EA026082B1 - Устройство для маркировки, включающее множество лазеров, а также средства отклонения и телескопические средства для каждого лазера - Google Patents

Устройство для маркировки, включающее множество лазеров, а также средства отклонения и телескопические средства для каждого лазера Download PDF

Info

Publication number
EA026082B1
EA026082B1 EA201490242A EA201490242A EA026082B1 EA 026082 B1 EA026082 B1 EA 026082B1 EA 201490242 A EA201490242 A EA 201490242A EA 201490242 A EA201490242 A EA 201490242A EA 026082 B1 EA026082 B1 EA 026082B1
Authority
EA
Eurasian Patent Office
Prior art keywords
laser
lasers
deflecting means
marking apparatus
beams
Prior art date
Application number
EA201490242A
Other languages
English (en)
Other versions
EA201490242A1 (ru
Inventor
Кевин Л. Армбрустер
Брэд Д. Гилмартин
Петер Дж. Кюкендаль
Бернард Дж. Ричард
Даниэль Дж. Райан
Original Assignee
Алльтек Ангевандте Лазерлихт Технологи Гмбх
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Алльтек Ангевандте Лазерлихт Технологи Гмбх filed Critical Алльтек Ангевандте Лазерлихт Технологи Гмбх
Publication of EA201490242A1 publication Critical patent/EA201490242A1/ru
Publication of EA026082B1 publication Critical patent/EA026082B1/ru

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/362Laser etching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0604Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0604Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
    • B23K26/0608Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams in the same heat affected zone [HAZ]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0643Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising mirrors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0648Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • B23K26/355Texturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/361Removing material for deburring or mechanical trimming
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/07Construction or shape of active medium consisting of a plurality of parts, e.g. segments
    • H01S3/073Gas lasers comprising separate discharge sections in one cavity, e.g. hybrid lasers
    • H01S3/076Folded-path lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08059Constructional details of the reflector, e.g. shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/081Construction or shape of optical resonators or components thereof comprising three or more reflectors
    • H01S3/083Ring lasers
    • H01S3/0835Gas ring lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/22Gases
    • H01S3/223Gases the active gas being polyatomic, i.e. containing two or more atoms
    • H01S3/2232Carbon dioxide (CO2) or monoxide [CO]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2383Parallel arrangements

Abstract

Изобретение относится к маркировочному аппарату для маркировки объекта посредством лазерного излучения, содержащему множество лазеров и блок управления, обеспечивающий индивидуальное активирование каждого из лазеров для испускания лазерного пучка (90a-90i) в соответствии с наносимым знаком. Аппарат содержит также набор (30) отклоняющих средств, выполненных с возможностью направлять лазерные пучки (90a-90i) на маркируемый объект, и набор (40) телескопических средств, содержащий по меньшей мере одно телескопическое средство (40a-40i) на каждый лазерный пучок (90a-90i). При этом каждое телескопическое средство (40a-40i) является регулируемым для осуществления индивидуальной настройки фокусного расстояния соответствующего лазерного пучка (90a-90i).

Description

Изобретение относится к маркировочному аппарату (устройству для маркировки) согласно ограничительной части п.1, предназначенному для маркировки объекта посредством лазерного излучения.
Предшествующий уровень техники
Известны маркировочные аппараты, которые используют единственный лазер (например СО2 лазер), испускающий пучок излучения, который подводится к маркируемому объекту. Объект перемещают на конвейерной ленте относительно маркировочного аппарата. Обычно для направления пучка излучения на объект в соответствии с наносимым знаком используется сканирующее устройство. Поскольку обычно представляется желательным обеспечить высокую производительность маркирования объектов, скорость объекта, движущегося на конвейерной ленте относительно маркировочного аппарата, должна быть высокой. Однако произвольно повышать эту скорость нельзя, поскольку сканирующее устройство требует достаточного времени, чтобы нанести маркировку на проходящий перед ним объект. Как следствие, производительность подобных маркировочных аппаратов ограничивается быстродействием сканирующих устройств.
Производительность может быть повышена с помощью маркировочных аппаратов, которые содержат группу лазеров, например газовых, и блок управления для индивидуального активирования каждого из лазеров для испускания лазерного пучка в соответствии с наносимым знаком. Такие маркировочные аппараты описаны в И8 5229573 и И8 5229574.
Чтобы добиться еще больших скоростей маркировки, требуются маркировочные аппараты с увеличенными количествами лазеров. Однако до настоящего времени возможное количество лазеров ограничивалось размерами индивидуальных лазеров, приводящими к недопустимо крупногабаритным аппаратам и к трудностям подведения лазерных пучков к маркируемому объекту.
Из ОБ 2304641 А известен маркировочный аппарат, содержащий множество лазеров. Испускаемые лазерные пучки перенаправляются посредством множества зеркал на единственную фокусирующую линзу, которая фокусирует все лазерные пучки на маркируемое изделие.
В ЬР 2011-156574 описан аппарат для изготовления солнечных панелей. Пучок от единственного лазера расщепляют на множество пучков, каждый из которых направляют на подложку с помощью соответствующей фокусирующей линзы.
Несущая конструкция для компонентов лазера известна из И8 5115446 А.
В И8 6421159 В1 описан маркировочный аппарат, содержащий группу лазеров. Все пучки, испускаемые этими лазерами, направляют на общую фокусирующую линзу.
В И8 5339737 А описано лазерное устройство для облучения офсетных печатных форм. Используется множество лазеров. Испускаемые ими пучки направляют на выходные зоны используемого шаблона, из которого каждый пучок выводится посредством соответствующего набора линз.
Сущность изобретения
Задача, на решение которой направлено изобретение, состоит в создании маркировочного аппарата, который содержит множество лазеров и обеспечивает возможность гибкой регулировки испускаемых ими пучков.
Эта задача решена разработкой маркировочного аппарата с признаками, включенными в п.1 прилагаемой формулы.
Предпочтительные варианты раскрыты в зависимых пунктах, а также в нижеследующем описании, содержащем ссылки на прилагаемые чертежи.
Согласно изобретению маркировочный аппарат описанного типа характеризуется тем, что содержит набор отклоняющих средств, выполненных с возможностью направлять лазерные пучки на маркируемый объект, и набор телескопических средств, содержащий по меньшей мере одно телескопическое средство на каждый лазерный пучок, причем каждое телескопическое средство является регулируемым для осуществления индивидуальной настройки фокусного расстояния соответствующего лазерного пучка.
Основная идея изобретения состоит во введении средств для задания степени сходимости или расходимости и, соответственно, фокусного расстояния каждого лазерного пучка, причем эта функция реализуется по отдельности для каждого пучка. Тем самым обеспечивается желательная возможность скомпенсировать вариации длины хода лучей, т.е. различия в оптических длинах путей, которые проходят индивидуальные пучки излучения, пока не достигнут объекта. Эти различия могут быть вызваны профилем поверхности объекта или различиями оптических длин путей внутри маркировочного аппарата. Чтобы управлять размерами участков (пятен), облучаемых лазерными пучками на объекте, он может устанавливаться в фокальных плоскостях лазерных пучков или на определенном расстоянии от них.
Базовая идея изобретения состоит в использовании на каждый лазерный пучок, т.е. на каждый лазер, одного телескопического средства для коллимирования каждого пучка.
В контексте изобретения под активированием каждого из лазеров для испускания лазерного пучка может пониматься любой процесс, который определяет, должен ли соответствующий пучок излучения падать на маркируемый объект. Следовательно, такое активирование может выполняться посредством затвора, перекрывающего пучок. Другими словами, лазер остается активным, а затвор управляет пропус- 1 026082 канием и блокированием пучка лазера.
Возможно использование лазеров любых типов. Изобретение особенно эффективно, если критическим фактором для используемых лазеров является занимаемое ими пространство, т.е. если мощность лазера сильно зависит от его размеров. Другое преимущество изобретения наглядно проявляется, если размеры лазера препятствуют генерированию лазерных пучков, расположенных очень близко друг к другу. Изобретение позволяет в таких случаях произвести реконфигурирование лазерных пучков с обеспечением малых расстояний между ними, т.е. маркировки с высоким разрешением.
Примерами подобных лазеров являются газовые, химические, волоконные и твердотельные лазеры, а также лазеры на красителях. Могут использоваться также полупроводниковые лазеры или лазеры на парах металлов. При использовании газовых лазеров они могут быть любых известных типов, например Нс-Ыс. СО, аргоновыми, азотными или эксимерными лазерами. Желательно, чтобы газовые лазеры являлись СО2 лазерами, которые способны работать в непрерывном или импульсном режиме.
Под знаком маркировки, который нужно сформировать, может пониматься любой знак, например буква, изображение или единственный пиксель. Знак может состоять из множества точек или линий. Соответственно, лазеры можно активировать на короткие периоды, чтобы сформировать точки на объекте, или в течение заданного времени, чтобы сформировать линии определенной длины.
В контексте изобретения маркируемым объектом может быть любой продукт или изделие с поверхностью, которую можно изменить под воздействием излучения лазеров. В частности, объект может являться упаковкой, например для пищевого продукта или напитка, фруктом или этикеткой. Материалом объекта могут быть пластики, бумага, металлы, керамика, материи, композиты или ткани органического происхождения.
Маркировка может создаваться посредством любых изменений поверхности объекта, например путем изменения цвета, гравирования или вырезания.
В предпочтительном варианте изобретения каждое телескопическое средство содержит по меньшей мере два оптических элемента, установленных с возможностью регулировки расстояния между ними для осуществления настройки фокусного расстояния, в частности по меньшей мере две линзы или два криволинейных зеркала. Таким образом, телескопические средства можно сконструировать, как телескопырефракторы, использующие линзы, как телескопы-рефлекторы, использующие зеркала, или как катадиоптрические телескопы, использующие по меньшей мере одно зеркало и по меньшей мере одну линзу. Конкретные конструкции телескопов хорошо известны и не требуют подробного описания.
Желательно также, чтобы блок управления мог обеспечивать линейную регулировку телескопических средств (которые можно рассматривать также как средства профилирования пучков), т.е. изменение положения по меньшей мере одного оптического элемента каждого телескопического средства вдоль направления распространения соответствующего лазерного пучка.
Предпочтительный вариант маркировочного аппарата по изобретению характеризуется тем, что набор отклоняющих средств содержит по меньшей мере одно отклоняющее средство на каждый лазерный пучок, в частности по меньшей мере одно перестраивающее зеркало или один световод на каждый лазерный пучок, для перестраивания лазерных пучков с получением их желательной конфигурации. При этом каждое отклоняющее средство выполнено с возможностью индивидуальной регулировки обеспечиваемого им направления отклонения и/или с возможностью индивидуального смещения. Как следствие, каждый пучок излучения может быть направлен на соответствующее ему отклоняющее средство. Отклоняющие средства выполнены регулируемыми независимо от других таких средств, так что в принципе возможно получить любую желательную конфигурацию пучков. Пучки излучения, испускаемые лазерами, образуют определенную конфигурацию, например линейную конфигурацию (т.е. строку или столбец) взаимно параллельных пучков излучения. В качестве важного преимущества изобретения можно отметить его способность гибко перестроить линейную конфигурацию в любую другую конфигурацию. Так, с помощью набора отклоняющих средств можно изменять (в частности уменьшать) расстояние между пучками излучения.
Отклоняющие средства могут устанавливаться в желательное положение в процессе или перед началом функционирования маркировочного аппарата. С этой целью каждое отклоняющее средство может быть перемещено посредством электродвигателя, контролируемого блоком управления. Преимуществом набора отклоняющих средств перед призмами является меньшая дисторсия, особенно когда в качестве отклоняющих средств применяются зеркала.
Если отклоняющими средствами являются зеркала, их регулировка (настройка) может производиться посредством индивидуальных поворотов (наклонов) и, как следствие, изменением направлений отклонения пучков, т.е. направлений, по которым пучки отходят от зеркал. Дополнительно или альтернативно, зеркала могут иметь возможность перемещения. Поскольку посредством зеркал может производиться перестройка лазерных пучков, зеркала могут рассматриваться как перестраивающие зеркала.
Далее под желательной конфигурацией лазерных пучков может пониматься любая конфигурация этих пучков, пригодная для соответствующего применения. Желательным конфигурациям могут соответствовать различные исходные конфигурации пучков излучения, т.е. конфигурации, имевшие место до падения пучков на набор отклоняющих средств. В частности, желательной может являться линейная
- 2 026082 конфигурация, развернутая относительно исходного положения пучков.
Согласно предпочтительному варианту изобретения отклоняющие средства регулируют так, чтобы обеспечить уменьшение расстояний между лазерными пучками. Тем самым устраняется недостаток, состоящий в больших расстояниях между пучками вследствие больших размеров лазеров, и обеспечивается возможность маркировки с высоким разрешением. В отличие от специальных устройств для уменьшения расстояния между пучками, в которых все пучки излучения направляют на общий оптический элемент, например на подходящую призму, отклоняющие средства аппарата по изобретению характеризуются меньшей дисторсией пучков излучения.
Уменьшение расстояния между пучками позволяет также получить лазерные пучки, падающие на общие оптические элементы ближе к их центральной зоне. Это может быть критично в отношении сферической аберрации и других искажений, имеющих место для краевых лучей, т.е. лазерных пучков, падающих на линзу или зеркало далеко от центральной зоны, в отличие от параксиальных лучей, т.е. лазерных пучков, падающих на центральную зону линзы или зеркала. Таким образом, уменьшение расстояний между пучками приводит к желательному уменьшению сферической аберрации.
Другой предпочтительный вариант изобретения характеризуется тем, что набор отклоняющих средств содержит первый и второй наборы перестраивающих зеркал, каждый из которых содержит по меньшей мере одно перестраивающее зеркало на каждый лазерный пучок. При этом первый набор перестраивающих зеркал направляет лазерные пучки на второй набор перестраивающих зеркал. Таким образом, направление каждого пучка излучения индивидуально задается посредством по меньшей мере двух перестраивающих зеркал. Тем самым обеспечивается особенно гибкое реконфигурирование пучка излучения.
Предпочтительный вариант аппарата по изобретению характеризуется тем, что каждое телескопическое средство содержит зеркало, которое является одним из перестраивающих зеркал набора отклоняющих средств, и оптический элемент, в частности линзу или криволинейное зеркало, установленную (установленное) с возможностью смещения относительно перестраивающего зеркала. Такое выполнение позволяет сократить количество оптических элементов в аппарате по изобретению. Оптический элемент телескопического средства может быть установлен между перестраивающими зеркалами отклоняющего средства, перед ними или за ними.
Отклоняющие средства могут регулироваться, в частности смещаться, вручную. Однако желательно, чтобы блок управления был адаптирован для смещения отклоняющих средств и/или регулировки направлений отклонения, обеспечиваемых отклоняющими средствами, посредством карданных подвесов. Применительно к широкому кругу приложений блок управления может индивидуально регулировать каждое отклоняющее средство. В относительно экономичном варианте блок управления способен регулировать по меньшей мере одно отклоняющее средство на каждый лазерный пучок. Желательно, чтобы карданные подвесы обеспечивали для установленных в них отклоняющих средств по меньшей мере две или даже три вращательные степени свободы.
Регулировка отклоняющих средств посредством блока управления позволяет задавать положения, соответствующие различным значениям кода. Это означает, что направления лазерных пучков, выходящих из аппарата, можно изменять с целью изменить положение кода, который нужно сформировать на объекте лазерными пучками. Кроме того, можно также варьировать высоту кода.
Возможна также статическая маркировка. В этом случае в течение всего процесса маркировки объект неподвижен относительно маркировочного аппарата. Отклоняющие средства приводятся в действие для осуществления сканирующего перемещения лазерных пучков таким образом, чтобы распечатать на неподвижном объекте все требуемые знаки. Этот вариант особенно предпочтителен для распечатывания двумерной графической информации, когда требуется печать высокого разрешения.
Желательно также адаптировать блок управления для реализации опции с множеством импульсов. Если лазерные пучки являются импульсными, в одну и ту же точку на объекте будет подаваться множество импульсов. Этот режим может быть реализован при взаимном перемещении объекта и аппарата и при соответствующей синхронизации срабатывания лазеров. Альтернативно, настройку средств, отклоняющих один лазерный пучок, можно изменять таким образом, чтобы последовательные импульсы излучения одного лазера направлялись в одну общую точку. Данный режим позволяет реализовать, например, печать с использованием серой шкалы.
Блок управления может быть также выполнен с возможностью реализации опции высокой мощности. С этой целью настройка отклоняющих средств одного или более лазерных пучков может быть изменена так, чтобы выходные пучки по меньшей мере двух лазеров были направлены в одну общую точку. Такое выполнение позволяет маркировать даже материалы, требующие для этой цели мощности, более высокой, чем обеспечиваемая единственным лазером. Другими словами, блок управления может быть способен направлять в одну общую точку лазерные пучки по меньшей мере двух лазеров. Для получения особенно высокой мощности в пучке можно настроить отклоняющие средства на сведение вместе любого количества лазерных пучков, в том числе все пучки.
Блок управления может быть также адаптирован для автоматической подстройки отклоняющих средств к изменениям положения объекта, например с целью компенсации влияния вибраций объекта.
- 3 026082
Изменения положения могут детектироваться датчиком, например ультразвуковым или оптическим датчиком или датчиком ближней локации.
Блок управления может быть адаптирован для управления телескопическими средствами так, чтобы компенсировать различия в оптических длинах пути лазерных пучков, в частности различия, обусловленные расположением отклоняющих средств. Действительно, оптические длины пути лазерных пучков могут различаться в зависимости от местонахождения отклоняющих средств, а это может приводить к различным размерам облучаемых участков на объекте. При применении телескопических средств можно обеспечить плоское поле, когда все лазерные пучки имеют одинаковое фокусное расстояние, измеряемое от выходной стороны аппарата. Кроме того, для лазерных пучков может быть задано любое желательное положение их фокальной плоскости.
Блок управления может быть также адаптирован для настройки телескопических средств в реальном времени в случае изменения оптических длин пути в результате регулировки отклоняющих средств. Дополнительно или альтернативно, блок управления может быть выполнен с возможностью установки набора телескопических средств в соответствии с любой информацией, относящейся к изменению оптических длин пути, например о вибрации, или о любом другом движении объекта или о перенаправлении сканирующим устройством лазерных пучков.
Предпочтительный вариант аппарата по изобретению характеризуется тем, что в нем имеется по меньшей мере одно сканирующее зеркальное устройство, содержащее общее зеркало, на которое направлены все лазерные пучки, отходящие от набора отклоняющих средств, а блок управления выполнен с возможностью обеспечения поворота зеркального сканирующего устройства, например, посредством гальванометрического привода.
Сканирующим устройством, в частности зеркальным сканирующим устройством, может являться любое средство, которое обеспечивает последовательное проведение пучка излучения через множество различных пространственных положений.
В простых вариантах такие устройства могут содержать зеркало, способное поворачиваться вокруг оси, нормальной к плоскости падающего пучка излучения. Поворотное зеркало может являться зеркальным барабаном, т.е. многогранником, несущим зеркала, которые вместе поворачиваются вокруг единственной оси.
Устройства, содержащие гальванометрический привод, с которым связано зеркало, обычно именуются гальванометрическими сканерами. Гальванометрический сканер способен преобразовывать входные электрические сигналы в угловое положение зеркала этого сканера, например, использующего подвижную обмотку или сплошной железный ротор. Желательно, чтобы любое место, в которое должен быть направлен отраженный пучок излучения, могло задаваться независимо от предыдущего положения этого пучка. Желательно также, чтобы имелись по меньшей мере два гальванометрических сканера. Если гальванометрические сканеры установлены так, что каждый лазерный пучок направляется от первого гальванометрического сканера на второй гальванометрический сканер, становится возможным обеспечить любое желательное двумерное сканирующее перемещение.
Функции зеркального сканирующего устройства могут быть также реализованы посредством акустооптических устройств. В этих устройствах в акустооптический материал вводится акустическая волна. Частота акустической волны определяет угол отклонения лазерного пучка, проходящего через акустооптический материал. Быстро изменяя частоту акустической волны, можно осуществить быстрое сканирующее движение лазерного пучка.
В другом предпочтительном варианте блок управления, с целью маркировки объекта при его движении относительно маркировочного аппарата, адаптирован для регулировки отклоняющих средств и/или по меньшей мере одного зеркального сканирующего устройства в соответствии с информацией о движении объекта. Это позволяет осуществлять отслеживание объекта. Имеется возможность ускорять или замедлять относительное перемещение аппарата и средства, транспортирующего движущийся объект, с обеспечением желательной возможности повысить производительность процесса маркировки.
Согласно еще одному предпочтительному варианту изобретения каждый из первого и второго наборов перестраивающих зеркал сконфигурирован как линейный набор, а каждое перестраивающее зеркало установлено с возможностью поворота. В этом варианте расстояние между смежными перестраивающими зеркалами одного из наборов перестраивающих зеркал может быть фиксированным, что позволит использовать общее несущее средство, которое задает линейную конфигурацию перестраивающих зеркал при сохранении возможности их поворота. Второй набор перестраивающих зеркал может быть развернут относительно плоскости, образуемой лазерными пучками, падающими на первый набор перестраивающих зеркал. Может иметься также позиционирующее средство для регулировки положения по меньшей мере одного из линейных наборов перестраивающих зеркал. В частности, позиционирующее средство может перемещать общее несущее средство.
Другой предпочтительный вариант аппарата по изобретению характеризуется тем, что блок управления выполнен с возможностью управления отклоняющими средствами для задания степени сближения или разведения лазерных пучков, отходящих от отклоняющих средств, в частности от второго набора отклоняющих средств. Другими словами, после того как их направление было изменено посредством
- 4 026082 отклоняющих средств, лазерные пучки не распространяются параллельно друг другу, т.е. расстояние между пучками зависит от расстояния до маркировочного аппарата, в частности до набора отклоняющих средств. Отклоняющие средства можно отрегулировать так, чтобы получить заданный шаг лазерных пучков (расстояние между смежными пучками) на заданном расстоянии от аппарата. Высота знака, формируемого лазерными пучками, и разрешение маркировки, т.е. расстояние между элементами маркировки, формируемыми на объекте смежными лазерными пучками, определяются расстоянием между лазерными пучками и, следовательно, могут настраиваться регулировкой степени сближения. Для этой цели достаточно использовать быстрые повороты отклоняющего средства без необходимости изменять расстояние между отклоняющими средствами, что могло бы оказаться более времяемким.
Расположение лазеров может быть таким, что лазерные пучки на выходе лазеров взаимно параллельны и образуют линейную конфигурацию. Однако в зависимости от конкретного применения может оказаться желательным изменить ориентацию этой линейной конфигурации лазерных пучков. С этой целью блок управления может быть адаптирован для регулировки отклоняющих средств таким образом, чтобы линейная конфигурация лазерных пучков, падающих на отклоняющие средства, поворачивалась на 90° вокруг оси, параллельной направлению распространения этих пучков. Например, они могут быть развернуты из горизонтального расположения в вертикальное и наоборот. Это свойство является особенно желательным, поскольку обычно знаки или буквы должны распечатываться на изделии либо в горизонтальном, либо в вертикальном направлении и блок управления может обеспечивать переход, по меньшей мере, между этими двумя важными случаями. Чтобы обеспечивать разворот линейной конфигурации лазерных пучков, набор отклоняющих средств может содержать первый набор перестраивающих зеркал, используемый по меньшей мере с одним или двумя сканирующими зеркальными устройствами.
Согласно еще одному предпочтительному варианту изобретения предусмотрено телескопическое устройство, имеющее по меньшей мере две линзы и служащее для одновременной регулировки фокусных расстояний лазерных пучков. Одновременность регулировки означает, что лазерные пучки всех лазеров проходят через телескопическое устройство и, следовательно, испытывают одинаковое влияние. В частности, блок управления может быть выполнен с возможностью регулировать телескопическое устройство в зависимости от расстояния до объекта, например так, чтобы привести фокусные расстояния лазерных пучков в соответствие с расстоянием до объекта. При этом желательно, чтобы при приближении объекта к аппарату или удалении от него можно было поддерживать постоянными размеры маркировок, формируемых на объекте. Информация о расстоянии до объекта может поступать в блок управления от транспортирующего модуля, перемещающего объект, и/или с использованием известных средств для измерения расстояния. Целесообразно установить телескопическое устройство за отклоняющими средствами, поскольку отклоняющие средства способны уменьшить максимальное расстояние между любыми двумя лазерными пучками. Это позволит уменьшить размеры оптических элементов телескопического устройства.
Согласно другому варианту изобретения блок управления выполнен с возможностью задерживать в индивидуальном порядке активирование любого лазера таким образом, чтобы в случае движения объекта относительно маркировочного аппарата в заданном направлении обеспечить падение на один и тот же участок на объекте в направлении движения объекта по меньшей мере двух лазерных пучков. При этом моменты срабатывания лазеров могут быть подобраны так, чтобы обеспечить падение на один и тот же участок на объекте в направлении движения объекта всех лазерных пучков.
Кроме того, независимо от взаимной ориентации испускаемых лазерных пучков и направления движения объекта, различные лазерные пучки могут создавать пятна (точки) маркировки вдоль линии, перпендикулярной направлению движения объекта. Длина такой линии зависит от ориентации испускаемых лазерных пучков относительно направления движения объекта.
Лазеры предпочтительно собраны в стопу, так что испускаемые ими пучки образуют упорядоченную конфигурацию лазерных пучков, в частности упорядоченную конфигурацию взаимно параллельных лазерных пучков. Каждый лазер может быть газовым лазером, содержащим лазерные трубки, которые, по меньшей мере, частично окружают внутреннее пространство, т.е. образуют замкнутое или разомкнутое кольцо. Испускаемые лазерные пучки направляются во внутреннее пространство посредством направляющих средств, предпочтительно выполненных в виде комплекта зеркал. Альтернативно, направляющие средства могут быть образованы выходными зеркальными компонентами лазеров. В этом случае концевая лазерная трубка каждого лазера может быть направлена во внутреннее пространство, благодаря чему набор отклоняющих средств может находиться во внутреннем пространстве.
Охлаждение лазерных трубок может быть облегчено за счет того, что трубки, установленные на противоположных сторонах замкнутого или разомкнутого кольца, находятся на максимальном расстоянии одна от другой. Этот эффект достигается без увеличения габаритных размеров аппарата, поскольку оптические элементы размещены во внутреннем пространстве, что соответствует эффективному использованию пространства аппарата.
В другом предпочтительном варианте каждый лазер содержит лазерные трубки, которые, по меньшей мере, частично окружают внутреннее пространство, и направляющие средства, служащие для на- 5 026082 правления лазерных пучков, испускаемых лазерами, во внутреннее пространство и являющиеся частью телескопических средств. Направляющие средства могут содержать одно зеркало на каждый лазерный пучок, причем этим зеркалом может являться первый оптический элемент каждого телескопического средства.
Альтернативно, частями телескопических средств могут являться выходные компоненты лазеров, служащие для выведения лазерных пучков. Выходными компонентами могут быть частично отражающие зеркала, причем наружная поверхность каждого такого зеркала, т.е. поверхность, обращенная от активного газа, может иметь любую форму. В связи с этим желательно придать ей такую форму, чтобы каждый выходной компонент функционировал как первая линза телескопа известной конструкции.
Предпочтительный вариант изобретения решает проблему вышедшего из строя пикселя, наличие которого указывает, что соответствующий лазер дефектен и не испускает требуемый лазерный пучок. С целью замещения лазерного пучка вышедшего из строя лазера блок управления может быть адаптирован для настройки отклоняющих и телескопических средств таким образом, чтобы отклонять лазерный пучок функционирующего лазера в направлении дефектного лазерного пучка. В этом случае телескопические средства управляются таким образом, чтобы скомпенсировать различия между оптическими длинами пути дефектного лазерного пучка и лазерного пучка, используемого для его замещения.
В опции с несколькими траекториями замещающий лазерный пучок последовательно посылается по своему основному направлению и по направлению дефектного лазерного пучка. Альтернативно или дополнительно, в случае дефектного пикселя может производиться распечатывание с пониженным разрешением. С этой целью блок управления может быть выполнен с возможностью уменьшать разрешение наносимого знака в случае выхода из строя лазера, активировать функционирующие лазеры для испускания лазерных пучков в соответствии с пониженным разрешением для знака и настраивать отклоняющие и телескопические средства в соответствии с пониженным разрешением для знака.
Другой предпочтительный вариант изобретения характеризуется тем, что каждое отклоняющее средство содержит или представляет собой световод. В качестве световодов применимы любые гибкие световоды, способные проводить излучение с длинами волн, испускаемыми лазерами, в частности инфракрасное излучение с длинами волн около 10 мкм. Примерами таких световодов являются оптоволокна или полые трубки с отражающей внутренней поверхностью.
Каждый световод может быть снабжен входными оптическими элементами, служащими в качестве первого отклоняющего средства для направления падающего на них лазерного пучка под требуемым углом в сердцевину световода. Световоды могут быть также снабжены выходными оптическими элементами, содержащими, в частности, по меньшей мере две линзы для сбора лазерного излучения, выходящего из световода. Эти оптические элементы могут задавать поперечные размеры лазерного пучка, его фокусное расстояние и глубину фокуса. В частности, выходные оптические элементы могут быть выполнены, как телескопические средства.
Световоды предпочтительно имеют одинаковую длину. Это позволяет улучшить стабильность размеров облучаемого пятна и, соответственно, качество маркировок, сформированных на объекте.
Изобретение относится также к маркировочной системе, которая содержит описанный маркировочный аппарат, а также поворачивающее средство для осуществления поворота маркировочного аппарата относительно направления движения маркируемого объекта.
Как будет пояснено далее, осуществление поворота маркировочного аппарата позволяет изменять разрешение печати, т.е. расстояние между точками маркировки на объекте в направлении, перпендикулярном направлению движения объекта. Это разрешение задается расстоянием между пучками в указанном направлении. При этом расстояние между пучками в направлении движения объекта не оказывает неблагоприятного влияния на разрешение печати, поскольку моменты активирования лазеров могут быть задержаны до тех пор, пока объект не пройдет расстояние, равное расстоянию между пучками в направлении движения объекта.
Таким образом, можно изменять расстояние между пучками в направлении, перпендикулярном направлению движения объекта, осуществлением поворота маркировочного аппарата и, следовательно, упорядоченного набора лазерных пучков. Блок управления предпочтительно выполнен с возможностью поворачивать маркировочный аппарат с помощью поворачивающего средства в зависимости от желательного разрешения печати.
В случае линейной конфигурации лазерных пучков угол между линейной конфигурацией лазерных пучков и направлением движения объекта задает расстояния между точками маркировки на объекте в направлении, перпендикулярном направлению движения объекта. Расстояние между смежными точками маркировки является максимальным, если линейная конфигурация лазерных пучков перпендикулярна направлению движения объекта. Чтобы задать меньшее расстояние, можно уменьшить угол поворота. В сочетании с правильным выбором моментов срабатывания лазеров, угол поворота можно задать таким, чтобы точки маркировки формировали непрерывную линию или разделенные точки маркировки. Можно также формировать точки маркировки с взаимным наложением, чтобы обеспечить различные интенсивности точек маркировки, например в режиме печати по серой шкале. Кроме того, угол поворота может быть равен нулю, что приведет при введении соответствующих задержек между моментами испускания,
- 6 026082
т.е. моментами активирования лазеров, к полному наложению всех точек маркировки.
Перечень фигур, чертежей
Сущность изобретения, а также его различные особенности и преимущества станут более понятны из нижеследующего описания при его рассмотрении совместно с прилагаемыми чертежами, которые служат в качестве не вносящих ограничений иллюстраций и на которых сходные компоненты имеют сходные обозначения.
На фиг. 1 схематично изображен первый вариант маркировочного аппарата по изобретению; на фиг. 2А-2С представлена, на различных видах, первая конфигурация наборов телескопических средств и отклоняющих средств;
на фиг. 3А-3С представлена, на различных видах, вторая конфигурация наборов телескопических средств и отклоняющих средств;
на фиг. 4А и 4В представлена, на различных видах, третья конфигурация наборов телескопических средств и отклоняющих средств;
на фиг. 5 представлена еще одна конфигурация наборов телескопических средств и отклоняющих средств;
на фиг. 6 проиллюстрированы набор телескопических средств и конфигурация перестраивающих зеркал набора отклоняющих средств, служащая для придания лазерным пучкам двумерной конфигурации;
на фиг. 7 показаны маркировочная система согласно изобретению и маркируемый объект, движущийся относительно нее;
на фиг. 8Α-8Ό схематично проиллюстрированы варианты расположения лазерных пучков, выходящих из маркировочного аппарата по изобретению, относительно направления движения объекта, и формируемые ими маркировки.
Сведения, подтверждающие возможность осуществления изобретения
На фиг. 1 схематично изображен первый вариант маркировочного аппарата 100 согласно изобретению. Данный аппарат содержит множество лазеров 10, которые в представленном примере являются газовыми лазерами. Однако вместо них могут быть использованы и лазеры других типов. Каждый из газовых лазеров 10 может быть активирован для испускания лазерного пучка, используемого для получения маркировки на объекте (не изображен). Аппарат 100 содержит также оптические средства 30, 40, 45, 50, чтобы конфигурировать и направлять лазерные пучки.
В представленном примере множество газовых лазеров 10 состоит из 9 лазеров 10а-10т. В общем случае желательно иметь достаточно большое количество газовых лазеров 10, например по меньшей мере 4 или 6 лазеров. Каждый газовый лазер 10 содержит лазерные трубки 12, сообщающиеся одна с другой по текучей среде. Это означает, что лазерные трубки 12 одного газового лазера образуют общий объем. Сообщение по текучей среде допустимо также между лазерными трубками 12 различных лазеров 10.
В представленном варианте газовые лазеры являются СО2 лазерами; соответственно, активный газ содержит, среди прочих компонентов, СО2, Ν2 и Не.
Лазерные трубки 12 расположены в форме кольца, окружающего внутреннее (т.е. свободное центральное) пространство 5 между ними. Кольцо сформировано с использованием соединительных элементов 16 для соединения взаимно примыкающих лазерных трубок 12, принадлежащих одному лазеру. Соединительные элементы 16, расположенные по углам собранных в стопу лазеров, несут зеркала для отражения лазерного излучения из одной из взаимно примыкающих трубок 12 в другую. Разумеется, все зеркала подбираются с учетом используемого активного газа. В рассматриваемом варианте зеркала содержат материал, отражающий на длинах волн, испускаемых СО2 лазером, т.е. в средней ИК области, прежде всего, у 10,6 мкм. Так, могут использоваться медные зеркала и/или зеркала с подложкой и покрытием, повышающим отражательную способность и/или предотвращающим потемнение под действием воздуха.
В представленном примере лазерные трубки 12 образуют герметичное кольцо прямоугольной формы. В общем случае допустима и любая иная форма, обеспечивающая, по меньшей мере, частичный охват внутреннего пространства 5, такая как треугольная, квадратная или И-образная.
Лазерные трубки 12 каждого газового лазера 10а-10т образуют герметичный объем. Объемы различных лазеров могут быть отделены друг от друга или сообщаться, чтобы получить общий герметичный объем. При использовании герметизированных лазеров обычно представляется желательным, чтобы состав активного газа оставался постоянным в течение длительного периода. С этой целью суммарный объем газа увеличивают с помощью дополнительного газового резервуара 19. Газ в этом резервуаре не возбуждают с целью генерировать лазерное излучение. Вместо этого резервуар 19 соединяют с объемами одной или нескольких лазерных трубок 12.
Маркировочный аппарат 100 содержит также возбуждающие средства (не изображены) для каждой лазерной трубки 12 и охлаждающие блоки (не изображены), прикрепленные к лазерным трубкам 12. Может иметься один охлаждающий блок на каждой стороне кубической конфигурации лазерных трубок 12, так что каждый охлаждающий блок охлаждает не единственную лазерную трубку, а множество трубок 12 различных лазеров 10а-10т. В охлаждающих блоках может быть выполнено множество каналов,
- 7 026082 по которым может циркулировать хладагент.
Лазерные трубки 12 каждого лазера 10 находятся в отдельных, индивидуальных плоских слоях. Лазеры 10, по существу, идентичны, причем они установлены друг на друга и взаимно параллельны. Лазерные блоки 10 соединены друг с другом посредством соответствующих соединительных средств, таких как болты, винты и т.д.
Прямоугольный контур лазеров 10 может быть выполнен открытым (разомкнутым) на одном углу. В представленном варианте таким углом является левый верхний угол, в котором находится интегральный выходной фланец 17. В этом углу объем лазера завершается задним зеркалом 18 для отражения лазерного излучения обратно внутрь трубки 12. Заднее зеркало может быть присоединено к концу трубки 12, который поддерживается интегральным выходным фланцем 17, или непосредственно к этому фланцу.
Другой конец объема лазера завершается на том же углу выходным компонентом 13. Этот компонент, обеспечивающий выведение лазерного пучка, также может быть присоединен к концу трубки 12 или к интегральному выходному фланцу 17. Выходной компонент 13 может являться частично отражающим зеркалом и в этом случае рассматриваться как частично отражающий выходной компонент. Испускаемые лазерные пучки направляют во внутреннее пространство 5 посредством направляющих средств 14. В представленном варианте направляющее средство 14 содержит по меньшей мере одно зеркало, установленное на интегральном выходном фланце 17. Лазерные пучки, отраженные от направляющих средств 14, входят во внутреннее пространство 5 через отверстие в интегральном выходном фланце 17. В общем случае допустимо использовать один интегральный выходной фланец 17, общий для всех лазеров 10. В представленном варианте, однако, имеется по одному интегральному выходному фланцу 17 на каждый лазер 10, причем каждый интегральный выходной фланец 17 имеет одно направляющее средство 14 и одно отверстие, через которое может проходить соответствующий лазерный пучок.
Во внутреннем пространстве 5 находятся оптические средства 30, 40, 45, 50 для профилирования и отклонения лазерных пучков. Такая конфигурация позволяет уменьшить объем пространства, требуемого для аппарата. Кроме того, поскольку противолежащие лазерные трубки 12 каждого лазера разделены внутренним пространством 5, облегчается охлаждение трубок 12.
Лазерные пучки, отходящие от направляющих средств 14 (в данном варианте выполненных, как зеркала), направляются на набор 40 телескопических средств (или средств для профилирования пучка) с целью перефокусирования лазерных пучков. Набор 40 телескопических средств содержит одну линзу 40а-401 для каждого лазерного пучка. В дополнение, каждое телескопическое средство 40 содержит еще один оптический элемент, образованный в данном варианте зеркалом 14. Вместо него можно использовать и другие (неизображенные) оптические элементы. С помощью телескопических средств фокусные расстояния лазерных пучков могут задаваться независимо одно от другого. По сравнению со средством для профилирования пучка, состоящим только из одного оптического элемента для регулировки фокусного расстояния лазерного пучка, телескопическое средство облегчает такую регулировку, поскольку требует лишь небольших перемещений оптических элементов телескопического средства.
Затем лазерные пучки падают на набор 30 отклоняющих средств. В проиллюстрированном примере лазерные пучки сначала проходят сквозь наборы 40 средств для профилирования пучка. Однако этот порядок может быть изменен; альтернативно, элементы обоих наборов могут чередоваться, т.е. один элемент набора 40 для профилирования пучка может быть установлен между двумя элементами отклоняющего средства.
Допустимо также, чтобы направляющее средство 14 составляло часть набора 30 отклоняющих средств. В этом случае направляющие средства 14 могут составлять первый набор перестраивающих зеркал. В результате будет достигнуто желательное уменьшение количества оптических элементов.
В представленном варианте набор 30 отклоняющих средств содержит одно отклоняющее средство 33а-331 на каждый лазерный пучок. Эти отклоняющие средства могут рассматриваться также как первый набор 33 перестраивающих средств. В общем случае отклоняющими средствами могут быть любые средства, которые изменяют направление распространения лазерного пучка. В проиллюстрированном примере отклоняющими средствами являются зеркала. Зеркала могут устанавливаться независимо одно от другого. Как следствие, конфигурация лазерных пучков, падающих на отклоняющие средства набора 30, может быть изменена регулировкой положения индивидуальных зеркал 33а-331, которые, следовательно, могут рассматриваться как перестраивающие зеркала.
Перестраивающие зеркала 33а-331 установлены с возможностью поворота и поступательного перемещения. Для обеспечения возможности поворота каждое перестраивающее зеркало 33а-331 установлено в карданном подвесе. Блок управления (не изображен) может быть выполнен с возможностью задавать желательное положение каждого перестраивающего зеркала 33а-331, воздействуя на его подвес.
Лазерные пучки, отходящие от набора 30 отклоняющих средств, падают на общие оптические элементы, т.е. оптические элементы, на которые направлены все лазерные пучки. Эти элементы могут представлять собой телескопическое устройство 45 для совместной регулировки фокусов лазерных пучков. В отличие от описанного набора 40 телескопических средств, телескопическое устройство 45 воздействует в равной степени на все лазерные пучки.
- 8 026082
Оптические элементы, расположенные по ходу пучков, могут содержать также средства для изменения или повышения однородности профиля интенсивности лазерных пучков, средства для изменения поляризации лазерных пучков, в частности для обеспечения постоянной поляризации по всему поперечному сечению лазерного пучка или для деполяризации лазерных пучков.
В завершение, лазерные пучки выводятся из аппарата 100 посредством зеркального сканирующего устройства. Это устройство может содержать два гальванометрических сканера 50, в каждом из которых имеется общее поворотное зеркало 50а, на которое направлены все лазерные пучки. Наличие двух гальванометрических сканеров 50 позволяет легко задать для лазерных пучков любое направление распространения.
На фиг. 2А-2С представлен, на различных видах, первый вариант конфигурации набора 30 отклоняющих средств и набора 40 телескопических средств.
Чтобы обеспечить профилирование и коллимирование лазерных пучков 90а-90ц набор 40 телескопических средств содержит множество телескопических средств 40а-40ц которые могут быть идентичными. В каждом телескопическом средстве 40а-401 могут иметься по меньшей мере две линзы 41, 42. Для регулировки фокуса каждого лазерного пучка 90а-901 и тем самым размеров облучаемого пятна на маркируемом объекте можно перемещать линзы 41 и 42 в направлении распространения лазерных пучков 90а-901. Поскольку имеется по одному телескопическому средству 40а-401 на каждый лазерный пучок 90а-901, возможна также регулировка пучков с целью скомпенсировать различия их оптических длин пути.
После прохождения через телескопические средства 40а-401 лазерные пучки 90а-901 падают на набор 30 отклоняющих средств, который содержит первый и второй наборы 33, 34 перестраивающих зеркал. В результате каждый пучок 90а-901 излучения направляется одним из первых перестраивающих зеркал 33а-331 на одно из вторых перестраивающих зеркал 34а-34к Перестраивающие зеркала первого набора 33 и второго набора 34 сконфигурированы в виде линейных наборов 35, 36 соответственно.
В представленном примере лазерные пучки 90а-901 перестроены посредством набора 30 отклоняющих средств таким образом, что линейная конфигурация лазерных пучков оказывается развернутой, например, на 90°. Таким образом, описанная конфигурация может рассматривать как устройство попиксельной перестройки горизонтального линейного набора в вертикальный. Первый и второй наборы 33, 34 перестраивающих зеркал находятся в одной плоскости и перпендикулярны друг другу.
При использовании карданных подвесов наборы 33, 34 перестраивающих зеркал могут быть отрегулированы таким образом, чтобы выходящие лазерные пучки 90а-901 были взаимно параллельны и имели желательное направление.
Второй набор 34 перестраивающих зеркал может осуществлять сканирующее движение лазерных пучков 90а-901 для распечатывания знака на объекте. Альтернативно, этот набор может направлять лазерные пучки 90а-901 на зеркальное сканирующее устройство.
На фиг. 3А-3С схематично представлена, на различных видах, другая конфигурация набора 40 телескопических средств и набора 30 отклоняющих средств.
Эта конфигурация отличается от предыдущей построением первого и второго наборов 33, 34 перестраивающих зеркал. В рассматриваемом варианте эти наборы образуют линейные наборы, которые в отличие от предыдущей конфигурации не лежат в одной плоскости, а, с целью уменьшить расстояния между лазерными пучками 90а-90ц расположены относительно друг друга под углом, равным в этом варианте 45°. При этом линейная конфигурация лазерных пучков 90а-901 развернута на 90°.
В этом варианте каждое телескопическое средство содержит одну линзу и зеркало, которое служит также отклоняющим средством 33а-33к Если зеркало 33а-331 перемещено для изменения направления распространения соответствующего лазерного пучка 90а-90ц линза телескопического средства может быть соответственно перемещена так, чтобы фокус лазерного пучка 90а-901 остался на месте.
На фиг. 4А и 4В проиллюстрирована еще одна предпочтительная конфигурация наборов 33, 34 перестраивающих зеркал. Как и в предыдущих вариантах, конфигурация по фиг. 4А и 4В содержит перестраивающие зеркала первого и второго наборов 33, 34, каждый из которых сконфигурирован, как линейный набор 35, 36. Однако в данном варианте перестраивающие зеркала второго набора 34 повернуты (наклонены) таким образом, что отраженные лазерные пучки 90а-901 сближаются. Другими словами, с целью варьирования разрешения и размеров формируемых маркировок расстояния между пучками дополнительно уменьшаются с учетом желательного расстояния между ними на нужном расстоянии от аппарата.
Перестраивающие зеркала второго набора 34 предпочтительно выполнены поворотными (наклоняемыми) посредством карданных подвесов по командам блока управления. Перестраивающие зеркала первого набора 33 могут быть зафиксированы (что сделает невозможными смещения этих зеркала в процессе печати) или также установлены на карданных подвесах.
В вариантах, показанных на фиг. 1-4В, сканирующее движение лазерных пучков 90а-901 может осуществляться поворотом перестраивающих зеркал 34а-341 второго набора 34 перестраивающих зеркал. В этом случае сканирующие устройства типа гальванометрических сканеров с общим зеркалом для перенаправления всех лазерных пучков 90а-901 не являются обязательными. Однако наличие таких скани- 9 026082 рующих устройств также может быть полезным.
Для придания отклоняющим средствам любой из конфигураций по фиг. 1, 2А-2С, 3А-3С и 4А, 4В целесообразно использовать блок управления.
На фиг. 5 схематично показана другая конфигурация перестраивающих зеркал 33а-33к В этом варианте набор 30 отклоняющих средств состоит из единственного набора 33 перестраивающих зеркал. Образующие линейную конфигурацию лазерные пучки 90а-90ц прошедшие через телескопические средства 40а-401, отражаются от перестраивающих зеркал 33а-331 таким образом, что расстояния между этими пучками уменьшаются. При этом расстояния между любыми двумя смежными отраженными лазерными пучками 90а-901 равны между собой. В проиллюстрированном примере линейная конфигурация лазерных пучков 90а-901 не разворачивается относительно плоскости, задаваемой перестраивающими зеркалами 33а-331 и телескопическими средствами 40а-40ь Подобный разворот перестраивающих зеркал привел бы к изменению расстояний между пучками. Поэтому в данном варианте сканирующее движение лазерных пучков 90а-901 посредством набора 30 отклоняющих средств не производится. Вместо этого используется по меньшей мере одно сканирующее устройство типа показанного на фиг. 1.
Уменьшение расстояний между пучками позволяет оптимизировать конструкцию стопы газовых лазеров в отношении охлаждения посредством теплопроводности и радиочастотного возбуждения без ухудшения разрешения или ограничений на размеры печатаемых знаков, т.е. удается компенсировать значительные расстояния между газовыми лазерами.
На фиг. 6 представлена конфигурация перестраивающих зеркал для перестраивания лазерных пучков 90а-901 в двумерную конфигурацию этих пучков, например в виде квадрата 3x3. В этом случае набор 30 отклоняющих средств также содержит первый и второй наборы 33, 34 перестраивающих зеркал. В проиллюстрированном примере телескопические средства 40а-401 установлены между первым и вторым наборами 33, 34 перестраивающих зеркал. Однако вместо этого телескопические средства 40а-401 могут находиться перед первым набором 33 или за вторым набором 34 перестраивающих зеркал.
На фиг. 6 показаны также направляющие средства, которые перенаправляют пучки 90а-901 излучения, идущие от лазеров к первому набору 33 перестраивающих зеркал. Эти средства образованы набором зеркал 14а-14Н В других вариантах данный набор может быть заменен одним длинным зеркалом.
Перестраивающие зеркала 34а-341 второго набора сконфигурированы в виде двумерного набора, придающего отраженным от них лазерным пучкам 90а-901 двумерную конфигурацию. Преимущество данного варианта состоит в существенном уменьшении расстояния между наиболее удаленными друг от друга лазерными пучками 90а, 90ί, особенно по сравнению с любой линейной конфигурацией лазерных пучков. Пучки сгруппированы значительно более плотно, так что они проходят через центральные части оптических элементов, включая фокусирующую оптику 45. Поскольку оптические аберрации создаются, в основном, наружными зонами оптических элементов, двумерная конфигурация обеспечивает преимущество улучшенной фокусировки и улучшенного качества лазерных пучков. Уменьшение дисторсии по сравнению с линейной конфигурацией лазерных пучков особенно заметно для наружных лазерных пучков. В дополнение, можно уменьшить размеры оптических элементов, что приведет к снижению общей себестоимости аппарата.
На фиг. 7 схематично показана маркировочная система 120 и маркируемый объект 1.
Объект 1, движущийся в направлении 2, представлен в трех различных положениях, т.е. в три различных момента. Маркировочная система 120 содержит маркировочный аппарат 100 и поворачивающее средство 110 для осуществления поворота маркировочного аппарата 100.
Маркировочный аппарат 100 может содержать любые из описанных компонентов, например отклоняющие средства, образованные двумя наборами перестраивающих зеркал, сконфигурированными, как линейные наборы. Как это показано на фиг. 7, имеются также блок 20 управления и позиционирующие средства 60, служащие для позиционирования линейных наборов перестраивающих зеркал. Индивидуальные перестраивающие зеркала соответствующего набора могут быть установлены без возможности поступательного перемещения, но с возможностью поворота (наклона), например, с использованием карданных подвесов.
Маркировочный аппарат 100 испускает множество лазерных пучков, три из которых (пучки 90а, 90Ь, 90с) показаны на фиг. 7. В процессе движения объекта 1 соответственно изменяются направления лазерных пучков 90а, 90Ь, 90с.
Изменение (обозначенное, как ά) расстояния между аппаратом 100 и объектом 1 может зависеть от формы и положения объекта 1. Кроме того, в конкретный момент это расстояние для каждого лазерного пучка 90а, 90Ь, 90с может быть различным. Несмотря на это размеры пятен, облучаемых лазерными пучками 90а, 90Ь, 90с на объекте 1, должны быть одинаковыми. С этой целью предусмотрены описанные средства для профилирования пучка, настраиваемые блоком 20 управления.
Далее, со ссылками на фиг. 8Α-8Ό, на которых схематично проиллюстрировано расположение лазерных пучков 90а-901, испускаемых аппаратом 100, относительно направления 2 движения объекта, будет пояснено функционирование поворачивающего средства 110.
Фиг. 8А соответствует линейной конфигурации лазерных пучков 90а-90ц параллельных направлению движения объекта. По меньшей мере два из лазерных пучков 90а-901 падают на один и тот же уча- 10 026082 сток 80 на объекте 1 в результате индивидуального подбора задержек активации газовых лазеров. Так, задержка может быть задана равной расстоянию между лазерными пучками 90а-901, деленному на скорость объекта или на составляющую этой скорости в направлении к линейной конфигурации лазерных пучков.
На фиг. 8Β-8Ό линейная конфигурация лазерных пучков 90а-901 развернута, например, с помощью поворачивающего средства 110 относительно направления 2 движения объекта на угол α. В совокупности с задержкой активирования данный разворот приводит к распечатыванию линии, образованной точками (пятнами) 81-89. Эти точки 81-89 могут иметь частичное наложение (см. фиг. 8В) или быть пространственно разделены (см. фиг. 8С и 8И). Длина сформированной таким образом линии задается углами между лазерными пучками 90а-901 и направлением 2 движения объекта. Размер каждой из точек 8189 и, следовательно, ширина линии могут задаваться с помощью средств для профилирования пучка.
Описанный маркировочный аппарат обеспечивает, с помощью набора телескопических средств, желательную возможность индивидуально профилировать каждый лазерный пучок. Кроме того, посредством набора отклоняющих средств можно изменять расстояния между пучками и конфигурацию множества лазерных пучков. Размещение оптических элементов, в частности входящих в состав телескопических и отклоняющих средств, в пространстве, окруженном газовыми лазерами, позволяет ослабить пространственные ограничения.

Claims (15)

  1. ФОРМУЛА ИЗОБРЕТЕНИЯ
    1. Маркировочный аппарат для маркировки объекта (1) посредством лазерного излучения, содержащий множество лазеров (10), в частности газовых лазеров (10);
    блок (20) управления, обеспечивающий индивидуальное активирование каждого из лазеров (10) для испускания лазерного пучка (90а-90Д в соответствии с наносимым знаком;
    телескопическое устройство (45), способное принимать пучки (90а-901) всех указанных лазеров для совместной регулировки фокусов указанных пучков; и набор (30) отклоняющих средств, выполненных с возможностью направлять лазерные пучки (90а90ΐ) на маркируемый объект (1), отличающийся тем, что набор (30) отклоняющих средств содержит по меньшей мере одно отклоняющее средство (33а-33ц 34а-34Д на каждый лазерный пучок (90а-901) для гибкого перестраивания лазерных пучков (90а-90Д с получением любой их желательной конфигурации, причем каждое отклоняющее средство (33а-33ц 34а34ΐ) выполнено с возможностью индивидуальной регулировки обеспечиваемого им направления отклонения и/или с возможностью индивидуального смещения, а маркировочный аппарат дополнительно содержит набор (40) телескопических средств, содержащий по меньшей мере одно телескопическое средство (40а-40Д на каждый лазерный пучок (90а-90Д, причем каждое телескопическое средство (40а-401) является регулируемым для осуществления индивидуальной настройки фокусного расстояния соответствующего лазерного пучка (90а-901), при этом блок (20) управления способен управлять телескопическими средствами (40а-401) с возможностью компенсировать различия в оптических длинах пути лазерных пучков (90а-90Д, обусловленные конфигурацией отклоняющих средств (33а-33ц 34а-34Д; и по меньшей мере одно зеркальное сканирующее устройство (50), содержащее общее зеркало, на которое направлены все лазерные пучки (90а-90Д, отходящие от набора отклоняющих средств (30), причем блок (20) управления выполнен с возможностью обеспечения поворота зеркального сканирующего устройства (50).
  2. 2. Маркировочный аппарат по п.1, отличающийся тем, что каждое телескопическое средство (40а40Ϊ) содержит по меньшей мере два оптических элемента (41, 42), установленных с возможностью регулировки расстояния между ними для осуществления настройки фокусного расстояния, в частности по меньшей мере две линзы или два криволинейных зеркала.
  3. 3. Маркировочный аппарат по п.1 или 2, отличающийся тем, что каждое отклоняющее средство (33а-331, 34а-34Д представляет собой перестраивающее зеркало (33а-33ц 34а-34Д или световод.
  4. 4. Маркировочный аппарат по любому из пп.1-3, отличающийся тем, что каждое телескопическое средство (40а-40Д содержит зеркало, которое является одним из перестраивающих зеркал (33а-33ц 34а34ΐ), и оптический элемент, установленный с возможностью смещения относительно перестраивающего зеркала (33а-33ц 34а-341), в частности линзу или криволинейное зеркало.
  5. 5. Маркировочный аппарат по любому из пп.1-4, отличающийся тем, что каждый лазер (10а-10Д является газовым лазером, содержащим лазерные трубки (12), которые, по меньшей мере, частично окружают внутреннее пространство (5) указанного аппарата, который дополнительно содержит направляющие средства (14), выполненные с возможностью направлять лазерные пучки (90а-901), испускаемые лазерами (10а-101), во внутреннее пространство (5), и входящие в состав телескопических средств (40а-40Д.
  6. 6. Маркировочный аппарат по любому из пп.1-5, отличающийся тем, что каждый лазер (10а-10т) со- 11 026082 держит выходной компонент (13) для выведения лазерного пучка (90а-90т), при этом выходные компоненты (13) лазеров (10а-10т) входят в состав набора (40) телескопических средств.
  7. 7. Маркировочный аппарат по п.6, отличающийся тем, что с целью замещения лазерного пучка вышедшего из строя лазера блок (20) управления выполнен с возможностью регулировки набора (30) отклоняющих средств и набора (40) телескопических средств с обеспечением отклонения пучка (90а-90т) функционирующего лазера (10а-10т) в направлении отклонения дефектного лазерного пучка (90а-90т).
  8. 8. Маркировочный аппарат по любому из пп.1-7, отличающийся тем, что блок (20) управления выполнен с возможностями уменьшать разрешение наносимого знака в случае выхода из строя лазера (10а-10т); активировать функционирующие лазеры (10а-10т) для испускания лазерных пучков (90а-90т) в соответствии с пониженным разрешением для знака;
    настраивать наборы (30, 40) отклоняющих средств и телескопических средств в соответствии с пониженным разрешением для знака.
  9. 9. Маркировочный аппарат по любому из пп.1-8, отличающийся тем, что отклоняющие средства (33а-33т, 34а-34т) настроены так, чтобы обеспечить уменьшение расстояния между лазерными пучками (90а-901).
  10. 10. Маркировочный аппарат по любому из пп.1-9, отличающийся тем, что набор (30) отклоняющих средств содержит первый и второй наборы (33, 34) перестраивающих зеркал, каждый набор (33, 34) перестраивающих зеркал содержит по меньшей мере одно перестраивающее зеркало (33а-33т, 34а-34т) на каждый лазерный пучок (90а-90т), а первый набор (33) перестраивающих зеркал способен направлять лазерные пучки (90а-90т) на второй набор (34) перестраивающих зеркал.
  11. 11. Маркировочный аппарат по п.10, отличающийся тем, что каждый из первого и второго наборов (33, 34) перестраивающих зеркал сконфигурирован как линейный набор (35, 36), а каждое перестраивающее зеркало (33а-33т, 34а-34т) установлено с возможностью поворота.
  12. 12. Маркировочный аппарат по любому из пп.1-11, отличающийся тем, что блок (20) управления выполнен с возможностью управления отклоняющими средствами (33а-33т, 34а-34т) для задания степени сближения или разведения лазерных пучков (90а-90т), отходящих от отклоняющих средств (33а-33т, 34а34ΐ).
  13. 13. Маркировочный аппарат по любому из пп.1-12, отличающийся тем, что каждое отклоняющее средство содержит световод, при этом все световоды имеют одинаковую длину.
  14. 14. Маркировочный аппарат по любому из пп.1-13, отличающийся тем, что блок (20) управления выполнен с дополнительной возможностью регулировки набора (30) отклоняющих средств для направления пучков по меньшей мере двух лазеров (10) в одну общую точку.
  15. 15. Маркировочная система, содержащая маркировочный аппарат (100), выполненный согласно любому из пп.1-14, и поворачивающее средство (110) для осуществления поворота маркировочного аппарата (100) относительно направления (2) движения маркируемого объекта (1).
EA201490242A 2011-09-05 2012-07-19 Устройство для маркировки, включающее множество лазеров, а также средства отклонения и телескопические средства для каждого лазера EA026082B1 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP11007181.8A EP2564972B1 (en) 2011-09-05 2011-09-05 Marking apparatus with a plurality of lasers, deflection means and telescopic means for each laser beam
PCT/EP2012/003065 WO2013034210A1 (en) 2011-09-05 2012-07-19 Marking apparatus with a plurality of lasers, deflection means and telescopic means for each laser beam

Publications (2)

Publication Number Publication Date
EA201490242A1 EA201490242A1 (ru) 2014-08-29
EA026082B1 true EA026082B1 (ru) 2017-02-28

Family

ID=46679235

Family Applications (1)

Application Number Title Priority Date Filing Date
EA201490242A EA026082B1 (ru) 2011-09-05 2012-07-19 Устройство для маркировки, включающее множество лазеров, а также средства отклонения и телескопические средства для каждого лазера

Country Status (6)

Country Link
US (1) US9573227B2 (ru)
EP (1) EP2564972B1 (ru)
CN (1) CN103781584B (ru)
BR (1) BR112014003941A2 (ru)
EA (1) EA026082B1 (ru)
WO (1) WO2013034210A1 (ru)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK2564973T3 (en) 2011-09-05 2015-01-12 Alltec Angewandte Laserlicht Technologie Ges Mit Beschränkter Haftung Marking apparatus having a plurality of lasers and a kombineringsafbøjningsindretning
EP2565994B1 (en) 2011-09-05 2014-02-12 ALLTEC Angewandte Laserlicht Technologie Gesellschaft mit beschränkter Haftung Laser device and method for marking an object
EP2564972B1 (en) 2011-09-05 2015-08-26 ALLTEC Angewandte Laserlicht Technologie Gesellschaft mit beschränkter Haftung Marking apparatus with a plurality of lasers, deflection means and telescopic means for each laser beam
ES2530070T3 (es) 2011-09-05 2015-02-26 ALLTEC Angewandte Laserlicht Technologie Gesellschaft mit beschränkter Haftung Aparato de marcado con una pluralidad de láseres y conjuntos ajustables individualmente de medios de desviación
EP2564974B1 (en) 2011-09-05 2015-06-17 ALLTEC Angewandte Laserlicht Technologie Gesellschaft mit beschränkter Haftung Marking apparatus with a plurality of gas lasers with resonator tubes and individually adjustable deflection means
EP2564976B1 (en) 2011-09-05 2015-06-10 ALLTEC Angewandte Laserlicht Technologie Gesellschaft mit beschränkter Haftung Marking apparatus with at least one gas laser and heat dissipator
CA172005S (en) * 2016-12-01 2017-08-11 Riegl Laser Measurement Systems Gmbh Laser scanner for surveying, for topographical and distance measurement
CN113510381A (zh) * 2021-04-19 2021-10-19 苏州实创德光电科技有限公司 一种高速多路在线激光打标系统及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5115446A (en) * 1990-09-19 1992-05-19 Trumpf Lasertechnik Gmbh Device for a power laser
US5339737A (en) * 1992-07-20 1994-08-23 Presstek, Inc. Lithographic printing plates for use with laser-discharge imaging apparatus
GB2304641A (en) * 1995-09-07 1997-03-26 Alexander Paul Sator System for marking articles using radiation sources
JP2001276986A (ja) * 2000-03-29 2001-10-09 Nec Corp レーザ加工装置及び方法
US6421159B1 (en) * 1996-09-11 2002-07-16 The Domino Corporation Multiple beam laser marking apparatus
US20050056626A1 (en) * 2003-09-12 2005-03-17 Orbotech Ltd Multiple beam micro-machining system and method

Family Cites Families (277)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2359780A (en) 1938-10-29 1944-10-10 Muffly Glenn Refrigerating mechanism
GB1016576A (en) * 1962-08-22 1966-01-12 Varian Associates Optical maser
US3628175A (en) * 1963-11-29 1971-12-14 Perkin Elmer Corp Optical maser having concentric reservoirs and cylindrical resonator
US3564452A (en) * 1965-08-23 1971-02-16 Spectra Physics Laser with stable resonator
US3465358A (en) * 1966-07-21 1969-09-02 Bell Telephone Labor Inc Q-switched molecular laser
US3533012A (en) * 1967-02-10 1970-10-06 Optics Technology Inc Laser apparatus and method of aligning same
US3638137A (en) * 1969-01-10 1972-01-25 Hughes Aircraft Co Method of q-switching and mode locking a laser beam and structure
GB1269892A (en) * 1969-03-20 1972-04-06 Messerschmitt Boelkow Blohm Weapon system for the detection of and use against stationary or moving objects
US3596202A (en) * 1969-03-28 1971-07-27 Bell Telephone Labor Inc Carbon dioxide laser operating upon a vibrational-rotational transition
US3721915A (en) * 1969-09-19 1973-03-20 Avco Corp Electrically excited flowing gas laser and method of operation
US3646476A (en) * 1969-11-24 1972-02-29 Coherent Radiation Lab Pulsed gas ion laser
US3662281A (en) * 1970-02-11 1972-05-09 Union Carbide Corp Method and means for compensating birefringence in laser systems
US3602837A (en) * 1970-03-31 1971-08-31 Us Army Method and apparatus for exciting an ion laser at microwave frequencies
CH522287A (de) 1970-04-13 1972-06-15 Inst Angewandte Physik Niederdruck-Gasentladungsrohr für Laser
US3801929A (en) * 1972-07-31 1974-04-02 Asahi Optical Co Ltd Gas laser apparatus having low temperature sensitivity
US3851272A (en) * 1973-01-02 1974-11-26 Coherent Radiation Gaseous laser with cathode forming optical resonator support and plasma tube envelope
US3900804A (en) * 1973-12-26 1975-08-19 United Aircraft Corp Multitube coaxial closed cycle gas laser system
US3919663A (en) 1974-05-23 1975-11-11 United Technologies Corp Method and apparatus for aligning laser reflective surfaces
US4053851A (en) * 1975-07-10 1977-10-11 The United States Of America As Represented By The United States Energy Research And Development Administration Near 16 micron CO2 laser system
GB1495477A (en) 1975-10-31 1977-12-21 Taiwan Fan Shun Co Ltd Drinking water supply apparatus for vehicles
IL49999A (en) * 1976-01-07 1979-12-30 Mochida Pharm Co Ltd Laser apparatus for operations
US4131782A (en) 1976-05-03 1978-12-26 Lasag Ag Method of and apparatus for machining large numbers of holes of precisely controlled size by coherent radiation
US4122853A (en) * 1977-03-14 1978-10-31 Spectra-Med Infrared laser photocautery device
US4125755A (en) * 1977-06-23 1978-11-14 Western Electric Co., Inc. Laser welding
US4189687A (en) 1977-10-25 1980-02-19 Analytical Radiation Corporation Compact laser construction
US4170405A (en) 1977-11-04 1979-10-09 United Technologies Corporation Resonator having coupled cavities with intercavity beam expansion elements
US4376496A (en) 1979-10-12 1983-03-15 The Coca-Cola Company Post-mix beverage dispensing system syrup package, valving system, and carbonator therefor
JPS5764718A (en) 1980-10-09 1982-04-20 Hitachi Ltd Laser beam printer
US4404571A (en) 1980-10-14 1983-09-13 Canon Kabushiki Kaisha Multibeam recording apparatus
JPS5843588A (ja) 1981-09-09 1983-03-14 Hitachi Ltd レ−ザ発生装置
US4500996A (en) * 1982-03-31 1985-02-19 Coherent, Inc. High power fundamental mode laser
US4477907A (en) * 1982-05-03 1984-10-16 American Laser Corporation Low power argon-ion gas laser
US4554666A (en) * 1982-11-24 1985-11-19 Rca Corporation High-energy, single longitudinal mode hybrid laser
WO1984002296A1 (en) * 1982-12-17 1984-06-21 Inoue Japax Res Laser machining apparatus
US4512639A (en) * 1983-07-05 1985-04-23 The United States Of American As Represented By The Secretary Of The Army Erectable large optic for outer space application
US4596018A (en) * 1983-10-07 1986-06-17 Minnesota Laser Corp. External electrode transverse high frequency gas discharge laser
FR2556262B1 (fr) * 1983-12-09 1987-02-20 Ressencourt Hubert La presente invention concerne un centre de faconnage de materiaux en feuilles a commande numerique
US4660209A (en) * 1983-12-29 1987-04-21 Amada Engineering & Service Co., Inc. High speed axial flow type gas laser oscillator
US4652722A (en) * 1984-04-05 1987-03-24 Videojet Systems International, Inc. Laser marking apparatus
US4614913A (en) * 1984-04-30 1986-09-30 The United States Of America As Represented By The Secretary Of The Army Inherently boresighted laser weapon alignment subsystem
US4655547A (en) * 1985-04-09 1987-04-07 Bell Communications Research, Inc. Shaping optical pulses by amplitude and phase masking
US4744090A (en) 1985-07-08 1988-05-10 Trw Inc. High-extraction efficiency annular resonator
DD256440A3 (de) * 1986-01-09 1988-05-11 Halle Feinmech Werke Veb Anordnung zur wellenlaengenselektion und internen leistungsmodulation der strahlung von hochleistungs-co tief 2-lasern
DD256439A3 (de) * 1986-01-09 1988-05-11 Halle Feinmech Werke Veb Verfahren zur steuerung der inneren und unterdrueckung der aeusseren strahlungsrueckkopplung eines co tief 2-hochleistungslasers
WO1987005750A1 (en) * 1986-03-12 1987-09-24 Weiss Hardy P Axial gas laser and process for stabilizing its operation
US4672620A (en) * 1986-05-14 1987-06-09 Spectra-Physics, Inc. Fast axial flow carbon dioxide laser
US4727235A (en) 1986-08-07 1988-02-23 Videojet Systems International, Inc. Method and apparatus for equalizing power output in a laser marking system
US4720618A (en) 1986-08-07 1988-01-19 Videojet Systems International, Inc. Method and apparatus for equalizing power output in a laser marking system
US4831333A (en) * 1986-09-11 1989-05-16 Ltv Aerospace & Defense Co. Laser beam steering apparatus
JPS6394695A (ja) 1986-10-08 1988-04-25 Nec Corp ガスレ−ザ発振器
US4779278A (en) * 1986-12-05 1988-10-18 Laser Photonics, Inc. Laser apparatus and method for discriminating against higher order modes
US4846550A (en) * 1987-01-07 1989-07-11 Allied-Signal Inc. Optical wedges used in beam expander for divergence control of laser
US5162940A (en) * 1987-03-06 1992-11-10 The United States Of America As Represented By The Secretary Of The Air Force Multiple energy level, multiple pulse rate laser source
SE460570B (sv) 1987-10-13 1989-10-23 Trumpf Gmbh & Co Anordning foer en effektlaser
WO1989006872A1 (en) * 1988-01-21 1989-07-27 Siemens Aktiengesellschaft Gas laser
US5012259A (en) 1988-01-28 1991-04-30 Konica Corporation Color recorder with gas laser beam scanning
JP2592085B2 (ja) * 1988-02-09 1997-03-19 マツダ株式会社 アンチロック装置
US4819246A (en) * 1988-03-23 1989-04-04 Aerotech, Inc. Single frequency adapter
US4770482A (en) * 1988-07-17 1988-09-13 Gte Government Systems Corporation Scanning system for optical transmitter beams
US5052017A (en) * 1988-12-01 1991-09-24 Coherent, Inc. High power laser with focusing mirror sets
US5023886A (en) * 1988-12-01 1991-06-11 Coherent, Inc. High power laser with focusing mirror sets
US4953176A (en) * 1989-03-07 1990-08-28 Spectra-Physics Angular optical cavity alignment adjustment utilizing variable distribution cooling
US4958900A (en) * 1989-03-27 1990-09-25 General Electric Company Multi-fiber holder for output coupler and methods using same
GB8912765D0 (en) * 1989-06-02 1989-07-19 Lumonics Ltd A laser
US5268921A (en) 1989-07-03 1993-12-07 Mclellan Edward J Multiple discharge gas laser apparatus
DE3937370A1 (de) 1989-11-09 1991-05-16 Otto Bihler Laser
US4991149A (en) 1989-12-07 1991-02-05 The United States Of America As Represented By The Secretary Of The Navy Underwater object detection system
US5065405A (en) * 1990-01-24 1991-11-12 Synrad, Incorporated Sealed-off, RF-excited gas lasers and method for their manufacture
US5109149A (en) 1990-03-15 1992-04-28 Albert Leung Laser, direct-write integrated circuit production system
US5214658A (en) * 1990-07-27 1993-05-25 Ion Laser Technology Mixed gas ion laser
DE4029187C2 (de) 1990-09-14 2001-08-16 Trumpf Lasertechnik Gmbh Längsgeströmter CO¶2¶-Laser
GB2249843A (en) 1990-10-25 1992-05-20 Robert Peter Sunman Image production
US5653900A (en) * 1991-01-17 1997-08-05 United Distillers Plc Dynamic laser marking
US5229574A (en) 1991-10-15 1993-07-20 Videojet Systems International, Inc. Print quality laser marker apparatus
US5229573A (en) 1991-10-15 1993-07-20 Videojet Systems International, Inc. Print quality laser marker apparatus
JPH05129678A (ja) 1991-10-31 1993-05-25 Shibuya Kogyo Co Ltd レーザマーキング装置
ATE218904T1 (de) * 1991-11-06 2002-06-15 Shui T Lai Vorrichtung für hornhautchirurgie
US5199042A (en) * 1992-01-10 1993-03-30 Litton Systems, Inc. Unstable laser apparatus
JPH0645711A (ja) * 1992-01-14 1994-02-18 Boreal Laser Inc スラブレーザのアレイ
US5572538A (en) 1992-01-20 1996-11-05 Miyachi Technos Corporation Laser apparatus and accessible, compact cooling system thereof having interchangeable flow restricting members
JP2872855B2 (ja) * 1992-02-19 1999-03-24 ファナック株式会社 レーザ発振器
DE4212390A1 (de) 1992-04-13 1993-10-14 Baasel Carl Lasertech Strahlführungssystem für mehrere Laserstrahlen
US5337325A (en) 1992-05-04 1994-08-09 Photon Imaging Corp Semiconductor, light-emitting devices
AU674518B2 (en) * 1992-07-20 1997-01-02 Presstek, Inc. Lithographic printing plates for use with laser-discharge imaging apparatus
JP2980788B2 (ja) * 1992-10-21 1999-11-22 三菱電機株式会社 レーザ装置
JP2725569B2 (ja) * 1992-11-18 1998-03-11 松下電器産業株式会社 レーザ発振器
US5274661A (en) * 1992-12-07 1993-12-28 Spectra Physics Lasers, Inc. Thin film dielectric coating for laser resonator
JP3022016B2 (ja) * 1992-12-28 2000-03-15 松下電器産業株式会社 軸流形レーザ発振器
US5729568A (en) 1993-01-22 1998-03-17 Deutsche Forschungsanstalt Fuer Luft-Und Raumfahrt E.V. Power-controlled, fractal laser system
US5294774A (en) * 1993-08-03 1994-03-15 Videojet Systems International, Inc. Laser marker system
US5431199A (en) 1993-11-30 1995-07-11 Benjey, Robert P Redundant seal for vehicle filler neck
JPH07211972A (ja) * 1994-01-20 1995-08-11 Fanuc Ltd レーザ発振器
DE4402054A1 (de) * 1994-01-25 1995-07-27 Zeiss Carl Fa Gaslaser und Gasnachweis damit
US5386427A (en) * 1994-02-10 1995-01-31 Massachusetts Institute Of Technology Thermally controlled lenses for lasers
EP0745282B1 (en) * 1994-02-15 1999-05-12 Coherent, Inc. System for minimizing the depolarization of a laser beam due to thermally induced birefringence
JPH07246488A (ja) * 1994-03-11 1995-09-26 Fanuc Ltd レーザ加工装置
US5767477A (en) * 1994-03-23 1998-06-16 Domino Printing Sciences Plc Laser marking apparatus for marking twin-line messages
US5568306A (en) * 1994-10-17 1996-10-22 Leonard Tachner Laser beam control and imaging system
JPH08139391A (ja) * 1994-11-02 1996-05-31 Fanuc Ltd レーザ共振器
US5929337A (en) 1994-11-11 1999-07-27 M & A Packaging Services Limited Non-mechanical contact ultrasound system for monitoring contents of a moving container
US5550853A (en) * 1994-12-21 1996-08-27 Laser Physics, Inc. Integral laser head and power supply
US5659561A (en) * 1995-06-06 1997-08-19 University Of Central Florida Spatial solitary waves in bulk quadratic nonlinear materials and their applications
US5689363A (en) * 1995-06-12 1997-11-18 The Regents Of The University Of California Long-pulse-width narrow-bandwidth solid state laser
JP3427573B2 (ja) 1995-06-27 2003-07-22 松下電器産業株式会社 マイクロ波励起ガスレーザ発振装置
US5646907A (en) 1995-08-09 1997-07-08 The United States Of America As Represented By The Secretary Of The Navy Method and system for detecting objects at or below the water's surface
US5592504A (en) 1995-10-10 1997-01-07 Cameron; Harold A. Transversely excited non waveguide RF gas laser configuration
US5661746A (en) 1995-10-17 1997-08-26 Universal Laser Syatems, Inc. Free-space gas slab laser
US5682262A (en) * 1995-12-13 1997-10-28 Massachusetts Institute Of Technology Method and device for generating spatially and temporally shaped optical waveforms
US5720894A (en) * 1996-01-11 1998-02-24 The Regents Of The University Of California Ultrashort pulse high repetition rate laser system for biological tissue processing
FR2748519B1 (fr) 1996-05-10 1998-06-26 Valeo Thermique Moteur Sa Dispositif de refroidissement d'un moteur avec reservoir de fluide thermiquement isole
US5837962A (en) * 1996-07-15 1998-11-17 Overbeck; James W. Faster laser marker employing acousto-optic deflection
US5808268A (en) * 1996-07-23 1998-09-15 International Business Machines Corporation Method for marking substrates
DE19634190C2 (de) * 1996-08-23 2002-01-31 Baasel Carl Lasertech Mehrkopf-Lasergravuranlage
US6050486A (en) 1996-08-23 2000-04-18 Pitney Bowes Inc. Electronic postage meter system separable printer and accounting arrangement incorporating partition of indicia and accounting information
US5864430A (en) * 1996-09-10 1999-01-26 Sandia Corporation Gaussian beam profile shaping apparatus, method therefor and evaluation thereof
US6064034A (en) * 1996-11-22 2000-05-16 Anolaze Corporation Laser marking process for vitrification of bricks and other vitrescent objects
US5815523A (en) 1996-11-27 1998-09-29 Mcdonnell Douglas Corporation Variable power helix laser amplifier and laser
JP3932207B2 (ja) * 1997-03-14 2007-06-20 デマリア エレクトロオプティックス システムズ アイエヌシー 無線周波数励起導波レーザ
US6141030A (en) 1997-04-24 2000-10-31 Konica Corporation Laser exposure unit including plural laser beam sources differing in wavelength
US6122562A (en) 1997-05-05 2000-09-19 Applied Materials, Inc. Method and apparatus for selectively marking a semiconductor wafer
FR2766115B1 (fr) * 1997-07-18 1999-08-27 Commissariat Energie Atomique Dispositif et procede de decoupe a distance etendue par laser, en mode impulsionnel
DE19734715A1 (de) * 1997-08-11 1999-02-25 Lambda Physik Gmbh Vorrichtung zum Spülen des Strahlenganges eines UV-Laserstrahles
US6069843A (en) 1997-08-28 2000-05-30 Northeastern University Optical pulse induced acoustic mine detection
US6263007B1 (en) 1998-03-23 2001-07-17 T & S Team Incorporated Pulsed discharge gas laser having non-integral supply reservoir
JP3041599B2 (ja) 1998-05-14 2000-05-15 セイコーインスツルメンツ株式会社 座標出し光学式観察装置および位置情報蓄積方法
US6898216B1 (en) * 1999-06-30 2005-05-24 Lambda Physik Ag Reduction of laser speckle in photolithography by controlled disruption of spatial coherence of laser beam
US6181728B1 (en) * 1998-07-02 2001-01-30 General Scanning, Inc. Controlling laser polarization
US6057871A (en) 1998-07-10 2000-05-02 Litton Systems, Inc. Laser marking system and associated microlaser apparatus
DE19840926B4 (de) * 1998-09-08 2013-07-11 Hell Gravure Systems Gmbh & Co. Kg Anordnung zur Materialbearbeitung mittels Laserstrahlen und deren Verwendung
JP2002529776A (ja) * 1998-11-02 2002-09-10 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 陰極線管用のレーザ照射装置。
US6229940B1 (en) 1998-11-30 2001-05-08 Mcdonnell Douglas Corporation Incoherent fiber optic laser system
TW444247B (en) * 1999-01-29 2001-07-01 Toshiba Corp Laser beam irradiating device, manufacture of non-single crystal semiconductor film, and manufacture of liquid crystal display device
EP1066666B1 (de) 1999-02-03 2008-08-06 TRUMPF LASERTECHNIK GmbH Laser mit einer einrichtung zur veränderung der verteilung der intensität des laserlichtes über den laserstrahlquerschnitt
US6678291B2 (en) * 1999-12-15 2004-01-13 Lambda Physik Ag Molecular fluorine laser
US6356575B1 (en) * 1999-07-06 2002-03-12 Raytheon Company Dual cavity multifunction laser system
JP2001023918A (ja) * 1999-07-08 2001-01-26 Nec Corp 半導体薄膜形成装置
US6335943B1 (en) 1999-07-27 2002-01-01 Lockheed Martin Corporation System and method for ultrasonic laser testing using a laser source to generate ultrasound having a tunable wavelength
US6944201B2 (en) * 1999-07-30 2005-09-13 High Q Laser Production Gmbh Compact ultra fast laser
US20060249491A1 (en) * 1999-09-01 2006-11-09 Hell Gravure Systems Gmbh Laser radiation source
US6420675B1 (en) * 1999-10-08 2002-07-16 Nanovia, Lp Control system for ablating high-density array of vias or indentation in surface of object
US6886284B2 (en) * 1999-10-08 2005-05-03 Identification Dynamics, Llc Firearm microstamping and micromarking insert for stamping a firearm identification code and serial number into cartridge shell casings and projectiles
US6833911B2 (en) * 1999-10-08 2004-12-21 Identification Dynamics, Inc. Method and apparatus for reading firearm microstamping
US6653593B2 (en) * 1999-10-08 2003-11-25 Nanovia, Lp Control system for ablating high-density array of vias or indentation in surface of object
US6310701B1 (en) * 1999-10-08 2001-10-30 Nanovia Lp Method and apparatus for ablating high-density array of vias or indentation in surface of object
US6256121B1 (en) * 1999-10-08 2001-07-03 Nanovia, Lp Apparatus for ablating high-density array of vias or indentation in surface of object
US6735232B2 (en) * 2000-01-27 2004-05-11 Lambda Physik Ag Laser with versatile output energy
EP1143584A3 (en) 2000-03-31 2003-04-23 Matsushita Electric Industrial Co., Ltd. Semiconductor laser array
US6791592B2 (en) * 2000-04-18 2004-09-14 Laserink Printing a code on a product
US7394591B2 (en) * 2000-05-23 2008-07-01 Imra America, Inc. Utilization of Yb: and Nd: mode-locked oscillators in solid-state short pulse laser systems
US6605799B2 (en) * 2000-05-25 2003-08-12 Westar Photonics Modulation of laser energy with a predefined pattern
US6895030B1 (en) * 2000-05-30 2005-05-17 Matsushita Electric Industrial Co., Ltd. Laser oscillating device
US6904073B2 (en) * 2001-01-29 2005-06-07 Cymer, Inc. High power deep ultraviolet laser with long life optics
DE20011508U1 (de) 2000-06-30 2000-10-12 Termotek Laserkuehlung Gmbh Kühlvorrichtung für einen Laser
JP2002045371A (ja) 2000-08-01 2002-02-12 Nidek Co Ltd レーザ治療装置
DE10043269C2 (de) * 2000-08-29 2002-10-24 Jenoptik Jena Gmbh Diodengepumpter Laserverstärker
US6585161B1 (en) 2000-08-30 2003-07-01 Psc Scanning, Inc. Dense pattern optical scanner
EP1184946B1 (de) 2000-08-31 2010-08-18 Trumpf Laser- und Systemtechnik GmbH Gaslaser
AU2001296283A1 (en) * 2000-09-21 2002-04-02 Gsi Lumonics Corporation Digital control servo system
DE10047020C1 (de) * 2000-09-22 2002-02-07 Trumpf Lasertechnik Gmbh Laser mit wenigstens zwei Elektrodenrohren und einer Kühleinrichtung, Verfahren zur Herstellung eines Lasers sowie Vorrichtung zur Durchführung eines derartigen Verfahrens
US20020061045A1 (en) 2000-11-21 2002-05-23 Access Laser Company Portable low-power gas discharge laser
US6693930B1 (en) * 2000-12-12 2004-02-17 Kla-Tencor Technologies Corporation Peak power and speckle contrast reduction for a single laser pulse
ATE254812T1 (de) * 2000-12-16 2003-12-15 Trumpf Lasertechnik Gmbh Koaxialer laser mit einer einrichtung zur strahlformung eines laserstrahls
US7496831B2 (en) 2001-02-22 2009-02-24 International Business Machines Corporation Method to reformat regions with cluttered hyperlinks
WO2002075865A2 (en) 2001-03-19 2002-09-26 Nutfield Technologies, Inc. Monolithic ceramic laser structure and method of making same
US6370884B1 (en) 2001-03-30 2002-04-16 Maher I. Kelada Thermoelectric fluid cooling cartridge
US6768765B1 (en) * 2001-06-07 2004-07-27 Lambda Physik Ag High power excimer or molecular fluorine laser system
WO2002101888A2 (en) * 2001-06-13 2002-12-19 Orbotech Ltd. Multi-beam micro-machining system and method
US6804269B2 (en) * 2001-06-19 2004-10-12 Hitachi Via Mechanics, Ltd. Laser beam delivery system with trepanning module
US6915654B2 (en) 2001-06-20 2005-07-12 Ross Johnson Portable cooling mechanism
US6914232B2 (en) * 2001-10-26 2005-07-05 Bennett Optical Research, Inc. Device to control laser spot size
US6897941B2 (en) 2001-11-07 2005-05-24 Applied Materials, Inc. Optical spot grid array printer
DE10202036A1 (de) * 2002-01-18 2003-07-31 Zeiss Carl Meditec Ag Femtosekunden Lasersystem zur präzisen Bearbeitung von Material und Gewebe
US6804287B2 (en) 2002-02-02 2004-10-12 The Regents Of The University Of Colorado, A Body Corporate Ultrashort pulse amplification in cryogenically cooled amplifiers
WO2003067721A2 (en) * 2002-02-07 2003-08-14 Lambda Physik Ag Solid-state diode pumped laser employing oscillator-amplifier
US6750421B2 (en) * 2002-02-19 2004-06-15 Gsi Lumonics Ltd. Method and system for laser welding
US6756563B2 (en) * 2002-03-07 2004-06-29 Orbotech Ltd. System and method for forming holes in substrates containing glass
US6826219B2 (en) * 2002-03-14 2004-11-30 Gigatera Ag Semiconductor saturable absorber device, and laser
US7058100B2 (en) 2002-04-18 2006-06-06 The Boeing Company Systems and methods for thermal management of diode-pumped solid-state lasers
US20030219094A1 (en) * 2002-05-21 2003-11-27 Basting Dirk L. Excimer or molecular fluorine laser system with multiple discharge units
JPWO2004017392A1 (ja) * 2002-08-13 2005-12-08 株式会社東芝 レーザ照射方法
US20040202220A1 (en) * 2002-11-05 2004-10-14 Gongxue Hua Master oscillator-power amplifier excimer laser system
US6903824B2 (en) * 2002-12-20 2005-06-07 Eastman Kodak Company Laser sensitometer
US7145926B2 (en) * 2003-01-24 2006-12-05 Peter Vitruk RF excited gas laser
US20050094697A1 (en) 2003-01-30 2005-05-05 Rofin Sinar Laser Gmbh Stripline laser
TWI248244B (en) * 2003-02-19 2006-01-21 J P Sercel Associates Inc System and method for cutting using a variable astigmatic focal beam spot
US7321105B2 (en) * 2003-02-21 2008-01-22 Lsp Technologies, Inc. Laser peening of dovetail slots by fiber optical and articulate arm beam delivery
US7408687B2 (en) * 2003-04-10 2008-08-05 Hitachi Via Mechanics (Usa), Inc. Beam shaping prior to harmonic generation for increased stability of laser beam shaping post harmonic generation with integrated automatic displacement and thermal beam drift compensation
US7499207B2 (en) * 2003-04-10 2009-03-03 Hitachi Via Mechanics, Ltd. Beam shaping prior to harmonic generation for increased stability of laser beam shaping post harmonic generation with integrated automatic displacement and thermal beam drift compensation
WO2004097465A2 (en) * 2003-04-24 2004-11-11 Bae Systems Information And Electronic Systems Integration Inc. Singlet telescopes with controllable ghosts for laser beam forming
US20060287697A1 (en) 2003-05-28 2006-12-21 Medcool, Inc. Methods and apparatus for thermally activating a console of a thermal delivery system
GB0313887D0 (en) * 2003-06-16 2003-07-23 Gsi Lumonics Ltd Monitoring and controlling of laser operation
US6856509B2 (en) 2003-07-14 2005-02-15 Jen-Cheng Lin Cartridge assembly of a water cooled radiator
US7364952B2 (en) * 2003-09-16 2008-04-29 The Trustees Of Columbia University In The City Of New York Systems and methods for processing thin films
US6894785B2 (en) * 2003-09-30 2005-05-17 Cymer, Inc. Gas discharge MOPA laser spectral analysis module
WO2005037478A2 (en) * 2003-10-17 2005-04-28 Gsi Lumonics Corporation Flexible scan field
US20050205778A1 (en) * 2003-10-17 2005-09-22 Gsi Lumonics Corporation Laser trim motion, calibration, imaging, and fixturing techniques
US7291805B2 (en) * 2003-10-30 2007-11-06 The Regents Of The University Of California Target isolation system, high power laser and laser peening method and system using same
DE602004031401D1 (de) * 2003-10-30 2011-03-31 L Livermore Nat Security Llc Relay Teleskop, Laserverstärker, und Laserschockbestrahlungsverfahren und dessen Vorrichtung
JP2005144487A (ja) * 2003-11-13 2005-06-09 Seiko Epson Corp レーザ加工装置及びレーザ加工方法
AT412829B (de) * 2003-11-13 2005-07-25 Femtolasers Produktions Gmbh Kurzpuls-laservorrichtung
JP4344224B2 (ja) * 2003-11-21 2009-10-14 浜松ホトニクス株式会社 光学マスクおよびmopaレーザ装置
US7376160B2 (en) * 2003-11-24 2008-05-20 Raytheon Company Slab laser and method with improved and directionally homogenized beam quality
US7046267B2 (en) * 2003-12-19 2006-05-16 Markem Corporation Striping and clipping correction
US20050190809A1 (en) * 2004-01-07 2005-09-01 Spectra-Physics, Inc. Ultraviolet, narrow linewidth laser system
US7199330B2 (en) * 2004-01-20 2007-04-03 Coherent, Inc. Systems and methods for forming a laser beam having a flat top
US20050165590A1 (en) * 2004-01-23 2005-07-28 Yuhong Huang System and method for virtual laser marking
JP2005268445A (ja) 2004-03-17 2005-09-29 Hamamatsu Photonics Kk 半導体レーザ装置
US7486705B2 (en) * 2004-03-31 2009-02-03 Imra America, Inc. Femtosecond laser processing system with process parameters, controls and feedback
JP2005294393A (ja) * 2004-03-31 2005-10-20 Fanuc Ltd レーザ発振器
US7711013B2 (en) * 2004-03-31 2010-05-04 Imra America, Inc. Modular fiber-based chirped pulse amplification system
US7509692B2 (en) 2004-05-11 2009-03-31 Biocool Technologies, Llc Wearable personal cooling and hydration system
EP1751967A2 (en) 2004-05-19 2007-02-14 Intense Limited Thermal printing with laser activation
JP4182034B2 (ja) * 2004-08-05 2008-11-19 ファナック株式会社 切断加工用レーザ装置
DE502004001824D1 (de) * 2004-09-30 2006-11-30 Trumpf Laser Gmbh & Co Kg Vorrichtung zur Fokussierung eines Laserstrahls
US20060092995A1 (en) * 2004-11-01 2006-05-04 Chromaplex, Inc. High-power mode-locked laser system
JP2006136923A (ja) * 2004-11-12 2006-06-01 Hitachi Via Mechanics Ltd レーザ加工機及びレーザ加工方法
US7204298B2 (en) 2004-11-24 2007-04-17 Lucent Technologies Inc. Techniques for microchannel cooling
JP3998067B2 (ja) * 2004-11-29 2007-10-24 オムロンレーザーフロント株式会社 固体レーザ発振器
US20060114956A1 (en) * 2004-11-30 2006-06-01 Sandstrom Richard L High power high pulse repetition rate gas discharge laser system bandwidth management
US7346427B2 (en) 2005-01-14 2008-03-18 Flymg J, Inc. Collecting liquid product volume data at a dispenser
US7295948B2 (en) 2005-01-15 2007-11-13 Jetter Heinz L Laser system for marking tires
US7394479B2 (en) * 2005-03-02 2008-07-01 Marken Corporation Pulsed laser printing
US7430230B2 (en) * 2005-04-07 2008-09-30 The Boeing Company Tube solid-state laser
DE102005024931B3 (de) * 2005-05-23 2007-01-11 Ltb-Lasertechnik Gmbh Transversal elektrisch angeregter Gasentladungslaser zur Erzeugung von Lichtpulsen mit hoher Pulsfolgefrequenz und Verfahren zur Herstellung
US7334744B1 (en) 2005-05-23 2008-02-26 Gentry Dawson Portable mister and cooling assembly for outdoor use
US8278590B2 (en) * 2005-05-27 2012-10-02 Resonetics, LLC Apparatus for minimizing a heat affected zone during laser micro-machining
GB2442650A (en) * 2005-07-12 2008-04-09 Gsi Group Corp System and method for high power laser processing
US20100220750A1 (en) * 2005-07-19 2010-09-02 James Hayden Brownell Terahertz Laser Components And Associated Methods
JP2007032869A (ja) 2005-07-22 2007-02-08 Fujitsu Ltd 冷却装置および冷却方法
JP2007029972A (ja) * 2005-07-25 2007-02-08 Fanuc Ltd レーザ加工装置
WO2007042913A2 (en) * 2005-10-11 2007-04-19 Kilolambda Technologies Ltd. Optical power limiting and switching combined device and a method for protecting imaging and non-imaging sensors
US20070098024A1 (en) * 2005-10-28 2007-05-03 Laserscope High power, end pumped laser with off-peak pumping
CN101331592B (zh) 2005-12-16 2010-06-16 株式会社半导体能源研究所 激光照射设备、激光照射方法和半导体装置的制造方法
US20090312676A1 (en) 2006-02-02 2009-12-17 Tylerton International Inc. Metabolic Sink
JP2007212118A (ja) 2006-02-08 2007-08-23 Makoto Fukada 冷感度を高めた水冷式冷風扇
US7543912B2 (en) 2006-03-01 2009-06-09 Lexmark International, Inc. Unitary wick retainer and biasing device retainer for micro-fluid ejection head replaceable cartridge
US20070235458A1 (en) 2006-04-10 2007-10-11 Mann & Hummel Gmbh Modular liquid reservoir
US9018562B2 (en) * 2006-04-10 2015-04-28 Board Of Trustees Of Michigan State University Laser material processing system
US20070247499A1 (en) 2006-04-19 2007-10-25 Anderson Jr James D Multi-function thermoplastic elastomer layer for replaceable ink tank
US7545838B2 (en) * 2006-06-12 2009-06-09 Coherent, Inc. Incoherent combination of laser beams
JP4146867B2 (ja) * 2006-06-22 2008-09-10 ファナック株式会社 ガスレーザ発振器
JP4917382B2 (ja) * 2006-08-09 2012-04-18 株式会社ディスコ レーザー光線照射装置およびレーザー加工機
US7626152B2 (en) * 2006-08-16 2009-12-01 Raytheon Company Beam director and control system for a high energy laser within a conformal window
CN100547863C (zh) * 2006-10-20 2009-10-07 香港理工大学 光纤气体激光器和具有该激光器的光纤型环形激光陀螺仪
US7784348B2 (en) 2006-12-22 2010-08-31 Lockheed Martin Corporation Articulated robot for laser ultrasonic inspection
US20090323739A1 (en) * 2006-12-22 2009-12-31 Uv Tech Systems Laser optical system
US7729398B2 (en) * 2007-04-10 2010-06-01 Northrop Grumman Systems Corporation Error control for high-power laser system employing diffractive optical element beam combiner
US7733930B2 (en) * 2007-04-10 2010-06-08 Northrop Grumman Systems Corporation Error control for high-power laser system employing diffractive optical element beam combiner with tilt error control
DE102007023017B4 (de) 2007-05-15 2011-06-01 Thyssenkrupp Lasertechnik Gmbh Vorrichtung und Verfahren zum Herstellen von Tailored Blanks
US20080297912A1 (en) * 2007-06-01 2008-12-04 Electro Scientific Industries, Inc., An Oregon Corporation Vario-astigmatic beam expander
JP5129678B2 (ja) 2007-07-18 2013-01-30 株式会社クボタ 作業車
US7924894B2 (en) * 2008-01-18 2011-04-12 Northrop Grumman Systems Corporation Digital piston error control for high-power laser system employing diffractive optical element beam combiner
US7756169B2 (en) * 2008-01-23 2010-07-13 Northrop Grumman Systems Corporation Diffractive method for control of piston error in coherent phased arrays
US8126028B2 (en) 2008-03-31 2012-02-28 Novasolar Holdings Limited Quickly replaceable processing-laser modules and subassemblies
GB0809003D0 (en) * 2008-05-17 2008-06-25 Rumsby Philip T Method and apparatus for laser process improvement
GB2460648A (en) * 2008-06-03 2009-12-09 M Solv Ltd Method and apparatus for laser focal spot size control
DE102008030868A1 (de) 2008-06-30 2009-12-31 Krones Ag Vorrichtung zum Beschriften von Behältnissen
US8038878B2 (en) 2008-11-26 2011-10-18 Mann+Hummel Gmbh Integrated filter system for a coolant reservoir and method
CN102318451B (zh) * 2008-12-13 2013-11-06 万佳雷射有限公司 用于激光加工相对窄和相对宽的结构的方法和设备
GB0900036D0 (en) * 2009-01-03 2009-02-11 M Solv Ltd Method and apparatus for forming grooves with complex shape in the surface of apolymer
CN104134928A (zh) * 2009-02-04 2014-11-05 通用医疗公司 利用高速光学波长调谐源的设备和方法
US20100206882A1 (en) 2009-02-13 2010-08-19 Wessels Timothy J Multi chamber coolant tank
CN102438549B (zh) * 2009-03-04 2015-07-15 完美Ip有限公司 用于形成和修改晶状体的系统以及由此形成的晶状体
US8184361B2 (en) * 2009-08-07 2012-05-22 Northrop Grumman Systems Corporation Integrated spectral and all-fiber coherent beam combination
US8514485B2 (en) * 2009-08-07 2013-08-20 Northrop Grumman Systems Corporation Passive all-fiber integrated high power coherent beam combination
US8184363B2 (en) * 2009-08-07 2012-05-22 Northrop Grumman Systems Corporation All-fiber integrated high power coherent beam combination
US8320056B2 (en) * 2009-08-20 2012-11-27 Lawrence Livermore National Security, Llc Spatial filters for high average power lasers
US8212178B1 (en) * 2009-09-28 2012-07-03 Klein Tools, Inc. Method and system for marking a material using a laser marking system
US8337618B2 (en) * 2009-10-26 2012-12-25 Samsung Display Co., Ltd. Silicon crystallization system and silicon crystallization method using laser
JP2011156574A (ja) * 2010-02-02 2011-08-18 Hitachi High-Technologies Corp レーザ加工用フォーカス装置、レーザ加工装置及びソーラパネル製造方法
JP5634088B2 (ja) 2010-03-17 2014-12-03 キヤノン株式会社 インクジェット記録装置およびインクタンク
US10072971B2 (en) * 2010-04-16 2018-09-11 Metal Improvement Company, Llc Flexible beam delivery system for high power laser systems
US8233511B2 (en) * 2010-05-18 2012-07-31 Lawrence Livermore National Security, Llc Method and system for modulation of gain suppression in high average power laser systems
US8432691B2 (en) 2010-10-28 2013-04-30 Asetek A/S Liquid cooling system for an electronic system
EP2564974B1 (en) 2011-09-05 2015-06-17 ALLTEC Angewandte Laserlicht Technologie Gesellschaft mit beschränkter Haftung Marking apparatus with a plurality of gas lasers with resonator tubes and individually adjustable deflection means
EP2564972B1 (en) 2011-09-05 2015-08-26 ALLTEC Angewandte Laserlicht Technologie Gesellschaft mit beschränkter Haftung Marking apparatus with a plurality of lasers, deflection means and telescopic means for each laser beam
ES2438751T3 (es) 2011-09-05 2014-01-20 ALLTEC Angewandte Laserlicht Technologie Gesellschaft mit beschränkter Haftung Dispositivo y procedimiento para marcar un objeto por medio de un rayo láser

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5115446A (en) * 1990-09-19 1992-05-19 Trumpf Lasertechnik Gmbh Device for a power laser
US5339737A (en) * 1992-07-20 1994-08-23 Presstek, Inc. Lithographic printing plates for use with laser-discharge imaging apparatus
US5339737B1 (en) * 1992-07-20 1997-06-10 Presstek Inc Lithographic printing plates for use with laser-discharge imaging apparatus
GB2304641A (en) * 1995-09-07 1997-03-26 Alexander Paul Sator System for marking articles using radiation sources
US6421159B1 (en) * 1996-09-11 2002-07-16 The Domino Corporation Multiple beam laser marking apparatus
JP2001276986A (ja) * 2000-03-29 2001-10-09 Nec Corp レーザ加工装置及び方法
US20050056626A1 (en) * 2003-09-12 2005-03-17 Orbotech Ltd Multiple beam micro-machining system and method

Also Published As

Publication number Publication date
US20140224777A1 (en) 2014-08-14
WO2013034210A1 (en) 2013-03-14
BR112014003941A2 (pt) 2017-03-14
EP2564972B1 (en) 2015-08-26
CN103781584B (zh) 2016-04-20
CN103781584A (zh) 2014-05-07
US9573227B2 (en) 2017-02-21
EP2564972A1 (en) 2013-03-06
EA201490242A1 (ru) 2014-08-29

Similar Documents

Publication Publication Date Title
EA024615B1 (ru) Маркировочный аппарат для маркировки объекта посредством лазерного излучения и маркировочная система, содержащая указанный аппарат
EA026082B1 (ru) Устройство для маркировки, включающее множество лазеров, а также средства отклонения и телескопические средства для каждого лазера
EA025906B1 (ru) Устройство для маркировки с множеством лазеров и индивидуально настраиваемыми наборами отклоняющих средств
US9595801B2 (en) Marking apparatus with a plurality of lasers and a combining deflection device
KR100864863B1 (ko) 멀티 레이저 시스템
KR100817825B1 (ko) 레이저 가공장치
KR101287982B1 (ko) 레이저 가공 방법 및 장치
US20230330782A1 (en) Device for machining a material
EA025930B1 (ru) Устройство для маркировки
JP2002289948A (ja) レーザ光学装置及びレーザ加工方法

Legal Events

Date Code Title Description
MM4A Lapse of a eurasian patent due to non-payment of renewal fees within the time limit in the following designated state(s)

Designated state(s): AM AZ BY KZ KG TJ TM RU