱処理を必要とする、より従来的な処理物品で作り出される推進力と比べてかなり小さい。幾つかの実施形態では、皮膜120は、界面130で基材110と直接接触するように配置され、皮膜120と基材110との間の相互拡散ゾーン140は、約5μm未満の厚さを有する。「5μm未満」は、相互拡散ゾーンが検出できない、すなわち厚さゼロの実施形態を企図することが認識されるであろう。相互拡散ゾーン140の低減は、この混合化学組成の領域内で生じ得る有害相の形成の程度を制限することにより、物品100の性質を高める。
皮膜120の厚さは、所望の保護レベルを維持すると同時に可能な限り薄くなるように選択されることが多い。幾つかの実施形態では、公称厚さは、約250μm未満であり、特定の実施形態では、厚さは100μm未満であり、具体的な実施形態では、厚さは約50μm未満である。
以下の例は、上記説明をさらに例証するために提供される。一実施形態では、物品100は、ニッケル基超合金を含む基材110を備える。ニッケル基超合金は、1以上のモードが約100nm未満のサイズに対応するマルチモード粒径分布を有するガンマプライム型析出物の集団を含む。皮膜120は、界面130において基材110上に配置される。皮膜120は、その約50体積%以上が急速凝固欠陥を実質的に有さず、a)MCrAlX組成物、b)複数の旧粒子界面、及びc)皮膜の約30体積%以上のガンマ相及び約10体積%以上のベータ相、を含む。相互拡散ゾーン140は、約5μm未満の厚さを有する。
物品100の上記特性は、その製作に用いられる方法の特定の態様に由来する。具体的には、本発明者は、皮膜120を堆積するために用いられる金属粉体の組成が上述の有利な特徴を生じるのに重要な役割を果たすことができることを見いだした。従って、本発明の実施形態は、供給原料粉体の調製方法、及び物品100の製造におけるかかる調製粉体の使用を含む。
一実施形態では、方法は、ある量の金属粉体を熱処理することを含む。粉体は、2以上の元素を含む微粒子と、霧化技術又は溶融状態からの急速凝固を伴う他の技術によって形成された粉体に典型的な、該微粒子内に存在する複数の急速凝固アーチファクトとを含む。粉体の熱処理は、粉体の実質的に全ての急速凝固アーチファクトを除去するのに効果的な時間及び温度の組合せで行われ、これにより粉体材料を熱処理前の材料を上回る化学平衡を示唆する状態にする。
急速凝固アーチファクトを排除するのに効果的であるためには、熱処理は、典型的には構成元素の実質的な拡散が実用的な処理時間内で起こるような温度で行われる。従って、時間及び温度の選択は、処理される材料のタイプに大部分が依存する。例えば、一実施形態では、粉体の微粒子は、皮膜120について上述したようなMCrAlX組成物を含む。かかる実施形態では、熱処理温度は、部分的には熱処理に割り当てられた時間に依存して、約925℃(約1700°F)から約1200℃(約2200°F)の範囲とすることができる。幾つかの実施形態では、熱処理温度は少なくとも5分間維持され、数時間に及ぶことができる。
特に、特定の実施形態では、MCrAlX材料は、熱処理ステップの後、ガンマ相(面心立方ニッケルリッチ相)及びベータ相(組成式NiAlの規則的体心立方相)を含む。典型的には、受け入れた状態のままのCoNICrAlY粉体などのMCrAlX材料を例えば供給原料として用いて相当な部分のガンマ相を得ることは、その製造中の粉体の急速凝固のため困難である。全く対照的に、本発明の幾つかの実施形態による粉体組成物は、熱処理後、約25体積%以上のガンマ相を含む。さらに、熱処理後の粉体粒子のミクロ組織は、有害な金属間相が著しく少ない。幾つかの実施形態では、組成物は、ガンマ相及びベータ相を含み、そしてまた1体積%未満のシグマ相を有する。これらの属性によりもたらされる利点は、皮膜120に関して上述した。
粉体の熱処理は、幾つかの方法のいずれかで行うことができる。例えば、粉体をセラミックるつぼなどの不活性表面上に薄層として配置し、るつぼを炉内に置くことができる。一般に、熱処理中の雰囲気は、有害な反応、例えば酸化を避けるために、粉体材料に対して実質的に不活性に維持される。アルゴン雰囲気は一例であり、金属熱処理の分野の実務者は、この及び他の選択肢に精通している。粉体の熱処理に関する1つの一般的な考慮事項は、高温での隣接粒子の焼結である。粉体が固定層として加熱された場合、熱処理中に緩く焼結した微粒子のシートが形成されることがある。流動床炉、回転炉、又は超音波撹拌の使用による加熱中の粒子の撹拌を使用する実施形態であっても、ある程度の焼結が生じることがある。このような場合、熱処理された生成物は、次に、例えば焼結シートを砕くことにより、及び/又は、ボールミル、スイングミル、アトリションミル、若しくは機械式処理の分野で用いられる同様の装置内で焼結材料をミリングすることにより、機械的に処理され、所望の粒径分布を有する被処理粉体が達成される。所望の粒径分布は、大部分は、粉体を皮膜120に形成するために用いられるプロセスに依存することになる。一実施形態では、熱処理及びミリングされた生成物を635メッシュのスクリーンに通して、約20μm未満の最大粒径を有する生成物を得る。
本発明の一実施形態は、上述の方法から形成された粉体を含む。
熱処理を行い、必要に応じて機械的な処理を行って所望の粒子粒径分布が提供されると、粉体は、限定されないが基材110のような基材上に堆積されて限定されないが物品100の皮膜120のような皮膜を形成する準備が整う。従って本発明の実施形態は、基材110上に皮膜材料120を配置することを含み、ここで上述のように処理された粉体が皮膜材料120のための供給原料として用いられる。この配置ステップは、上述の粉体処理ステップの延長として行うことができ、又は独立した方法として行うことができ、その場合、上述のように処理された粉体が該方法への投入として別個に供給される。いずれの場合でも、被処理粉体を堆積するために選択される方法は、供給原料内の微粒子の実質的な部分を溶融しない吹付け法である。ここで「実質的な部分」は、上述の皮膜を形成するのに十分な微粒子の部分を意味する。これは、上述の熱処理によって達成された粉体の有利なミクロ組織属性を保存するために行われる。空気プラズマ溶射プロセスの場合のように材料を溶融して急速に再凝固すると、これらの有利な特徴の全てが消去されて、急速凝固アーチファクトを有する皮膜が生成される。許容できる方法の例として、冷間溶射、フレーム溶射、空気プラズマ溶射(APS)、高速オキシ燃料溶射(HVOF:high−velocity oxyfuel spraying)、及び高速空気燃料溶射(HVAF:high−velocity air−fuel spraying)が挙げられる。最後の4つの技術は、典型的には、供給原料の温度を材料の融点より下に維持すること補助するために液体注入の使用を含む。具体的な実施形態では、堆積ステップは、米国特許出願番号第12/790,170号に記載のように燃焼冷間溶射としても知られる液体注入HVAFの使用を含む。
高温腐食及び/又は酸化に対する強化された耐性を有する超合金に基づく基材を提供することを意図した実施形態では、液体注入を使用した皮膜塗工、特に液体が供給原料粒子のキャリアとしての役割も果たすもの、例えば液体注入HVAFが特に望ましい。なぜなら、これらの実施形態では、皮膜は主として構造的機能(例えば機械的補強)よりもむしろ化学的機能(すなわち耐食性)に役立つので、疲労強度の不良のような基材の機械的性質に関連付けられる問題を回避するためには比較的薄い皮膜が望ましいからである。微細粒子は、典型的には粗い粒子よりも高品質の薄い皮膜を生成するが、気体ベースの粉体送りシステムを使用する従来の冷間溶射は、粒子を気体流の中にうまく送るのが難しく、目詰まりし易いので、微細粉体と共に用いるのが難しい。他方、液体送りシステムは、液体が目詰まりを防ぎ、粒子が適切に気体プルーム内に同伴されることを保証する所望の運動量を与えるので、微細粒子供給原料の使用に適している。
さらに、非常の高い粒子速度及び運動量が可能な冷間溶射プロセスは、粒子が冶金学的に基材及び粒子自体に接合した皮膜構造を生成する。幾つかの条件下で、このような高度の接合が疲労強度などの基材材料の機械的性質の不良に関連付けられる場合がある。粒子の液体注入を使用する被覆プロセスは、対照的に、粒子が基材及び粒子自体に機械的に接合するのに十分な粒子速度を可能にする。その粒子接合のレベルは、基材への皮膜の適切な接着性を提供するが、これは基材の機械的性質の不良の可能性を低減する。
このステップで皮膜120が配置される基材110は、基材110に関して上述した任意の材料とすることができる。具体的な実施形態では、基材110は、ニッケル基超合金、ニッケル−鉄基超合金、又はコバルト基超合金を含む。
本明細書で説明した方法によって形成される、結果として得られた物品100は、物品100に関して上述した任意の特性を有することができる。例えば、物品100は、皮膜120が堆積された後で熱処理することができるが、熱処理は、典型的には、基材110のミクロ組織(特に析出物のサイズ及び/又は分布)を実質的に変化させない時間/温度の組合せに限定される。被覆プロセス及び/又はその後の任意の熱処理の結果として相互拡散ゾーン140が形成されることがあるが、相互拡散ゾーンの厚さは、幾つかの実施形態では、約5μm未満に維持される。
ある例示的な実施形態では、本明細書で説明する実施形態による方法は、MCrAlX組成物を含む微粒子を有するある量の粉体を約925℃から約1200℃の範囲の温度で少なくとも約5分間熱処理して被処理粉体を形成することと、供給原料中の微粒子の実質的な部分を溶融しない、冷間溶射、フレーム溶射、空気プラズマ溶射、高速オキシ燃料溶射、又は高速空気燃料溶射などの技術を用いて、皮膜材料120を基材110上に配置することとを含み、ここで被処理粉体は、皮膜材料のための供給原料として用いられる。基材110は、ガンマプライム型析出物の集団を有するニッケル基超合金を含み、該集団は1以上のモードが約100nm未満のサイズに対応するマルチモード粒径分布を有する。代替的に、基材110は、約300nm未満の中央値サイズを有するガンマダブルプライム型析出物の集団を有するニッケル−鉄基超合金を含む。
別の例示的な実施形態では、方法は、供給原料を吹付けすることによって基材110上に皮膜120を配置することを含み、供給原料は、前述のMCrAlX材料のいずれかのような2以上の元素を含む複数の微粒子を含み、急速凝固アーチファクトを実質的に有さない複数の微粒子の少なくとも一部を有する。供給原料を吹付けすることは、供給原料中の微粒子の実質的な部分を溶融しない堆積技術を用いることを含み、これは例えば上記のような冷間溶射、フレーム溶射、空気プラズマ溶射、高速オキシ燃料溶射、又は高速空気燃料溶射による。基材110は、析出強化合金を含み、該合金は、a)1以上のモードが約100nm未満のサイズに対応するマルチモード粒径分布を有する、ガンマプライム型析出物の集団、又はb)約300nm未満の中央値サイズを有するガンマダブルプライム型析出物の集団を含む。
(実施例)
以下の実施例は、本発明の非限定的な実施形態をさらに例証するために提示される。
(実施例1:粉体処理)
約50gのCoNiCrAlY粉体(平均粒径〜10μm)をアルミナのボート内に入れ、軽く揺すって分散させて薄い均一層にした。粉体を管状炉内に入れて、アルゴン雰囲気下、1121℃で15分間熱処理し、次いで炉を自然冷却した。熱処理の後、金属粉体は部分的に焼結して固体シートを形成した。シートを手で砕いて約25ミリメートルのサイズのフレークにし、次にフレークをスイングミルに装填した。スイングミルを6分間作動させ、微細な自由流動粉体を生成した。粉体を最後に#635メッシュを通してふるいにかけ、その後の熱間溶射実験のための開始ストックを形成した。
(実施例2:皮膜堆積)
上述の米国特許出願番号第12/790,170号に詳述された液体注入高速空気燃料(HVAF)熱間溶射プロセスを用いて熱間溶射実験を行い、約20μmの公称厚さを有する皮膜を堆積した。溶射中の粉体温度は、堆積中の溶融及び過剰の酸化を防止するのに十分に低い温度に維持した。熱処理した実施例1のCoNiCrAlY粉体でこのプロセスを用いて得られた典型的なミクロ組織は、走査型電子顕微鏡で明らかに観察できるガンマ相領域及びベータ相領域を含んでいた。比較のために、同じ条件下で、但し受け入れた状態のままの(霧化された状態のままの)粉体を用いて溶射した同じ組成の皮膜は、霧化プロセスに由来する急速凝固アーチファクトを示した。例えば、従来の粉体を用いて作られた皮膜の透過型電子顕微鏡分析は、ベータ相と共にシグマ相の存在を明らかにした。対照的に、熱処理粉体で作られた皮膜は、より望ましいガンマ相で主として構成され、ベータ相を含み、検出可能なシグマ相を含まなかった。
(実施例3:機械試験)
一般に、熱処理粉体で作られた皮膜は、シグマ相が典型的には脆性であるのに対してガンマ相は潜在的に延性であるので、改善された機械的性質を有するものと期待される。低サイクル疲労実験を行って粉体熱処理の利益を試験した。約25μm厚さの皮膜をニッケル基超合金テストバーに塗工して、華氏400度(約204℃)にて〜0.6%のピーク応力及び1に等しいA比(A ratio)で、破損するまでサイクルを行った。未被覆材料の平均寿命に対して、受け入れた状態のままの粉体で被覆されたテストバーは、約−1.2標準偏差の不良を示した。対照的に、熱処理粉体の使用は、測定可能な性質不良を示さず、未被覆材料の疲労寿命と等しい疲労寿命を示した。
本発明の特定の特徴のみを本明細書で例示し説明してきたが、当業者であれば、多くの変更形態及び変形が想起されるであろう。従って、本発明の真の精神の範囲内にあるこのような変更形態及び変更全ては、添付の請求項によって保護されるものとする点を理解されたい。
100:物品
110:基材
120:皮膜
130:界面
140:相互拡散ゾーン

Claims (39)

  1. 析出強化合金を含み、合金が、
    a)1以上のモードが約100nm未満のサイズに対応するマルチモード粒径分布を有するガンマプライム型析出物の集団、又は
    b)約300nm未満の中央値サイズを有するガンマダブルプライム型析出物の集団
    を含む、基材と、
    基材上に配置された皮膜と、
    を備えた物品であって、
    皮膜は、2以上の元素を含み、皮膜は、複数の旧粒子をさらに含み、皮膜の少なくとも一部は、急速凝固アーチファクトを実質的に有さない、物品
  2. 皮膜の約10体積%以上が急速凝固アーチファクトを実質的に有さない、請求項1に記載の物品。
  3. 皮膜の約50体積%以上が急速凝固アーチファクトを実質的に有さない、請求項1に記載の物品。
  4. 基材は、ニッケル基超合金、ニッケル−鉄基超合金、又はコバルト基超合金を含む、請求項1に記載の物品。
  5. 基材は、Rene88、Rene88DT、Rene104、Rene65、Rene95、RR1000、Udimet500、Udimet520、Udimet700、Udimet720、Udimet720LI、Waspaloy、Astroloy、Discaloy、AF115、ME16、N18、又はIN100を含む、請求項1に記載の物品。
  6. 基材は、IN718、IN725、又はIN706合金を含む、請求項1に記載の物品。
  7. 皮膜は、アルミニウム、クロム、及びMを含み、ここでMは、ニッケル、コバルト、及び鉄から成る群から選択される1以上の元素である、請求項1に記載の物品。
  8. 皮膜は、約5重量%以上のアルミニウムを含む、請求項7に記載の物品。
  9. 皮膜は、MCrAlX組成物を含み、ここでXは、イットリウム、レニウム、タンタル、モリブデン、希土類元素、ハフニウム、ジルコニウム、シリコン、及びこれらの組合せから成る群から選択される1以上の元素を含む、請求項7に記載の物品。
  10. 皮膜は、コバルトと、約28%〜約35%のニッケルと、約17%〜約25%のクロムと、約5%〜約15%のアルミニウムと、約0.01%〜約1%のイットリウムとを含む、請求項7に記載の物品。
  11. 皮膜は、ガンマ相及びベータ相を含む、請求項7に記載の物品。
  12. 皮膜は、1体積%未満のシグマ相を含む、請求項11に記載の物品。
  13. ガンマ相は、皮膜の約25体積%以上の濃度で存在する、請求項11に記載の物品。
  14. ベータ相は、皮膜の約10体積%以上の濃度で存在する、請求項11に記載の物品。
  15. 皮膜は、界面で基材と直接接触するように配置され、皮膜と基材との間の相互拡散ゾーンは、約5μm未満の厚さを有する、請求項1に記載の物品。
  16. 物品は、ガスタービン組立体の構成部品である、請求項1に記載の物品。
  17. 物品は、タービンディスクである、請求項1に記載の物品。
  18. ニッケル基超合金を含み、ニッケル基超合金は、ガンマプライム型析出物の集団を含み、集団は、1以上のモードが約100nm未満のサイズに対応するマルチモード粒径分布を有する、基材と、
    界面において基材上に配置された皮膜と、
    を備えた物品であって、皮膜は、
    a)MCrAlX組成物、
    b)複数の旧粒子界面、及び
    c)皮膜の約25体積%以上のガンマ相及び皮膜の約10体積%〜約75体積%の範囲内のベータ相
    を含み、
    皮膜の約50体積%以上は、急速凝固アーチファクトを実質的に有さず、
    界面から基材内へ延在する相互拡散ゾーンは、約5μm未満の厚さを有する、
    物品。
  19. ある量の金属粉体を熱処理するステップを含む方法であって、粉体は、2以上の元素を含む微粒子と、微粒子内に存在する複数の急速凝固アーチファクトとを有し、熱処理ステップは、粉体から実質的に全ての急速凝固アーチファクトを除去するのに効果的な時間及び温度の組合せで行われ、それにより所望の粒子粒径分布を有する被処理粉体を形成する、方法。
  20. 熱処理ステップは、熱処理中に粉体を撹拌することをさらに含む、請求項19に記載の方法。
  21. 熱処理ステップ中に形成された焼結材料を機械的に処理するステップをさらに含む、請求項19に記載の方法。
  22. 機械的処理ステップは、焼結材料をミリングすることを含む、請求項21に記載の方法。
  23. 皮膜材料を基材上に配置するステップをさらに含み、被処理粉体が皮膜材料のための供給原料として用いられる、請求項19に記載の方法。
  24. 配置ステップは、供給原料中の微粒子の実質的な部分を溶融しない技術を用いて供給原料を吹付けすることを含む、請求項23に記載の方法。
  25. 技術は、冷間溶射、フレーム溶射、空気プラズマ溶射、液体注入空気プラズマ溶射、高速オキシ燃料溶射、液体注入高速オキシ燃料溶射、高速空気燃料溶射、又は液体注入高速空気燃料溶射を含む、請求項24に記載の方法。
  26. 技術は、液体注入高速空気燃料溶射を含む、請求項24に記載の方法。
  27. 基材は、ニッケル基超合金、ニッケル−鉄基超合金、又はコバルト基超合金を含む、請求項23に記載の方法。
  28. 微粒子は、MCrAlY組成物を含む、請求項19に記載の方法。
  29. 組成物は、コバルトと、約28%〜約35%のニッケルと、約17%〜約25%のクロムと、約5%〜約15%のアルミニウムと、約0.01%〜約1%のイットリウムとを含む、請求項28に記載の方法。
  30. 皮膜は、ベータ相と、約25体積%以上のガンマ相と、約1体積%未満のシグマ相とを含む、請求項28に記載の方法。
  31. MCrAlX組成物を含む微粒子を有するある量の粉体を約925℃から約1200℃の範囲の温度にて少なくとも約5分間熱処理して被処理粉体を形成するステップと、
    冷間溶射、フレーム溶射、空気プラズマ溶射、高速オキシ燃料溶射、又は高速空気燃料溶射を用いて皮膜材料を基材上に配置するステップであって、被処理粉体は、皮膜材料のための供給原料として用いられ、基材は、ニッケル基超合金を含む、配置ステップと、
    を含み、配置ステップは、供給原料中の微粒子の実質的な部分を溶融しない技術を用いて供給原料を吹付けすることを含む、
    方法。
  32. 供給原料を吹付けすることによって基材上に皮膜を配置するステップを含む方法であって、供給原料は、2以上の元素を含む複数の微粒子を含み、急速凝固アーチファクトを実質的に有さない複数の微粒子の少なくとも一部を有し、
    供給原料を吹付けすることは、供給原料中の微粒子の実質的な部分を溶融しない堆積技術を用いることを含み、
    基材は、析出強化合金を含み、合金は、a)1以上のモードが約100nm未満のサイズに対応するマルチモード粒径分布を有するガンマプライム型析出物の集団、又はb)約300nm未満の中央値サイズを有するガンマダブルプライム型析出物の集団、を含む、
    方法。
  33. 基材は、ニッケル基超合金、ニッケル−鉄基超合金、又はコバルト基超合金を含む、請求項32に記載の方法。
  34. 供給原料は、MCrAlY組成物を含む、請求項32に記載の方法。
  35. 供給原料は、コバルトと、約28%〜約35%のニッケルと、約17%〜約25%のクロムと、約5%〜約15%のアルミニウムと、約0.01%〜約1%のイットリウムとを含む、請求項34に記載の方法。
  36. 供給原料は、ガンマ相及びベータ相を含む、請求項34に記載の方法。
  37. 供給原料は、約1堆積%未満のシグマ相を含む、請求項36に記載の方法。
  38. 皮膜は、界面で基材と直接接触するように配置され、界面から基材内に延在する相互拡散ゾーンは、約5μm未満の厚さを有する、請求項36に記載の方法。
  39. 供給原料を吹付けすることによって基材上に皮膜を配置するステップを含む方法であって、供給原料は、MCrAlX組成物を含む複数の微粒子を含み、急速凝固アーチファクトを実質的に有さない複数の微粒子の少なくとも一部を有し、
    供給原料を吹付けすることは、供給原料中の微粒子の実質的な部分を溶融しない堆積技術を用いることを含み、
    基材は、ガンマプライム型析出物の集団を含むニッケル基超合金を含み、集団は、1以上のモードが約100nm未満のサイズに対応するマルチモード粒径分布を有する、
    方法。
JP2016238075A 2015-12-18 2016-12-08 被覆物品及び製造方法 Active JP6904690B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/974,755 2015-12-18
US14/974,755 US10017844B2 (en) 2015-12-18 2015-12-18 Coated articles and method for making

Publications (2)

Publication Number Publication Date
JP2017122275A true JP2017122275A (ja) 2017-07-13
JP6904690B2 JP6904690B2 (ja) 2021-07-21

Family

ID=57681233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016238075A Active JP6904690B2 (ja) 2015-12-18 2016-12-08 被覆物品及び製造方法

Country Status (6)

Country Link
US (2) US10017844B2 (ja)
EP (1) EP3181727B1 (ja)
JP (1) JP6904690B2 (ja)
CN (1) CN107022758B (ja)
BR (1) BR102016029607A2 (ja)
CA (1) CA2951098C (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9335296B2 (en) 2012-10-10 2016-05-10 Westinghouse Electric Company Llc Systems and methods for steam generator tube analysis for detection of tube degradation
US10060269B2 (en) 2015-12-21 2018-08-28 General Electric Company Cooling circuits for a multi-wall blade
US10221696B2 (en) 2016-08-18 2019-03-05 General Electric Company Cooling circuit for a multi-wall blade
US10267162B2 (en) 2016-08-18 2019-04-23 General Electric Company Platform core feed for a multi-wall blade
US20180297156A1 (en) * 2017-04-13 2018-10-18 General Electric Company Repaired Airfoil with Improved Coating System and Methods of Forming the Same
US11935662B2 (en) 2019-07-02 2024-03-19 Westinghouse Electric Company Llc Elongate SiC fuel elements
ES2955292T3 (es) 2019-09-19 2023-11-29 Westinghouse Electric Co Llc Aparato para realizar pruebas de adherencia in situ de depósitos de pulverización en frío y procedimiento de empleo

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030126800A1 (en) * 2001-12-05 2003-07-10 Siemens Westinghouse Power Corporation Mixed powder deposition of components for wear, erosion and abrasion resistant applications
US20080020216A1 (en) * 2005-05-10 2008-01-24 Bagnoli Kenneth E High performance coated material with improved metal dusting corrosion resistance
JP2009068032A (ja) * 2007-09-11 2009-04-02 Hitachi Ltd 耐熱部材およびその製造方法
JP2010007184A (ja) * 2008-06-24 2010-01-14 Honeywell Internatl Inc 単結晶ニッケルベースの超合金組成物、部品、およびその製造方法
US20120027607A1 (en) * 2010-07-27 2012-02-02 General Electric Company Nickel alloy and articles
US20120272523A1 (en) * 2009-10-07 2012-11-01 General Electric Company Method of repairing a turbine rotor using cold spraying
US20130153089A1 (en) * 2011-12-16 2013-06-20 General Electric Company Cold spray of nickel-base alloys

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4279575A (en) 1977-11-19 1981-07-21 Rolls-Royce Limited Turbine rotor
US4888253A (en) * 1985-12-30 1989-12-19 United Technologies Corporation High strength cast+HIP nickel base superalloy
US4758480A (en) * 1987-12-22 1988-07-19 United Technologies Corporation Substrate tailored coatings
US4820356A (en) * 1987-12-24 1989-04-11 United Technologies Corporation Heat treatment for improving fatigue properties of superalloy articles
JP2909744B2 (ja) 1988-06-09 1999-06-23 日新製鋼株式会社 微粉末を被覆する方法と装置
US4915746A (en) 1988-08-15 1990-04-10 Welsch Gerhard E Method of forming high temperature barriers in structural metals to make such metals creep resistant at high homologous temperatures
DE4003038C1 (ja) 1990-02-02 1990-08-09 Mtu Muenchen Gmbh
JP2949605B2 (ja) 1991-09-20 1999-09-20 株式会社日立製作所 合金被覆ガスタービン翼及びその製造方法
US5614294A (en) 1994-11-30 1997-03-25 United Technologies Corporation Coating for minimizing thermal gradients in an article
AU2001267204A1 (en) * 2000-06-08 2001-12-17 Surface Engineered Products Corporation Coating system for high temperature stainless steel
DE102004001392A1 (de) 2004-01-09 2005-08-04 Mtu Aero Engines Gmbh Verschleißschutzbeschichtung und Bauteil mit einer Verschleißschutzbeschichtung
US7341797B2 (en) 2004-04-27 2008-03-11 General Electric Company Environmental barrier coating for silicon-containing substrates and process therefor
US7553384B2 (en) 2006-01-25 2009-06-30 General Electric Company Local heat treatment for improved fatigue resistance in turbine components
JP4261562B2 (ja) 2006-08-25 2009-04-30 株式会社日立製作所 高温強度と高温延性の優れたNi−Fe基鍛造超合金とその製造法および蒸気タービンロータ
US8021742B2 (en) 2006-12-15 2011-09-20 Siemens Energy, Inc. Impact resistant thermal barrier coating system
US7931759B2 (en) * 2007-01-09 2011-04-26 General Electric Company Metal alloy compositions and articles comprising the same
US8920937B2 (en) * 2007-08-05 2014-12-30 United Technologies Corporation Zirconium modified protective coating
US20090057275A1 (en) 2007-08-31 2009-03-05 General Electric Company Method of Repairing Nickel-Based Alloy Articles
US8043718B2 (en) 2007-09-14 2011-10-25 Siemens Energy, Inc. Combustion turbine component having rare earth NiCrAl coating and associated methods
US8790789B2 (en) * 2008-05-29 2014-07-29 General Electric Company Erosion and corrosion resistant coatings, methods and articles
US8029596B2 (en) 2008-08-19 2011-10-04 Siemens Energy, Inc. Method of making rare-earth strengthened components
US8992700B2 (en) 2009-05-29 2015-03-31 General Electric Company Nickel-base superalloys and components formed thereof
US8992699B2 (en) 2009-05-29 2015-03-31 General Electric Company Nickel-base superalloys and components formed thereof
EP2454470B1 (en) 2009-07-16 2015-05-27 Bell Helicopter Textron Inc. Method of applying abrasion resistant materials to rotors
CN101994114A (zh) 2009-08-24 2011-03-30 沈阳大陆激光成套设备有限公司 热轧无缝钢管轧机限动芯棒激光熔覆耐磨、抗热疲劳合金涂层工艺
US9328918B2 (en) 2010-05-28 2016-05-03 General Electric Company Combustion cold spray
US8739404B2 (en) 2010-11-23 2014-06-03 General Electric Company Turbine components with cooling features and methods of manufacturing the same
EP2781560A1 (en) 2013-03-18 2014-09-24 General Electric Company A bond coat system and a coated component
CN103866319B (zh) 2014-03-31 2016-02-17 山东大学 锆合金表面制备镍基耐热耐磨涂层的激光熔覆方法
EP3029113B1 (en) 2014-12-05 2018-03-07 Ansaldo Energia Switzerland AG Abrasive coated substrate and method for manufacturing thereof
US20160305319A1 (en) 2015-04-17 2016-10-20 General Electric Company Variable coating porosity to influence shroud and rotor durability

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030126800A1 (en) * 2001-12-05 2003-07-10 Siemens Westinghouse Power Corporation Mixed powder deposition of components for wear, erosion and abrasion resistant applications
US20080020216A1 (en) * 2005-05-10 2008-01-24 Bagnoli Kenneth E High performance coated material with improved metal dusting corrosion resistance
JP2009068032A (ja) * 2007-09-11 2009-04-02 Hitachi Ltd 耐熱部材およびその製造方法
JP2010007184A (ja) * 2008-06-24 2010-01-14 Honeywell Internatl Inc 単結晶ニッケルベースの超合金組成物、部品、およびその製造方法
US20120272523A1 (en) * 2009-10-07 2012-11-01 General Electric Company Method of repairing a turbine rotor using cold spraying
US20120027607A1 (en) * 2010-07-27 2012-02-02 General Electric Company Nickel alloy and articles
US20130153089A1 (en) * 2011-12-16 2013-06-20 General Electric Company Cold spray of nickel-base alloys

Also Published As

Publication number Publication date
BR102016029607A2 (pt) 2017-07-25
CN107022758B (zh) 2020-08-18
US20170175244A1 (en) 2017-06-22
EP3181727A1 (en) 2017-06-21
CA2951098A1 (en) 2017-06-18
JP6904690B2 (ja) 2021-07-21
EP3181727B1 (en) 2020-09-16
CA2951098C (en) 2024-04-23
US10017844B2 (en) 2018-07-10
US20180245194A1 (en) 2018-08-30
CN107022758A (zh) 2017-08-08

Similar Documents

Publication Publication Date Title
JP6904690B2 (ja) 被覆物品及び製造方法
Zhang et al. Influence of Y2O3 addition on the microstructure of TiC reinforced Ti-based composite coating prepared by laser cladding
Farahmand et al. Laser cladding assisted by induction heating of Ni–WC composite enhanced by nano-WC and La2O3
CN103160769B (zh) 镍基合金的冷喷涂
US7479299B2 (en) Methods of forming high strength coatings
CN113481412B (zh) 一种增材制造镍基高温合金及其制备方法和应用
Liu et al. Microstructure and high temperature oxidation resistance of Ti-Ni gradient coating on TA2 titanium alloy fabricated by laser cladding
Ghadami et al. Structural characteristics and high-temperature oxidation behavior of HVOF sprayed nano-CeO2 reinforced NiCoCrAlY nanocomposite coatings
Ji et al. Spray forming thick nanostructured and microstructured FeAl deposits
Jiang et al. Fabrication of nano-TiCp reinforced Inconel 625 composite coatings by partial dissolution of micro-TiCp through laser cladding energy input control
Yang et al. Influence of composite powders’ microstructure on the microstructure and properties of Al2O3–TiO2 coatings fabricated by plasma spraying
Hongyu et al. Effects of CeO2 nanoparticles on microstructure and properties of laser cladded NiCoCrAlY coatings
JP2011122246A (ja) ナノ構造化フェライト合金の加工処理方法並びに製品
CN101838807A (zh) 一种发动机进、排气门用激光熔覆涂层材料及其涂层
Gao et al. Strengthening mechanism of Y2O3 nanoparticles on microstructure and mechanical properties of the laser additive manufacturing joint for large thickness TC4 titanium alloy
Xu et al. Effect of B4C nanoparticles on microstructure and properties of laser cladded IN625 coating
Dilawary et al. Influence of laser surface melting on the characteristics of Stellite 12 plasma transferred arc hardfacing deposit
EP1969150B1 (en) Alloy composition for the manufacture of protective coatings, its use, process for its application and super-alloy articles coated with the same composition
JP2007291523A (ja) 溶射により形成されるコーティング及びその形成の方法
Talako et al. Structure and properties of detonation gun sprayed coatings from the synthesized FeAlSi/Al2O3 powder
Wang et al. Effect of laser power on the microstructure and mechanical properties of laser-assisted cold sprayed 7075 aluminum alloy deposits
He et al. Microstructure and wear behaviors of a WC10%-Ni60AA cermet coating synthesized by laser-directed energy deposition
Meng et al. Effect of TaC on microstructure and mechanical properties of 316L stainless steel by selective laser melting
Rittinghaus et al. Laser Metal Deposition of Titanium Aluminides–A Future Repair Technology for Jet Engine Blades?
JPH11335801A (ja) スプレ―形成法により形成され熱処理された超合金物体及び該超合金物体の製造方法

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20190402

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210624

R150 Certificate of patent or registration of utility model

Ref document number: 6904690

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150