EA025930B1 - Устройство для маркировки - Google Patents

Устройство для маркировки Download PDF

Info

Publication number
EA025930B1
EA025930B1 EA201490237A EA201490237A EA025930B1 EA 025930 B1 EA025930 B1 EA 025930B1 EA 201490237 A EA201490237 A EA 201490237A EA 201490237 A EA201490237 A EA 201490237A EA 025930 B1 EA025930 B1 EA 025930B1
Authority
EA
Eurasian Patent Office
Prior art keywords
laser
laser beams
deflecting means
marking apparatus
marking
Prior art date
Application number
EA201490237A
Other languages
English (en)
Other versions
EA201490237A1 (ru
Inventor
Кевин Л. Армбрустер
Брэд Д. Гилмартин
Петер Дж. Кюкендаль
Бернард Дж. Ричард
Даниэль Дж. Райан
Original Assignee
Алльтек Ангевандте Лазерлихт Технологи Гмбх
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Алльтек Ангевандте Лазерлихт Технологи Гмбх filed Critical Алльтек Ангевандте Лазерлихт Технологи Гмбх
Publication of EA201490237A1 publication Critical patent/EA201490237A1/ru
Publication of EA025930B1 publication Critical patent/EA025930B1/ru

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0604Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0604Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
    • B23K26/0608Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams in the same heat affected zone [HAZ]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0643Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising mirrors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0648Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • B23K26/355Texturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/361Removing material for deburring or mechanical trimming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/435Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material
    • B41J2/447Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using arrays of radiation sources
    • B41J2/455Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using arrays of radiation sources using laser arrays, the laser array being smaller than the medium to be recorded
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/07Construction or shape of active medium consisting of a plurality of parts, e.g. segments
    • H01S3/073Gas lasers comprising separate discharge sections in one cavity, e.g. hybrid lasers
    • H01S3/076Folded-path lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08059Constructional details of the reflector, e.g. shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/081Construction or shape of optical resonators or components thereof comprising three or more reflectors
    • H01S3/083Ring lasers
    • H01S3/0835Gas ring lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/22Gases
    • H01S3/223Gases the active gas being polyatomic, i.e. containing two or more atoms
    • H01S3/2232Carbon dioxide (CO2) or monoxide [CO]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2383Parallel arrangements

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Laser Beam Processing (AREA)
  • Laser Surgery Devices (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

Изобретение относится к маркировочному аппарату (100) для маркировки объекта посредством лазерного излучения, содержащему множество лазеров (10) и блок управления, обеспечивающий индивидуальное активирование каждого из лазеров для испускания лазерного пучка в соответствии с наносимым знаком. Предусмотрен набор (30) отклоняющих средств для перестраивания лазерных пучков с получением их двумерной конфигурации. При этом набор (30) отклоняющих средств содержит по меньшей мере одно отклоняющее средство (33) на каждый лазерный пучок, в частности по меньшей мере одно перестраивающее зеркало (33) или один световод на каждый лазерный пучок.

Description

Область техники
Изобретение относится к устройству (к аппарату) для маркировки объекта посредством лазерного излучения согласно ограничительной части п. 1.
Предшествующий уровень техники
Известны маркировочные аппараты, которые используют единственный лазер (например СО2 лазер), испускающий пучок излучения, который подводится к маркируемому объекту. Объект перемещают на конвейерной ленте относительно маркировочного аппарата. Обычно для направления пучка излучения на объект в соответствии с наносимым знаком используется сканирующее устройство. Поскольку обычно представляется желательным обеспечить высокую производительность маркирования объектов, скорость объекта, движущегося на конвейерной ленте относительно маркировочного аппарата, должна быть высокой. Однако произвольно повышать эту скорость нельзя, поскольку сканирующее устройство требует достаточного времени, чтобы нанести маркировку на проходящий перед ним объект. Как следствие, производительность подобных маркировочных аппаратов ограничивается быстродействием сканирующих устройств.
Производительность может быть повышена с помощью маркировочных аппаратов, которые содержат группу лазеров, например газовых, и блок управления для индивидуального активирования каждого из лазеров для испускания лазерного пучка в соответствии с наносимым знаком.
Чтобы добиться еще больших скоростей маркировки, требуются маркировочные аппараты с увеличенными количествами лазеров. Однако до настоящего времени возможное количество лазеров ограничивалось размерами индивидуальных лазеров, приводящими к недопустимо крупногабаритным аппаратам и к трудностям подведения лазерных пучков к маркируемому объекту.
Из СВ 2304641 А известен маркировочный аппарат, содержащий множество лазеров. Испускаемые лазерные пучки перестраиваются посредством множества зеркал с получением фиксированной линейной конфигурации пучков.
В И8 5339737 А описано лазерное устройство для облучения офсетных печатных форм. Используется множество лазерных источников, и испускаемые ими пучки направляются на шаблон формируемых знаков. Пучки, выходящие из шаблона, образуют заданный линейный набор.
В υδ 2009/0323753 А1 описан другой маркировочный аппарат с множеством лазеров. Испускаемые ими пучки направляются к разрядным устройствам, также образующим одномерную конфигурацию.
В υδ 4720618 рассмотрена лазерная маркировочная система, обеспечивающая испускание множества лазерных пучков, направляемых в виде одномерного набора на маркируемое изделие.
Сущность изобретения
Задача, на решение которой направлено изобретение, состоит в создании маркировочного аппарата, обеспечивающего особенно гибкое управление пучками излучения множества лазеров.
Эта задача решена разработкой маркировочного аппарата с признаками, включенными в п.1 прилагаемой формулы.
Предпочтительные варианты раскрыты в зависимых пунктах, а также в нижеследующем описании, содержащем ссылки на прилагаемые чертежи.
Согласно изобретению маркировочный аппарат описанного типа характеризуется тем, что содержит набор отклоняющих средств для перестраивания лазерных пучков с получением их двумерной конфигурации, причем набор отклоняющих средств содержит по меньшей мере одно отклоняющее средство, в частности по меньшей мере одно перестраивающее зеркало или один световод, на каждый лазерный пучок.
В результате длина формируемой двумерной конфигурации лазерных пучков может быть сделана короче, чем длина конфигурации, которую имеют лазерные пучки. Под длиной в данном случае может пониматься расстояние между двумя лазерными пучками, максимально удаленными друг от друга. В случае двумерной конфигурации это расстояние может соответствовать ее диагонали.
Использование на каждый пучок излучения по меньшей мере одного отклоняющего средства для индивидуального отклонения каждого пучка может рассматриваться в качестве основной идеи изобретения. Такое решение означает, что каждый пучок излучения направляется на соответствующее ему отклоняющее средство, регулируемое независимо от других таких средств, так что в принципе возможно получить любую желательную конфигурацию пучков.
Под двумерной может пониматься любая конфигурация, отличная от расположения лазерных пучков в один ряд. Двумерная конфигурация предпочтительно содержит несколько рядов при одинаковом расстоянии между лазерными пучками в каждом ряду. В частности, возможны прямоугольные двумерные конфигурации, имеющие по меньшей мере три ряда, каждый из которых состоит из по меньшей мере трех лазерных пучков.
Преимуществом предлагаемого набора отклоняющих средств перед призмами является меньшая дисторсия, особенно когда в качестве отклоняющих средств применяются зеркала.
В контексте изобретения под активированием каждого из лазеров для испускания лазерного пучка может пониматься любой процесс, который определяет, должен ли соответствующий пучок излучения падать на маркируемый объект. Следовательно, такое активирование может выполняться посредством
- 1 025930 затвора, перекрывающего пучок. Другими словами, лазер остается активным, а затвор управляет пропусканием и блокированием пучка лазера.
Возможно использование лазеров любых типов. Изобретение особенно эффективно, если критическим фактором для используемых лазеров является занимаемое ими пространство, т. е. если мощность лазера сильно зависит от его размеров. Другое преимущество изобретения наглядно проявляется, если размеры лазера препятствуют генерированию лазерных пучков, расположенных очень близко друг к другу. Изобретение позволяет в таких случаях произвести реконфигурирование лазерных пучков с обеспечением малых расстояний между ними, т. е маркировки с высоким разрешением.
Примерами подобных лазеров являются газовые, химические, волоконные и твердотельные лазеры, а также лазеры на красителях. Могут использоваться также полупроводниковые лазеры или лазеры на парах металлов. При использовании газовых лазеров они могут быть любых известных типов, например Нс-Ыс, СО, аргоновыми, азотными или эксимерными лазерами. Желательно, чтобы газовые лазеры являлись СО2 лазерами, которые способны работать в непрерывном или импульсном режиме, например в режиме управления добротностью или синхронизации мод.
Под знаком маркировки, который нужно сформировать, может пониматься любой знак, например буква, изображение или единственный пиксель. Знак может состоять из множества точек или линий. Соответственно, лазеры можно активировать на короткие периоды, чтобы сформировать точки на объекте, или в течение заданного времени, чтобы сформировать линии определенной длины.
В контексте изобретения маркируемым объектом может быть любой продукт или изделие с поверхностью, которую можно изменить под воздействием излучения лазеров. В частности, объект может являться упаковкой, например для пищевого продукта или напитка, фруктом или этикеткой. Материалами объекта могут быть пластики, бумага, металлы, керамика, материи, композиты или ткани органического происхождения.
Маркировка может создаваться посредством любых изменений поверхности объекта, например путем изменения цвета, гравирования или вырезания.
В одном из вариантов аппарата по изобретению каждое отклоняющее средство выполнено с возможностью индивидуальной регулировки обеспечиваемого им направления отклонения и/или с возможностью индивидуального смещения для получения любой заданной двумерной конфигурации лазерных пучков. Отклоняющие средства могут устанавливаться в желательное положение в процессе или перед началом функционирования маркировочного аппарата. С этой целью каждое отклоняющее средство может быть перемещено посредством электродвигателя, контролируемого блоком управления.
Если отклоняющими средствами являются зеркала, их регулировка (настройка) может производиться посредством индивидуальных поворотов (наклонов) и, как следствие, изменением направлений отклонения пучков, т. е. направлений, по которым пучки отходят от зеркал. Дополнительно или альтернативно, зеркала, которые могут именоваться также перестраивающими зеркалами, могут иметь возможность перемещения.
Согласно предпочтительному варианту изобретения отклоняющие средства регулируют так, чтобы обеспечить уменьшение расстояний между лазерными пучками. Тем самым устраняется недостаток, состоящий в больших расстояниях между пучками вследствие больших размеров лазеров, и обеспечивается возможность маркировки с высоким разрешением. В отличие от специальных устройств для уменьшения расстояния между пучками, в которых все пучки излучения направляют на общий оптический элемент, например на подходящую призму, отклоняющие средства аппарата по изобретению характеризуются меньшей дисторсией пучков излучения.
Уменьшение расстояния между пучками позволяет также получить лазерные пучки, падающие на общие оптические элементы ближе к их центральной зоне. Это может быть критично в отношении сферической аберрации и других искажений, имеющих место для краевых лучей, т. е. лазерных пучков, падающих на линзу или зеркало далеко от центральной зоны, в отличие от параксиальных лучей, т. е. лазерных пучков, падающих на центральную зону линзы или зеркала. Таким образом, уменьшение расстояний между пучками приводит к желательному уменьшению сферической аберрации.
В принципе возможно сформировать двумерную конфигурацию лазерных пучков посредством набора отклоняющих средств, который содержит только одно отклоняющее средство на каждый лазерный пучок. В этом случае, однако, отраженные лазерные пучки будут взаимно рассогласованными или сходящимися, так что желательный двумерный паттерн будет существовать только на одном конкретном расстоянии.
В связи с этим набор отклоняющих средств предпочтительно содержит первый и второй наборы перестраивающих зеркал, причем каждый набор перестраивающих зеркал содержит по меньшей мере одно перестраивающее зеркало на каждый лазерный пучок. При этом первый набор перестраивающих зеркал направляет лазерные пучки на второй набор перестраивающих зеркал, а второй набор перестраивающих зеркал является двумерным и обеспечивает возможность перенаправления лазерных пучков для формирования их двумерной конфигурации. Таким образом, направление каждого пучка излучения индивидуально задается посредством по меньшей мере двух перестраивающих зеркал. Тем самым обеспечивается особенно гибкое реконфигурирование пучка излучения. В частности, лазерные пучки после
- 2 025930 отражения от второго набора перестраивающих зеркал могут распространяться параллельно друг другу.
Отклоняющие средства могут регулироваться, в частности смещаться, вручную. Однако желательно, чтобы блок управления был адаптирован для смещения отклоняющих средств и/или регулировки направлений отклонения, обеспечиваемых отклоняющими средствами, посредством карданных подвесов. Применительно к широкому кругу приложений блок управления может индивидуально регулировать каждое отклоняющее средство. В относительно экономичном варианте блок управления способен регулировать по меньшей мере одно отклоняющее средство на каждый лазерный пучок. Желательно, чтобы карданные подвесы обеспечивали для установленных в них отклоняющих средств по меньшей мере две или даже три вращательные степени свободы.
Регулировка отклоняющих средств посредством блока управления позволяет задавать положения, соответствующие различным значениям кода. Это означает, что направления лазерных пучков, выходящих из аппарата, можно изменять с целью изменить положение кода, который нужно сформировать на объекте лазерными пучками. Кроме того, можно также варьировать высоту кода.
Возможна также статическая маркировка. В этом случае в течение всего процесса маркировки объект неподвижен относительно маркировочного аппарата. Отклоняющие средства приводятся в действие для осуществления сканирующего перемещения лазерных пучков таким образом, чтобы распечатать на неподвижном объекте все требуемые знаки. Этот вариант особенно предпочтителен для распечатывания двумерной графической информации, когда требуется печать высокого разрешения.
Желательно также адаптировать блок управления для реализации опции с множеством импульсов. Если лазерные пучки являются импульсными, в одну и ту же точку на объекте будет подаваться множество импульсов. Этот режим может быть реализован при взаимном перемещении объекта и аппарата и при соответствующей синхронизации срабатывания лазеров. Альтернативно, настройку средств, отклоняющих один лазерный пучок, можно изменять таким образом, чтобы последовательные импульсы излучения одного лазера направлялись в одну общую точку. Данный режим позволяет реализовать, например, печать с использованием серой шкалы.
Блок управления может быть также выполнен с возможностью реализации опции высокой мощности. С этой целью настройка отклоняющих средств одного или более лазерных пучков может быть изменена так, чтобы выходные пучки по меньшей мере двух лазеров были направлены в одну общую точку. Такое выполнение позволяет маркировать даже материалы, требующие для этой цели мощности, более высокой, чем обеспечиваемая единственным лазером. Лазерные пучки, направляемые в одну точку, могут быть не параллельными, а сходящимися, так что они взаимно налагаются на определенном расстоянии с получением общего облучаемого пятна.
Блок управления может быть также адаптирован для автоматической подстройки отклоняющих средств к изменениям положения объекта, например с целью компенсации влияния вибраций объекта. Изменения положения могут детектироваться датчиком, например ультразвуковым или оптическим датчиком или датчиком ближней локации.
Предпочтительный вариант аппарата по изобретению характеризуется тем, что в нем имеется по меньшей мере одно сканирующее зеркальное устройство, содержащее общее зеркало, на которое направлены все лазерные пучки, отходящие от набора отклоняющих средств, а блок управления выполнен с возможностью осуществления поворота зеркального сканирующего устройства, например, посредством гальванометрического привода.
Сканирующим устройством, в частности зеркальным сканирующим устройством, может являться любое средство, которое обеспечивает последовательное проведение пучка излучения через множество различных пространственных положений. В простых вариантах такие устройства могут содержать зеркало, способное поворачиваться вокруг оси, нормальной к плоскости падающего пучка излучения. Поворотное зеркало может являться зеркальным барабаном, т. е. многогранником, несущим зеркала, которые вместе поворачиваются вокруг единственной оси.
Устройства, содержащие гальванометрический привод, с которым связано зеркало, обычно именуются гальванометрическими сканерами. Гальванометрический сканер способен преобразовывать входные электрические сигналы в угловое положение зеркала этого сканера, например, использующего подвижную обмотку или сплошной железный ротор. Желательно, чтобы любое место, в которое должен быть направлен отраженный пучок излучения, могло задаваться независимо от предыдущего положения этого пучка. Желательно также, чтобы имелись по меньшей мере два гальванометрических сканера. Если гальванометрические сканеры установлены так, что каждый лазерный пучок направляется от первого гальванометрического сканера на второй гальванометрический сканер, становится возможным обеспечить любое желательное двумерное сканирующее перемещение.
Функции зеркального сканирующего устройства могут быть также реализованы посредством акустооптических устройств. В этих устройствах в акустооптический материал вводится акустическая волна. Частота акустической волны определяет угол отклонения лазерного пучка, проходящего через акустооптический материал. Быстро изменяя частоту акустической волны, можно осуществить быстрое сканирующее движение лазерного пучка.
В другом предпочтительном варианте блок управления, с целью маркировки объекта при его дви- 3 025930 жении относительно маркировочного аппарата, адаптирован для регулировки отклоняющих средств и/или по меньшей мере одного зеркального сканирующего устройства в соответствии с информацией о движении объекта. Это позволяет осуществлять отслеживание объекта. Имеется возможность ускорять или замедлять относительное перемещение аппарата и средства, транспортирующего движущийся объект, с обеспечением желательной возможности повысить производительность процесса маркировки.
Согласно еще одному предпочтительному варианту изобретения первый набор перестраивающих зеркал является линейным набором, второй набор перестраивающих зеркал является двумерным набором, а каждое перестраивающее зеркало установлено с возможностью поворота (наклона).
Другой предпочтительный вариант аппарата по изобретению характеризуется тем, что блок управления выполнен с возможностью управления отклоняющими средствами для задания степени сближения или разведения лазерных пучков, отходящих от отклоняющих средств, в частности от второго набора отклоняющих средств. В результате отклоняющие средства можно отрегулировать так, чтобы получить заданный шаг лазерных пучков (расстояние между смежными пучками) на заданном расстоянии от аппарата. Высота знака, формируемого лазерными пучками, и разрешение маркировки, т. е. расстояние между элементами маркировки, формируемыми на объекте смежными лазерными пучками, определяются расстоянием между этими пучками. Для этой цели достаточно использовать быстрые повороты отклоняющего средства без необходимости изменять расстояние между отклоняющими средствами, что могло бы оказаться более времяемким.
Согласно еще одному предпочтительному варианту изобретения предусмотрено телескопическое устройство, имеющее по меньшей мере две линзы и служащее для одновременной регулировки фокусных расстояний лазерных пучков. Одновременность регулировки означает, что лазерные пучки всех лазеров проходят через телескопическое устройство и, следовательно, испытывают одинаковое влияние. В частности, блок управления может быть выполнен с возможностью регулировать телескопическое устройство в зависимости от расстояния до объекта, например так, чтобы привести фокусные расстояния лазерных пучков в соответствие с расстоянием до объекта. При этом желательно, чтобы при приближении объекта к аппарату или удалении от него можно было поддерживать постоянными размеры маркировок, формируемых на объекте. Информация о расстоянии до объекта может поступать в блок управления от транспортирующего модуля, перемещающего объект, и/или с использованием известных средств для измерения расстояния. Целесообразно установить телескопическое устройство за отклоняющими средствами, поскольку отклоняющие средства способны уменьшить максимальное расстояние между любыми двумя лазерными пучками. Это позволит уменьшить размеры оптических элементов телескопического устройства.
В предпочтительном варианте аппарата по изобретению предусмотрен набор средств для профилирования пучка (которые могут именоваться также телескопическими средствами) для индивидуального профилирования каждого лазерного пучка, в частности для задания степени сходимости или расходимости и, соответственно, фокусного расстояния каждого лазерного пучка, т. е. профилирование может производиться отдельно для каждого пучка. Тем самым обеспечивается желательная возможность скомпенсировать вариации длины хода лучей, т. е. различия в оптических длинах путей, которые проходят индивидуальные пучки излучения, пока не достигнут объекта. Эти различия могут быть вызваны профилем поверхности объекта или различиями оптических длин путей внутри маркировочного аппарата.
Каждое телескопическое средство может содержать по меньшей мере два оптических элемента, установленных с возможностью регулировки расстояния между ними для осуществления настройки фокусного расстояния, в частности по меньшей мере две линзы или два криволинейных зеркала. Таким образом, телескопические средства можно сконструировать, как телескопы-рефракторы, использующие линзы, как телескопы-рефлекторы, использующие зеркала, или как катадиоптрические телескопы, использующие по меньшей мере одно зеркало и по меньшей мере одну линзу.
Желательно также, чтобы блок управления мог обеспечивать линейную регулировку телескопических средств (которые можно рассматривать также как средства профилирования пучков), т. е. изменение положения по меньшей мере одного оптического элемента каждого телескопического средства вдоль направления распространения соответствующего лазерного пучка.
Блок управления может быть адаптирован для управления телескопическими средствами так, чтобы компенсировать различия в оптических длинах пути лазерных пучков, в частности различия, обусловленные расположением отклоняющих средств. Действительно, оптические длины пути лазерных пучков могут различаться в зависимости от местонахождения отклоняющих средств, а это может приводить к различным размерам облучаемых участков на объекте. При применении телескопических средств можно обеспечить плоское поле, когда все лазерные пучки имеют одинаковое фокусное расстояние, измеряемое от выходной стороны аппарата.
Блок управления может быть также адаптирован для настройки телескопических средств в реальном времени в случае изменения оптических длин пути в результате регулировки отклоняющих средств. Дополнительно или альтернативно, блок управления может быть выполнен с возможностью установки набора телескопических средств в соответствии с любой информацией, относящейся к изменению оптических длин пути, например о вибрации, или о любом другом движении объекта или о перенаправлении
- 4 025930 сканирующим устройством лазерных пучков.
Согласно другому варианту изобретения блок управления выполнен с возможностью задерживать в индивидуальном порядке, для обеспечения, в случае движения объекта относительно маркировочного аппарата в заданном направлении, активирование любого лазера таким образом, чтобы обеспечить падение на один и тот же участок на объекте в направлении движения объекта по меньшей мере двух лазерных пучков. При этом моменты срабатывания лазеров могут быть подобраны так, чтобы обеспечить падение на один и тот же участок на объекте в направлении движения объекта всех лазерных пучков.
Кроме того, независимо от взаимной ориентации испускаемых лазерных пучков и направления движения объекта, различные лазерные пучки могут создавать пятна (точки) маркировки вдоль линии, перпендикулярной направлению движения объекта. Длина такой линии зависит от ориентации испускаемых лазерных пучков относительно направления движения объекта.
Лазеры предпочтительно собраны в стопу, так что испускаемые ими пучки образуют упорядоченную конфигурацию лазерных пучков, в частности упорядоченную конфигурацию взаимно параллельных лазерных пучков. Каждый лазер может быть газовым лазером, содержащим лазерные трубки, которые по меньшей мере частично окружают внутреннее пространство, т. е. образуют замкнутое или разомкнутое кольцо. Испускаемые лазерные пучки направляются во внутреннее пространство посредством направляющих средств, предпочтительно выполненных в виде комплекта зеркал. Альтернативно, направляющие средства могут быть образованы выходными зеркальными компонентами лазеров. В этом случае концевая лазерная трубка каждого лазера может быть направлена во внутреннее пространство, благодаря чему набор отклоняющих средств может находиться во внутреннем пространстве.
Охлаждение лазерных трубок может быть облегчено за счет того, что трубки, установленные на противоположных сторонах замкнутого или разомкнутого кольца, находятся на максимальном расстоянии одна от другой. Этот эффект достигается без увеличения габаритных размеров аппарата, поскольку оптические элементы размещены во внутреннем пространстве, что соответствует эффективному использованию пространства аппарата.
Желательно, чтобы каждый газовый лазер содержал лазерные трубки, которые по меньшей мере частично окружают внутреннее пространство, и направляющие средства, служащие для направления лазерных пучков, испускаемых лазерами, во внутреннее пространство и являющиеся частью телескопических средств. Направляющие средства могут содержать одно зеркало на каждый лазерный пучок, причем этим зеркалом может являться первый оптический элемент каждого телескопического средства.
Альтернативно, частями телескопических средств могут являться выходные компоненты лазеров, служащие для выведения лазерных пучков. Выходными компонентами могут быть частично отражающие зеркала, причем наружная поверхность каждого такого зеркала, т. е. поверхность, обращенная от активного газа, может иметь любую форму. В связи с этим желательно придать ей такую форму, чтобы каждый выходной компонент функционировал как первая линза телескопа известной конструкции.
Предпочтительный вариант изобретения решает проблему вышедшего из строя пикселя, наличие которого указывает, что соответствующий лазер дефектен и не испускает требуемый лазерный пучок. С целью замещения лазерного пучка вышедшего из строя лазера блок управления может быть адаптирован для настройки отклоняющих и телескопических средств таким образом, чтобы отклонять лазерный пучок функционирующего лазера в направлении дефектного лазерного пучка. В этом случае телескопические средства управляются таким образом, чтобы скомпенсировать различия между оптическими длинами пути дефектного лазерного пучка и лазерного пучка, используемого для его замещения.
Другой предпочтительный вариант изобретения характеризуется тем, что каждое отклоняющее средство содержит или представляет собой световод. Каждый световод имеет первую концевую часть для приема одного из лазерных пучков и вторую концевую часть для испускания этого лазерного пучка. При этом вторые концевые части световодов образуют двумерную конфигурацию, а их первые концевые части расположены в соответствии с конфигурацией падающих на них лазерных пучков, например согласно линейной конфигурации.
В качестве световодов применимы любые гибкие световоды, способные проводить излучение с длинами волн, испускаемыми лазерами, в частности инфракрасное излучение с длинами волн около 10 мкм. Примерами таких световодов являются оптоволокна или полые трубки с отражающей внутренней поверхностью.
Каждый световод может быть снабжен входными оптическими элементами, служащими в качестве первого отклоняющего средства для направления падающего на них лазерного пучка под требуемым углом в сердцевину световода. Световоды могут быть также снабжены выходными оптическими элементами, содержащими, в частности, по меньшей мере две линзы для сбора лазерного излучения, выходящего из световода. Эти оптические элементы могут задавать поперечные размеры лазерного пучка, его фокусное расстояние и глубину фокуса. В частности, выходные оптические элементы могут быть выполнены, как телескопические средства.
Световоды предпочтительно имеют одинаковую длину. Это позволяет улучшить стабильность размеров облучаемого пятна и, соответственно, качество маркировок, сформированных на объекте.
Изобретение относится также к маркировочной системе, которая содержит описанный маркировоч- 5 025930 ный аппарат, а также поворачивающее средство для осуществления поворота маркировочного аппарата относительно направления движения маркируемого объекта.
Как будет пояснено далее, осуществление поворота маркировочного аппарата позволяет изменять разрешение печати, т. е. расстояние между точками маркировки на объекте в направлении, перпендикулярном направлению движения объекта. Это разрешение задается расстоянием между пучками в указанном направлении. При этом расстояние между пучками в направлении движения объекта не оказывает неблагоприятного влияния на разрешение печати, поскольку моменты активирования лазеров могут быть задержаны до тех пор, пока объект не пройдет расстояние, равное расстоянию между пучками в направлении движения объекта.
Таким образом, можно изменять расстояние между пучками в направлении, перпендикулярном направлению движения объекта, осуществлением поворота маркировочного аппарата и, следовательно, упорядоченного набора лазерных пучков. Блок управления предпочтительно выполнен с возможностью поворачивать маркировочный аппарат с помощью поворачивающего средства в зависимости от желательного разрешения печати.
В сочетании с правильным выбором моментов срабатывания лазеров, угол поворота можно задать таким, чтобы точки маркировки формировали непрерывную линию или разделенные точки маркировки. Можно также формировать точки маркировки с взаимным наложением, чтобы обеспечить различные интенсивности точек маркировки, например в режиме печати по серой шкале. Кроме того, при соответствующем выборе угла поворота и задержек между моментами испускания, т. е. моментами активирования лазеров, может быть обеспечено полное наложение всех точек маркировки.
Перечень фигур, чертежей
Сущность изобретения, а также его различные особенности и преимущества станут более понятны из нижеследующего описания при его рассмотрении совместно с прилагаемыми чертежами, которые служат в качестве не вносящих ограничений иллюстраций и на которых сходные компоненты имеют сходные обозначения.
На фиг. 1 схематично изображен первый вариант маркировочного аппарата по изобретению.
На фиг. 2 проиллюстрирована конфигурация перестраивающих зеркал набора отклоняющих средств, служащая для придания лазерным пучкам двумерной конфигурации.
На фиг. 3 показаны маркировочная система согласно изобретению и маркируемый объект, движущийся относительно нее.
Сведения, подтверждающие возможность осуществления изобретения
На фиг. 1 схематично изображен первый вариант маркировочного аппарата 100 согласно изобретению. Данный аппарат содержит множество лазеров 10, каждый из которых испускает лазерный пучок, используемый для получения маркировки на объекте (не изображен). Аппарат 100 содержит также оптические средства 30, 40, 45, 50, чтобы конфигурировать и направлять лазерные пучки.
В представленном примере множество лазеров 10 состоит из 9 газовых лазеров 10а-101. Вместо газовых лазеров могут быть использованы лазеры других типов. В общем случае желательно иметь достаточно большое количество газовых лазеров 10, например по меньшей мере 4 или 6 лазеров. Каждый газовый лазер 10 содержит лазерные трубки 12, сообщающиеся одна с другой по текучей среде. Это означает, что лазерные трубки 12 одного газового лазера образуют общий объем. Сообщение по текучей среде допустимо также между лазерными трубками 12 различных лазеров 10.
В представленном варианте газовые лазеры являются СО2 лазерами; соответственно, активный газ содержит, среди прочих компонентов, СО2, Ν2 и Не.
Лазерные трубки 12 расположены в форме кольца, окружающего внутреннее (т. е. свободное центральное) пространство 5 между ними. Кольцо сформировано с использованием соединительных элементов 16 для соединения взаимно примыкающих лазерных трубок 12, принадлежащих одному лазеру. Соединительные элементы 16, расположенные по углам собранных в стопу лазеров, несут зеркала для отражения лазерного излучения из одной из взаимно примыкающих трубок 12 в другую. Разумеется, все зеркала подбираются с учетом используемого активного газа. В рассматриваемом варианте зеркала содержат материал, отражающий на длинах волн, испускаемых СО2 лазером, т. е. в средней ИК области, прежде всего, у 10,6 мкм. Так, могут использоваться медные зеркала и/или зеркала с подложкой и покрытием, повышающим отражательную способность и/или предотвращающим потемнение под действием воздуха.
В представленном примере лазерные трубки 12 образуют герметичное кольцо прямоугольной формы. В общем случае допустима и любая иная форма, обеспечивающая по меньшей мере частичный охват внутреннего пространства 5, такая как треугольная, квадратная или И-образная.
Лазерные трубки 12 каждого газового лазера 10а-101 образуют герметичный объем. Объемы различных лазеров могут быть отделены друг от друга или сообщаться, чтобы получить общий герметичный объем. При использовании герметизированных лазеров обычно представляется желательным, чтобы состав активного газа оставался постоянным в течение длительного периода. С этой целью суммарный объем газа увеличивают с помощью дополнительного газового резервуара 19. Газ в этом резервуаре не возбуждают с целью генерировать лазерное излучение. Вместо этого резервуар 19 соединяют с объемами
- 6 025930 одной или нескольких лазерных трубок 12.
Прямоугольный контур лазеров 10 может быть выполнен открытым (разомкнутым) на одном углу. В представленном варианте таким углом является левый верхний угол, в котором находится интегральный выходной фланец 17. В этом углу объем лазера завершается задним зеркалом 18 для отражения лазерного излучения обратно внутрь трубки 12. Заднее зеркало может быть присоединено к концу трубки 12, который поддерживается интегральным выходным фланцем 17, или непосредственно к этому фланцу.
Другой конец объема лазера завершается на том же углу выходным компонентом 13. Этот компонент, обеспечивающий выведение лазерного пучка, также может быть присоединен к концу трубки 12 или к интегральному выходному фланцу 17. Выходной компонент 13 может являться частично отражающим зеркалом и в этом случае рассматриваться как частично отражающий выходной компонент. Испускаемые лазерные пучки направляют во внутреннее пространство 5 посредством направляющих средств 14. В представленном варианте направляющее средство 14 содержит по меньшей мере одно зеркало, установленное на интегральном выходном фланце 17. Лазерные пучки, отраженные от направляющих средств 14, входят во внутреннее пространство 5 через отверстие в интегральном выходном фланце 17. В общем случае допустимо использовать один интегральный выходной фланец 17, общий для всех лазеров 10. В представленном варианте, однако, имеется по одному интегральному выходному фланцу 17 на каждый лазер 10, причем каждый интегральный выходной фланец 17 имеет одно направляющее средство 14 и одно отверстие, через которое может проходить соответствующий лазерный пучок.
Во внутреннем пространстве 5 находятся оптические средства 30, 40, 45, 50 для профилирования и отклонения лазерных пучков. Такая конфигурация позволяет уменьшить объем пространства, требуемого для аппарата. Кроме того, поскольку противолежащие лазерные трубки 12 каждого лазера разделены внутренним пространством 5, облегчается охлаждение трубок 12.
Лазерные пучки, отходящие от направляющих средств 14, направляются на набор 40 средств для профилирования пучка с целью перефокусирования лазерных пучков. Набор 40 средств для профилирования пучка содержит одно такое средство 40а-401 для каждого лазерного пучка. В результате фокусные расстояния лазерных пучков могут задаваться независимо одно от другого. На чертеже показано, что каждое из средств 40а-401 профилирования пучка содержит одну линзу. Однако каждое такое средство может содержать по меньшей мере два оптических элемента, например два зеркала или две линзы, которые образуют телескопическое средство. В этом случае регулировка фокусных расстояний лазерных пучков требует лишь небольших перемещений оптических элементов телескопического средства.
Затем лазерные пучки падают на набор 30 отклоняющих средств. В проиллюстрированном примере лазерные пучки сначала проходят сквозь наборы 40 средств для профилирования пучка. Однако этот порядок может быть изменен; альтернативно, элементы обоих наборов могут чередоваться, т. е. один элемент набора 40 для профилирования пучка может быть установлен между двумя элементами отклоняющего средства.
Допустимо также, чтобы направляющее средство 14 составляло часть набора 40 телескопических средств или набора 30 отклоняющих средств. В последнем варианте направляющие средства 14 могут составлять первый набор перестраивающих зеркал. В результате будет достигнуто желательное уменьшение количества оптических элементов.
Для большей наглядности набор 30 отклоняющих средств показан содержащим только одно отклоняющее средство 33а-331 на каждый лазерный пучок. Однако желательно, чтобы на каждый лазерный пучок приходились по меньшей мере два отклоняющих средства. Все отклоняющие средства могут регулироваться по положению независимо одно от другого. В результате может быть получена любая желательная двумерная конфигурация.
В общем случае отклоняющими средствами могут быть любые средства, которые изменяют направление распространения лазерного пучка. В проиллюстрированном примере отклоняющими средствами являются зеркала, которые могут именоваться также, как перестраивающие зеркала. 33а-33Б
Перестраивающие зеркала 33а-331 установлены с возможностью поворота и поступательного перемещения. Для обеспечения возможности поворота каждое перестраивающее зеркало 33а-331 установлено в карданном подвесе. Блок управления (не изображен) может быть выполнен с возможностью задавать желательное положение каждого перестраивающего зеркала 33а-33ц воздействуя на его подвес.
Лазерные пучки, отходящие от набора 30 отклоняющих средств, падают на общие оптические элементы, т. е. оптические элементы, на которые направлены все лазерные пучки. Эти элементы могут представлять собой телескопическое устройство 45 для совместной регулировки фокусов лазерных пучков. В отличие от описанного набора 40 телескопических средств, телескопическое устройство 45 воздействует в равной степени на все лазерные пучки.
Оптические элементы, расположенные по ходу пучков, могут содержать также средства для изменения или повышения однородности профиля интенсивности лазерных пучков, средства для изменения поляризации лазерных пучков, в частности для обеспечения постоянной поляризации по всему поперечному сечению лазерного пучка или для деполяризации лазерных пучков.
В завершение, лазерные пучки выводятся из аппарата 100 посредством зеркального сканирующего
- 7 025930 устройства. Это устройство может содержать два гальванометрических сканера 50, в каждом из которых имеется общее поворотное зеркало 50а, на которое направлены все лазерные пучки. Наличие двух гальванометрических сканеров 50 позволяет легко задать для лазерных пучков любое направление распространения.
На фиг. 2 представлена конфигурация перестраивающих зеркал для перестраивания лазерных пучков 90а-901 в двумерную конфигурацию этих пучков, например в виде квадрата 3x3. Набор 30 отклоняющих средств содержит первый набор 33 перестраивающих зеркал 33а-33ц на которые падают лазерные пучки 90а-901.
На фиг. 2 показаны также направляющие средства, которые перенаправляют пучки 90а-901 излучения, идущие от лазеров к первому набору 33 перестраивающих зеркал. Эти средства образованы набором зеркал 14а-14ц т. е. имеется по одному направляющему средству на каждый лазерный пучок. В других вариантах данный набор может быть заменен одним длинным зеркалом.
Лазерные пучки 90а-901 отражаются от первого набора 33 перестраивающих зеркал 33а-331, после чего падают на второй набор 34 перестраивающих зеркал 34а-34т Второй набор формирует двумерную конфигурацию лазерных пучков, т. е. перенаправляет их так, чтобы они распространялись в виде двумерной конфигурации.
Чтобы обеспечить профилирование и коллимирование лазерных пучков 90а-901, предусмотрен набор 40 средств для профилирования пучка, содержащий множество таких средств 40а-401, в каждом из которых имеются по меньшей мере две линзы 41, 42. Для регулировки фокуса каждого лазерного пучка 90а-901 и, тем самым, размеров облучаемого пятна на маркируемом объекте, можно перемещать линзы 41 и 42 в направлении распространения лазерных пучков 90а-90к Таким образом, средства 40а-401 для профилирования пучка образуют телескопические средства. Поскольку имеется по одному телескопическому средству 40а-401 на каждый лазерный пучок 90;·ι-90ί. возможна также регулировка пучков с целью скомпенсировать различия их оптических длин пути. Может быть предусмотрен еще один набор перестраивающих зеркал; однако, обычно достаточно двух таких наборов.
В проиллюстрированном примере телескопические средства 40а-401 установлены между первым и вторым наборами 33, 34 перестраивающих зеркал. Однако, вместо этого, телескопические средства 40а40Ϊ могут находиться перед первым набором 33 или за вторым набором 34 перестраивающих зеркал.
В формируемой двумерной конфигурации пучков обеспечивается существенное уменьшение расстояния между наиболее удаленными друг от друга лазерными пучками 90а, 90ί, особенно по сравнению с любой линейной конфигурацией лазерных пучков. Пучки сгруппированы значительно более плотно, так что они проходят через центральные части оптических элементов, включая фокусирующую оптику 45. Поскольку оптические аберрации создаются, в основном, наружными зонами оптических элементов, двумерная конфигурация обеспечивает преимущество улучшенной фокусировки и улучшенного качества лазерных пучков. Уменьшение дисторсии по сравнению с линейной конфигурацией лазерных пучков особенно заметно для наружных лазерных пучков. В дополнение, можно уменьшить размеры оптических элементов, что приведет к снижению общей себестоимости аппарата.
Уменьшение расстояний между пучками позволяет оптимизировать конструкцию стопы газовых лазеров в отношении охлаждения посредством теплопроводности и радиочастотного возбуждения без ухудшения разрешения или ограничений на размеры печатаемых знаков, т. е. удается компенсировать значительные расстояния между газовыми лазерами.
Сканирующее движение лазерных пучков 90а-901 может осуществляться поворотом перестраивающих зеркал 34а-341 второго набора 34 перестраивающих зеркал. В этом случае сканирующие устройства типа гальванометрических сканеров с общим зеркалом для перенаправления всех лазерных пучков 90а90ΐ не являются обязательными. Однако наличие таких сканирующих устройств также может быть полезным.
На фиг. 3 схематично показана маркировочная система 120 и маркируемый объект 1.
Объект 1, перемещаемый в направлении 2, представлен в трех различных положениях, т.е. в три различных момента. Маркировочная система 120 содержит маркировочный аппарат 100 и поворачивающее средство 110 для осуществления поворота маркировочного аппарата 100.
Маркировочный аппарат 100 может содержать любые из описанных компонентов, например отклоняющие средства, образованные двумя наборами перестраивающих зеркал, сконфигурированными, как линейные наборы. Как это показано на фиг. 3, имеются также блок 20 управления и позиционирующие средства 60, служащие для позиционирования линейных наборов перестраивающих зеркал. Индивидуальные перестраивающие зеркала соответствующего набора могут быть установлены без возможности поступательного перемещения, но с возможностью поворота (наклона), например, с использованием карданных подвесов.
Маркировочный аппарат 100 испускает множество лазерных пучков, образующих двумерную конфигурацию. На фиг. 3 показаны три таких пучка 90а, 90Ь, 90с. В процессе движения объекта 1 соответственно изменяются направления лазерных пучков 90а, 90Ь, 90с.
Изменение (обозначенное, как б) расстояния между аппаратом 100 и объектом 1 может зависеть от формы и положения объекта 1. Кроме того, в конкретный момент это расстояние для каждого лазерного
- 8 025930 пучка 90а, 90Ь, 90с может быть различным. Несмотря на это, размеры пятен, облучаемых лазерными пучками 90а, 90Ь, 90с на объекте 1, должны быть одинаковыми. С этой целью предусмотрены описанные средства для профилирования пучка, настраиваемые блоком 20 управления.
Далее будут пояснены функционирование поворачивающего средства 110 и преимущества, обеспечиваемые его использованием.
Когда объект движется относительно маркировочного аппарата, можно обеспечить, чтобы пучки двух газовых лазеров падали на одну и ту же зону на объекте в направлении движения объекта, хотя пучки этих лазеров взаимно смещены в данном направлении. Для этого активирование одного из лазеров производится с задержкой. Эта задержка соответствует времени, которое требуется объекту, чтобы пройти расстояние, равное расстоянию между пучками двух указанных лазеров, определяемому в данном случае в направлении движения объекта.
Разворот двумерной конфигурации лазерных пучков позволяет распечатать линию, вытянутую в направлении, перпендикулярном направлению движения объекта. Этот разворот может быть произведен посредством поворачивающего средства 110. В совокупности с задержкой активирования данный разворот приводит к распечатыванию линии, образованной пятнами излучения. Эти пятна могут иметь частичное наложение или быть пространственно разделены. Длина сформированной таким образом линии задается углом разворота. Размер каждого из пятен и, следовательно, ширина линии могут задаваться с помощью средств для профилирования пучка.
Описанный маркировочный аппарат обеспечивает желательную возможность перенаправления множества лазерных пучков для формирования двумерного паттерна, в котором обеспечивается очень малое расстояние между пучками. При этом каждый лазерный пучок может индивидуально регулироваться средствами для профилирования пучка. Размещение оптических элементов в пространстве, окруженном лазерами, позволяет ослабить пространственные ограничения.

Claims (13)

  1. ФОРМУЛА ИЗОБРЕТЕНИЯ
    1. Маркировочный аппарат для маркировки объекта (1) посредством лазерного излучения, содержащий множество лазеров (10), в частности газовых лазеров, и блок (20) управления, обеспечивающий индивидуальное активирование каждого из лазеров (10а10т) для испускания лазерного пучка (90а-90т) в соответствии с наносимым знаком, и набор (30) отклоняющих средств для перестраивания лазерных пучков (90а-90т) с получением их двумерной конфигурации, причем набор (30) отклоняющих средств содержит по меньшей мере одно отклоняющее средство (33а-33т, 34а-34т), в частности по меньшей мере одно перестраивающее зеркало (33а-33т, 34а-34т) или один световод, на каждый лазерный пучок (90а-90т), отличающийся тем, что каждое отклоняющее средство (33а-33т, 34а-34т) выполнено с возможностью индивидуальной регулировки обеспечиваемого им направления отклонения и/или с возможностью индивидуального смещения для формирования любой желательной двумерной конфигурации лазерных пучков (90а-90т), при этом индивидуальная регулировка отклоняющих средств (33а-33т, 34а-34т) обеспечивается блоком (20) управления, выполненным с возможностью обеспечения смещения отклоняющих средств (33а-33т, 34а-34т) и/или регулировки направлений отклонения, обеспечиваемых отклоняющими средствами (33а-33т, 34а-34т), а также с возможностью задерживать, в индивидуальном порядке, в случае движения объекта (1) относительно маркировочного аппарата (100) в заданном направлении (2), активирование любого лазера (10) таким образом, чтобы обеспечить падение на один и тот же участок на объекте (1) в направлении (2) движения объекта по меньшей мере двух лазерных пучков (90а-90т).
  2. 2. Маркировочный аппарат по п.1, отличающийся тем, что выполнен с возможностью обеспечить длину формируемой двумерной конфигурации лазерных пучков короче длины конфигурации, которую имеют лазерные пучки (90а-90т) до падения на набор (30) отклоняющих средств.
  3. 3. Маркировочный аппарат по п.1 или 2, отличающийся тем, что набор (30) отклоняющих средств содержит первый и второй наборы (33, 34) перестраивающих зеркал, каждый набор (33, 34) перестраивающих зеркал содержит по меньшей мере одно перестраивающее зеркало (33а-33т, 34а-34т) на каждый лазерный пучок (90а-90т), первый набор (33) перестраивающих зеркал выполнен с возможностью направлять лазерные пучки (90а-90т) на второй набор (34) перестраивающих зеркал, а второй набор (34) перестраивающих зеркал является двумерным и обеспечивает возможность перенаправления лазерных пучков (90а-90т) для формирования их двумерной конфигурации.
  4. 4. Маркировочный аппарат по любому из пп.1-3, отличающийся тем, что дополнительно содержит по меньшей мере одно сканирующее зеркальное устройство (50), содержащее общее зеркало (50а), на которое направлены все лазерные пучки (90а-90т), отходящие от набора (30) отклоняющих средств, а блок (20) управления обеспечивает возможность осуществления поворота зеркального сканирующего устройства (50), например, посредством гальванометрического привода.
  5. 5. Маркировочный аппарат по любому из пп.1-4, отличающийся тем, что с целью маркировки объекта (1) при его движении относительно маркировочного аппарата (100) блок (20) управления выполнен
    - 9 025930 с возможностью регулировки отклоняющих средств (33а-331, 34а-34£) и/или по меньшей мере одного зеркального сканирующего устройства (50) в соответствии с информацией о движении объекта (1).
  6. 6. Маркировочный аппарат по любому из пп.1-5, отличающийся тем, что блок (20) управления выполнен с возможностью управления отклоняющими средствами (33а-33£, 34а-341) для задания степени сближения или разведения лазерных пучков (90а-901), отходящих от отклоняющих средств (33а-33£, 34а34ι).
  7. 7. Маркировочный аппарат по любому из пп.1-6, отличающийся тем, что дополнительно содержит телескопическое устройство (45) для одновременной регулировки фокусных расстояний лазерных пучков (90а-901), имеющее по меньшей мере две линзы.
  8. 8. Маркировочный аппарат по п.7, отличающийся тем, что блок (20) управления выполнен с возможностью регулировать телескопическое устройство (45) для приведения фокусных расстояний лазерных пучков (90а-901) в соответствии с расстоянием до маркируемого объекта (1), в частности до движущегося объекта (1).
  9. 9. Маркировочный аппарат по любому из пп.1, 2, 4-8, отличающийся тем, что каждое отклоняющее средство содержит световод, при этом у каждого световода имеются первая концевая часть для приема одного из лазерных пучков (90а-901) и вторая концевая часть для испускания соответствующего лазерного пучка (90а-901), а вторые концевые части световодов образуют двумерную конфигурацию.
  10. 10. Маркировочный аппарат по п.9, отличающийся тем, что световоды имеют одинаковую длину.
  11. 11. Маркировочный аппарат по любому из пп.1-10, отличающийся тем, что блок (20) управления выполнен с дополнительной возможностью регулировки набора (30) отклоняющих средств для направления пучков по меньшей мере двух лазеров (10) в одну общую точку.
  12. 12. Маркировочный аппарат по любому из пп.1-11, отличающийся тем, что содержит набор средств (40) для профилирования пучка с целью индивидуального профилирования каждого лазерного пучка (90а-901), в частности для задания степени сближения или разведения каждого лазерного пучка (90а-901).
  13. 13. Маркировочная система, содержащая маркировочный аппарат (100), выполненный согласно любому из пп.1-12, и поворачивающее средство (110) для осуществления поворота маркировочного аппарата (100) относительно направления (2) движения маркируемого объекта (1).
EA201490237A 2011-09-05 2012-07-19 Устройство для маркировки EA025930B1 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP11007180.0A EP2564971B1 (en) 2011-09-05 2011-09-05 Marking apparatus with a plurality of laser and a set of deflecting means
PCT/EP2012/003064 WO2013034209A1 (en) 2011-09-05 2012-07-19 Marking apparatus

Publications (2)

Publication Number Publication Date
EA201490237A1 EA201490237A1 (ru) 2014-08-29
EA025930B1 true EA025930B1 (ru) 2017-02-28

Family

ID=46727169

Family Applications (1)

Application Number Title Priority Date Filing Date
EA201490237A EA025930B1 (ru) 2011-09-05 2012-07-19 Устройство для маркировки

Country Status (6)

Country Link
US (1) US9073349B2 (ru)
EP (1) EP2564971B1 (ru)
CN (1) CN103764335B (ru)
BR (1) BR112014003936A2 (ru)
EA (1) EA025930B1 (ru)
WO (1) WO2013034209A1 (ru)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10413401B2 (en) 2013-02-01 2019-09-17 Medtronic CV Luxembourg S.a.r.l. Anti-paravalvular leakage component for a transcatheter valve prosthesis
FI20135385L (fi) * 2013-04-18 2014-10-19 Cajo Tech Oy Metallipintojen värimerkintä

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5115446A (en) * 1990-09-19 1992-05-19 Trumpf Lasertechnik Gmbh Device for a power laser
US5339737A (en) * 1992-07-20 1994-08-23 Presstek, Inc. Lithographic printing plates for use with laser-discharge imaging apparatus
US5729568A (en) * 1993-01-22 1998-03-17 Deutsche Forschungsanstalt Fuer Luft-Und Raumfahrt E.V. Power-controlled, fractal laser system
US20030123040A1 (en) * 2001-11-07 2003-07-03 Gilad Almogy Optical spot grid array printer
US20050056626A1 (en) * 2003-09-12 2005-03-17 Orbotech Ltd Multiple beam micro-machining system and method

Family Cites Families (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH522287A (de) 1970-04-13 1972-06-15 Inst Angewandte Physik Niederdruck-Gasentladungsrohr für Laser
US3919663A (en) 1974-05-23 1975-11-11 United Technologies Corp Method and apparatus for aligning laser reflective surfaces
GB1495477A (en) 1975-10-31 1977-12-21 Taiwan Fan Shun Co Ltd Drinking water supply apparatus for vehicles
US4131782A (en) 1976-05-03 1978-12-26 Lasag Ag Method of and apparatus for machining large numbers of holes of precisely controlled size by coherent radiation
US4189687A (en) 1977-10-25 1980-02-19 Analytical Radiation Corporation Compact laser construction
US4376496A (en) 1979-10-12 1983-03-15 The Coca-Cola Company Post-mix beverage dispensing system syrup package, valving system, and carbonator therefor
JPS5764718A (en) * 1980-10-09 1982-04-20 Hitachi Ltd Laser beam printer
JPS5843588A (ja) 1981-09-09 1983-03-14 Hitachi Ltd レ−ザ発生装置
JPS60137587A (ja) * 1983-12-26 1985-07-22 Kawasaki Steel Corp 金属材料レ−ザマ−キング装置
US4652722A (en) 1984-04-05 1987-03-24 Videojet Systems International, Inc. Laser marking apparatus
US4744090A (en) 1985-07-08 1988-05-10 Trw Inc. High-extraction efficiency annular resonator
US4727235A (en) 1986-08-07 1988-02-23 Videojet Systems International, Inc. Method and apparatus for equalizing power output in a laser marking system
US4720618A (en) * 1986-08-07 1988-01-19 Videojet Systems International, Inc. Method and apparatus for equalizing power output in a laser marking system
JPS6394695A (ja) 1986-10-08 1988-04-25 Nec Corp ガスレ−ザ発振器
SE461758B (sv) 1987-10-13 1990-03-19 Trumpf Gmbh & Co Co -effektlaser
US5012259A (en) 1988-01-28 1991-04-30 Konica Corporation Color recorder with gas laser beam scanning
US5268921A (en) 1989-07-03 1993-12-07 Mclellan Edward J Multiple discharge gas laser apparatus
DE3937370A1 (de) 1989-11-09 1991-05-16 Otto Bihler Laser
US4991149A (en) 1989-12-07 1991-02-05 The United States Of America As Represented By The Secretary Of The Navy Underwater object detection system
US5109149A (en) * 1990-03-15 1992-04-28 Albert Leung Laser, direct-write integrated circuit production system
DE4029187C2 (de) 1990-09-14 2001-08-16 Trumpf Lasertechnik Gmbh Längsgeströmter CO¶2¶-Laser
GB2249843A (en) 1990-10-25 1992-05-20 Robert Peter Sunman Image production
US5229574A (en) * 1991-10-15 1993-07-20 Videojet Systems International, Inc. Print quality laser marker apparatus
US5229573A (en) 1991-10-15 1993-07-20 Videojet Systems International, Inc. Print quality laser marker apparatus
JPH05129678A (ja) 1991-10-31 1993-05-25 Shibuya Kogyo Co Ltd レーザマーキング装置
US5572538A (en) 1992-01-20 1996-11-05 Miyachi Technos Corporation Laser apparatus and accessible, compact cooling system thereof having interchangeable flow restricting members
DE4212390A1 (de) 1992-04-13 1993-10-14 Baasel Carl Lasertech Strahlführungssystem für mehrere Laserstrahlen
US5337325A (en) * 1992-05-04 1994-08-09 Photon Imaging Corp Semiconductor, light-emitting devices
US5431199A (en) 1993-11-30 1995-07-11 Benjey, Robert P Redundant seal for vehicle filler neck
JP3427573B2 (ja) 1995-06-27 2003-07-22 松下電器産業株式会社 マイクロ波励起ガスレーザ発振装置
US5646907A (en) 1995-08-09 1997-07-08 The United States Of America As Represented By The Secretary Of The Navy Method and system for detecting objects at or below the water's surface
DE29514319U1 (de) * 1995-09-07 1997-01-16 Sator Alexander Paul Vorrichtung zum Beschriften von Gegenständen
US5592504A (en) 1995-10-10 1997-01-07 Cameron; Harold A. Transversely excited non waveguide RF gas laser configuration
US5661746A (en) 1995-10-17 1997-08-26 Universal Laser Syatems, Inc. Free-space gas slab laser
US6050486A (en) 1996-08-23 2000-04-18 Pitney Bowes Inc. Electronic postage meter system separable printer and accounting arrangement incorporating partition of indicia and accounting information
WO1998011495A1 (en) 1996-09-11 1998-03-19 Domino Printing Sciences Plc Laser apparatus
US5815523A (en) 1996-11-27 1998-09-29 Mcdonnell Douglas Corporation Variable power helix laser amplifier and laser
US6141030A (en) 1997-04-24 2000-10-31 Konica Corporation Laser exposure unit including plural laser beam sources differing in wavelength
US6122562A (en) 1997-05-05 2000-09-19 Applied Materials, Inc. Method and apparatus for selectively marking a semiconductor wafer
WO1999010755A2 (en) 1997-08-28 1999-03-04 Northeastern University Optical pulse induced acoustic mine detection
US6263007B1 (en) 1998-03-23 2001-07-17 T & S Team Incorporated Pulsed discharge gas laser having non-integral supply reservoir
JP3041599B2 (ja) 1998-05-14 2000-05-15 セイコーインスツルメンツ株式会社 座標出し光学式観察装置および位置情報蓄積方法
US6057871A (en) 1998-07-10 2000-05-02 Litton Systems, Inc. Laser marking system and associated microlaser apparatus
US6229940B1 (en) 1998-11-30 2001-05-08 Mcdonnell Douglas Corporation Incoherent fiber optic laser system
EP1066666B1 (de) 1999-02-03 2008-08-06 TRUMPF LASERTECHNIK GmbH Laser mit einer einrichtung zur veränderung der verteilung der intensität des laserlichtes über den laserstrahlquerschnitt
US6335943B1 (en) 1999-07-27 2002-01-01 Lockheed Martin Corporation System and method for ultrasonic laser testing using a laser source to generate ultrasound having a tunable wavelength
JP2001276986A (ja) 2000-03-29 2001-10-09 Nec Corp レーザ加工装置及び方法
EP1143584A3 (en) 2000-03-31 2003-04-23 Matsushita Electric Industrial Co., Ltd. Semiconductor laser array
DE20011508U1 (de) 2000-06-30 2000-10-12 Termotek Laserkuehlung Gmbh Kühlvorrichtung für einen Laser
JP2002045371A (ja) 2000-08-01 2002-02-12 Nidek Co Ltd レーザ治療装置
DE50015974D1 (de) 2000-08-31 2010-09-30 Trumpf Laser & Systemtechnik Gaslaser
US20020061045A1 (en) 2000-11-21 2002-05-23 Access Laser Company Portable low-power gas discharge laser
US7496831B2 (en) 2001-02-22 2009-02-24 International Business Machines Corporation Method to reformat regions with cluttered hyperlinks
EP1370383A4 (en) 2001-03-19 2007-06-27 Nutfield Technologies Inc MONOLITHIC CERAMIC LASER STRUCTURE AND METHOD OF MANUFACTURE
US6370884B1 (en) 2001-03-30 2002-04-16 Maher I. Kelada Thermoelectric fluid cooling cartridge
US6915654B2 (en) 2001-06-20 2005-07-12 Ross Johnson Portable cooling mechanism
US6804287B2 (en) 2002-02-02 2004-10-12 The Regents Of The University Of Colorado, A Body Corporate Ultrashort pulse amplification in cryogenically cooled amplifiers
US20050094697A1 (en) 2003-01-30 2005-05-05 Rofin Sinar Laser Gmbh Stripline laser
US6856509B2 (en) 2003-07-14 2005-02-15 Jen-Cheng Lin Cartridge assembly of a water cooled radiator
US7565705B2 (en) 2004-05-11 2009-07-28 Biocool Technologies, Llc Garment for a cooling and hydration system
WO2005114979A2 (en) 2004-05-19 2005-12-01 Intense Limited Thermal printing with laser activation
US7346427B2 (en) 2005-01-14 2008-03-18 Flymg J, Inc. Collecting liquid product volume data at a dispenser
US7295948B2 (en) 2005-01-15 2007-11-13 Jetter Heinz L Laser system for marking tires
JP2007032869A (ja) 2005-07-22 2007-02-08 Fujitsu Ltd 冷却装置および冷却方法
KR101371265B1 (ko) 2005-12-16 2014-03-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 레이저 조사 장치, 레이저 조사 방법, 및 반도체 장치 제조방법
JP2007212118A (ja) 2006-02-08 2007-08-23 Makoto Fukada 冷感度を高めた水冷式冷風扇
CN100547863C (zh) 2006-10-20 2009-10-07 香港理工大学 光纤气体激光器和具有该激光器的光纤型环形激光陀螺仪
US7784348B2 (en) 2006-12-22 2010-08-31 Lockheed Martin Corporation Articulated robot for laser ultrasonic inspection
DE102007023017B4 (de) 2007-05-15 2011-06-01 Thyssenkrupp Lasertechnik Gmbh Vorrichtung und Verfahren zum Herstellen von Tailored Blanks
US8126028B2 (en) 2008-03-31 2012-02-28 Novasolar Holdings Limited Quickly replaceable processing-laser modules and subassemblies
DE102008030868A1 (de) * 2008-06-30 2009-12-31 Krones Ag Vorrichtung zum Beschriften von Behältnissen
JP2011156574A (ja) 2010-02-02 2011-08-18 Hitachi High-Technologies Corp レーザ加工用フォーカス装置、レーザ加工装置及びソーラパネル製造方法
ES2544269T3 (es) * 2011-09-05 2015-08-28 ALLTEC Angewandte Laserlicht Technologie Gesellschaft mit beschränkter Haftung Aparato de marcado con una pluralidad de láseres de gas con tubos de resonancia y medios de deflexión ajustables individualmente

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5115446A (en) * 1990-09-19 1992-05-19 Trumpf Lasertechnik Gmbh Device for a power laser
US5339737A (en) * 1992-07-20 1994-08-23 Presstek, Inc. Lithographic printing plates for use with laser-discharge imaging apparatus
US5339737B1 (en) * 1992-07-20 1997-06-10 Presstek Inc Lithographic printing plates for use with laser-discharge imaging apparatus
US5729568A (en) * 1993-01-22 1998-03-17 Deutsche Forschungsanstalt Fuer Luft-Und Raumfahrt E.V. Power-controlled, fractal laser system
US20030123040A1 (en) * 2001-11-07 2003-07-03 Gilad Almogy Optical spot grid array printer
US20050056626A1 (en) * 2003-09-12 2005-03-17 Orbotech Ltd Multiple beam micro-machining system and method

Also Published As

Publication number Publication date
US20140247316A1 (en) 2014-09-04
BR112014003936A2 (pt) 2017-03-14
EP2564971A1 (en) 2013-03-06
WO2013034209A1 (en) 2013-03-14
US9073349B2 (en) 2015-07-07
EP2564971B1 (en) 2015-08-26
CN103764335A (zh) 2014-04-30
CN103764335B (zh) 2015-11-25
EA201490237A1 (ru) 2014-08-29

Similar Documents

Publication Publication Date Title
US9573223B2 (en) Marking apparatus with a plurality of gas lasers with resonator tubes and individually adjustable deflection means
US9573227B2 (en) Marking apparatus with a plurality of lasers, deflection means, and telescopic means for each laser beam
EA025906B1 (ru) Устройство для маркировки с множеством лазеров и индивидуально настраиваемыми наборами отклоняющих средств
US7672344B2 (en) Multi-laser system
US9595801B2 (en) Marking apparatus with a plurality of lasers and a combining deflection device
JP2013020251A (ja) 小型結像ヘッド、高速マルチヘッドレーザ結像アセンブリ、および高速マルチヘッドレーザ結像方法
KR20160146820A (ko) 노광 헤드, 노광 장치 및 노광 헤드 작동 방법
EA025930B1 (ru) Устройство для маркировки
TW202135965A (zh) 雷射加工裝置和雷射加工工件的方法
JP6757509B2 (ja) 光加工方法
KR20230117224A (ko) 재료를 가공하기 위한 장치
JP4483456B2 (ja) 光記録装置

Legal Events

Date Code Title Description
MM4A Lapse of a eurasian patent due to non-payment of renewal fees within the time limit in the following designated state(s)

Designated state(s): AM AZ BY KZ KG TJ TM RU