DK175904B1 - Recombinant avipox virus, the virus for use in the preparation of a drug for vertebrates and the use of the virus in the manufacture of a drug for treating mammals or birds for infection with a mammal or bird pathogen - Google Patents

Recombinant avipox virus, the virus for use in the preparation of a drug for vertebrates and the use of the virus in the manufacture of a drug for treating mammals or birds for infection with a mammal or bird pathogen Download PDF

Info

Publication number
DK175904B1
DK175904B1 DK198902036A DK203689A DK175904B1 DK 175904 B1 DK175904 B1 DK 175904B1 DK 198902036 A DK198902036 A DK 198902036A DK 203689 A DK203689 A DK 203689A DK 175904 B1 DK175904 B1 DK 175904B1
Authority
DK
Denmark
Prior art keywords
virus
promoter
gene
vfp
antigen
Prior art date
Application number
DK198902036A
Other languages
Danish (da)
Other versions
DK203689D0 (en
DK203689A (en
Inventor
Enzo Paoletti
Original Assignee
Health Research Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=27492413&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=DK175904(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Health Research Inc filed Critical Health Research Inc
Publication of DK203689D0 publication Critical patent/DK203689D0/en
Publication of DK203689A publication Critical patent/DK203689A/en
Priority to DK200500158A priority Critical patent/DK175980B1/en
Application granted granted Critical
Publication of DK175904B1 publication Critical patent/DK175904B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/20Antivirals for DNA viruses
    • A61P31/22Antivirals for DNA viruses for herpes viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/16011Herpesviridae
    • C12N2710/16611Simplexvirus, e.g. human herpesvirus 1, 2
    • C12N2710/16622New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/24011Poxviridae
    • C12N2710/24041Use of virus, viral particle or viral elements as a vector
    • C12N2710/24043Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2730/00Reverse transcribing DNA viruses
    • C12N2730/00011Details
    • C12N2730/10011Hepadnaviridae
    • C12N2730/10111Orthohepadnavirus, e.g. hepatitis B virus
    • C12N2730/10122New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/15011Lentivirus, not HIV, e.g. FIV, SIV
    • C12N2740/15022New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/16011Orthomyxoviridae
    • C12N2760/16111Influenzavirus A, i.e. influenza A virus
    • C12N2760/16122New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/18011Paramyxoviridae
    • C12N2760/18111Avulavirus, e.g. Newcastle disease virus
    • C12N2760/18122New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/20011Rhabdoviridae
    • C12N2760/20111Lyssavirus, e.g. rabies virus
    • C12N2760/20122New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/20011Coronaviridae
    • C12N2770/20022New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Virology (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biotechnology (AREA)
  • Oncology (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • Biochemistry (AREA)
  • Communicable Diseases (AREA)
  • Biophysics (AREA)
  • General Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Hematology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Description

DK 175904 B1DK 175904 B1

Denne opfindelse angår et rekombinant avipoxvirus som er særegent ved at det indeholder DNA fra en ikke-avipox-kilde som koder for et antigen af et vertebratpatogen og er ligeret til en promotor for ekspression af DNA'en, hvor den nævnte DNA og promotor er indsat i et ikke-essentielt område af avipox-5 genomet. Opfindelsen angår også viruset til anvendelse ved fremstilling af et lægemiddel for vertebrater, og den angår mere specifikt anvendelsen af et sådant virus ved fremstilling af et lægemiddel til behandling af pattedyr for en infektion med et pattedyrpatogen eller et lægemiddel til behandling af fugle for en infektion med et fuglepatogen.This invention relates to a recombinant avipox virus which is peculiar in that it contains DNA from a non-avipox source that encodes an antigen of a vertebrate pathogen and is ligated to a promoter for expression of the DNA wherein said DNA and promoter are inserted. in a non-essential region of the avipox-5 genome. The invention also relates to the virus for use in the manufacture of a medicament for vertebrates, and more particularly to the use of such a virus in the manufacture of a medicament for treating mammals for an infection with a mammalian pathogen or a medicament for treating birds for an infection with a bird pathogen.

1010

Det rekombinante avipoxvirus ifølge opfindelsen kan således anvendes ved fremgangsmåder til inducering af et immunologisk respons i vertebrater, herunder ikke-fugle-vertebrater, og navnlig en fremgangsmåde til inducering af et immunologisk respons i en vertebrat, især et pattedyr, mod et vertebrat-15 patogen ved inokulering af vertebraten med det rekombinante avipoxvirus indeholdende DNA, der koder for og udtrykker de antigeniske determinanter af nævnte patogen, og til fremstilling af vacciner indeholdende et sådant modificeret avipoxvirus.Thus, the recombinant avipox virus of the invention can be used in methods of inducing an immunological response in vertebrates, including non-bird vertebrates, and in particular a method of inducing an immunological response in a vertebrate, especially a mammal, against a vertebrate pathogen. by inoculating the vertebrate with the recombinant avipox virus containing DNA encoding and expressing the antigenic determinants of said pathogen, and for preparing vaccines containing such modified avipox virus.

20 OPFINDELSENS BAGGRUNDBACKGROUND OF THE INVENTION

Avipox eller avipoxvirus er en slægt af nært forbundne poxvira, der inficerer fugle. Slægten avipox omfatter arterne fjerkræpox, kanariepox, snefuglepox, duepox, vagtelpox, spurvepox, stærepox og kalkunpox. Slægten avipox deler 25 mange karakteristika med andre poxvira og er et medlem af den samme underfamilie, poxvira hos vertebrater, som vaccinia er. Poxvira, inklusive vaccinia og avipox, replikerer i eukaryote værtsceller. Disse vira skelnes ved deres store størrelse, kompleksitet og ved det cytoplasmiske replikationssted. Vaccinia og avipox er dog forskellige slægter og er ikke ens, hvad angår deres 30 respektive molekylvægte, antigeniske determinanter og værtsarter, som rap-Avipox or avipox virus is a genus of closely related pox viruses that infect birds. The genus avipox includes the species poultry pox, canary pox, snow bird pox, duepox, quail pox, sparrow pox, star pox and turkey pox. The genus avipox shares many characteristics with other poxviruses and is a member of the same subfamily, poxviruses in vertebrates, as vaccinia is. Poxviruses, including vaccinia and avipox, replicate in eukaryotic host cells. These viruses are distinguished by their large size, complexity and by the cytoplasmic replication site. However, vaccinia and avipox are different genera and are not similar in their respective molecular weights, antigenic determinants, and host species reported by

I DK 175904 B1 II DK 175904 B1 I

I 2 II 2 I

I porteret i Intervirology, vol. 17, side 42-44, Fourth Report of the International IIn Ported in Intervirology, vol. 17, pages 42-44, Fourth Report of the International I

I Committee on Taxonomy of Viruses (1982). IIn Committee on Taxonomy of Viruses (1982). IN

Avipoxviraene inficerer ikke på produktiv vis ikke-fugle vertebrater såsom IThe avipox viruses do not productively infect non-avian vertebrates such as I

I 5 pattedyr, herunder mennesker. Endvidere formerer avipox sig ikke ved inoku- IIn 5 mammals, including humans. Furthermore, avipox does not proliferate in inoculation

I lering i cellekulturer fra pattedyr (inklusive mennesker). I sådanne pattedyr- IIn clay in mammalian cell cultures (including humans). In such mammals- I

cellekulturer inokuleret med avipox dør cellerne på grund af en cytotoksisk Icell cultures inoculated with avipox die cells due to a cytotoxic I

I virkning, men viser ingen tegn på produktiv virusinfektion. IIn effect, but shows no evidence of productive viral infection. IN

10 Inokulering af en ikke-fugle vertebrat, såsom et pattedyr, med levende avipox IInoculation of a non-avian vertebrate, such as a mammal, with live avipox I

I resulterer i dannelsen af en læsion på inokuleringsstedet, der ligner en vac- IYou result in the formation of a lesion at the inoculation site similar to a vac I

I ciniainokulering. Der opnås dog ingen produktiv virusinfektion. Ikke desto IIn china inoculation. However, no productive viral infection is obtained. Nevertheless you

I mindre har man nu fundet, at et således inokuleret pattedyr responderer im- ITo a lesser extent, it has now been found that a mammal thus inoculated responds im

I munologisk på avipoxviruset. Dette er et uventet resultat. II monologically on the avipox virus. This is an unexpected result. IN

I 15 II 15 I

I Vacciner bestående af dræbt patogen eller oprensede antigeniske kompo- IIn Vaccines consisting of killed pathogen or purified antigenic compo- I

I nenter af sådanne patogener skal injiceres i større mængder end levende INests of such pathogens should be injected in larger quantities than live I

I virusvacciner for at skabe et effektivt immunrespons. Dette skyldes, at inoku- IIn virus vaccines to create an effective immune response. This is because inoku- I

I lering med levende virus er en meget mere effektiv vaccinationsmetode. Et IIn live virus clay is a much more effective vaccination method. And I

I 20 relativt lille inokulum kan frembringe et effektivt immunrespons, fordi de anti- IIn relatively small inoculum can produce an effective immune response because they are anti-I

I gener, man er interesseret i, forstærkes under replikation af viruset. Fra et IGenes of interest are amplified during replication of the virus. From an I

I lægeligt synspunkt giver levende virusvacciner en immunitet, der er mere IFrom a medical point of view, live virus vaccines confer immunity that is more I

I effektiv og længerevarende end inokulering med en vaccine med et dræbt IIn effective and longer lasting than inoculation with a vaccine with a killed I

I patogen eller oprenset antigen. Således kræver vacciner bestående af dræbt IIn pathogenic or purified antigen. Thus, vaccines consisting of killed I

I 25 patogen eller oprensede antigeniske komponenter af sådanne patogener IIn pathogenic or purified antigenic components of such pathogens I

I produktion af større mængder vaccinemateriale, end det er nødvendigt med IIn the production of larger quantities of vaccine material than is necessary for I

I levende virus. IIn live virus. IN

I Fra den foregående diskussion er det klart, at der er lægelige og økonomiske IFrom the previous discussion it is clear that there are medical and financial

I 30 fordele ved at anvende levende virusvacciner. En sådan levende virusvacci- IIn 30 benefits of using live virus vaccines. Such a live virus vaccine

I ne omfatter vaccinia-virus. Dette virus er fra litteraturen kendt som et nyttigt IIn ne includes vaccinia virus. This virus is known in the literature as a useful I

| 3 DK 175904 B1 virus, hvori der ved hjælp af rekombinant-DNA-metoder kan indsættes DNA repræsenterende de genetiske sekvenser for antigener fra pattedyr-patoge-ner.| 3 DK 175904 B1 virus in which, by recombinant DNA methods, DNA representing the genetic sequences for mammalian pathogen antigens can be inserted.

5 I litteraturen er der således udviklet metoder, der tillader dannelsen af re-kombinante vaccinia-vira ved indsættelse af DNA fra en vilkårlig kilde (f.eks. viral, prokaryotisk, eukaryotisk, syntetisk) i en ikke-essentiel region af vacci-nia-genomet, herunder DNA-sekvenser der koder for de antigeniske determinanter i en patogen organisme. Visse rekombinante vaccinia-vira dannet ved 10 disse metoder er blevet brugt til inducering af specifik immunitet i pattedyr mod forskellige pattedyr-patogener, alle som beskrevet i US patentskrift nr.Thus, in the literature, methods have been developed that allow the formation of recombinant vaccinia viruses by inserting DNA from any source (e.g., viral, prokaryotic, eukaryotic, synthetic) into a non-essential region of vaccine genome, including DNA sequences encoding the antigenic determinants of a pathogenic organism. Certain recombinant vaccinia viruses generated by these methods have been used to induce specific immunity in mammals against various mammalian pathogens, all as described in U.S. Pat.

4 603 112.4 603 112.

Umodificeret vaccinia-virus har længe været kendt for at være relativt sikkert 15 og effektivt til anvendelse ved inokulering mod kopper. Dog var der før udryddelsen af kopper, hvor det var almindeligt at indgive umodificeret vaccinia, en lille, men reel risiko for komplikationer i form af generaliseret vacciniain-fektion, specielt hos de, der lider af eksem eller immunsuppression. En anden sjælden, men mulig komplikation, der kan resultere fra vaccinia-20 inokulering, er encephalitis postvaccinalis. De fleste af disse reaktioner var resultat af inokulering af individer med hudsygdomme, såsom eksem, eller med svækkede immunsystemer, eller individer i husstande, hvor andre havde eksem eller svækket immunologisk respons. Vaccinia er et levende virus og er normalt uskadelig for et sundt individ. Det kan dog overføres mellem 25 individer i adskillige uger efter inokulering. Hvis et individ med en svækkelse af det normale immunrespons inficeres, enten ved inokulering eller ved smitsom overførsel fra et nylig inokuleret individ, kan det få alvorlige konsekvenser.Unmodified vaccinia virus has long been known to be relatively safe and effective for use in inoculation against smallpox. However, prior to the eradication of smallpox, where it was common to administer unmodified vaccinia, there was a small but real risk of complications in the form of generalized vaccinia infection, especially in those suffering from eczema or immunosuppression. Another rare but possible complication that may result from vaccinia inoculation is encephalitis postvaccinalis. Most of these reactions resulted from inoculation of individuals with skin disorders such as eczema, or with weakened immune systems, or individuals in households where others had eczema or impaired immunological response. Vaccinia is a living virus and is usually harmless to a healthy individual. However, it can be transmitted between 25 individuals for several weeks after inoculation. Infecting an individual with a weakening of the normal immune response, either by inoculation or by infectious transmission from a newly inoculated individual, can have serious consequences.

30 Det vil således forstås, at en fremgangsmåde, der tilfører faget fordelene ved inokulering med levende virus, men som nedsætter eller eliminerer de oven-Thus, it will be appreciated that a method which provides the subject with the benefits of live virus inoculation but which reduces or eliminates the above

DK 175904 B1 IDK 175904 B1 I

for beskrevne problemer, ville være et særdeles ønskeligt fremskridt i forhold Ifor described problems, would be a very desirable step in relation to I

til det nuværende teknologiske stade. Dette er endog vigtigere i dag med Ito the current state of technology. This is even more important today with you

fremkomsten af sygdommen kendt som erhvervet immundefektsyndrom Ithe onset of the disease known as acquired immunodeficiency syndrome I

(AIDS). Ofre for denne sygdom lider af alvorlig immunologisk dysfunktion og I(AIDS). Victims of this disease suffer from severe immunological dysfunction and I

5 kunne let skades af et ellers sikkert levende viruspræparat, hvis de kom i I5 could easily be damaged by an otherwise safe live virus preparation if they entered

kontakt med et sådant virus, enten direkte eller gennem kontakt med en per- Icontact with such a virus, either directly or through contact with a virus

son, der nyligt er immuniseret med en vaccine indeholdende et sådant le- Irecently immunized with a vaccine containing such a drug

vende virus. Ireverse virus. IN

10 WO-A-8605806 angiver et rekombinant vacciniavirus indeholdende DNA fra IWO-A-8605806 discloses a recombinant vaccinia virus containing DNA from I

en ikke-avipox-kilde, som koder for et antigen af et vertebratpatogen og er Ia non-avipox source which encodes an antigen of a vertebrate pathogen and is I

ligeret til en promotor til ekspression af DNA'en, hvor DNA’en og promotoren Iligated to a promoter for expression of the DNA, wherein the DNA and promoter I

er indsat i et ikke-essentielt område af vacciniavirus-genomet; og dets an- Iis inserted into a non-essential region of the vaccinia virus genome; and its application

vendelse til in vitro ekspression af spikeproteinet af IBV i pattedyrsceller. Det Ireversal for in vitro expression of the spike protein of IBV in mammalian cells. The ten

15 rekombinante virus ifølge den foreliggende opfindelse adskiller sig fra det, I15 recombinant viruses of the present invention differ from that of I

der er beskrevet i WO-A-8605806 ved at være rettet på rekombinant avipox- Idisclosed in WO-A-8605806 by targeting recombinant avipox-I

virus, mens WO-A-8605806 kun angiver et rekombinant vacciniavirus. Ivirus, while WO-A-8605806 indicates only a recombinant vaccinia virus. IN

DK-A-1985 06062 angiver et rekombinant vacciniavirus indeholdende DNA IDK-A-1985 06062 discloses a recombinant vaccinia virus containing DNA I

20 fra en ikke-avipox-kilde, som koder for et antigen af et vertebratpatogen og er20 from a non-avipox source which encodes an antigen of a vertebrate pathogen and is

ligeret til en promotor til ekspression af DNA'en, hvor DNA’en og promotoren Iligated to a promoter for expression of the DNA, wherein the DNA and promoter I

er indsat i et ikke-essentielt område af vacciniavirus-genomet; og dets an- Iis inserted into a non-essential region of the vaccinia virus genome; and its application

vendelse til in vivo ekspression af rabies-glycoproteinet i kaniner. Det rekom- Ireversal for in vivo expression of the rabbit glycoprotein in rabbits. It recom-

binante virus ifølge den foreliggende opfindelse adskiller sig fra det, der er Ibinant viruses of the present invention differ from what is I

25 beskrevet i DK-A-1985 06062 ved at være rettet på rekombinant avipoxvirus, I25 described in DK-A-1985 06062 by targeting recombinant avipox virus, I

mens DK-A-1985 06062 kun angiver et rekombinant vacciniavirus. Iwhereas DK-A-1985 06062 indicates only a recombinant vaccinia virus. IN

DK-A-1987 00878 angiver et rekombinant vacciniavirus indeholdende DNA IDK-A-1987 00878 discloses a recombinant vaccinia virus containing DNA I

fra en ikke-avipox-kilde, som koder for et antigen af et vertebratpatogen og er Ifrom a non-avipox source that encodes an antigen of a vertebrate pathogen and is

30 ligeret til en promotor til ekspression af DNA'en, hvor DNA’en og promotoren I30 is ligated to a promoter for expression of the DNA, wherein the DNA and promoter I

er indsat i et ikke-essentielt område af vacciniavirus-genomet; og dets an- Iis inserted into a non-essential region of the vaccinia virus genome; and its application

5 DK 175904 B1 vendelse til in vitro ekspression af det humane IL-2 i pattedyrsceller. Det re-kombinante virus ifølge den foreliggende opfindelse adskiller sig fra det, der er beskrevet i DK-A-1987 00878 ved at være rettet på rekombinant avipoxvi-rus, mens DK-A-1987 00878 kun angiver et rekombinant vacciniavirus.5 DK 175904 B1 reversal for in vitro expression of human IL-2 in mammalian cells. The recombinant virus of the present invention differs from that described in DK-A-1987 00878 in that it is directed to recombinant avipox virus, while DK-A-1987 00878 indicates only a recombinant vaccinia virus.

55

OPFINDELSENS FORMÅLOBJECT OF THE INVENTION

Det er et formål med opfindelsen at tilvejebringe syntetiske, rekombinante avipoxvira til brug i et lægemiddel, der kan immunisere vertebrater mod en 10 patogen organisme, som har en levende vaccines fordele, og som har få eller ingen af ulemperne ved enten en levende virusvaccine eller en dræbt virusvaccine som opregnet ovenfor, især når den anvendes til immunisering af ikke-fugle-vertebrater.It is an object of the invention to provide synthetic, recombinant avipoxviruses for use in a drug capable of immunizing vertebrates against a pathogenic organism which has the benefits of a live vaccine and has few or none of the disadvantages of either a live virus vaccine or a killed virus vaccine as enumerated above, especially when used for immunization of non-bird vertebrates.

j 15 Det er endvidere et formål med opfindelsen at angive et syntetisk rekombinant avipoxvirus som kan inducere et immunologisk respons i vertebrater, der kan være fugle eller ikke-fugle, på et antigen ved inokulering af vertebra-ten med det rekombinante virus, og som i tilfælde af ikke-fugle-vertebrater, såsom pattedyr, ikke produktivt kan replikere i dyret med produktion af infek-20 tiøs virus. I dette tilfælde er viruset selvbegrænsende med nedsat mulighed for spredning til ikke vaccinerede værter.It is also an object of the invention to provide a synthetic recombinant avipox virus which can induce an immunological response in vertebrates which may be birds or non-birds, to an antigen by inoculating the vertebrate with the recombinant virus, and as in cases of non-avian vertebrates such as mammals cannot productively replicate in the animal with the production of infectious virus. In this case, the virus is self-limiting with a reduced possibility of spread to unvaccinated hosts.

BESKRIVELSE AF OPFINDELSENDESCRIPTION OF THE INVENTION

25 Et aspekt af opfindelsen angår syntetisk rekombinant avipoxvirus modificeret ved indsættelse af DNA fra en ikke-avipox-kilde, som koder for et antigen af et vertebratpatogen og er ligeret til en promotor for ekspression af DNA'en, i et ikke-essentielt område af avipox-genomet. Syntetisk modificerede avipox-virusrekombinanter, der bærer exogene (dvs. ikke-avipox) gener som koder 30 for og udtrykker et antigen, og i en vertebratvært udløser dannelsen af immunologiske responser på antigenet og derfor på det exogene patogen, bru-An aspect of the invention relates to synthetic recombinant avipox virus modified by insertion of DNA from a non-avipox source encoding an antigen of a vertebrate pathogen and ligated to a promoter for expression of the DNA in a non-essential region of avipox genome. Synthetically modified avipox virus recombinants carrying exogenous (i.e., non-avipox) genes encoding and expressing an antigen and in a vertebrate host trigger the formation of immunological responses to the antigen and therefore to the exogenous pathogen.

I DK 175904 B1 II DK 175904 B1 I

I II I

ges til at danne hidtil ukendte vacciner, der ikke har ulemperne ved konventi- Iis given to produce novel vaccines which do not have the disadvantages of convention

I onelle vacciner, som anvender dræbte eller svækkede levende organismer, IIn oral vaccines using killed or attenuated living organisms,

I især ved anvendelse til inokulering af ikke-fugle-vertebrater. IEspecially when used for inoculation of non-bird vertebrates. IN

I 5 Det skal igen fremhæves, at avipoxvirus kun kan replikere produktivt i eller II 5 It should again be emphasized that the avipox virus can only reproduce productively in or I

I blive videreført gennem fuglearter eller cellelinjer fra fugle. De rekombinante IYou are passed on through bird species or cell lines from birds. The recombinant I

I avipoxvira høstet fra fugle-værtsceller, danner en inokuleringslæsion uden IIn avipoxviruses harvested from bird host cells, an inoculation lesion forms without

I produktiv replikation af avipoxviruset, når de inokuleres i en ikke-fugle- IIn productive replication of the avipox virus when inoculated in a non-avian I

I vertebrat, såsom et pattedyr, på en måde der er analog med inokuleringen af IIn vertebrate, such as a mammal, in a manner analogous to the inoculation of I

10 pattedyr med vaccinia-virus. Trods avipoxvirusets manglende evne til at I10 mammals with vaccinia virus. Despite the inability of the avipox virus to

replikere produktivt i en sådan inokuleret ikke-fugle-vertebrat forekommer der Ireplicate productively in such inoculated non-bird vertebrate, I

I tilstrækkelig ekspression af viruset til at det inokulerede dyr responderer im- IIn sufficient expression of the virus that the inoculated animal responds im

I munologisk på det rekombinante avipoxvirus1 antigeniske determinanter og II monologically on the recombinant avipox virus1 antigenic determinants and I

I også på de antigeniske determinanter indkodet i exogene gener deri. IAlso refer to the antigenic determinants encoded in exogenous genes therein. IN

I 15 Når det anvendes til inokulering af fuglearter, frembringer et sådant syntetisk IWhen used to inoculate bird species, such a synthetic I produces

I rekombinant avipoxvirus ikke blot et immunologisk respons på antigener ind- IIn recombinant avipox virus, not only an immunological response to antigens induces I

I kodet af exogent DNA fra en vilkårlig kilde der kan være tilstede deri, men IYou encode exogenous DNA from any source that may be present therein, but

resulterer også i produktiv replikation af viruset i værten med fremkaldelsen Ialso results in productive replication of the virus in the host with the developer I

af et forventet immunologisk respons på avipox-vektoren som sådan. Iof an expected immunological response to the avipox vector as such. IN

I 20 II 20 I

I Adskillige forskere har foreslået dannelsen af rekombinant fjerkræpox, speci- ISeveral researchers have proposed the formation of recombinant poultry pox, speci- I

I elt vira til brug som veterinære vacciner til beskyttelse af fjerkræbestande; se IIn any viruses for use as veterinary vaccines to protect poultry populations; see I.

I f.eks. Boyle og Coupar, J. Gen. Virol., 67:1591-1600 (1986) og Binns et al., IIn e.g. Boyle and Coupar, J. Gen. Virol., 67: 1591-1600 (1986) and Binns et al.,

I Isr. J. Vet. Med, 42:124-127 (1986). Der er hverken blevet fremlagt forslag IIn Isr. J. Vet. Med., 42: 124-127 (1986). Neither proposal I has been submitted

I 25 eller egentlige rapporter angående brug af rekombinante avipoxvira som en IIn 25 or actual reports regarding the use of recombinant avipoxviruses as an I

I måde til inducering af specifik immunitet i pattedyr. IIn way of inducing specific immunity in mammals. IN

I Stickl og Mayer, Fortschr. Med. 97(40):1781-1788 (1979) beskriver injektion IIn Stickl and Mayer, Fortschr. With. 97 (40): 1781-1788 (1979) disclose injection I

I af avipoxvirus, specifikt fjerkræpox, i mennesker. Disse undersøgelser angår II of avipox virus, specifically poultry pox, in humans. These studies relate to I

I 30 dog kun brugen af almindelig fjerkræpox til at forhøje ikke-specifik immunitet i 1 IHowever, only the use of ordinary poultry pox to increase non-specific immunity in 1 I

I patienter, der lider af eftervirkningerne af cancer-kemoterapi. Der anvendes IIn patients suffering from the after effects of cancer chemotherapy. I use

7 DK 175904 B1 ingen rekombinant-DNA-teknikker. Der informeres ikke om en avipox, hvori er indsat DNA, som koder for antigener fra vertebrat-patogener, eller om en fremgangsmåde til inducering af specifik immunitet i vertebrater. I stedet reg-i nede man i litteraturen med en generel og ikke-specifik tonisk virkning på den 5 humane vært.7 DK 175904 B1 no recombinant DNA techniques. There is no information on an avipox containing DNA encoding vertebrate pathogen antigens or on a method for inducing specific immunity in vertebrates. Instead, literature in the literature has a general and non-specific tonic effect on the human host.

En mere indgående diskussion af grundlaget for genetisk rekombination kan måske hjælpe til at forstå, hvorledes de modificerede rekombinante vira ifølge den foreliggende opfindelse er dannet.A more in-depth discussion of the basis of genetic recombination may help to understand how the modified recombinant viruses of the present invention are formed.

1010

Generelt består genetisk rekombination af udvekslingen af homologe sektioner af deoxyribonukleinsyre (DNA) mellem to DNA-strenge. (I visse vira kan ribonukleinsyre [RNA] erstatte DNA). Homologe nukleinsyresektioner er nu-kleinsyresektioner (RNA eller DNA), der har den samme nukleotidbasese-15 kvens.In general, genetic recombination consists of the exchange of homologous sections of deoxyribonucleic acid (DNA) between two DNA strands. (In some viruses, ribonucleic acid [RNA] can replace DNA). Homologous nucleic acid sections are nucleic acid sections (RNA or DNA) having the same nucleotide base sequence.

Genetisk rekombination kan forekomme naturligt under replikationen eller ved dannelsen af nye virale genomer inde i den inficerede værtcelle. Således kan genetisk rekombination mellem virale gener ske under den virale replika-20 tionscyklus, der foregår i en værtcelle, som er co-inficeret med to eller flere forskellige vira eller andre genetiske konstruktioner. En DNA-sektion fra et første genom bruges udskifteligt til konstruktion af genomsektionen i et andet coinficerende virus, i hvilket DNA'et er homologt med DNA'et i det første virale genom.Genetic recombination can occur naturally during replication or in the generation of new viral genomes within the infected host cell. Thus, genetic recombination between viral genes can occur during the viral replication cycle occurring in a host cell co-infected with two or more different viruses or other genetic constructs. A DNA section from a first genome is used interchangeably to construct the genome section of a second coinfecting virus, in which the DNA is homologous to the DNA of the first viral genome.

2525

Imidlertid kan rekombination også forekomme mellem DNA-sektioner i forskellige genomer, der ikke er fuldstændig homologe. Hvis en sådan sektion er fra et første genom, der er homologt med en sektion af et andet genom, med undtagelse af tilstedeværelsen i den første sektion af for eksempel en 30 genetisk markør eller et gen kodende for en antigenisk determinant indsat i en del af det homologe DNA, kan rekombination stadig forekomme, og pro-However, recombination may also occur between DNA sections in different genomes that are not completely homologous. If such a section is from a first genome that is homologous to a section of a second genome, except for the presence in the first section of, for example, a genetic marker or gene encoding an antigenic determinant inserted into a portion of it homologous DNA, recombination can still occur, and pro-

I DK 175904 B1 II DK 175904 B1 I

dukterne af denne rekombination er således detekterbare ved tilstedeværel- Ithus, the products of this recombination are detectable by presence

sen af denne genetiske markør eller gen. Ilate of this genetic marker or gene. IN

i Der kræves to betingelser, for at den modificerede infektiøse virus gennem- ITwo conditions are required for the modified infectious virus to pass through

5 fører en vellykket ekspression af den indsatte genetiske DNA-sekvens. IFigure 5 shows successful expression of the inserted genetic DNA sequence. IN

For det første skal indsættelsen ske i et ikke-essentielt område af viruset, for IFirst, the insertion must take place in a non-essential region of the virus, for I

at det modificerede virus forbliver levedygtigt. Hverken fjerkræpox eller de Ithat the modified virus remains viable. Neither poultry pox nor those I

andre avipoxvira har indtil nu udvist ikke-essentielle regioner analoge til de, Iother avipoxviruses have so far shown non-essential regions analogous to those I

10 der er beskrevet for vaccinia-viruset. Derfor blev der ved den foreliggende I10 described for the vaccinia virus. Therefore, by the present I

opfindelse fundet ikke-essentielle områder i fjerkræpox ved at kløve fjerkræ- Iinvention found non-essential areas in poultry pox by splitting poultry I

pox-genomet op i fragmenter med efterfølgende adskillelse af fragmenterne Ipox genome up into fragments with subsequent separation of the fragments I

efter størrelse og indsættelse af disse fragmenter i plasmidkonstruktioner Iafter size and insertion of these fragments into plasmid constructs I

med henblik på amplifikation. (Plasmider er små cirkulære DNA-molekyler, Ifor the purpose of amplification. (Plasmids are small circular DNA molecules, I

15 der findes som ekstrakromosomale elementer i mange bakterier incl. E. coli. I15 which exist as extrachromosomal elements in many bacteria incl. E. coli. IN

Metoder til indsættelse af DNA-sekvenser, såsom generne for antigeniske IMethods for inserting DNA sequences, such as the genes for antigenic I

determinanter eller andre genetiske markører, i plasmider er velkendte inden Ideterminants or other genetic markers in plasmids are well known in the art

for faget og er beskrevet i detaljer i Maniatis et al., Molecular Cloning: A La- Ifor the art and is described in detail in Maniatis et al., Molecular Cloning: A La- I

boratory Manual, Cold Spring Harbor Laboratory New York [1982]). Dette Iboratory Manual, Cold Spring Harbor Laboratory New York [1982]). This I

20 blev efterfulgt af indsættelse af genetiske markører og/eller gener, der koder I20 was followed by insertion of genetic markers and / or genes encoding I

for antigener, i de klonede fjerkræpox-fragmenter. De fragmenter, der førte til Ifor antigens, in the cloned poultry pox fragments. The fragments that led to I

vellykket rekombination, som vist ved vellykket genvinding af den genetiske Isuccessful recombination, as shown by successful recovery of the genetic I

markør eller antigener, var de, der indeholdt DNA indsat i et ikke-essentielt Imarker or antigens were those containing DNA inserted into a non-essential I

område af fjerkræpox-genomet. Iregion of the poultry pox genome. IN

25 I25 I

Den anden betingelse for ekspression af indsat DNA er tilstedeværelsen af IThe second condition for expression of inserted DNA is the presence of I

en promotor med en passende beliggenhed i forhold til det indsatte DNA. Ia promoter with a convenient location relative to the inserted DNA. IN

Promotoren skal være placeret således, at den befinder sig opstrøms fra den IThe promoter must be located so that it is upstream from the I

DNA-sekvens, der skal udtrykkes. Fordi avipox-vira ikke er velkarakterisere- IDNA sequence to be expressed. Because avipox viruses are not well characterized- I

30 de, og der ikke tidligere er identificeret avipox-promotorer, kan promotorer fra I30, and no avipox promoters have been previously identified, promoters from I

andre poxvira med fordel indsættes opstrøms for den DNA der skal udtrykkes Iother poxviruses are advantageously inserted upstream of the DNA to be expressed

9 DK 175904 B1 som en del af den foreliggende opfindelse. Fjerkræpox-promotorer kan også med held anvendes til at fremstille produkterne ifølge opfindelsen. Ifølge opfindelsen er promotorer fra fjerkræpox, vaccinia og entomopox fundet at promotere transkription i rekombinant poxvirus.9 DK 175904 B1 as part of the present invention. Poultry pox promoters can also be successfully used to prepare the products of the invention. According to the invention, promoters of poultry pox, vaccinia and entomopox have been found to promote transcription in recombinant pox virus.

55

Boyle og Coupar, J. Gen. Virol. 67:1591 (1986) har offentliggjort spekulation om, at vaccinia-promotorer "måske kan forventes at fungere i (fjerkræpox) virus".Boyle and Coupar, J. Gen. Virol. 67: 1591 (1986) has published speculation that vaccinia promoters "might be expected to function in (poultry pox) virus".

10 Forfatterne lokaliserede og klonede et fjerkræpox TK-gen (Boyle et al., Virology 156:355-365 [1987]) og indsatte det i et vaccinia-virus. Dette TK-gen blev udtrykt, formodentlig fordi fjerkræpox TK-promotorsekvensen genkend-tes af vaccinia-polymerasefunktioner. På trods af deres spekulation, indsatte forfatterne imidlertid ikke nogen vaccinia-promotor i et fjerkræpoxvirus eller 15 observerede nogen ekspression af en fremmed DNA-sekvens tilstede i et fjerkræpox-genom. Det var ikke kendt før den foreliggende opfindelse, at promotorer fra andre poxvira, såsom vaccinia-promotorer, rent faktisk ville promotere et gen i et avipox-genom.The authors located and cloned a poultry pox TK gene (Boyle et al., Virology 156: 355-365 [1987]) and inserted it into a vaccinia virus. This TK gene was expressed, presumably because the poultry pox TK promoter sequence is recognized by vaccinia polymerase functions. However, despite their speculation, the authors did not insert any vaccinia promoter into a poultry pox virus or observe any expression of a foreign DNA sequence present in a poultry pox genome. It was not known before the present invention that promoters from other poxviruses, such as vaccinia promoters, would actually promote a gene in an avipox genome.

20 BESKRIVELSE AF VISSE FORETRUKNE UDFØRELSESFORMERDESCRIPTION OF CERTAIN PREFERRED EMBODIMENTS

Ifølge den foreliggende opfindelse er især fjerkræpox-og kanariepoxvira blevet anvendt som foretrukne avipox-arter, der modificeres ved rekombination i ved indbyggelse af exogent DNA deri. ! 25In particular, according to the present invention, poultry pox and canary poxviruses have been used as preferred avipox species that are modified by recombination by incorporating exogenous DNA therein. ! 25

Fjerkræpox er en art af avipox, der især inficerer høns, men som ikke inficerer pattedyr. Fjerkræpox-stammen, der heri er designeret som FP-5, er en kommerciel fjerkræpoxvirus-vaccinestamme med oprindelse i kyllingeembry-oner, tilgængelig fra American Scientific Laboratories (Underafdeling af 30 Schering Corp.) Madison, Wl, United States Veterinary License nr. 165, Serie nr. 30321.Poultry pox is a species of avipox that infects hens in particular, but does not infect mammals. The poultry pox strain designated herein as FP-5 is a commercial poultry pox virus vaccine strain originating in chicken embryos, available from American Scientific Laboratories (Subdivision of 30 Schering Corp.) Madison, WL, United States Veterinary License # 165 , Serial No. 30321.

I DK 175904 B1 II DK 175904 B1 I

I 10 II 10 I

I 1 Fjerkræpox-stammen, der heri er designeret FP-1, er en Duvette-stamme IIn the 1 Poultry Pox strain designated herein FP-1 is a Duvette strain I

I i modificeret til anvendelse som en vaccine i daggamle kyllinger. Stammen er II in modified for use as a vaccine in day-old chickens. The tribe is you

en kommerciel fjerkræpoxvirus-vaccinestamme designeret O DCEP Ia commercial poultry pox virus vaccine strain designated O DCEP I

I 25/CEP67/ 2309 Oktober 1980 og er tilgængelig fra Institute Merieux, Inc. IIn October 25 / CEP67 / 2309 October 1980 and is available from the Institute Merieux, Inc. IN

I 5 II 5 I

I Kanariepox er en anden avipoxart. Analogt med fjerkræpox, inficerer kana- IIn Canary Pox is another avipox species. Analogous to poultry pox, infects cana- I

I riepox især kanariefugle, men inficerer ikke pattedyr. Kanariepox-stammen, IIn riepox especially canaries, but do not infect mammals. Canary Pox Tribe, I

I der her er designeret som CP er en kommerciel kanariepox-vaccinestamme IIn what is designated here as CP is a commercial canary pox vaccine strain I

designeret LF2 CEP 524 24 10 75 og er tilgængelig fra Institute Merieux, Inc. Idesignated LF2 CEP 524 24 10 75 and is available from Institute Merieux, Inc. IN

I 10 II 10 I

I De genetiske DNA-sekvenser, indsat i disse avipoxvira ved genetisk rekom- IIn The genetic DNA sequences inserted into these avipoxviruses by genetic recom

I bination ifølge opfindelsen, omfatter Lac Z-genet af prokaryotisk oprindelse; IIn the combination of the invention, the Lac comprises the Z gene of prokaryotic origin; IN

I rabies-glycoprotein (G) genet der er et antigen fra et ikke-fuglepatogen (spe- IIn the rabies glycoprotein (G) gene which is an antigen from a non-avian pathogen (

I cifikt af pattedyroprindelse); kalkuninfluenza-hæmagglutinin-genet, som er IIn mammalian origin); the turkey flu hemagglutinin gene which is I

I 15 antigenet fra et patogent fuglevirus der ikke er et avipoxvirus; kappegenet IIn the antigen of a pathogenic bird virus that is not an avipox virus; cutting gene I

I gp51.30 fra bovint leukæmivirus der er et pattedyrvirus; fusionsprotein-genet IIn gp51.30 from bovine leukemia virus there is a mammalian virus; the fusion protein gene I

I fra Newcastle disease-virus (Texas-stamme) der er et fuglevirus; FeLV- IIn the Newcastle disease virus (Texas strain) there is a bird virus; FeLV- I

I kappegenet fra katteleukæmivirus der er et pattedyrvirus; RAV-1 env-genet IIn the cat gene from cat leukemia virus there is a mammalian virus; The RAV-1 env gene I

I fra det Rous-associerede virus der er et fuglevirus/fjerkræsygdom; nucleo- IIn the Rous-associated virus there is a bird virus / poultry disease; nucleo- I

I 20 protein (NP) genet fra hønse/Pennsylvania/1/83 influenzavirus der er et fug- IIn the 20 protein (NP) gene from chicken / Pennsylvania / 1/83 influenza virus there is a bird I

I levirus; matrixgenet og peplomergenet fra infektiøs bronchitisvirus (stamme IIn levirus; the matrix gene and the peplomer gene from infectious bronchitis virus (strain I)

I Mass 41) der er et fuglevirus; og glycoprotein-D-genet (gD) fra herpes IIn Mass 41) there is a bird virus; and the glycoprotein D gene (gD) from herpes I

I simplex-virus der er et pattedyrvirus. IIn simplex virus there is a mammalian virus. IN

I 25 Isolering af Lac Z-genet er beskrevet af Casadaban et al., Methods in Enzy- II Isolation of the Lac Z gene is described by Casadaban et al., Methods in Enzy-I

I mology 100:293-308 (1983). Strukturen af rabies-G-genet er for eksempel IIn Mology 100: 293-308 (1983). For example, the structure of the rabies G gene is I

I beskrevet af Anilionis et al., Nature 294:275-278 (1981). Dets indbygning i IIn described by Anilionis et al., Nature 294: 275-278 (1981). Its incorporation in I

I vaccinia og ekspression i denne vektor diskuteres af Kieny et al., Nature IIn vaccinia and expression in this vector are discussed by Kieny et al., Nature I

I 312:163-166 (1984). Kalkuninfluenza-hæmagglutinin-genet er beskrevet af II 312: 163-166 (1984). The turkey flu hemagglutinin gene is described by I

I 30 Kawaoka et al., Virology 158:218-227 (1987). Det bovine leukæmivirus IIn Kawaoka et al., Virology 158: 218-227 (1987). The bovine leukemia virus I

I gp51.30 env-gen er blevet beskrevet af Rice et al., Virology 138:82-93 IThe gp51.30 env gene has been described by Rice et al., Virology 138: 82-93 I

11 DK 175904 B1 i (1984). Fusionsgenet fra Newcastle disease-virus (Texas stamme) er tilgængeligt fra Institute Merieux, Inc. som plasmid pNDV 108. Katteleukæmivirus-env-genet er blevet beskrevet af Guilhot et al., Virology 161:252-258 (1987).11 DK 175904 B1 in (1984). The Newcastle disease virus (Texas strain) fusion gene is available from Institute Merieux, Inc. as plasmid pNDV 108. The cat leukemia virus env gene has been described by Guilhot et al., Virology 161: 252-258 (1987).

Det Rous-associerede virus type 1 er tilgængeligt fra Institute Merieux, Inc.The Rous-associated virus type 1 is available from Institute Merieux, Inc.

5 som to kloner, penVRVIPT og mp19env (190). Hønseinfluenza-NP-gen er tilgængeligt fra Yoshihiro Kawaoka, St. Jude Children's Research Hospital som plasmid pNP33. En infektiøs-bronchitis-virus cDNA-klon af IBV Mass 41 matrixgenet og peplomergenet er tilgængelig fra Institute Merieux, Inc. som plasmid plBVM63. Herpes simplex-virus gD-genet er beskrevet i Watson et 10 al., Science 218:381-384 (1,982).5 as two clones, penVRVIPT and mp19env (190). Chicken Flu NP gene is available from Yoshihiro Kawaoka, St. Jude Children's Research Hospital as plasmid pNP33. An infectious bronchitis virus cDNA clone of the IBV Mass 41 matrix gene and the peplomer gene is available from Institute Merieux, Inc. as plasmid plBVM63. The herpes simplex virus gD gene is described in Watson et al., Science 218: 381-384 (1,982).

De rekombinante avipoxvira, der beskrives mere detaljeret nedenfor, omfatter én af tre vacciniapromotorer. Pi-promotoren, fra AvalH-regionen af vaccinia, er beskrevet i Wachsman et al., J. of Inf. Dis. 155:1188-1197 (1987). Me-15 re bestemt er denne promotor afledt fra AvalH(XholG)-fragmentet af L-variant-WR-vacciniastammen, hvori promotoren leder transkriptionen fra højre til venstre. Kortbeliggenheden af promotoren er ca. 1,3 kbp (kilobasepar) fra den venstre ende af AvalH, ca. 12,5 kbp fra den venstre ende af vacci-niagenomet, og ca. 8,5 kbp til venstre for Hindlll-C/N-forbindelsen. Sekven-20 sen af promotoren er: (GGATCCC)-ACTGTAAAAATAGAAACTATAATCATATAATAGTGTAGGT- TGGTAGTAGGGTACTCGTGATTAATTTTATTGTTAAACTTG-iAATTC), 25 hvori symbolerne i parentes er linker-sekvenser.The recombinant avipoxviruses, described in more detail below, comprise one of three vaccinia promoters. The Pi promoter, from the AvalH region of vaccinia, is described in Wachsman et al., J. of Inf. Haze. 155: 1188-1197 (1987). More specifically, this promoter is derived from the AvalH (XholG) fragment of the L variant WR vaccinia strain, in which the promoter directs the transcription from right to left. The short position of the promoter is approx. 1.3 kbp (kilobase pairs) from the left end of AvalH, approx. 12.5 kbp from the left end of the vaccine genome, and approx. 8.5 kbp to the left of the HindIII-C / N compound. The sequence of the promoter is: (GGATCCC) -ACTGTAAAAATAGAAACTATAATCATATAATAGTGTAGGT- TGGTAGTAGGGTACTCGTGATTAATTTTATTGTTAAACTTG-iAATTC), wherein the symbols in parentheses are linker sequences.

Hind III H-promotoren (også kaldet "HH" og "H6” heri) blev defineret ved standard-transkriptionskortlægningsteknikker. Den har sekvensen:The Hind III H promoter (also called "HH" and "H6" herein) was defined by standard transcriptional mapping techniques.

30 ATT CTTT ATT CTATACTT AAAAAAT G AAAA30 ATT CTTT ATT CTATACTT AAAAAAT G AAAA

T AAAT ACAAAGGTT CTT G AGG GTTGT GTT AAATT G AAAGCG AG AAAT AAT CATAT AAAT ACAAAGGTT CTT G AGG GTTGT GTT AAATT G AAAGCG AG AAAT AAT CATA

I DK 175904 B1 II DK 175904 B1 I

I II I

AATT IAATT I

I ATTT C ATTAT CGCG ATATCCGT II ATTT C ATTAT CGCG ATATCCGT I

I TAAGTTTGTATCGTAATG. II TAAGTTTGTATCGTAATG. IN

I Sekvensen er identisk med den, som af Rosen et al., J. Virol. 60:436-449 IThe sequence is identical to that of Rosen et al., J. Virol. 60: 436-449 I

I 5 (1986) er beskrevet som værende opstrøms fra åben læseramme H6. II 5 (1986) is described as being upstream from open reading frame H6. IN

I 11K-promotoren er som beskrevet af Wittek, J. Virol. 49:371-378 (1984) og IIn the 11K promoter, as described by Wittek, J. Virol. 49: 371-378 (1984) and I

I Bertholet, C. et al., Proc. Natl. Acad. Sci. USA 82:2096-2100 (1985). IIn Bertholet, C. et al., Proc. Natl. Acad. Sci. USA 82: 2096-2100 (1985). IN

I 10 De rekombinante avipoxvira ifølge opfindelsen er konstrueret ved to inden for IThe recombinant avipox viruses of the invention are constructed at two within I

I faget kendte trin, der er analoge med dem beskrevet i førnævnte US patent- IKnown steps known in the art analogous to those described in the aforementioned U.S. Patent I

skrift nr. 4 603 112 til dannelse af syntetiske rekombinanter af vacciniaviru- INo. 4,603,122 to form synthetic recombinants of vaccinia virus

I set. IIn set. IN

I 15 Først anbringes den DNA-sekvens, som skal indsættes i viruset, i en E. coli- IFirst, the DNA sequence to be inserted into the virus is placed in an E. coli I

I plasmidkonstruktion, hvori er indsat DNA, der er homologt til en sektion af IIn plasmid construction, in which is inserted DNA homologous to a section of I

ikke-essentiel DNA i avipoxviruset. DNA-gensekvensen, der skal indsættes, Inonessential DNA in the avipox virus. The DNA gene sequence to be inserted, I

I ligeres separat til en promotor. Promotor-gen-koblingen indsættes derpå i IYou are ligated separately to a promoter. The promoter gene link is then inserted into I

I plasmidkonstruktionen, således at promotor-gen-koblingen i begge ender er IIn the plasmid construct, so that the promoter gene link at both ends is I

I 20 flankeret af DNA homologt til en ikke-essentiel region af avipox-DNA. Den IIn 20 flanked by DNA homologous to a non-essential region of avipox DNA. The I

I resulterende plasmidkonstruktion amplificeres derpå ved vækst i E. coli- IIn resultant plasmid construction, it is then amplified by growth in E. coli I

I bakterier. (Plasmid-DNA bruges til at bære og amplificere exogent genetisk IIn bacteria. (Plasmid DNA is used to carry and amplify exogenous genetic I

I materiale, og denne metode er velkendt inden for faget. Disse plasmidteknik- IIn material, this method is well known in the art. These plasmid techniques

I ker er f.eks. beskrevet af Clewell, J. Bacteriol. 110:667-676 (1972). Teknik- IIn pots, e.g. described by Clewell, J. Bacteriol. 110: 667-676 (1972). Technical I

I 25 kerne til isolering af det amplificerede plasmid fra E. coli-værten er ligeledes IIn 25 nuclei for isolation of the amplified plasmid from the E. coli host are also I

I velkendte og er f.eks. beskrevet af Clewell et al. i Proc. Natl. Acad. Sci. USA IIn well known and e.g. described by Clewell et al. in Proc. Natl. Acad. Sci. USA I

I 62:1159-1166(1969).) II 62: 1159-1166 (1969).) I

I Det amplificerede plasmidmateriale isoleret efter vækst i E. coli anvendes II The amplified plasmid material isolated after growth in E. coli is used

I 30 derpå til det andet trin. Nemlig transfektion af plasmidet indeholdende DNA- II 30 then to the second step. Namely, transfection of the plasmid containing DNA-I

13 DK 175904 B1 gensekvensen, der skal indsættes, over i en cellekultur, f.eks. fibroblaster fra kyllingefostre, sammen med avipoxviruset (såsom fjerkræpox stamme FP-1 eller FP-5). Rekombination mellem henholdsvis homologt tjerkræpox-DNA i plasmidet og det virale genom giver et avipoxvirus, der er modificeret ved 5 tilstedeværelsen af ikke-fjerkræpox-DNA-sekvenser i et ikke-essentielt område af dets genom.13 DK 175904 B1 gene sequence to be inserted into a cell culture, e.g. chicken embryo fibroblasts, along with the avipox virus (such as poultry pox strain FP-1 or FP-5). Recombination between homologous tarppox DNA in the plasmid and the viral genome, respectively, produces an avipox virus modified by the presence of non-poultry-pox DNA sequences in a non-essential region of its genome.

Opfindelsen forklares nærmere ved hjælp af de efterfølgende eksempler.The invention is further explained by the following examples.

10 EKSEMPEL 1 - Prøvninger for transient udtrvkkelse til demonstrering af fierkræpox-RNA-transkriptionsfaktorers genkendelse af vaccinia-promotorerEXAMPLE 1 - Transient Expression Testing to Demonstrate Fierce Creepox RNA Transcription Factors Recognition of Vaccinia Promoters

Der blev fremstillet et antal plasmidkonstruktioner indeholdende kodesekven-15 sen for Hepatitis B-virus-overflade-antigen (HBSAg) koblet til vacciniavirus-promotorsekvenser. 50 pg af hvert plasmid blev transfekteret påCEF-celler inficeret med 10 pfu fjerkrævirus eller vacciniavirus pr. celle. Infektionen fik lov at fortsætte i 24 timer, og cellerne blev derpå lyseret ved tre på hinanden følgende cykler bestående af frysning og optøning.A number of plasmid constructs containing the coding sequence for Hepatitis B virus surface antigen (HBSAg) coupled to vaccinia virus promoter sequences were prepared. 50 µg of each plasmid was transfected on CEF cells infected with 10 pfu of poultry virus or vaccinia virus per cell. The infection was allowed to continue for 24 hours and the cells were then lysed by three successive cycles of freezing and thawing.

20 Mængden af HBSAg i lysatet blev beregnet ved brug af det fra Abbott Laboratories, Diagnostic Division, kommercielt tilgængelige AUSTRIA II - 125l-kit. Tilstedeværelsen eller fraværet af HBSAg udtrykkes som et forhold mellem nettotællingeme (prøve minus baggrund) af den ukendte værdi og en negativ 25 afskæringsværdi forudbestemt af fabrikanten. Dette resulterer i et P/N (posi-tiv/negativ) forhold. Resultaterne er vist i tabel I.The amount of HBSAg in the lysate was calculated using the commercially available AUSTRIA II - 125l kit from Abbott Laboratories, Diagnostic Division. The presence or absence of HBSAg is expressed as a ratio of the net counts (sample minus background) of the unknown value to a negative cut-off value predetermined by the manufacturer. This results in a P / N (positive / negative) ratio. The results are shown in Table I.

Der blev anvendt tre forskellige vaccinia-promotorsekvenser: Pi-promotoren, der erkendes tidligt ved vacciniainfektion, før DNA-replikation; 11K-promotoren, der erkendes sent ved vacciniainfektion, efter starten af DNA-30 replikation; og Hindlll H (HH) promotoren, der erkendes både tidligt og sent ved vacciniainfektion. Disse promotorer er tidligere beskrevet heri.Three different vaccinia promoter sequences were used: the Pi promoter, recognized early by vaccinia infection, prior to DNA replication; The 11K promoter, recognized late by vaccinia infection, after the onset of DNA replication; and the HindIII H (HH) promoter, which is recognized both early and late by vaccinia infection. These promoters are previously described herein.

I DK 175904 B1 II DK 175904 B1 I

I 14 II 14 I

I | Dataene indikerer, at HBSAg dannet i lysatet af inficerede celler er resultatet II | The data indicate that HBSAg formed in the lysate of infected cells is the result I

I af genkendelse af vacciniapromotorer af transkriptionsfaktorer fra enten II of recognition of transcription factor vaccinia promoters from either I

I fjerkræpox eller vaccinia. IIn poultry pox or vaccinia. IN

I 5 II 5 I

I TABEL I II TABLE I

I Plasmid Virus Beskrivelse P/N forhold IIn Plasmid Virus Description P / N ratio I

I pMP131piR2 Fjerkræpox SAg koblet til 1,8 IIn pMP131piR2 Poultry Pox Case connected to 1.8 I

I 10 Vaccinia Pi-promotor 9,1 II 10 Vaccinia Pi promoter 9.1 I

I pMPK22.13S Fjerkræpox SAg koblet til 14 IIn pMPK22.13S Poultry Pox Case connected to 14 I

I Vaccinia 11 K-promotor 2 II Vaccinia 11 K promoter 2 I

I 15 pPDK22.5 Fjerkræpox SAg koblet til 92,6 IIn 15 pPDK22.5 Poultry Pox Case coupled to 92.6 I

I Vaccinia 11 K-promotor 5,6 IIn Vaccinia 11 K promoter 5.6 I

I pRW668 Fjerkræpox SAg koblet til 77 IIn pRW668 Poultry Pox Case connected to 77 I

I Vaccinia HH-promotor 51,4 IIn Vaccinia HH promoter 51.4 I

I 20 II 20 I

I (ingen plasmid) Fjerkræpox 1,1 II (no plasmid) Poultry pox 1.1 I

I (ingen plasmid) Vaccinia 1,3 IIn (no plasmid) Vaccinia 1.3 I

I pMPK22.13S (ingen virus) 1,3 IIn pMPK22.13S (no virus) 1.3 I

I 25 II 25 I

I EKSEMPEL 2 - Konstruktion af rekombinant fierkræpox-virus vFP-1 IIn Example 2 - Construction of recombinant fiery creepox virus vFP-1 I

I indeholdende Lac Z-oenet IIn containing the Lac Z oene I

I Et fragment i et ikke-essentielt område af fjerkræpox-viruset blev lokaliseret IA fragment in a non-essential region of the poultry pox virus was located I

I 30 og isoleret på følgende måde. IIn 30 and isolated as follows. IN

15 DK 175904 B115 DK 175904 B1

Der blev anvendt nuklease Bal31 til fjernelse af de enkeltstrengede terminale hårnåleløkker i FP-5 DNA. Det store Klenowfragment af DNA-polymerase I blev anvendt til dannelse af stumpe ender. Efter fjernelse af løkkerne blev fragmenterne frembragt ved nedbrydning med restriktionsendonuklease 5 Bglll. Ved denne nedbrydning dannedes en række FP-5-fragmenter, der blev adskilt ved agarosegelelektroforese.Nuclease Bal31 was used to remove the single stranded terminal hairpin loops in FP-5 DNA. The large Klenow fragment of DNA polymerase I was used to form blunt ends. After removing the loops, the fragments were generated by digestion with restriction endonuclease 5 BgIII. In this degradation, a number of FP-5 fragments were formed which were separated by agarose gel electrophoresis.

Et 8,8 kbp Bglll-fragment med stumpe ender blev isoleret og ligeret ind i et kommercielt tilgængeligt plasmid, pUC9, der var blevet kløvet med BamHI og 10 Smal. Det resulterende plasmid blev designeret pRW698.An 8.8 kbp BglII fragment with blunt ends was isolated and ligated into a commercially available plasmid, pUC9, which had been cleaved with Bam HI and 10 SmaI. The resulting plasmid was designated pRW698.

For at nedsætte størrelsen af fjerkræpox-fragmentet blev dette plasmid kløvet med Hindlll til dannelse af yderligere to fragmenter. Et 6,7 kbp fragment blev kasseret, og det tilbageblevne 4,7 kbp fragment blev ligeret til sig 15 selv til dannelse af et nyt plasmid designeret pRW699.To reduce the size of the poultry pox fragment, this plasmid was cleaved with HindIII to form two further fragments. A 6.7 kbp fragment was discarded and the remaining 4.7 kbp fragment was ligated to itself to form a new plasmid designated pRW699.

For at inkorporere et 11K-promoteret Lac Z-gen i dette plasmid blev pRW699 skåret med EcoRV, der kun kløver plasmidet på ét sted. Det 11K-promoterede Lac Z-segment blev derpå indsat som et Pstl-BamHI-fragment 20 med stumpe ender, hvorved der skabtes et nyt plasmid designeret pRW702.To incorporate an 11K promoted Lac Z gene into this plasmid, pRW699 was cut with EcoRV, which cleaves the plasmid only in one place. The 11K-promoted Lac Z segment was then inserted as a blunt-ended PstI-BamHI fragment 20, creating a new plasmid designated pRW702.

Lac Z-klonen er fra pMC1871, som beskrevet i Casadaban et al., loc. cit.The Lac Z clone is from pMC1871, as described in Casadaban et al., Loc. cit.

11 K-promotoren blev ligeret til den ottende codon af Lac Z-genet via en BamHI-linker.The 11 K promoter was ligated to the eighth codon of the Lac Z gene via a BamHI linker.

25 Ved rekombinationsteknikker, som beskrevet for vaccinia i US patent 4 603 112, blev pRW702-p!asmidet derpå rekombineret med fjerkræpox FP-5, der vokser på kyllingefosterfibroblaster (CEF), idet der anvendtes følgende procedurer til frembringelse af vFP-1. 50 pg pRW702-DNA blev blandet i et slut-volumen på 100 μΙ med 0,5 pg af fjerkræpox-DNA dækkende hele genomet.By recombination techniques as described for vaccines in U.S. Patent 4,603,112, the pRW702 plasmid was then recombined with poultry pox FP-5 growing on chicken fetal fibroblasts (CEF) using the following procedures to generate vFP-1. 50 µg of pRW702 DNA was mixed in a final volume of 100 µΙ with 0.5 µg of poultry pox DNA covering the entire genome.

30 Til dette blev sat 10 pi 2,5 M CaCfe og 110 pi 2 x HEBS puffer (pH 7) fremstillet af:To this were added 10 µl of 2.5 M CaCfe and 110 µl of 2 x HEBS buffer (pH 7) made of:

DK 175904 B1 IDK 175904 B1 I

16 I16 I

40 mM Hepes I40 mM Hepes I

300 mM NaCI I300 mM NaCl I

1,4 mM Na2HPC>4 I1.4 mM Na2HPC> 4 I

10 mM KCI I10 mM KCI I

5 12 mM dextrose. I5 12 mM dextrose. IN

Efter 30 minutter ved stuetemperatur tilsattes 200 pi af en fjerkræpox- IAfter 30 minutes at room temperature, 200 µl of a poultry pox I was added

viruspulje fortyndet til 5 pfu/cell, og blandingen inokuleredes på 60 mm pet- Ivirus pool diluted to 5 pfu / cell and the mixture was inoculated on 60 mm pet I

riskåle indeholdende et monolag af primære CEF. 0,7 ml Eagles medie inde- Irice bowls containing a monolayer of primary CEF. 0.7 ml of Eagles media contained I

10 holdende føtal bovint serum (FBS) tilsattes ligeledes på dette tidspunkt. Pet- ITen holding fetal bovine serum (FBS) were also added at this time. Pet- I

riskålene blev inkuberet ved 37 °C i 2 timer, hvorefter yderligere 3 ml Eagles Ithe rice dishes were incubated at 37 ° C for 2 hours, then an additional 3 ml of Eagles I

medie indeholdende 2% FBS blev tilsat og petriskålene inkuberet i 3 døgn. Imedium containing 2% FBS was added and the petri dishes incubated for 3 days. IN

Celler blev lyseret ved tre på hinanden følgende cykler bestående af frysning ICells were lysed by three successive cycles of freezing I

og optøning, og afkom af virus blev derpå prøvet for tilstedeværelsen af re- Iand thawing, and progeny of virus were then tested for the presence of re- I

15 kombinanter. I15 combiners. IN

Der opnåedes bevis for vellykket gennemførelse af indsættelse ved rekombi- IEvidence of successful recombination insertion was obtained

nation af det 11 K-promoterede Lac Z-gen i genomet for fjerkræpox FP-5 ved Ination of the 11 K-promoted Lac Z gene in the poultry pox FP-5 genome at I

at afprøve for udtrykkelse af Lac Z-genet. Lac Z-genet koder for enzymet β- Ito test for expression of the Lac Z gene. The Lac Z gene encodes the enzyme β-I

20 galactosidase, der kløver det kromogene substrat 5-brom-4-chlor-3-indolyl-p- I20 galactosidase cleaving the chromogenic substrate 5-bromo-4-chloro-3-indolyl-β-I

D-galactosid (X-gal) under frigivelse af et blåt indolylderivat. Blå plakker blev ID-galactoside (X-gal) upon release of a blue indolyl derivative. Blue plaques became you

udvalgt som positive rekombinanter. Iselected as positive recombinants. IN

Den med held gennemførte indsættelse af Lac Z i genomet af fjerkræpox FP- IThe successful insertion of Lac Z into the genome of poultry pox FP-I

25 5 samt dets udtrykkelse blev også bekræftet ved immunpræcipitering af β- I25 as well as its expression was also confirmed by immunoprecipitation of β-I

galactosidaseprotein med kommercielt tilgængelige antisera og standardtek- Igalactosidase protein with commercially available antisera and standard text

nikker under anvendelse af vFP-1-inficerede CEF, BSC (abenyrecellelinie - Inodding using vFP-1-infected CEF, BSC (monkey kidney cell line - I

ATCC CCL26), VERO (abenyrecellelinie - ATCC CC81) og MRC-5 (human IATCC CCL26), VERO (monkey cell line - ATCC CC81) and MRC-5 (human I

diploid lungecellelinie-ATCC CCL171). Idiploid lung cell line-ATCC CCL171). IN

30 I30 I

17 DK 175904 B117 DK 175904 B1

Udtrykkeisen af β-galactosidase af det rekombinante virus vFP-1 blev videre bekræftet in vivo ved inokulering af kaniner og mus med viruset og ved at kunne måle en post-inokuleringsstigning i titeme af antistof rettet mod β-galactosidaseproteinet i serum af de inokulerede dyr.The expression of β-galactosidase of the recombinant virus vFP-1 was further confirmed in vivo by inoculation of rabbits and mice with the virus and by measuring a post-inoculation increase in the antibody titers directed against the β-galactosidase protein in the serum of the inoculated animals.

55

Specielt blev det rekombinante vFP-1 oprenset fra værtcellekontaminanter og inokuleret intradermalt to steder på hver side af to kaniner. Hver kanin modtog en total mængde på 108 pfu.Specifically, the recombinant vFP-1 was purified from host cell contaminants and inoculated intradermally two sites on each side of two rabbits. Each rabbit received a total amount of 108 pfu.

10 Dyrene fik tappet blod med ugentlige mellemrum, og seraene brugt ved en ELISA prøvning under anvendelse af en kommercielt tilgængelig præparation af oprenset β-galactosidase som antigenkilde.The animals were sampled weekly and the sera used in an ELISA assay using a commercially available preparation of purified β-galactosidase as an antigen source.

Både kaniner og mus inokuleret med det rekombinante vFP-1 frembragte et 15 immunrespons over for β-galactosidaseprotein som vist ved en ELISA-prøvning. I begge arter var responset detekterbart én uge efter inokulering.Both rabbits and mice inoculated with the recombinant vFP-1 produced an immune response to β-galactosidase protein as demonstrated by an ELISA assay. In both species, the response was detectable one week after inoculation.

EKSEMPEL 3 - Konstruktion ud fra fierkræpox-virus FP-5 af rekombinant virus vFP-2 indeholdende rabies-G-genet og Lac ZEXAMPLE 3 - Construction from fierce creepox virus FP-5 of recombinant virus vFP-2 containing the rabies G gene and Lac Z

2020

Fra FP-5 opnåedes et 0,9 kbp Pvull-fragment, der ved hjælp af standardteknikker blev indsat mellem de to Pvull-steder i pUC9. Den resulterende konstruktion, designeret pRW688.2, har to Hincll-steder med en afstand på ca.From FP-5, a 0.9 kbp Pvull fragment was obtained, which was inserted by standard techniques between the two Pvull sites in pUC9. The resulting construct, designated pRW688.2, has two Hincll sites with a distance of approx.

30 bp, der er beliggende asymmetrisk inde i Pvull-fragmentet, og de danner 25 således en lang arm og en kort arm af fragmentet.30 bp, located asymmetrically within the Pvull fragment, thus forming 25 a long arm and a short arm of the fragment.

Under anvendelse af kendte teknikker blev oligonukleotidadaptere blev mellem disse Hincll-steder til indførelse af Pstl- og BamHI-steder, hvorved plasmid pRW694 dannedes.Using known techniques, oligonucleotide adapters were placed between these HincII sites to introduce PstI and BamHI sites, thereby forming plasmid pRW694.

30 130 1

DK 175904 B1 IDK 175904 B1 I

18 I18 I

Dette plasmid blev nu kløvet med Pstl og BamHI, og Lac Z-genet med en IThis plasmid was now cleaved with Pst I and Bam HI, and the Lac Z gene with an I

koblet 11K vacciniapromotor, der tidligere er beskrevet, blev indsat til dan- Icoupled 11K vaccinia promoter previously described was inserted into dan

nelse af det nye plasmid pRW700. Iformation of the new plasmid pRW700. IN

5 Til dannelse af et Pi-promoteret rabies-G-gen, blev Bglll-stedet, der er 5'- ITo generate a Pi-promoted rabies G gene, the BglII site, which is 5'-I

proximalt i forhold til rabiesgenet (jfr. Kieny et al., loc. cit.), gjort stump-endet Iproximal to the rabies gene (cf. Kieny et al., loc. cit.), blunt-ended I

og ligeret til det udfyldte EcoRI-sted i Pi-promotoren beskrevet tidligere. Iand ligated to the filled Eco RI site of the Pi promoter described earlier. IN

Denne konstruktion blev indsat i Pstl-stedet af pRW700 til dannelse af plas- IThis construct was inserted into the Pst I site of pRW700 to generate plasm I

10 mid pRW735.1, som indeholder den fremmede gensekvens Pi-rabies G-11K- I10 mid pRW735.1, which contains the foreign gene sequence Pi-rabies G-11K-I

Lac Z. Denne indsættelse er således orienteret inden for plasmidet, at den ILac Z. This insertion is so oriented within the plasmid that the I

lange Pvull-HincIl-arm af FP-5-donorsekvensen er 3' i forhold til Lac Z-genet. Ilong Pvull-HincIl arm of the FP-5 donor sequence is 3 'relative to the Lac Z gene. IN

Den resulterende endelige konstruktion blev rekombineret med fjerkræpox- IThe resulting final construct was recombined with poultry pox I

15 virus FP-5 ved infektion/transfektion af kyllingefosterfibroblaster ved I15 virus FP-5 by infection / transfection of chicken fetal fibroblasts at I

fremgangsmåderne beskrevet ovenfor til dannelse af rekombinant Ithe methods described above to form recombinant I

fjerkræpox-virus vFP-2. Dette rekombinante virus blev selekteret ved X-gal Ipoultry pox virus vFP-2. This recombinant virus was selected by X-gal I

farvning. Istaining. IN

20 Korrekt indsættelse og udtrykkelse af både Lac Z-markørgenet og rabies-G- I20 Correct insertion and expression of both Lac Z marker gene and rabies G-I

genet blev verificeret ved et antal yderligere metoder beskrevet nedenfor. Ithe gene was verified by a number of additional methods described below. IN

Lokalisering af rabies-antigenet ved immunfluorescens med specifikke an- ILocalization of the rabies antigen by immunofluorescence with specific an- I

tistoffer viste vellykket udtrykkelse af rabies-antigen på overfladen af fugle- ι Iantibodies successfully expressed rabies antigen expression on the surface of birds ι I

25 og ikke-fugleceller inficeret med vFP-2-virus. I25 and non-avian cells infected with vFP-2 virus. IN

Udtrykkeisen af rabies-antigen og β-galactosidase af fugle- og ikke- IThe expression of rabies antigen and β-galactosidase of birds and non-I

fugleceller inficeret med vFP-2-viruset blev ligesom tidligere bekræftet ved Ibird cells infected with the vFP-2 virus were confirmed, as before, by I

immunpræcipiteringsmetoden. Iimmunpræcipiteringsmetoden. IN

30 I30 I

19 DK 175904 B119 DK 175904 B1

Ved inokulering af to kaniner med vFP-2-virus blev der opnået yderligere bevis for, at vFP-2-udførelsesformen ifølge opfindelsen er en vellykket re-kombinant virus, der bærer generne for rabies G og β-galactosidase. Begge kaniner blev inokuleret intradermalt med 1x10® pfu vFP-2 pr. kanin. Begge 5 disse kaniner dannede typiske pox-læsioner. Kaninerne fik udtaget blodprøver med ugentlige mellemrum, og sera blev afprøvet ved ELISA til påvisning af tilstedeværelsen af specifikke antistoffer mod rabiesglycopro-teinet og _-galactosidaseproteinet.By inoculating two rabbits with vFP-2 virus, further evidence was obtained that the vFP-2 embodiment of the invention is a successful recombinant virus carrying the genes for rabies G and β-galactosidase. Both rabbits were inoculated intradermally with 1x10® pfu vFP-2 per ml. rabbit. Both of these rabbits formed typical pox lesions. The rabbits were sampled weekly, and sera were tested by ELISA to detect the presence of specific antibodies against the rabies glycoprotein and the galactosidase protein.

10 Som angivet i tabel II nedenfor, viste kanin 205 påviselige mængder af anti-β-galactosidase-antistof ved ELISA-prøven én uge efter inokulering. Dette steg ved to uger til en titer på 1 i 4000, der opretholdes indtil 5 uger efter ino-kuleringen. Ved brug af antigen-indfangning-ELISA-prøvningen, viste sera fra kanin 205 påviselige mængder af anti-rabies-antistoffer fra 3 til 10 uger efter 15 inokulering.As indicated in Table II below, rabbit 205 showed detectable amounts of anti-β-galactosidase antibody in the ELISA sample one week after inoculation. This increased by two weeks to a titer of 1 in 4000, maintained until 5 weeks after inoculation. Using the antigen capture ELISA assay, rabbit sera 205 showed detectable amounts of anti-rabies antibodies from 3 to 10 weeks after inoculation.

I DK 175904 B1 II DK 175904 B1 I

I 20 II 20 I

TABEL II ITABLE II

I Antistof-dannelse af kanin 205 mod IIn antibody formation of rabbit 205 against I

I rabies-antiaen oq β-aalactosidaseprotein IIn the rabies antia and β-aalactosidase protein I

I 5 II 5 I

I Tidspunkt Antistof-titer IIn Time Antibody titer I

(reciprokke af I(reciprocated by I

I serumfortynding) IIn serum dilution) I

I Før udtagning anti-p-galactosidase II Before taking anti-β-galactosidase I

I af blodprøve 0 II of blood sample 0 I

I Uge 1 500 IIn Week 1 500 I

I Ugerne 2-5 (hver) 4000 IIn Weeks 2-5 (each) 4000 I

I Uge 6 500 IIn Week 6,500 I

I 15 Uge 9 250 II 15 Week 9 250 I

I Før udtagning anti-rabies IBefore taking anti-rabies

I af blodprøve 0 II of blood sample 0 I

I Uge 3 200 IIn Week 3,200 I

I 20 Uge 6 200 IFor 20 Week 6,200 I

I Uge 10 100 IIn Week 10 100 I

I EKSEMPEL 4A - Konstruktion ud fra fierkræpox-virus FP-1 af rekombinant IIn Example 4A - Construction from recombinant I wild squamous virus FP-1

I virus vFP-3 indeholdende promoteret rabies-G-oen IIn virus vFP-3 containing promoted rabies G gene I

I 25 II 25 I

I Denne udførelsesform anskueliggør, at rabies-G-genet udtrykkes fuldtud af IIn this embodiment, the rabies G gene is fully expressed by I

I andre fjerkræpox-stammer end FP-5, specifikt af en anden stamme af IIn poultry pox strains other than FP-5, specifically of another strain of I

I fjerkraepox-virus designeret FP-1. IIn poultry epox virus designated FP-1. IN

21 DK 175904 B121 DK 175904 B1

Som i eksempel 3 opnåedes et 0,9 kbp Pvull-fragment fra FP-1, idet man antog, at fragmentet ville indeholde et ikke-essentielt område, som det var tilfældet for FP-5.As in Example 3, a 0.9 kbp Pvull fragment was obtained from FP-1, assuming that the fragment would contain a non-essential region, as was the case for FP-5.

5 Dette fragment blev indsat mellem de to Pvull-steder i pUC9, hvorved dannedes et plasmid designeret pRW731.15R.This fragment was inserted between the two Pvull sites in pUC9, forming a plasmid designated pRW731.15R.

Dette plasmid har to Hinell-steder, med en afstand påca. 30 bp, der er beliggende asymmetrisk inde i Pvull-fragmentet, og de danner således en lang 10 arm og en kort arm af fragmentet.This plasmid has two Hinell sites, with a distance of about. 30 bp, located asymmetrically within the Pvull fragment, thus forming a long arm and a short arm of the fragment.

En kommercielt tilgængelig Pst-koblingssekvens (5') - CCTGCAGG - (3‘) blev indsat mellem de to Hinel l-steder, hvorved dannedes plasmid pRW741.A commercially available Pst coupling sequence (5 ') - CCTGCAGG - (3') was inserted between the two Hinel I sites to generate plasmid pRW741.

1515

Et HH-promoteret rabies-G-gen indsattes i dette plasmid i Pstl-stedet til dannelse af det nye plasmid pRW742B. Ved rekombination af dette plasmid med FP-1 ved infektion/transfektion af CEF-celler opnåedes virus vFP-3.An HH-promoted rabies G gene was inserted into this plasmid at the Pst I site to generate the new plasmid pRW742B. By recombining this plasmid with FP-1 by infection / transfection of CEF cells, virus vFP-3 was obtained.

20 ATG-translationsinitieringscodonen i den åbne læseramme promoteret af HH-promotoren blev overlejret på initieringscodonen af rabies-G-genet under anvendelse af et syntetisk oligonukleotid, der spænder over EcoRV-stedet i HH-promotoren og Hindlll-stedet i rabies-G-genet. 5'-enden af dette HH-promoterede rabiesgen blev ved kendte teknikker modificeret til at indeholde 25 et Pstl-sted, og konstruktionen ligeredes derpå ind i Pstl-stedet af pRW741 til dannelse af pRW742B. Orienteringen af konstruktionen i plasmidet er den samme som i pRW735.1, der tidligere er omtalt i eksempel 3.The ATG translation initiation codon in the open reading frame promoted by the HH promoter was superimposed on the initiation codon of the rabies G gene using a synthetic oligonucleotide spanning the EcoRV site of the HH promoter and HindIII site of the rabies G gene. . The 5 'end of this HH-promoted rabies gene was modified by known techniques to contain a Pst I site, and the construct was then ligated into the Pst I site of pRW741 to form pRW742B. The orientation of the construct in the plasmid is the same as in pRW735.1 previously discussed in Example 3.

Rekombination blev udført som beskrevet i eksempel 2. Den resulterende 30 rekombinant benævnes vFP-3.Recombination was performed as described in Example 2. The resulting recombinant is called vFP-3.

I DK 175904 B1 II DK 175904 B1 I

Udtrykkeisen af rabies antigen af både fugle- og ikke-fugle-celler inficeret IThe expression of rabies antigen by both bird and non-bird cells infected I

med vFP-3-viruset blev bekræftet ved de tidligere beskrevne immunpræcipi- Iwith the vFP-3 virus was confirmed by the immunoprecipitation described previously

terings- og immunfluorescensteknikker. Icuring and immunofluorescence techniques. IN

5 Yderligere bevis for, at vFP-3-udførelsesformen ifølge opfindelsen er en vel- I5 Further proof that the vFP-3 embodiment of the invention is a good one

lykket rekombinant virus, der udtrykker gener for rabies G, opnåedes ved at Isuccessful recombinant virus expressing genes for rabies G was obtained by I

inokulere kaninpar intradermalt med den rekombinante virus. To kaniner blev Iinoculate rabbit pairs intradermally with the recombinant virus. Two rabbits became you

inokuleret intradermalt med 1x10® pfu vFP-3 pr. kanin. Begge disse kaniner Iinoculated intradermally with 1x10® pfu vFP-3 per ml. rabbit. Both of these rabbits

dannede typiske poxlæsioner, der nåede maksimal størrelse 5-6 dage efter Iformed typical pox lesions reaching maximum size 5-6 days after I

10 inokulering. Kaninerne fik udtaget blodprøver med ugentlige intervaller, og I10 inoculation. The rabbits were sampled at weekly intervals and I

sera blev afprøvet ved ELISA med henblik på påvisning af tilstedeværelsen Isera were tested at ELISA to detect presence I

af specifikt antistof for rabiesglycoproteinet. Iof specific antibody for the rabies glycoprotein. IN

Fem rotter blev hver ligeledes inokuleret intradermalt med 5 x 107 pfu vFP-3. IFive rats were each also inoculated intradermally with 5 x 10 7 pfu vFP-3. IN

15 Der sås resulterende læsioner i alle dyrene.Resulting lesions were seen in all animals.

Både kaniner og rotter dannede påviselige mængder antistof specifikt mod rabies to uger efter inokulering. To kontrolkaniner inokuleret intradermalt med det parental FP-1-virus havde ikke påviselige mængder af anti-rabies an-20 tistof.Both rabbits and rats produced detectable amounts of antibody specifically against rabies two weeks after inoculation. Two control rabbits inoculated intradermally with the parental FP-1 virus did not have detectable amounts of anti-rabies antibody.

For at udelukke den mulighed, at antistof responset skyldtes indførelsen af rabiesantigen, der tilfældigt fulgte med inokulumviruset eller var integreret i membranen af det rekombinante fjerkræpox-virus, snarere end at være frem-25 kommet ved de novo syntese af rabiesantigenet af det rekombinante virus i dyret som forudsat, blev vFP-3-viruset kemisk inaktivert og inokuleret i kaniner.In order to exclude the possibility that the antibody response was due to the introduction of the rabies antigen that coincidentally accompanies the inoculum virus or was integrated into the membrane of the recombinant poultry pox virus, rather than having been produced by de novo synthesis of the rabies antigen by the recombinant virus in animal as predicted, the vFP-3 virus was chemically inactivated and inoculated in rabbits.

Det oprensede virus blev inaktiveret fra den ene dag til den anden ved 4 °C i 30 nærvær af 0,001% β-propiolacton og derefter pelleteret ved centrifugering.The purified virus was inactivated one day to another at 4 ° C in the presence of 0.001% β-propiolactone and then pelleted by centrifugation.

Det pelleterede virus blev opsamlet i 10 mM Tris-pufret saltvandsopløsning, 23 DK 175904 B1 ultralydsbehandlet og titreret til sikring af, at der ikke var infektiøs virus tilbage. To kaniner blev inokuleret intradermalt med inaktiveret vFP-3 og to kaniner med en ækvivalent mængde ubehandlet rekombinant. Størrelsen af læsioner blev kontrolleret.The pelleted virus was collected in 10 mM Tris-buffered saline, ultrasonically treated and titrated to ensure that no infectious virus remained. Two rabbits were inoculated intradermally with inactivated vFP-3 and two rabbits with an equivalent amount of untreated recombinant. The size of lesions was checked.

55

Begge kaniner, der fik ubehandlet vFP-3, udviklede 5 dage efter inokulering typiske pox-læsioner klassificeret som 4-5+. Kaniner inokuleret med inaktiveret virus udviklede også læsioner, men disse blev 5 dage efter inokulering klassificeret som 2*.Both rabbits receiving untreated vFP-3 developed typical pox lesions classified 4-5 + 5 days after inoculation. Rabbits inoculated with inactivated virus also developed lesions, but these were classified as 2 * 5 days after inoculation.

1010

Kaninerne fik med ugentlige intervaller udtaget blodprøver, og sera blev ved ELISA afprøvet for tilstedeværelsen af rabiesspecifikke antistoffer og fjerkræpox-specifikke antistoffer. Resultaterne er vist i tabel III nedenfor.The rabbits were sampled at weekly intervals and sera were tested by ELISA for the presence of rabies-specific antibodies and poultry-specific antibodies. The results are shown in Table III below.

15 TABEL IIITABLE III

Levende vFP-3 Inaktiveret vFP-3Live vFP-3 Inactivated vFP-3

Kanin: Nr. 295 Nr. 318 Nr. 303 Nr. 320Rabbit: No. 295 No. 318 No. 303 No. 320

Afprøvet antistof: Rabies FP Rabies FP Rabies FP Rabies FPTested antibody: Rabies FP Rabies FP Rabies FP Rabies FP

Uge efter inokulering "O 0 0 0 0 0 0 6 0 2 250 4000 500 4000 0 50 0 1000 3 1000 4000 500 4000 0 4000 0 2000 4 1000 4000 2000 4000 0 4000 0 2000 5 4000 4000 2000 4000 0 2000 0 4000 6 4000 4000 4000 4000 0 2000 0 2000 I denne afprøvning er titreringsendepunktet (udtrykt som den reciprokke af serumfortyndingen) arbitrært sat til 0,2 efter subtraktion af absorptions-20 værdierne af alle præudfordringssera. Begge kaninerne 295 og 318, der fik den levende virus, udviklede et immunrespons på rabiesglycoproteinet og på fjerkræpox-virusantigener. Kaninerne 303 og 320 udviklede også et immun- i ! i I DK 175904 B1 I 24 H respons på fjerkræpox-virusantigener, omend titeren var lav. Ingen af disse kaniner udviklede et påviseligt respons på rabiesglycoproteinet.Week after inoculation "O 0 0 0 0 0 0 6 0 2 250 4000 500 4000 0 50 0 1000 3 1000 4000 500 4000 0 4000 0 2000 4 1000 4000 2000 4000 0 4000 0 2000 5 4000 4000 2000 4000 0 2000 0 4000 6 4000 4000 4000 4000 0 2000 0 2000 In this assay, the titration endpoint (expressed as the reciprocal of the serum dilution) was arbitrarily set at 0.2 after subtracting the absorption values of all pre-challenge sera. Rabbits 303 and 320 also developed an immune response to poultry pox virus antigens, although the titer was low, none of which produced a detectable response to rabies glycoprotein and to poultry pox virus antigens. rabies glycoprotein.

Dette resultat er udtryk for, at det immunologiske respons dannet i kaninen er 5 på grund af de novo udtrykkeisen af rabiesglycoprotein-genet, der bæres i det rekombinante virus, og ikke et respons på et tilfældigt medfølgende gly- coprotein indeholdt i inokulumviruset.This result indicates that the immunological response produced in the rabbit is 5 due to the de novo expression of the rabies glycoprotein gene carried in the recombinant virus, and not a response to a random accompanying glycoprotein contained in the inoculum virus.

I EKSEMPEL 4B - Konstruktion ud fra fierkræpox-virus FP-1 af rekombinant 10 virus vFP-5 indeholdende upromoteret rabies-G-qen I Udtrykkelse af et fremmed gen, indsat ved rekombination i fjerkræpox- I genomet, kræver tilstedeværelse af en promotor. Denne blev vist ved at I skabe yderligere en rekombinant, vFP-5, der er identisk med vFP-3 bortset I 15 fra, at HH-promotoren er udeladt. Tilstedeværelsen af rabiesgenet i denne I rekombinant blev bekræftet ved nukleinsyrehybridisering. Der detekteredes I dog ikke noget rabiesantigen i CEF-cellekulturer inficeret med viruset.In EXAMPLE 4B - Construction from fiery creepox virus FP-1 of recombinant virus vFP-5 containing unprompted rabies G gene I Expression of a foreign gene inserted by recombination in the poultry pox I genome requires the presence of a promoter. This was shown by creating an additional recombinant vFP-5 identical to vFP-3 except that the HH promoter is deleted. The presence of the rabies gene in this I recombinant was confirmed by nucleic acid hybridization. However, no rabies antigen was detected in CEF cell cultures infected with the virus.

I EKSEMPEL 5 - Overførinqsforsøq in vitro til bestemmelseaf om I 20 fierkræpox-virus replikerer i ikke-fuqleceller I Der blev udført et forsøg, hvori tre cellesystemer, et fra fugle og to fra ikke- fugle, blev inokuleret med den parentale FP-1-stamme eller den rekombi- I nante vFP-3. To petriskåle hver af hhv. CEF, MRC-5 og VERO inokuleredes I 25 med FP-1 eller vFP-3 i en input multiplicitet på 10 pfu pr. celle.In Example 5 - In vitro transfer assay to determine I 20 squamous cell virus replicates in non-bird cells I An experiment was performed in which three cell systems, one from birds and two from non-birds, were inoculated with the parental FP-1. strain or the recombinant vFP-3. Two petri dishes each of respectively. CEF, MRC-5 and VERO were inoculated with FP-1 or vFP-3 at an input multiplicity of 10 pfu cell.

Efter tre dage høstedes én petriskål fra hver. Viruset blev frigivet ved tre på I hinanden følgende cykler bestående af frysning og optøning og reinokuleret I på et frisk monolag af den samme cellelinje. Dette blev gentaget ved seks på I 30 hinanden følgende overføringer, og ved afslutningen af forsøget blev prøver ! I fra hver overføring titreret for virusinfektionsevne på CEF-monolag.After three days, one petri dish was harvested from each. The virus was released by three successive cycles of freezing and thawing and reinoculated on a fresh monolayer of the same cell line. This was repeated for six consecutive transfers and at the end of the experiment, samples were obtained! I from each transfer titrated for viral infectivity on CEF monolayers.

DK 175904 B1 25DK 175904 B1 25

Resultaterne er vist i tabel IVA og indikerer, at serieoverføring af både FP-1 og vFP-3 er mulig i CEF-celler, men ikke i nogen af de to cellelinjer fra ikke-fugle. Infektiøst virus kan ikke påvises efter 3 eller 4 overføringer i VERO-eller MRC-5-celler.The results are shown in Table IVA and indicate that serial transfer of both FP-1 and vFP-3 is possible in CEF cells, but not in either of the two non-bird cell lines. Infectious virus cannot be detected after 3 or 4 transfers in VERO or MRC-5 cells.

55

Den anden petriskål blev brugt til bestemmelse af, om virus, der ikke er påviseligt ved direkte titrering, kunne detekteres efter amplifikation i de permissive CEF-celler. På trediedagen høstedes celler på den anden petriskål ved skrabning, og en tredjedel af cellerne lyseredes og inokuleredes på et 10 frisk CEF-monolag. Ved opnåelse af fuld cytopatisk virkning (CPE), eller 7 dage efter inficering, blev cellerne lyseret, og virusudbyttet titreret. Resultaterne er vist i tabel IVB. Når overføring i CEF-celler blev brugt til amplifikation af et hvilket som helst tilstedeværende virus, kunne viruset ikke påvises efter fire eller fem overføringer.The second petri dish was used to determine whether viruses not detectable by direct titration could be detected after amplification in the permissive CEF cells. On the third day, cells were harvested on the second petri dish by scraping and a third of the cells were lysed and inoculated on a fresh CEF monolayer. Upon achieving full cytopathic effect (CPE), or 7 days after infection, the cells were lysed and virus yield titrated. The results are shown in Table IVB. When transmission in CEF cells was used to amplify any virus present, the virus could not be detected after four or five transfers.

1515

Forsøg på at etablere vedvarende inficerede celler slog fejl.Attempts to establish persistently infected cells failed.

I et yderligere forsøg på at påvise tegn på fortsat viral udtrykkelse i ikke-fugle celler, blev prøverne, der anvendtes til viral titrering ovenfor, brugt i en stan-20 dard immunoprik-prøvning (immunodot assay), hvori anti-fjerkræpox antistof og anti-rabies antistof blev brugt til påvisning af tilstedeværelsen af de respektive antigener. Resultaterne af disse prøvninger bekræfter resultaterne opnået ved titrering.In a further attempt to demonstrate evidence of continued viral expression in non-avian cells, the samples used for viral titration above were used in a standard immunoprotection assay (immunodot assay) in which anti-poultry pox antibody and -rabies antibody was used to detect the presence of the respective antigens. The results of these tests confirm the results obtained by titration.

DK 175904 B1 IDK 175904 B1 I

| 26 I| 26 I

TABEL IVA ITABLE IVA I

Overførinqsforsøg ITransfer attempt I

Inokulum- IInoculum- I

virus: FP-1 vFP-3 Ivirus: FP-1 vFP-3 I

Celletype CEF VERO MRC-5 CEF VERO MRC-5 ICell type CEF VERO MRC-5 CEF VERO MRC-5 I

Overføring: ITransmission: I

1 6,6a 4,8 4,9 6,6 5,4 66,2 I1 6.6a 4.8 4.9 6.6 5.4 66.2 I

2 6,7 2,9 3,7 6,5 4,2 5,1 I2 6.7 2.9 3.7 6.5 4.2 5.1 I

3 6,4 1,4 1,0 6,4 1,7 4,4 I3 6.4 1.4 1.0 6.4 1.7 4.4 I

4 6,1 i.d.b i.d. 6,2 i.e. 1,0 I4 6.1 i.d.b i.d. 6.2 i.e. 1.0 I

5 6,4 i.d. i.d. 6,3 i.d. i.d. I6.4 i.d. i.d. 6.3 i.d. i.d. IN

6 5,7 i.d. i.d. 5,9 i.d. i.d. I6 5.7 i.d. i.d. 5.9 i.d. i.d. IN

a - virustiter udtrykt som log™ pfu/ml Ia - virus titer expressed as log ™ pfu / ml I

5 b - ikke detekterbar I5 b - not detectable

TABEL IVB ITABLE IVB I

Amplifikationsforsøq IAmplification Experiment I

Inokulum- IInoculum- I

virus: FP-1 vFP-3 Ivirus: FP-1 vFP-3 I

Celletype CEF VERO MRC-5 CEF VERO MRC-5 ICell type CEF VERO MRC-5 CEF VERO MRC-5 I

Overføring: ITransmission: I

1 6,4a 6,2 6,4 6,5 6,3 6,4 I1 6.4a 6.2 6.4 6.5 6.3 6.4 6.4

2 7,5 6,3 6,0 6,5 6,3 5,5 I2 7.5 6.3 6.0 6.5 6.3 5.5 I

3 6,2 6,7 5,3 5,9 6,1 6,3 I3 6.2 6.7 5.3 5.9 6.1 6.3 I

4 5,6 4,6 3,9 5,7 4,8 5,8 I4 5.6 4.6 3.9 5.7 4.8 5.8 I

5 6,3 4,1 i.d. 6,1 4,7 4,7 I6.3 4.1 i.d. 6.1 4.7 4.7 I

6 6,2 i.d.b i.d. 6,2 i.d. i.d. I6 6.2 i.d.b i.d. 6.2 i.d. i.d. IN

10 a - virustiter udtrykt som log™ pfu/ml I10 α - virus titers expressed as log ™ pfu / ml I

b - ikke detekterbar Ib - not detectable

DK 175904 B1 27 EKSEMPEL 6 - Yderligere rekombinanter af fierkræpox FP-1: vFP-6. vFP-7. vFP-8 oa vFP-9EXAMPLE 6 - Additional recombinants of wild crepe pox FP-1: vFP-6. VFP 7th vFP-8 or vFP-9

Rekombinant vira vFP-6 og vFP-7 blev konstrueret på følgende måde.Recombinant viruses vFP-6 and vFP-7 were constructed as follows.

55

Et 5,5 kbp Pvull-fragment af FP-1 blev indsat mellem de to Pvull-steder i | PUC9 til dannelse af plasmidet pRW731.13. Dette plasmid blev derpå skåret i et unikt Hincll-sted og HH-promoteret rabies G-gen med stumpe ender indsat til dannelse af plasmideme pRW748A og pRW748B, der repræsenterer 10 modsatte orienteringer af indsættelsen. Plasmideme pRW748A og B blev derpå anvendt separat til at transfektere CEF-celler sammen med FP-1-virus til dannelse af hhv. vFP-6 og vFP-7 ved rekombination. Dette locus er nu designeret locus f7.A 5.5 kbp Pvull fragment of FP-1 was inserted between the two Pvull sites in | PUC9 to generate the plasmid pRW731.13. This plasmid was then cut into a unique HincII site and HH promoted rabies G gene with blunt ends inserted to generate plasmids pRW748A and pRW748B, representing 10 opposite orientations of insertion. The plasmids pRW748A and B were then used separately to transfect CEF cells together with FP-1 virus to generate, respectively. vFP-6 and vFP-7 by recombination. This locus is now designated locus f7.

15 Et 10 kbp Pvull-fragment af FP-1 blev indsat mellem de to Pvull-steder i pUC9 til dannelse af pRW731.15. Dette plasmid blev derpå skåret i et unikt BamHI-sted og et 11 K-promoteret Lac Z genfragment blev indsat til dannelse af pRW749A og pRW749B, der repræsenterer modsatte orienteringer af indsættelsen. Rekombination af disse donorplasmider med FP-T resulterede i 20 hhv. vFP-8 og vFP-9. Dette locus er nu designeret locus f8.A 10 kbp Pvull fragment of FP-1 was inserted between the two Pvull sites in pUC9 to form pRW731.15. This plasmid was then cut into a unique BamHI site and an 11 K promoted Lac Z gene fragment was inserted to generate pRW749A and pRW749B, representing opposite orientations of insertion. Recombination of these donor plasmids with FP-T resulted in 20 and 10, respectively. vFP-8 and vFP-9. This locus is now designated locus f8.

vFP-8 og vFP-9 udtrykte LacZ-genet, som påvist ved X-gal. vFP-6 og vFP-7 udtrykte rabies G-genet som påvist ved rabiesspecifikt antiserum.vFP-8 and vFP-9 expressed the LacZ gene, as detected by X-gal. vFP-6 and vFP-7 expressed the rabies G gene as detected by rabies-specific antiserum.

25 EKSEMPEL 7 - Immunisering med vFP-3 til beskyttelse af dyr mod udfordring med levende rabiesvirusExample 7 - Immunization with vFP-3 to protect animals from challenge with live rabies virus

Grupper på 20 SPF hunmus, 4-6 uger gamle, blev inokuleret under fødderne med 50 μΙ vFP-3 i doser fra 0,7 til 6,7 TCID50 pr. mus. [TCID50 eller vævskul-30 tur-infektiøs dosis (tissue culture infectious dose) er den dosis, hvorved der ses cytopatisk virkning i 50% af celler i vævskultur). 14 dage efter vaccina-Groups of 20 SPF female mice, 4-6 weeks old, were inoculated underfoot with 50 μΙ of vFP-3 at doses ranging from 0.7 to 6.7 TCID 50 per day. mouse. [TCID50 or tissue culture infectious dose (the tissue culture infectious dose) is the dose at which cytopathic effect is seen in 50% of cells in tissue culture). 14 days after vaccination

I DK 175904 B1 II DK 175904 B1 I

tionen blev 10 mus i hver gruppe slået ihjel, og der blev taget serumprøver I10 mice were killed in each group and serum samples I were taken

med henblik på prøvning ved RFFI-afprøvningen. De tilbageværende 10 mus Ifor testing in the RFFI test. The remaining 10 mice I

bjev udfordret ved intracerebral inokulering af 10 LDgo rabies af CVS- Ibark challenged by intracerebral inoculation of 10 LDgo rabies by CVS-I

stammen og overlevende mus optalt 14 dage efter udfordringen. Ithe strain and surviving mice counted 14 days after the challenge. IN

Resultaterne er vist i tabel VA nedenfor. IThe results are shown in Table VA below. IN

TABEL VA ITABLE VA I

10 vFP-3 dosis Rabies antistof titer I10 vFP-3 dose of Rabies antibody titer I

Loom TCIDsn Loom Fortynding* Overlevelse ILoom TCIDsn Loom Dilution * Survival I

6,7 1,9 8/10 I6.7 1.9 8/10 I

4,7 1,8 0/10 I4.7 1.8 0/10 I

15 2,7 0,4 0/10 I2.7 0.4 0/10 I

0,7 0,4 0/10 I0.7 0.4 0/10 I

Som målt ved RFFI (Rapid Fluorescent Focus Inhibition) afprøvningen, IAs measured by the Rapid Fluorescent Focus Inhibition (RFFI) test, I

Laboratory Techniques in Rabies, 3. udg., 354-357, WHO, Geneve. ILaboratory Techniques in Rabies, 3rd ed., 354-357, WHO, Geneva. IN

Forsøget blev gentaget med 12,5 LD50 udfordrende rabiesvirus. Resultaterne IThe experiment was repeated with 12.5 LD50 challenging rabies virus. The results I

er vist i tabel VB nedenfor. Iare shown in Table VB below. IN

TABEL VB ITABLE VB I

vFP-3 dosis Rabies antistof titer IvFP-3 dose of Rabies antibody titer I

Logm TCIDsn Loqm Fortynding' Overlevelse ILogm TCIDsn Loqm Dilution 'Survival I

6,7 2,8 5/10 I6.7 2.8 5/10 I

30 4,7 2,1 2/10 I4.7 2.1 2.1 / 10 I

2,7 0,6 0/8 ' I2.7 0.6 0/8 'I

0,7 0,6 0/8 I0.7 0.6 0/8 I

Som målt ved RFFI (Rapid Fluorescent Focus Inhibition) afprøvningen, IAs measured by the Rapid Fluorescent Focus Inhibition (RFFI) test, I

35 Laboratory Techniques in Rabies, 3. udg., 354-357, WHO, Geneve. I35 Laboratory Techniques in Rabies, 3rd ed., 354-357, WHO, Geneva. IN

DK 175904 B1 29DK 175904 B1 29

To hunde og to katte blev immuniseret med en enkelt subcutan inokulering af 8 logio TCID50 af det rekombinante vFP-3. Yderligere blev to hunde og fire katte af tilsvarende alder og vægt holdt som ikke-vaccinerede kontroller. Der blev udtaget blodprøver på alle dyr med ugentlige mellemrum. På dag 94 5 blev hver hund udfordret ved inokulering i tindingemuskelen af to doser på 0,5 ml af et spytkirtelhomogenat af. rabies virus af NY-stammen, tilgængelig fra Institut Merieux, Inc. Den totale dosis svarede til 10000 muse LD50 indgivet ad intracerebral vej. De seks katte blev på lignende måde udfordret ved inokulering i nakkemuskelen med to doser på 0,5 ml af den samme vi-10 russuspension. Den totale dosis pr. dyr svarede til 40000 muse LD50 indgivet ad intracerebral vej. Dyrene blev observeret dagligt. Alle ikke-vaccinerede dyr døde med rabiessymptomer på den i tabel VI angivne dag. De vaccinerede dyr overlevede udfordringen og blev observeret i tre uger, efter at det sidste kontroldyr døde. Resultaterne er vist i tabel VI nedenfor.Two dogs and two cats were immunized with a single subcutaneous inoculation of 8 logio TCID 50 of the recombinant vFP-3. In addition, two dogs and four cats of similar age and weight were kept as non-vaccinated controls. Blood tests were performed on all animals at weekly intervals. On day 94 5, each dog was challenged by inoculation in the temporal muscle of two 0.5 ml doses of a salivary gland homogenate. rabies virus of the NY strain, available from Institut Merieux, Inc. The total dose was equivalent to 10000 mice LD50 administered by intracerebral route. The six cats were similarly challenged by inoculation in the neck muscle with two doses of 0.5 ml of the same vi-10 russus suspension. The total dose per animals corresponded to 40000 mice LD50 administered by intracerebral route. The animals were observed daily. All non-vaccinated animals died with rabies symptoms on the day listed in Table VI. The vaccinated animals survived the challenge and were observed for three weeks after the last control animal died. The results are shown in Table VI below.

! i j i j! i j i j

30 I30 I

DK 175904 B1 IDK 175904 B1 I

TABEL VI ITABLE VI I

Overle- ISurvive- I

velse/ Vaccine- Døds- IVaccine / Death- I

dvr ring Titer på postinokulerinasdaa tidsDunkt Idvr ring Titer at the postinoculars at that timeInd I

5 I5 I

0 14 21 28 94 I0 14 21 28 94 I

Kat . ICat. IN

7015 vFP-3a 0 2,2b 2,4 2,4 1,5 + I7015 vFP-3a 0 2.2b 2.4 2.4 1.5 + I

7016 vFP-3 0 1,7 1,9 2,0 1,3 + I7016 vFP-3 0 1.7 1.9 2.0 1.3 + I

10 8271 cc 0 0 0 0 0 d/13d I10 8271 cc 0 0 0 0 0 d / 13d I

T10 c 0 0 0 0 0 d/12 IT10 c 0 0 0 0 0 d / 12 I

T41 c 0 0 0 0 0 d/13 IT41 c 0 0 0 0 0 d / 13 I

T42 c 0 0 0 0 0 d/12 IT42 c 0 0 0 0 0 d / 12 I

15 Hund I15 Dog I

426 vFP-3 0 0,8 1,0 1,1 1,2 + I426 vFP-3 0 0.8 1.0 1.1 1.2 + I

427 vFP-3 0 1,5 2,3 2,2 1,9 + I427 vFP-3 0 1.5 2.3 2.2 1.9 + I

55 c 0 0 0 0 0 d/15 I55 c 0 0 0 0 0 d / 15 I

8240 c 0 0 0 0 0 d/16 I8240 c 0 0 0 0 0 d / 16 I

20 I20 I

a Både katte og hunde vaccineret med vFP-3 modtog 8 logioTCIDso ad sub- Ia Both cats and dogs vaccinated with vFP-3 received 8 logioTCID 50 ad sub-I

cutan vej. Icutan road. IN

b Titer udtrykt som log10 højeste serumfortynding der giver mere end 50% Ib Titer expressed as log10 highest serum dilution yielding more than 50% I

reduktion i antallet af fluorescerende brønde i en RFFI-test. Ireduction in the number of fluorescent wells in an RFFI test. IN

25 c Ikke-vaccinerede kontroldyr. I25 c Non-vaccinated control animals. IN

d Dyret døde/dødsdag efter udfordring. Id The animal died / death day after challenge. IN

I yderligere forsøg blev de rekombinante vira vFP-2 og vFP-3 inokuleret i IIn further experiments, the recombinant viruses vFP-2 and vFP-3 were inoculated into I

kvæg ad flere forskellige indgivelsesveje. Icattle by several different routes of administration. IN

30 I30 I

Inokulerede dyr blev afprøvet for anti-rabies antistof pådagene 6, 14, 21, 28 IInoculated animals were tested for anti-rabies antibody on days 6, 14, 21, 28 I

og 35. Som vist i den følgende tabel VIIA udviste alle dyr et serologisk re- Iand 35. As shown in the following Table VIIA, all animals exhibited a serologic response

spons på rabiesantigenet. Isponge on the rabies antigen. IN

DK 175904 B1 31DK 175904 B1 31

TABEL VHATABLE VHA

Antistof-titere i pattedyr inokuleret med vFP-3 anti-rabies neutraliserende antistoffer 5 RFFI-test loam fortyndingAntibody titers in mammals inoculated with vFP-3 anti-rabies neutralizing antibodies 5 RFFI test loam dilution

Dag 0 6 14 21 28 35Day 0 6 14 21 28 35

Kvæg nr.Cattle no.

10 7,3 logio TCID50 1420 (intraderm.) NEG 0,6 2 1,7 1,8 1,7 8 log 10 TCID50 1419 (subcutan) NEG 1,6 2,2 2,1 2,1 1,9 15 8 I0910 TCIDgo 1421 (intramusk.) NEG 0,9 2,2 2,2 1,8 1,7 7,3 logio TCID50 20 1423 (intramusk.) NEG 0,9 1.Γ 1+ 1+ 1,1* + Ikke signifikant.7.3 log 10 TCID 50 1420 (intraderm) NEG 0.6 2 1.7 1.8 1.7 8 log 10 TCID 50 1419 (subcutaneous) NEG 1.6 2.2 2.1 2.1 1.9 1.9 8 I0910 TCIDgo 1421 (intramuscular) NEG 0.9 2.2 2.2 1.8 1.7 7.3 logio TCID50 20 1423 (intramuscular) NEG 0.9 1.Γ 1+ 1+ 1.1 * + Not significant.

Hvert stykke kvæg blev revaccineret med 8 logio TCIF50 55 dage efter ino-25 kulering og udviste et anamnestisk respons på rabiesantigenet. Ved booster-revaccination blev alt kvæget inokuleret subcutant undtagen nr. 1421, der igen inokuleredes intramuskulært. RFFI-titere blev bestemt på dagene 55, 57, 63, 70, 77 og 86. Resultaterne er vist i tabel VIIB.Each piece of cattle was revaccinated with 8 logio TCIF 50 55 days after inoculation and showed an anamnestic response to the rabies antigen. Upon booster revaccination, all cattle were inoculated subcutaneously except for # 1421, which was again inoculated intramuscularly. RFFI titers were determined on days 55, 57, 63, 70, 77 and 86. The results are shown in Table VIIB.

I DK 175904 B1 II DK 175904 B1 I

I 32 II 32 I

I TABEL VIIB II TABLE VIIB I

I ' Daa 55 57 63 70 77 86 II 'Daa 55 57 63 70 77 86 I

I Kvæg nr. IIn Cattle No. I

I 5 1419 1,7 1,5 2,9 2,9 2,6 2,9 II 5 1419 1.7 1.5 2.9 2.9 2.6 2.9 I

I 1420 1,0 0,5 1,9 2,3 2,2 2,0 II 1420 1.0 0.5 1.9 2.3 2.2 2.0 I

1421 1,3 1,2 2,9 2,7 2,5 2,5 I1421 1.3 1.2 2.9 2.7 2.5 2.5 I

10 I10 I

I 1423 1,0 0,7 2,4 2,5 2,5 2,2 II 1423 1.0 0.7 2.4 2.5 2.5 2.2 I

I Alle tal er for vFP-3 med undtagelse af dyr nr. 1423, der er for vFP-2. IIn All Figures is for vFP-3 with the exception of animal # 1423 which is for vFP-2. IN

I 15 Kvæg, katte og kaniner blev også Inokuleret intradermalt med kendte mæng- IIn cattle, cats and rabbits were also inoculated intradermally with known quantities

I der af fjerkræpox-virus, og efter en uge blev sår opsamlet fra dyrene. Disse IIn there of poultry pox virus, and after a week, wounds were collected from the animals. These I

blev formalet, suspenderet i saltvandsopløsning og titreret til bestemmelse af Iwas ground, suspended in brine and titrated to determine I

I virusmængderne. IIn the viruses. IN

I 20 Kun residuale mængder af infektiøs virus kunne genvindes. Dette viser, at IIn 20 Only residual amounts of infectious virus could be recovered. This shows that you

I der in vivo ikke forekom nogen produktiv infektion. IIn vivo, no productive infection occurred. IN

I EKSEMPEL 8 - Inokulerlna af kyllinger med vFP-3 IIn Example 8 - Inoculations of chickens with vFP-3 I

I 25 Det rekombinante fjerkræpox-virus vFP-3 blev inokuleret i kyllinger for at vise IThe recombinant poultry pox virus vFP-3 was inoculated into chickens to show I

I udtrykkeisen af fremmed DNA af et rekombinant fjerkræpox-virus i et system, IIn the expression of foreign DNA of a recombinant poultry pox virus in a system, I

I der tillader produktiv replikation af vektoren. IIn that allows productive replication of the vector. IN

I Kyllinger af hvide italienerhøns blev inokuleret intramuskulært med 9 logio IIn Chickens of white Italian chickens were inoculated intramuscularly with 9 logio I

I 30 TCID50 vFP-3 eller 3 log10 TOID50 vFP-3 ved vinge-gennemstikning. Der ud- IIn 30 TCID50 vFP-3 or 3 log10 TOID50 vFP-3 by wing piercing. There, I-

I toges blodprøver til en RFFI-afprøvning for rabies antistoftiter 21 dage efter IBlood samples were taken for an RFFI test for rabies antibody titers 21 days after I

I vaccinering. Titere fra dag 21 i inokulerede kyllinger var signifikant højere IIn vaccination. Titers from day 21 in inoculated chickens were significantly higher

I end titere fra dag 21 i kontroller. Gennemsnitstiteren for de uinficerede kon- IIn than titers from day 21 in controls. The average titer of the uninfected con- I

DK 175904 B1 33 troller var 0,6, gennemsnittet for de intramuskulært inokulerede fugle var 1,9 og gennemsnittet for de vinge-gennemstukne fugle var 1,2.The trolls were 0.6, the average for the intramuscularly inoculated birds was 1.9, and the average for the wing-pierced birds was 1.2.

EKSEMPEL 9 - Rekombinant fierkræpox vFP-11. der udtrykker kalkun-5 influenza-HS-HA-antigenEXAMPLE 9 - Recombinant fiery crepe pox vFP-11. expressing turkey-5 influenza HS-HA antigen

Fuglearter kan immuniseres mod fuglepatogener ved brug af de rekombi-nante avipoxvira ifølge opfindelsen.Bird species can be immunized against bird pathogens using the recombinant avipox viruses of the invention.

10 Således blev det hidtil ukendte plasmid pRW759 (beskrevet nedenfor), der er afledt fra fjerkræpox-virus FP-1 og som indeholder det Hindlll H-promoterede hæmagglutinin-gen (H5) fra A/turkey/lreland/1378/83 (TYHA), anvendt til transfektion af CEF-celler, der samtidig var inficeret med parentalt virus, FP- 1. Rekombinant fjerkræpox-virus vFP-11 blev opnået ved de tidligere be-15 skrevne teknikker.Thus, the novel plasmid pRW759 (described below) derived from poultry pox virus FP-1 and containing the HindIII H promoted hemagglutinin gene (H5) from A / turkey / ireland / 1378/83 (TYHA) , used for transfection of CEF cells simultaneously infected with parental virus, FP-1. Recombinant poultry pox virus vFP-11 was obtained by the previously described techniques.

Syntesen af et hæmagglutininmolekyle af vFP-11-inficerede celler blev bekræftet ved immunpræcipitering fra metabolisk radiomærkede inficerede cellelysater ved brug af specifikt anti-H5-antistof og standard teknikker. Der 20 blev vist specifik immunpræcipitering af prækursor-hæmagglutinin med en molekylvægt på ca. 63 kd (kilodalton) og to kløvningsprodukter med molekylvægte på 44 og 23 kd. Der blev ikke præcipiteret sådanne proteiner fra et lysat af uinficerede CEF-celler eller celler inficeret med parentalt virus, FP-1.The synthesis of a hemagglutinin molecule of vFP-11 infected cells was confirmed by immunoprecipitation from metabolically radiolabeled infected cell lysates using specific anti-H5 antibody and standard techniques. Specific immunoprecipitation of precursor hemagglutinin having a molecular weight of about 20 was shown. 63 kd (kilodalton) and two cleavage products with molecular weights of 44 and 23 kd. No such proteins were precipitated from a lysate of uninfected CEF cells or cells infected with parental virus, FP-1.

2525

Der blev foretaget immunfluorescensundersøgelser til bestemmelse af, at HA-molekylet, dannet i celler inficeret med det rekombinante fjerkræpox vFP-11 blev udtrykt påcelleoverfladen. CEF-celler inficeret med det rekombinante fjerkræpox-virus vFP-11 viste kraftig fluorescerende mærkning på overfladen.Immunofluorescence studies were performed to determine that the HA molecule formed in cells infected with the recombinant poultry pox vFP-11 was expressed on the cell surface. CEF cells infected with the recombinant poultry pox virus vFP-11 showed strong fluorescent labeling on the surface.

30 I celler inficeret med det parentale virus FP-1 sås ingen fluorescens.30 In cells infected with the parental virus FP-1, no fluorescence was seen.

!!

DK 175904 B1 IDK 175904 B1 I

34 I34 I

Plasmid pRW759 blev dannet på følgende måde: IPlasmid pRW759 was formed as follows: I

pRW742B tøfr. eksempel 4) gøres lineært ved delvis nedbrydning med Pstl, IpRW742B tough. Example 4) is made linear by partial decomposition with Pst I, I

og fragmentet skæres igen med EcoRV til fjernelse af rabies-G-genet, hvilket Iand the fragment is cut again with EcoRV to remove the rabies G gene, which I

5 efterlader HH-promotoren på det tilbageværende fragment på ca. 3,4 kbp. I5 leaves the HH promoter on the remaining fragment of ca. 3.4 kbp. IN

Dette behandles med alkalisk phosphatase, og et syntetisk oligonukleotid IThis is treated with alkaline phosphatase and a synthetic oligonucleotide I

; blev indsat til sammenføjning af HH-promotoren med TYHA ved ATG til dan- I; was inserted to join the HH promoter with TYHA by ATG to Dan

I nelse af pRW744. IIn accordance with pRW744. IN

10 Dette plasmid blev gjort lineært ved delvis nedbrydning med Dral, det lineære IThis plasmid was made linear by partial degradation with Dral, the linear I

fragment skåret med Sall og det største fragment blev reisoleret og behan- Ifragment cut with Sal and the largest fragment was reinsulated and treated

diet med alkalisk phosphatase. Idiet with alkaline phosphatase. IN

Til slut blev pRW759 dannet ved indsættelse i pRW744-vektoren af den isol- IFinally, pRW759 was formed by insertion into the pRW744 vector of the isolate I

15 erede Sall-Dral kodesekvens fra TYHA, beskrevet af Kawaoka et al., Virol- I15 honored Sall-Dral coding sequence from TYHA, described by Kawaoka et al., Virol-I

ogy 158:218-227(1987). Iand 158: 218-227 (1987). IN

EKSEMPEL 10 - Immunisering med vFP-11 til beskyttelse af fuole imod IEXAMPLE 10 - Immunization with vFP-11 to protect Fuole against I

udfordring med levende influenza vi rus Ilive flu challenge we intoxicated

20 I20 I

For at vurdere immunogeniciteten af det rekombinante fjerkræpox-virus vFP- ITo assess the immunogenicity of the recombinant poultry pox virus vFP-I

11, udførtes vaccinations- og udfordringsforsøg med kyllinger og kalkuner. I11, vaccination and challenge trials were conducted with chickens and turkeys. IN

Særlige patogenfrie kyllinger af hvide italienere blev i en alder af 2 dage og 5 IParticular pathogen-free chickens of white Italians turned 2 years old and 5 l

25 uger vaccineret ved vingevævspunktur med en dobbelt kanyle, der anvendes I25 weeks vaccinated by wing tissue puncture with a double needle used I

til kommerciel vaccinering af fjerkræ med ijerkræpox-virus. Hver fugl blev Ifor commercial vaccination of poultry with ironpox pox virus. Each bird became you

indgivet ca. 2 pi indeholdende 6 x 105 pfu vPF-1. Der blev udtaget blodprøver Ifiled approx. 2 µl containing 6 x 10 5 pfu vPF-1. Blood samples were taken

fra de ældre fugle før vaccineringen, og der udtoges blodprøver fra alle fugle Ifrom the older birds before vaccination, and blood samples were taken from all birds I

før udfordring og to uger senere. Ibefore challenge and two weeks later. IN

30 I30 I

DK 175904 B1 35DK 175904 B1 35

Til sammenlignende formål blev en anden gruppe kyllinger vaccineret med en konventionel H5-vaccine betående af en inaktiveret H5N2-stamme i en 1 vand-i-olie-emulsion.For comparative purposes, another group of chickens was vaccinated with a conventional H5 vaccine consisting of an inactivated H5N2 strain in a 1 water-in-oil emulsion.

5 Inaktiveret H5N2-vaccinne blev fremstillet ud fra A/Mallard/NY/189/82 (H5N2) influenzavirus dyrket i 11 dage gamle embryonerede hønseæg. Den inficerede allantoisvæske med en HA-titer på 800/0,1 ml og infektivitetstiter på 1 08,5/0,1 ml blev inaktiveret med 0,1% propiolacton og suspenderet i vand-i-olie-emulsion som beskrevet i Stone et al., Avian Dis. 22:666-674 (1978) og 10 Brugh et al., Proc. Second Inter. Syrn. on Avian Influenza, 283-292 (1986). Vaccinen blev i et volumen på 0,2 ml indgivet subcutant på indersiden af lårmusklen i 2 dage og 5 uger gamle kyllnger af SPF hvide italienere.5 Inactivated H5N2 vaccine was prepared from A / Mallard / NY / 189/82 (H5N2) influenza virus cultured in 11-day-old embryonated chicken eggs. The infected allantoic fluid with a HA / titer of 800 / 0.1 ml and infectivity titer of 1 08.5 / 0.1 ml was inactivated with 0.1% propiolactone and suspended in water-in-oil emulsion as described in Stone et al. al., Avian Dis. 22: 666-674 (1978) and Brugh et al., Proc. Second Inter. Sym. on Avian Influenza, 283-292 (1986). The vaccine was administered in a volume of 0.2 ml subcutaneously on the inside of the thigh muscle for 2 days and 5 weeks old chicks by SPF white Italians.

En tredie og fjerde gruppe kyllinger fik hhv. parentalt virus FP-1 eller ingen 15 vaccine.A third and fourth group of chickens were given respectively. parental virus FP-1 or no vaccine.

Kyllingerne blev udfordret med ca. 103 LD50 af den yderst patogene A/Turkey/lreland/1378/83 (H5N8) eller A/Chick/Penn/1370/83 (H5N2) influenzavirus ved indgivelse af 0,1 ml i næseborene af hver fugl. To dage gamle 20 fugle blev udfordret 6 uger efter vaccinering, og 5 uger gamle fugle blev udfordret 5 uger efter vaccinering. Fuglene blev dagligt observeret for tegn på sygdom, indikeret ved opsvulmen og cyanose af ansigtet og kammen, samt blødninger i benene (ofte kunne sådanne fugle ikke stå op), paralyse og død.The chickens were challenged with approx. 103 LD50 of the highly pathogenic A / Turkey / ireland / 1378/83 (H5N8) or A / Chick / Penn / 1370/83 (H5N2) influenza virus by administration of 0.1 ml into the nostrils of each bird. Two day old 20 birds were challenged 6 weeks after vaccination and 5 week old birds were challenged 5 weeks after vaccination. The birds were observed daily for signs of disease, indicated by swelling and cyanosis of the face and comb, as well as leg bleeds (often such birds could not stand up), paralysis and death.

De fleste dødsfald skete mellem 4 og 7 dage efter inficering. Der blev taget 25 podninger fra trachea og kloak på hver af de levende kyllinger 3 dage efter inficering, som undersøgtes for virus ved inokulering i embryonerede æg. Kyllingerne inokuleret med enten vildtype eller rekombinant fjerkræpox-virus udviklede typiske læsioner på vingevævet. På tredjedagen var dannet pus-tuler på stedet for hvert kanylestik, efterfulgt af cellulær infiltrering med sår-30 dannelse og bedring på 7. dagen. Der dannedes ikke nogen sekundære læsioner, og der var ikke tegn på spredning til ikke-vaccinerede kontaktkyl-Most deaths occurred between 4 and 7 days after infection. 25 trachea and sewage inoculations were taken on each of the live chickens 3 days after infection, which was examined for virus by inoculation in embryonated eggs. The chickens inoculated with either wild-type or recombinant poultry pox virus developed typical lesions on the wing tissue. On the third day, pus-tules were formed at the site of each cannula, followed by cellular infiltration with wound formation and improvement on the 7th day. No secondary lesions were formed and there was no evidence of spread to unvaccinated contact coolers.

36 I36 I

DK 175904 B1 IDK 175904 B1 I

linger. Resultaterne af udfordringsforsøget er vist i tabel VIII og de tilhørende Ioffices. The results of the challenge trial are shown in Table VIII and the corresponding I

serologiske resultater i tabel IX. Iserological results in Table IX. IN

TABEL VIII ITABLE VIII I

5 I5 I

Beskyttelse af kyllinger formidlet af H5 udtrvkt i fierkræpox IProtection of chickens mediated by H5 expressed in wild crayfish pox I

Påvist IProven I

udfordring Beskyttelse Virus Ichallenge Protection Virus I

10 Kyllingers I10 Chickens I

Virus Vaccine alder Syg/død/total Trachea Kloak |Virus Vaccine age Sick / dead / total Trachea Sewer |

Ty/lreland Fowlpox-H5 2 dage 0/0/10 0/10 0/10 ITy / lreland Fowlpox-H5 2 days 0/0/10 0/10 0/10 I

(H5N8) (vFP-11) 5 uger 0/0/5 0/5 0/5 I(H5N8) (vFP-11) 5 weeks 0/0/5 0/5 0/5 I

15 Inaktiveret 2 dage 0/0/9 0/9 0/9 I15 Inactivated 2 days 0/0/9 0/9 0/9 I

H5N2 5 uger 0/0/5 0/5 0/5 IH5N2 5 weeks 0/0/5 0/5 0/5 I

Fowlpox 2 dage 10/9/10 2/6 3/6 IFowlpox 2 days 10/9/10 2/6 3/6 I

control 5 uger 4/3/5 0/5 4/5 Icontrol 5 weeks 4/3/5 0/5 4/5 I

20 I20 I

Ingen 2 dage 10/9/10 2/7 5/7 INo 2 days 10/9/10 2/7 5/7 I

2 dage' 2/1/2 2/2 2/2 I2 days' 2/1/2 2/2 2/2 I

5 uger 2/2/5 0/5 1/5 I5 weeks 2/2/5 0/5 1/5 I

25 Ck/Penn Fowlpox-H5 2 dage 0/0/10 8/10 0/10 I25 Ck / Penn Fowlpox-H5 2 days 0/0/10 8/10 0/10 I

(H5N2) (vFP-11) 5 uger 0/0/6 5/6 2/6 I(H5N2) (vFP-11) 5 weeks 0/0/6 5/6 2/6 I

Inaktiveret 2 dage 0/0/8 2/8 0/8 IInactivated 2 days 0/0/8 2/8 0/8 I

H5N2 5 uge 0/0/5 3/5 0/5 IH5N2 5 week 0/0/5 3/5 0/5 I

30 I30 I

Fowlpox 2 dage 10/1/10 10/10 10/10 IFowlpox 2 days 10/1/10 10/10 10/10 I

control 5 uger 5/0/5 5/5 5/5 Icontrol 5 weeks 5/0/5 5/5 5/5 I

Ingen 2 dage 9/3/9 9/9 9/9 INo 2 days 9/3/9 9/9 9/9 I

35 2 dage' 2/2/2 2/2 2/2 I35 2 days' 2/2/2 2/2 2/2 I

_5 uger 5/2/5_5/5 5/5_ I_5 weeks 5/2 / 5_5 / 5 5 / 5_ I

* Fire ikke-vaccinerede fugle opholdt sig hos og voksede op med fjerkræpox- I* Four non-vaccinated birds stayed with and grew up with poultry pox-I

H5-gruppen på 10 fugle til afprøvning af spredningen af fjerkræpox-H5. IThe H5 group of 10 birds for testing the spread of poultry pox H5. IN

40 I40 I

DK 175904 B1 fe O OO 1 C 0001000100¾DK 175904 B1 fe O OO 1 C 0001000100¾

111 N- CM ^τ- -tf -'i' rg N S111 N- CM ^ τ- -tf -'i 'rg N S

® .. i t •i 5 & 2 m > ^ *" > is u S o • © c o o® .. i t • i 5 & 2 m> ^ * "> is u S o • © c o o

W'glD VV^-T-VVVVW'glD VV ^ -T-VVVV

.¾ Z.¾ Z

> ro - ro □ a N C^eO _Ολ c C i- So o o a o a ~ ω © 52 So oo oo os 3 S _ c So oo oo oo = -σ LU ^ T- r~ CM CO -r- CO h-> ro - ro □ a N C ^ eO _Ολ c C i- So o o a o a ~ ω © 52 So oo oo os 3 S _ c So oo oo oo = -σ LU ^ T- r ~ CM CO -r- CO h-

7= CO C7 = CO C

.E ^ ro M 3 0) CD »i C zsr > >“ æ o o '1= H o cd in ^ -X LUr-T-cocMVVvv ro c <5 ™.E ^ ro M 3 0) CD »i C zsr>>“ æ o o '1 = H o cd in ^ -X LUr-T-cocMVVvv ro c <5 ™

Js fe o __ o o oo oo o o o o oo o o o o oo cm m- coo — c LU O CM O CM CM CD CM CO O CO CM t-t- t- t- _ cJs fe o __ o o oo oo o o o o o o o o o oo cm m- coo - c LU O CM O CM CM CD CM CO O CO CM t-t- t- t- _ c

II CDII CD

T o.Thaw.

X Q. iSX Q. iS

O, ^ I- ϊο UJ Ό Q o § o oO, ^ I- ϊο UJ Ό Q o § o o

^ CQ m >2 LU V V CO T- V V V V V V CM t- V V V V^ CQ m> 2 LU V V CO T- V V V V V V CM t- V V V V

< 1 £ H σ & c t cm S a a ~ •c qp >- a o ^ o © —.<1 £ H σ & c t cm S a a ~ • c qp> - a o ^ o © -.

η) -1- © CD o O Orø a O OO OOS SOη) -1- © CD o O Orø and O OO EAST SO

— -rj 4i O OO O O CO CM OO OO O O O O O CD- -rj 4i O OO O O CO CM OO OO O O O O O CD

J g LU t— Tf N- CD T-T- CO CM CD CM CO O CD 05 CD *- o % .E £ "O λ ^ CD i— *- „ > ® s o o o _ o o o o ooooJ g LU t— Tf N- CD T-T- CO CM CD CM CO O CD 05 CD * - o% .E £ "O λ ^ CD i— * -"> ® s o o o _ o o o o oooo

Q) LU T-T- COCO VV VV T- CO CD CO VV VVQ) LU T-T- COCO VV VV T- CO CD CO VV VV

ω υ 3 I V U O L. Φ U Φ U (D k. Φ L. Φ U ID b T3 c 05 © OS 05 05 © 05 05 05 <15 0505 0505 0505 C := U5 © CO 05 CO 05 CO 05 CO 05 CO 05 (005 (005 (005 — >.0)2 "O O O 3 "03 Ό3 OD Ό 3 "O 3 "03ω υ 3 IVUO L. Φ U Φ U (D k. Φ L. Φ U ID b T3 c 05 © OS 05 05 © 05 05 05 <15 0505 0505 0505 C: = U5 © CO 05 CO 05 CO 05 CO 05 CO 05 (005 (005 (005 -> .0) 2 "OOO 3" 03 Ό3 OD Ό 3 "O 3" 03

[2 05 CO CM LO CM ID CM CD CM ID CM CD CM CD CM ID CM ID[2 05 CO CM LO CM ID CM CD CM ID CM CD CM CD CM ID CM ID

00

QQ

1 ' I I I1 'I I I

<D X _ X X _ X<D X _ X X _ X

2 S. 8. 2 O.2 S. 8. 2 O.

1 f 8 .icM 8θ C 8 .Icm 8 "g c o o "S 2 z "i£ £ © -if 2z as <0 05 en ro ΙΟ © § 05 0 U5 ro ID .© § 05 2 > iLi £l iTS £ ιΓχ -Ξ X iTJz =1 f 8 .icM 8θ C 8 .Icm 8 "gcoo" S 2 z "i £ £ © -if 2z if <0 05 and ro ΙΟ © § 05 0 U5 ro ID. © § 05 2> iLi £ l iTS £ ιΓχ -Ξ X iTJz =

<D<D

CC

05 C C05 C C

1: (0 <r- c Έ O 2 ® O CO O Z Q_ D > h£ o m o m o m o T- T- CM C\l co1: (0 <r- c Έ O 2 ® O CO O Z Q_ D> h £ o m o m o m o T- T- CM C \ l co

38 I38 I

DK 175904 B1 IDK 175904 B1 I

(Tabel IX fortsat) I(Table IX continued)

(a) De 5 uger gamle fugle fik før vaccination udtaget blodprøve og afprøvet I(a) The 5-week-old birds had a blood sample taken prior to vaccination and tested I

5 ved Hl- og neutraliseringsafprøvninger, ingen indeholdt påviselige an- I5 by H1 and neutralization tests, none contained detectable data

tistofmængder, og resultaterne er ikke vist. De 2 dage gamle kyllinger Iantibody volumes and the results are not shown. The 2 day old chickens I

fik udtaget blodprøve 6 uger efter vaccination (Efter 1), og de 5 uger Ireceived a blood sample 6 weeks after vaccination (After 1) and the 5 weeks I

gamle fugle fik udtaget blodprøve 5 uger efter vaccination (Efter 1); Iold birds were sampled 5 weeks after vaccination (After 1); IN

begge grupper fik udtaget blodprøve 2 uger efter udfordring (Efter 2). Iboth groups were sampled 2 weeks after challenge (After 2). IN

10 Tallene er middel-antistoftiteme fra de samme kyllingegrupper beskre- 1 IThe numbers are the mean antibody items from the same chicken groups described 1 I

vet i tabel 1. Iknow in Table 1. I

(b) Tallene i parentes repræsenterer de, der overlevede udfordring. I(b) The numbers in parentheses represent those who survived challenge. IN

(c) Afprøvninger for hæmagglutinationsinhibering (Hl) blev foretaget på I(c) Hemagglutination Inhibition (H1) Tests were performed on I

mikrotiterplader under anvendelse af receptomedbrydende Imicrotiter plates using receptor-breaking I

15 enzymbehandlet sera, 4 HA-enheder af Ty/lre-virus, og 0,5% kyllinge- I15 enzyme-treated sera, 4 HA units of Ty / lre virus, and 0.5% chicken I

erythrocyter som beskrevet i Palmer et al., Immun. Series nr. 6, 51-52, Ierythrocytes as described in Palmer et al., Immun. Series No. 6, 51-52, I

US Dept. Health, Education and Welfare (1975). Prøvninger for IUS Dept. Health, Education and Welfare (1975). Tests for I

neutralisering af infektivitet blev udført ved inkubering af 103 EIDso INeutralization of infectivity was performed by incubating 103 EID 50 I

Ty/lre-virus med serumfortyndinger i 30 min ved stuetemperatur, IBullet virus with serum dilutions for 30 min at room temperature, I

20 efterfulgt af inokulering af embryonerede æg med alikvots. Virusvækst I20 followed by inoculation of embryonated eggs with aliquots. Virus growth

blev bestemt ved hæmagglutinationsprøvninger efter inkubering af æg i Iwas determined by hemagglutination assays after incubating eggs in I

2 dage ved 33 °C. I2 days at 33 ° C. IN

<= mindre end 10. I<= less than 10. I

25 Kyllinger inokuleret med fjerkræpox-H5-rekombinanten (vFP-11) eller den IChickens inoculated with the poultry Pox H5 recombinant (vFP-11) or the I

inaktiverede H5N2-influenzavaccine i adjuvans var beskyttede mod ud- Iinactivated H5N2 influenza vaccine was adjuvanted

fordring med den homologe Ty/lre (H5N8) influenzavirus og med den Iclaim with the homologous Ty / lre (H5N8) influenza virus and with the I

beslægtede, men skelnelige Ck/Penn (H5N2) influenzavirus. Derimod udviste Irelated but distinguishable Ck / Penn (H5N2) influenza virus. By contrast, you showed

størstedelen af fuglene inokuleret med parental FPV eller som ikke fik nogen Ithe majority of birds inoculated with parental FPV or who received no I

30 vacciner, kliniske tegn på højt patogen influenza, inklusive opsvulmen og I30 vaccines, clinical signs of high pathogenic influenza, including swelling and I

'cyanose af ansigtet og kammen, blødning i benene og paralyse. Største- I'cyanosis of the face and crest, bleeding in the legs and paralysis. Largest I

DK 175904 B1 39 delen af disse fugle døde. De vaccinerede fugle udskilte ikke påviselige niveauer af Ty/lre, men udskilte Ck/Penn.Part of these birds died. The vaccinated birds did not secrete detectable levels of Ty / lre, but secreted Ck / Penn.

Både de inaktiverede og rekombinante vacciner inducerede Hl og neutral-5 iserende antistoffer mod Ty/lre, men mængden af antistof induceret af fjerkræpox-H5-rekombinanten, vFP-11, før udfordring inhiberede ikke HA eller neutraliserede det heterologe Ck/Penn H5. Dog var kyllingerne beskyttet mod udfording med både Ty/lre- og Ck/Penn-influenzavira.Both the inactivated and recombinant vaccines induced HI and neutralizing antibodies against Ty / lre, but the amount of antibody induced by the poultry Pox H5 recombinant, vFP-11, before challenge did not inhibit HA or neutralize the heterologous Ck / Penn H5. However, the chickens were protected against propagation with both Ty / lre and Ck / Penn influenza viruses.

10 Immunitet mod H5-influenza induceret af vFP-11-vaccinationen varede i mindst 4 til 6 uger og var krydsreaktiv. For yderligere at undersøge varigheden og specificiteten af responset blev en gruppe af 4 uger gamle kyllinger inokuleret i vingevævet med vFP-11 som tidligere beskrevet og udfordret med månedlige intervaller med den krydsreaktive Ck/Penn-virus. Der blev 15 igen ikke påvist Hl-antistoffer før udfordringen. Ikke desto mindre var fuglene beskyttet i mere end 4 måneder.10 Immunity to H5 influenza induced by the vFP-11 vaccination lasted for at least 4 to 6 weeks and was cross-reactive. To further investigate the duration and specificity of the response, a group of 4-week-old chicks were inoculated into the wing tissue with vFP-11 as previously described and challenged at monthly intervals with the cross-reactive Ck / Penn virus. Again, 15 antibodies were not detected before the challenge. Nevertheless, the birds were protected for more than 4 months.

Den af vFP-11 udtrykte H5 inducerer ligeledes et beskyttende immunrespons i kalkuner. Udavlede hvide kalkuner blev i alderen 2 dage og 4 uger vac-20 cineret ved vingevævsinokulering som tidligere beskrevet. Resultaterne er vist i tabel X.The HFP expressed by vFP-11 also induces a protective immune response in turkeys. Outbred white turkeys were vaccinated at 2 days and 4 weeks by wing tissue inoculation as previously described. The results are shown in Table X.

DK 175904 B1 IDK 175904 B1 I

® fc CM CO -g -g I® fc CM CO -g -g I

O) 2 Γ. B 8O) 2 Γ. B 8

— UJ τί T3 "O- UJ τί T3 "O

O I—O I—

»O H»O H

O T-O T-

© ^ <i> to I© ^ <i> to I.

£ T- o£ T- o

LU V T- V VLU V T- V V

CM ICM I

φ Jr © © o ® o O TJ T3φ Jr © © o ® o O TJ T3

©sS^S-o® I© sS ^ S-o® I

- S S 2 I- S S 2 I

OL = to i_ u_ 2j.h-OL = two i_ u_ 2j.h-

- g jg O O O O- g jg O O O O

2 Z LU V V V V2 Z LU V V V V

cc

"O"ISLAND

^ < « ro^ <«Ro

X E? O JO CO CM CMX E? O JO CO CM CM

tf> > id CO O CM CMtf>> id CO O CM CM

XX

x ro π Ix ro π I

§ W ^ c © I§ W ^ c © I

^ cQ f wr < E 5 o (— © · ·© 2 iQ £S ™ ™^ cQ f wr <E 5 o {- © · · © 2 iQ £ S ™ ™

^ CL K lO CM CM CM^ CL K lO CM CM CM

© c 3 -© c 3 -

5 © I5 © I

® η I® η I

+= (Λ .2 (0 -rr ~+ = (Λ .2 (0 -rr ~

s §.1 Is §.1 I

φ -* in CO CM CMφ - * in CO CM CM

§ ®“ ^ H: <5 ™ I§ ® “^ H: <5 ™ I

-S£ GO (/) x— CM CM CM-S £ GO (/) x— CM CM CM

cn ©cn ©

COCO

cncn

© m I© m I

C gj ._ © © «_ S* © σ> © "rjj © -S 03 CD O)C gj ._ © © «_ S * © σ> ©" rjj © -S 03 CD O)

3 ]3 73 => T3 3 I3] 3 73 => T3 3 I

Li. ro N TT CM ^Li. ro N TT CM ^

Ή IΉ I

roro

© 5 »i« I© 5 »i« I

r- r· JJ ^ =r- r · JJ ^ =

~ T- E ro O~ T- E ro O

CJ I X 4-»CJ I X 4- »

O LI- 9 c C IO LI- 9 c C I

> > £ 5 5 I>> £ 5 5 I

to o to o Itwo o to o I

«-«- CM«-« - CM

DK 175904 B1 41DK 175904 B1 41

Der observeredes signifikant overlevelse imod udfordring med den homologe Ty/lre-virus i begge aldersgrupper. Ikke-vaccinerede kontakt-kontrolfugle opholdt sig sammen med de vaccinerede fugle til afprøvning af spredningen af den rekombinante virus. Disse fugle overlevede ikke udfordring.Significant survival against challenge was observed with the homologous Ty / lre virus in both age groups. Non-vaccinated contact control birds stayed with the vaccinated birds to test the spread of the recombinant virus. These birds did not survive challenge.

5 EKSEMPEL 11 - Konstruktion af fierkræpox-virus FP-1 rekombinant vFP-12, der udtrykker kvllinaeinfluenza nukleoprotein (NP) gen 10 Plasmid pNP33 indeholder en cDNA-klon af influenzaviruset Chicken/Pennsylvania/1/83 nukleoproteingenet (NP). Kun 5'- og 3'-endeme af det ca. 1,6 kbp NP-gen er blevet sekventeret. NP blev i form af et 5’-Clal-Xhol-3'-fragment med stumpe ender flyttet fra pNP333 over i Smal-nedbrudt pUC9, med pUC9’s EcoRI-sted i 3-enden, hvilket frembragte pRW714.EXAMPLE 11 - Construction of fiery creepox virus FP-1 recombinant vFP-12 expressing squamous line influenza nucleoprotein (NP) gene 10 Plasmid pNP33 contains a cDNA clone of the Chicken / Pennsylvania / 1/83 nucleoprotein gene (NP) gene. Only the 5 'and 3' ends of the approx. The 1.6 kbp NP gene has been sequenced. NP, in the form of a 5'-Clal-Xhol-3 'fragment with blunt ends, was moved from pNP333 into SmaI degraded pUC9, with pUC9's EcoRI site at the 3-end, producing pRW714.

15 Translationsinitieringscodonen (ATG) i NP indeholder følgende understregede Ahall-sted: ATGGCGTC. Den tidligere beskrevne vaccinia-H6-promotor blev forbundet med NP med et dobbeltstrenget syntetisk oligonukleotid. Det syntetiske oligonukleotid indeholdt H6-sekvensen fra EcoRV-stedet til sit ATG og ind i NP-kodesekvensen i Ahall-stedet. Oligonukleotidet blev 20 syntetiseret med BamHI- og EcoRI-kompatible ender til indsættelse i pUC9 til frembringelse af pRW755. Startende i den BamHI-kompatible ende, med ATG understreget, er sekvensen for det dobbeltstrengede syntetiske oligonukleotid: 25 gatccgatatccgttaagtttgtatcgtaatggcgtcgThe translation initiation codon (ATG) in NP contains the following stressed Ahall site: ATGGCGTC. The previously described vaccinia H6 promoter was associated with NP with a double-stranded synthetic oligonucleotide. The synthetic oligonucleotide contained the H6 sequence from the EcoRV site to its ATG and into the NP coding sequence at the Ahall site. The oligonucleotide was synthesized with BamHI and EcoRI compatible ends for insertion into pUC9 to produce pRW755. Starting at the BamHI compliant end, with ATG underlined, is the sequence of the double-stranded synthetic oligonucleotide: 25 gatccgatatccgttaagtttgtatcgtaatggcgtcg

GCTATAGGCAATTCAAACATAGCATTACCGCAGCTTAAGCTATAGGCAATTCAAACATAGCATTACCGCAGCTTAA

Det lineære delvist Ahall-nedbrudte produkt af pRW755 blev isoleret og genskåret med EcoRI. pRW755-fragmentet, indeholdende en enkelt Ahall-30 skæring ved ATG og genskåret med EcoRI, blev isoleret, behandlet medThe linear partially Ahall degraded product of pRW755 was isolated and re-cut with EcoRI. The pRW755 fragment, containing a single Ahall-30 cut by ATG and re-cut with EcoRI, was isolated, treated with

42 I42 I

DK 175904 B1 IDK 175904 B1 I

phosphatase og brugt som vektor for pRW714-nedbrydningsproduktet ne- Iphosphatase and used as a vector for the pRW714 degradation product ne- I

denfor. Idenfor. IN

Det isolerede lineære delvist Ahall-nedbrudte produkt af pRW714 blev IThe isolated linear partially Ahall degraded product of pRW714 became I

5 genskåret med EcoRI. Et isoleret Ahall-EcoRI-fragment på ca. 1,6 kbp inde- I5 re-cut with EcoRI. An isolated Ahall EcoRI fragment of ca. 1.6 kbp inside I

holdende NP-kodesekvensen blev indsat i den ovennævnte pRW755 vektorholding the NP code sequence was inserted into the above pRW755 vector

til dannelse af pRW757. Den fuldstændige H6-promotor blev dannet ved at Ito form pRW757. The complete H6 promoter was formed by I

tilføje sekvenserne opstrøms (5') for EcoRV-stedet. Plasmidet pRW742B Iadd the sequences upstream (5 ') of the EcoRV site. Plasmid pRW742B I

(beskrevet i eksempel 4) fik H6-sekvensen nedstrøms (3‘) for EcoRV-stedet I(described in Example 4) obtained the H6 sequence downstream (3 ') of EcoRV site I

10 fjernet sammen med sekvenser hen til pUC9’s Ndel-sted. pRW742B EcoRV- I10 removed along with sequences to pUC9's Ndel site. pRW742B EcoRV- I

Ndel-fragmentet, der var behandlet med phosphatase, blev anvendt som en IThe Ndel fragment treated with phosphatase was used as an I

vektor for pRW757-fragmentet nedenfor. Det isolerede lineære partielle Ivector for the pRW757 fragment below. The isolated linear partial I

EcoRV-nedbrydningsprodukt af pRW757 blev genisoleret efter Ndel-ned- IEcoRV degradation product of pRW757 was reinsulated following Nde I

brydning; dette fragment indeholder H6-promotoren fra EcoRV-stedet gen- Irefraction; this fragment contains the H6 promoter from the EcoRV site gene I

15 nem NP til pUC9's Ndel-sted. pRW757-fragmentet blev indsat i pRW742B- I15 easy NP to pUC9's Ndel site. The pRW757 fragment was inserted into pRW742B-I

vektoren til dannelse af pRW758. EcoRI-fragmentet fra pRWW758, indehol- Ithe vector to form pRW758. The EcoRI fragment from pRWW758, contains I

dende det fuldstændige H6-promoterede NP, blev gjort stump-endet med Ithe complete H6 promoted NP was blunt ended with I

Klenow-fragmentet fra DNA-polymerase I og indsat i Hinell-stedet af IThe Klenow fragment from DNA polymerase I and inserted into the Hinell site of I

pRW731.13 til dannelse af pRW760. Hincll-stedet i pRW731.13 er FP-1- IpRW731.13 to form pRW760. The HincII site in pRW731.13 is FP-1- I

20 locuset anvendt i eksempel 6 til konstruktion af vFP-6 og vFP-7. IThe locus used in Example 6 to construct vFP-6 and vFP-7. IN

Ved brug af fjerkræpox FP-1 som det reddende virus, blev plasmid pRW760 IUsing poultry pox FP-1 as the rescue virus, plasmid pRW760 I

anvendt i en in vitro rekombinationsafprøvning. Afkom af plakker blev prøvet Iused in an in vitro recombination assay. The offspring of plaques were tested

og plakoprenset under anvendelse af in situ plakhybridisering. Udtrykkelse af Iand plaque purified using in situ plaque hybridization. Expression of I

25 genet er blevet bekræftet ved immunpræcipiteringsstudier under anvendelse IThe gene has been confirmed by immunoprecipitation studies using I

af et polyklonalt anti-NP-antiserum fra ged. Størrelsen af proteinet, der speci- Iof a goat polyclonal anti-NP antiserum. The size of the protein speci- I

fikt præcipiterede fra et lysat af vFP-12-inficerede CEF-celler, var ca. 55 kD, Ifictitiously precipitated from a lysate of vFP-12-infected CEF cells was approx. 55 kD, I

hvilket ligger inden for den beskrevne størrelsesorden for influenzavirus- Iwhich is within the described magnitude of influenza virus I

nukleoproteiner. Inucleoproteins. IN

30 I30 I

DK 175904 B1 43 EKSEMPEL 12 - Fremstilling af en fierkræpox-virus dobbelt rekombinant.EXAMPLE 12 - Preparation of a fiery creepox virus double recombinant.

vFP-15. der udtrykker generne for fugleinfluenza nukleo-proteinet (NP) og hæmagglutinin (HA) 5 Hæmagglutinin (HA) genet fra A/Tyr/lre/1378/83 er tidligere beskrevet ved konstruktionen af vFP-11 (eksempel 9). For at fremstille en dobbelt rekombinant blev HA-genet først flyttet til locus f8, der tidligere er defineret ved konstruktionen af vFP-8, under anvendelse af plasmid pRW731.15.VFP 15th expressing the genes of the avian influenza nucleo protein (NP) and hemagglutinin (HA) 5 The hemagglutinin (HA) gene of A / Tyr / lre / 1378/83 has been previously described in the construction of vFP-11 (Example 9). To produce a double recombinant, the HA gene was first moved to locus f8, previously defined by the construction of vFP-8, using plasmid pRW731.15.

10 Til konstruktion af vFP-11 anvendtes plasmidet pRW759. Hæmagglutininge-net koblet til H6-promotoren blev fjernet fra dette plasmid ved en delvis Pstl-nedbrydning. Dette fragment blev gjort stump-endet med Klenow-fragmentet fra DNA-polymerase I og indsat i det stump-endede BamHI-sted i pRW731.15 til dannelse af pRW771.10 To construct vFP-11, plasmid pRW759 was used. The hemagglutinin gene linked to the H6 promoter was removed from this plasmid by partial PstI degradation. This fragment was blunt-ended with the Klenow fragment of DNA polymerase I and inserted into the blunt-ended BamHI site of pRW731.15 to generate pRW771.

1515

Plasmid pRW771 blev derpå anvendt i en in vitro rekombinationsafprøvning ved brug af vFP-12 som det reddende virus. Det rekombinante vFP-12-virus indeholder nukleoproteingenet koblet til H6-promotoren i locus f7 i plasmid pRW731.13. Rekombinante plakker, der nu indeholdt begge indsættelser, 20 blev selekteret og plakoprenset ved in situ hybridisering og overfladeudtryk-kelse af hæmagglutininet, bekræftet ved en protein-A-3-galactosidase-koblet immunprøvning. Udtrykkelse af begge gener blev bekræftet ved immun-præcipitering fra lysater af celler inficeret med det dobbelt rekombinante virus, vFP-15.Plasmid pRW771 was then used in an in vitro recombination assay using vFP-12 as the rescue virus. The recombinant vFP-12 virus contains the nucleoprotein gene linked to the H6 promoter at locus f7 of plasmid pRW731.13. Recombinant plaques now containing both insertions were selected and purified by in situ hybridization and surface expression of the hemagglutinin, confirmed by a protein A-3-galactosidase-linked immune assay. Expression of both genes was confirmed by immunoprecipitation from lysates of cells infected with the double recombinant virus, vFP-15.

25 EKSEMPEL 13 - Konstruktion af rekombinant kanariepox-viraEXAMPLE 13 - Construction of Recombinant Canary Pox Viruses

Det følgende eksempel viser identificering af fire ikke-essentielle indsæt-telsesloci i kanariepox-genomet og konstruktionen af fire rekombinante 30 kanariepox-vira, vCP-16, vCP-17, vCP-19 og vCP-20.The following example shows the identification of four nonessential insertion loci in the canary pox genome and the construction of four recombinant canary pox viruses, vCP-16, vCP-17, vCP-19 and vCP-20.

44 I44 I

DK 175904 B1 IDK 175904 B1 I

Det rekombinante kanariepox vCP-16 blev konstrueret påfølgende måde. IThe recombinant canary epox vCP-16 was constructed in the following manner. IN

Et Pvull-fragment af kanariepox-DNA på 3,4 kbp blev klonet ind i pUC9 til IA 3.4 kbp Pvull fragment of 3.4 kbp canarypox DNA was cloned into pUC9 to I

dannelse af pRW764.2. Der blev fundet et unikt EcoRI-sted beliggende Iformation of pRW764.2. A unique EcoRI site located in I was found

5 asymmetrisk inde i fragmentet med en kort arm på 700 bp og en lang arm på I5 asymmetrically inside the fragment with a short arm of 700 bp and a long arm of I

2,7 kbp. Plasmidet blev nedbrudt med EcoRI og gjort stump-endet under an- I2.7 kbp. The plasmid was digested with Eco RI and blunt-ended underneath

vendelse af Klenow-fragmentet fra DNA polymerase I. Det stump-endede Ireversal of the Klenow fragment from DNA polymerase I. It blunt-ended I

H6/rabies-G-gen blev derpå ligeret ind i dette sted og anvendt til transformati- IThe H6 / rabies G gene was then ligated into this site and used for transformation

on af E. coli. Det resulterende plasmid, pRW775, blev brugt ved en in vitro Ion E. coli. The resulting plasmid, pRW775, was used by an in vitro I

10 afprøvning for rekombination. Afkom af plakker, der var positive ved en im- I10 test for recombination. Offspring of plaques that were positive by an im

munscreening, blev selekteret og plakoprenset. Den resulterende re- Imouth screening, was selected and plaque cleansed. The resulting re- I

kombinant blev designeret vCP-16, og indsættelseslocuset designeredes C3. ICombined, vCP-16 was designated and the insertion site was designated C3. IN

Plasmidet pRW764.2, anvendt ved ovennævnte konstruktion, indeholdt også IThe plasmid pRW764.2 used in the above construction also contained I

15 et unikt Bglll-sted ca. 2,4 kbp fra EcoRI-stedet. Ved brug af den samme klon- I15 a unique BglII site approx. 2.4 kbp from the EcoRI site. Using the same clone I

ingsstrategi blev H6/rabies-G-genet ligeret ind i plasmid pRW764.2 pådette IThe H6 / rabies G gene was ligated into plasmid pRW764.2 in I.

sted til dannelse af pRW774. Dette plasmid blev anvendt til konstruktion af Isite to form pRW774. This plasmid was used to construct I

rekombinant vCP-17 med indsættelseslocuset designeret C4. Irecombinant vCP-17 with the insertion locus designated C4. IN

20 Plasmid pRW764.5 indeholder et Pvull-fragment af kanariepox-DNA på 850 IPlasmid pRW764.5 contains a Pvull fragment of canary pox DNA of 850 I

bp med et unikt Bglll-sted beliggende assymmetrisk inde i fragmentet 400 bp Ibp with a unique BglII site located asymmetrically within the 400 bp I fragment

fra den ene terminus. Ved brug af den samme kloningsstrategi som før be- Ifrom one terminus. Using the same cloning strategy as before I

skrevet blev det til H-6-promotoren koblede rabies-G-gen indsat på dette stedwritten, the rabies G gene linked to the H-6 promoter was inserted at this site

til dannelse af pRW777. Det dannede stabile rekombinant virus blev des- Ito form pRW777. The stable recombinant virus formed was then dissociated

25 igneret vCP-19 og indsættelseslocuset designeredes C5. I25 ignored vCP-19 and the insertion site was designated C5. IN

Plasmid pRW764.7 indeholder et Pvull-fragment på 1,2 kbp med et unikt IPlasmid pRW764.7 contains a 1.2 kbp Pvull fragment with a unique I

Bglll-sted 300 baser fra den ene terminus. Plasmidet blev nedbrudt med Bglll IBglII site 300 bases from one terminus. The plasmid was digested with BglII I

og gjort stump-endet med Klenow-fragmentet fra DNA polymerase I. Detand blunt-ended with the Klenow fragment of DNA polymerase I. Det

30 stump-endede 11K-promoterede Lac Z-gen blev indsat til dannelse af plas- I30 blunt-ended 11K-promoted Lac Z genes were inserted to generate plasm I

! 45 DK 175904 B1 mid pRW7778. Det stabile rekombinant virus dannet ved anvendelse af dette plasmid blev designeret vCP-20 og indsættelseslocuset designeredes C6.! 45 DK 175904 B1 mid pRW7778. The stable recombinant virus formed using this plasmid was designated vCP-20 and the insertion site was designated C6.

EKSEMPEL 14- Konstruktion af en fierkræpox-virus rekombinant. vFP-5 29. der udtrykker fusionsproteinet for Newcastle disease virusExample 14- Construction of a fiery creepox virus recombinant. vFP-5 29. expressing the fusion protein for Newcastle disease virus

Plasmid pNDV108, cDNA-klonen fra fusionsgenet fra NDV Texas-stamme, bestod af et Hpal cDNA-fragment på ca. 3,3 kbp indeholdende kodesekven-10 sen for fusionsproteinet såvel som yderligere NDV-kodesekvenser klonet ind i Scal-stedet i pBR322. Trinene til dannelse af indsættelsesplasmidet er beskrevet nedenfor.Plasmid pNDV108, the cDNA clone of the NDV Texas strain fusion gene, consisted of a HpaI cDNA fragment of ca. 3.3 kbp containing the code sequence of the fusion protein as well as additional NDV code sequences cloned into the Scal site of pBR322. The steps for forming the insertion plasmid are described below.

(1) Dannelse af plasmid pCE11 15(1) Formation of plasmid pCE11 15

Der blev konstrueret en FPV-indsættelsesvektor, pCE11, ved indsættelse af polylinkere i Hincll-stedet af pRW731.13 (designeret som locus f7). pRW731.13 indeholder et 5,5 kbp PvuIl-fragment af FP-1 DNA. Et ikke-essentielt locus var før blevet defineret i Hincll-stedet ved konstruktion af den 20 stabile rekombinant vFP-6, beskrevet i eksempel 6. Polylinkerne indsat i Hincll-stedet indeholder steder for følgende restriktionsenzymer: Nrul, EcoRI,An FPV insertion vector, pCE11, was constructed by inserting polylinkers into the HincII site of pRW731.13 (designated as locus f7). pRW731.13 contains a 5.5 kbp PvuIl fragment of FP-1 DNA. A non-essential locus had previously been defined in the HincII site by constructing the 20 stable recombinant vFP-6, described in Example 6. The polylinks inserted into the HincII site contain sites for the following restriction enzymes: Nrul, EcoRI,

Sacl, Kpnl, Smal, BamHI, Xbal, Hindi, Sall, Accl, Pstl, Sphl, Hindlll og Hpal.Sacl, Kpnl, Smal, BamHI, Xbal, Hindi, SalI, Accl, Pstl, Sphl, Hindlll and Hpal.

(2) Dannelse af plasmid pCE19 25(2) Formation of plasmid pCE19 25

Dette plasmid er en videre modifikation af pCE11, hvori transkriptionsstop-signalet ATTTTTNT fra vaccinia-virus (L. Yuen og B. Moss, J. Virology 60:320-323 [1986]) (hvor N i dette tilfælde er et A) er blevet indsat mellem Sacl- og EcoRI-stedeme af pCE11, med efterfølgende tab af EcoRI-stedet.This plasmid is a further modification of pCE11 in which the transcription stop signal ATTTTTNT from vaccinia virus (L. Yuen and B. Moss, J. Virology 60: 320-323 [1986]) (where N in this case is an A) is have been inserted between the Sac1 and EcoRI sites of pCE11, with subsequent loss of the EcoRI site.

3030

46 I46 I

DK 175904 B1 IDK 175904 B1 I

(3) Indsættelse af NDV-kodesekvenser I(3) Insertion of NDV code sequences I

Et geloprenset BamHI-fragment på 1,8 kbp, indeholdende alle med und- IA 1.8 kbp gel purified BamHI fragment, containing all with und I

tagelse af 22 nukleotider fra 5'-enden af fusionsproteingenet, blev indsat i I22 nucleotides from the 5 'end of the fusion protein gene were inserted into I

5 BamHI-stedet af pUC18 til dannelse af pCE13. Dette plasmid blev nedbrudt I5 The BamHI site of pUC18 to form pCE13. This plasmid was degraded

med Sall, der skærer i vektoren 12 baser opstrøms fra 5’-enden af kodesek- Iwith Sal I cutting in the vector 12 bases upstream from the 5 'end of the code sequence.

vensen. Enderne blev udfyldt med Klenow-fragmentet fra DNA polymerase I, Ivensen. The ends were filled with the Klenow fragment of DNA polymerase I, I

og plasmidet blev yderligere nedbrudt med Hlndlll, der skærer 18 baser op- Iand the plasmid was further digested with HndIII, which cuts 18 bases up

strøms fra Sall-stedet. Et geloprenset Smal-Hind I Il-fragment på 146 bp, in- Idownstream from the Sall location. A 146 bp, narrowly-purified Smal-Hind I II fragment, in- I

10 deholdende vacciniavirus-H-promotoren, der tidligere er beskrevet i I10 containing the vaccinia virus H promoter previously described in I

foretrukne udførelsesformer, såvel som polylinker-sekvenser ved hver termi- Ipreferred embodiments, as well as polylinker sequences at each term

nus, blev ligeret til vektoren og transformeret ind i celler af E. coli. Det re- Inus, was ligated to the vector and transformed into cells of E. coli. It re- I

suiterende plasmid blev designeret pCE16. Isuiting plasmid was designated pCE16. IN

15 For at bringe den initierende ATG-codon af NDV-fusionsproteingenet på linje ITo bring the initiating ATG codon of the NDV fusion protein gene on line I

med 3’-enden af H6-promotoren og for at erstatte de 22 nukleotider, der Iwith the 3 'end of the H6 promoter and to replace the 22 nucleotides that I

mangler i NDV-5'-enden i pCE16, blev der skabt komplementære syntetiske Idefects in the NDV-5 'end of pCE16, complementary synthetic I was created

oligonukleotider, der ender i EcoRV- og Kpnl-steder. Oligonukleotidsekven- Ioligonucleotides ending in EcoRV and KpnI sites. Oligonucleotide Sequence- I

20 sen var » I20 then was "I

5' AT C-CGT-TAA-GTT-T GT -AT C-GT A-ATG-GGC-T CC-AGA-T CT-T CT - I5 'AT C-CGT-TAA-GTT-T GT -AT C-GT A-ATG-GGC-T CC-AGA-T CT-T CT - I

ACC-AGG-ATC-CCG-GTA-C 3’. IACC-AGG-ATC-CCG-GTA-C 3 '. IN

pCE16-konstruktionen blev derpå nedbrudt med EcoRV og Kpnl. EcoRV- IThe pCE16 construct was then degraded with EcoRV and KpnI. EcoRV-I

25 stedet findes i H6-promotoren 24 baser opstrøms for det initierende ATG. I25 site is found in the H6 promoter 24 bases upstream of the initiating ATG. IN

Kpnl-stedet findes i NDV-kodesekvensen 29 baser nedstrøms for ATG. IThe KpnI site is found in the NDV coding sequence 29 bases downstream of the ATG. IN

Oligonukleotider blev sammensmeltet, phosphoryleret og ligeret til det linear- IOligonucleotides were fused, phosphorylated and ligated to the linear I

iserede plasmid, og det resulterende DNA anvendtes til transformation af E. Iplasmid and the resulting DNA was used to transform E.I.

30 coli-celler. Dette plasmid blev designeret pCE18. I30 coli cells. This plasmid was designated pCE18. IN

DK 175904 B1 47DK 175904 B1 47

For at indsætte NDV-kodesekvensen i en FPV-indsættelsesvektor, blev et geloprenset Smal-Hind I Il-fragment på 1,9 kbp fra pCE18 (skærende i poly- i linker-området) ligeret til et Smal-Hindlll-fragment på 7,8 kbp fra pCE19, de er beskrevet ovenfor. Transkriptionsstop-signalet findes 16 baser nedstrøms 5 for Smal-stedet. Det resulterende plasmid blev designeret pCE20.To insert the NDV coding sequence into an FPV insertion vector, a 1.9 kbp SmaI Hind II II gel purified fragment of pCE18 (intersecting the poly in the linker region) was ligated to a SmaI HindIII fragment of 7, 8 kbp from pCE19, they are described above. The transcription stop signal is found 16 bases downstream 5 of the SmaI site. The resulting plasmid was designated pCE20.

Plasmidet pCE20 blev brugt ved en in vitro afprøvning for rekombination under anvendelse af fjerkræ pox-virus FP-1 som redningsvirus. Det resulterende afkom blev udpladet på CEF-monolag og plakkeme underkastet en β-10 galactosidase-koblet protein-A-immunundersøgelse under anvendelse af et polyklonalt anti-NDV-kyllingeserum. Positivt farvede plakker blev selekteret og underkastet fire omgange plakoprensning for at opnå en homogen population. Rekombinanten blev designeret vFP-29.Plasmid pCE20 was used in an in vitro assay for recombination using poultry pox virus FP-1 as a rescue virus. The resulting progeny were plated on CEF monolayers and the plaques subjected to a β-10 galactosidase-coupled protein A immunoassay using a polyclonal anti-NDV chicken serum. Positively colored plaques were selected and subjected to four rounds of plaque purification to obtain a homogeneous population. The recombinant was designated vFP-29.

15 EKSEMPEL 15 - Konstruktion af avipox-virus-rekombinanter. der udtrykker kappe fen vi alvcoproteinet fra katteleukæmivirus fFeLViExample 15 - Construction of avipox virus recombinants. expressing the sheath of the cat alcoprotein from cat leukemia virus fFeLVi

FeLV-env-genet indeholder sekvenserne, der koder for p70 + p15E polypro-20 teinet. Dette gen blev indledningsvis indsat i plasmidet pSD467vC med vac-cinia-promotoren H6 5' sidestillet med FeLV-env-genet. Plasmidet pSD467vC afledtes ved først at indsætte et Sall/Hindlll-fragment på1802 bp indeholdende vaccinia-hæmagglutinin (HA) genet i en pUC18-vektor. Beliggenheden af HA-genet er før defineret (Shida, Virology 150:451-462 [1988]).The FeLV env gene contains the sequences encoding the p70 + p15E polypeptide. This gene was initially inserted into the plasmid pSD467vC with the vaccine promoter H6 5 'juxtaposed with the FeLV env gene. The plasmid pSD467vC was derived by first inserting a 1802 bp SalI / HindIII fragment containing the vaccinia hemagglutinin (HA) gene into a pUC18 vector. The location of the HA gene has been previously defined (Shida, Virology 150: 451-462 [1988]).

25 Størstedelen af den åbne læseramme, der koder for HA-genproduktet, blev deleteret (nukleotid 443 til og med nukleotid 1311) og der indsattes et multipelt kloningssted indeholdende Bglll-, Smal-, Pstl- og Eagl-restriktionsendonuklease-steder. Det resulterende pSD467vC-plasmid indeholder flankerende vaccinia-arme på 442 bp opstrøms fra det multiple klon-30 ingssted og 491 bp nedstrøms fra disse restriktionssteder. Disse flankerende arme gør det muligt for genetisk materiale indsat i den multiple klonings-The majority of the open reading frame encoding the HA gene product was deleted (nucleotide 443 through nucleotide 1311) and a multiple cloning site containing BglII, SmaI, PstI and EagI restriction endonuclease sites was inserted. The resulting pSD467vC plasmid contains flanking vaccinia arms of 442 bp upstream from the multiple cloning site and 491 bp downstream from these restriction sites. These flanking arms allow for genetic material inserted into the multiple cloning gene.

I DK 175904 B1 II DK 175904 B1 I

I 48 II 48 I

I region at blive rekombineret ind i HA-regionen af Copenhagen-stammen af IIn region to be recombined into the HA region of the Copenhagen strain of I

I vacciniavirus. Det resulterende rekombinante afkom er HA-negativt. IIn vaccinia virus. The resulting recombinant progeny is HA negative. IN

I H6-promotoren blev syntetiseret ved sammensmeltning af fire overlappende IIn the H6 promoter was synthesized by fusing four overlapping I

I 5 oligonukleotider, der tilsammen udgør den komplette sekvens beskrevet IIn 5 oligonucleotides which together form the complete sequence described I

I ovenfor under foretrukne udførelsesformer. Det resulterende 132 bp frag- IIn preferred embodiments above. The resulting 132 bp frag- I

I ment indeholdt et Bglll-restriktionssted i 5-enden og et Smal-sted i 3-enden. IIntended contained a BglII restriction site at the 5-end and a SmaI site at the 3-end. IN

I Dette blev indsat i pSD467vC via Bglll-og Smal-restriktionsstedet. Det re- II This was inserted into pSD467vC via the BglII and SmaI restriction site. It re- I

I suiterende plasmid designeredes pPT15. FeLV-env-genet blev indsat i det IIn suiting plasmid, pPT15 was designed. The FeLV env gene was inserted into it

I 10 unikke Pstl-sted i pPT15, der ligger umiddelbart nedstrøms for H6- IIn 10 unique Pstl sites in pPT15, located immediately downstream of H6-I

I promotoren. Det resulterende plasmid designeredes pFeLVIA. IIn the promoter. The resulting plasmid was designated pFeLVIA. IN

I Til konstruktion af FP-1-rekombinanten, blev H6/FeLV-env-sekvenserne på ITo construct the FP-1 recombinant, the H6 / FeLV env sequences of I

I 2,4 kbp skåret ud af pFeLVIA ved nedbrydning med Bglll og delvis nedbryd- II 2.4 kbp cut out of pFeLVIA by degradation with BglII and partial degradation

I 15 ning med Pstl. Bglll-stedet ligger ved 5'-grænsen af H6-promotorsekvensen. IIn 15 with Pstl. The BglII site is at the 5 'boundary of the H6 promoter sequence. IN

I Pstl-stedet er beliggende 420 bp nedstrøms fra translationsterminerings- IIn the Pstl site, 420 bp is located downstream from translation termination I

I signalet for kappe-glycoproteinets åbne læseramme. IIn the signal for the envelope glycoprotein's open reading frame. IN

I H6/FeLV-env-sekvensen på 2,4 kbp blev indsat i pCE11 nedbrudt med IIn the 2.4 kbp H6 / FeLV env sequence inserted into pCE11 was digested with I

I 20 BamHI og Pstl. FP-1 -indsættelsesvektoren, pCE11, var afledt fra pRW731.13 IIn 20 BamHI and Pstl. The FP-1 insertion vector, pCE11, was derived from pRW731.13 I

I ved indsættelse af et multipelt kloningssted i det.ikke-essentielle Hinell-sted. IBy inserting a multiple cloning site into the non-essential Hinell site. IN

I Denne indsættelsesvektor tillader udvikling af FP-1-rekombinanter indehol- IThis insertion vector allows development of FP-1 recombinants to contain I

I dende fremmede gener i FP-1-genomets locus f7. Det rekombinante FP- IIn the same foreign genes in the FP-1 genome locus f7. The recombinant FP-I

I 1/FeLV-indsættelsesplasmid blev derpå designeret pFeLVFI. Denne kon- IIn 1 / FeLV insertion plasmid, pFeLVFI was then designated. This con- I

I 25 struktion tilvejebringer ikke et perfekt ATG til ATG-substituering. IIn structure, a perfect ATG does not provide ATG substitution. IN

I For at opnå dén perfekte ATG:ATG-konstruktion, blev et Nrul/Sstll-fragment IIn order to obtain the perfect ATG: ATG construct, a Nrul / SstII fragment I was added

I på ca. 1,4 kbp afledt fra vacciniavirus-indsættelsesvektoren pFeLVIC. Nrul- II in approx. 1.4 kbp derived from the vaccinia virus insertion vector pFeLVIC. Nrul- I

I stedet forekommer inde i H6-promotoren på en position 24 bp opstrøms fra IInstead, inside the H6 promoter occurs at a position 24 bp upstream of I

I 30 ATG. Sstll-stedet er beliggende 1,4 kbp nedstrøms fra ATG og 1 kbp op- IIn 30 ATG. The SstII site is located 1.4 kbp downstream of the ATG and 1 kbp upstream

I strøms fra translationsterminerings-signalet. Dette Nrul/Sstll-fragment blev IIn the current from the translation termination signal. This Nrul / SstII fragment became I

DK 175904 B1 49 ligeret til et 9,9 kbp fragment, der var frembragt ved nedbrydning med Sstll og ved delvis nedbrydning med Nrul. Dette 9,9 kbp fragment indeholder de 5,5 kbp af FP-1-flankerende arme, pUC-vektorsekvenser, 1,4 kbp af FeLV-sekvens svarende til den nedstrøms del af env-genet, og sekvensen 5 nærmest 5-enden (ca. 100 bp) af H6-promotoren. Det resulterende plasmid blev designeret pFeFLVF2. ATG'et til ATG-konstruktion blev bekræftet ved nukleotidsekvensanalyse.DK 175904 B1 49 ligated to a 9.9 kbp fragment produced by degradation with SstII and by partial degradation with Nrul. This 9.9 kbp fragment contains the 5.5 kbp of FP-1 flanking arms, pUC vector sequences, 1.4 kbp of FeLV sequence corresponding to the downstream portion of the env gene, and the sequence 5 closest to the 5 end ( about 100 bp) of the H6 promoter. The resulting plasmid was designated pFeFLVF2. The ATG for ATG construction was confirmed by nucleotide sequence analysis.

En yderligere FP-1-indsættelsesvektor, pFeLVF3, blev afledt fra pFeLVF2 10 ved fjernelse af FeLV-env-sekvenserne svarende til det formodede immunsuppressive område (Cianciolo et al., Science 230:453-455 [1985]) (nukleotid ✓ 1548 til 1628 i kodesekvensen). Dette blev udført ved isolering af et Sstll/Pstl-fragment (steder beskrevet ovenfor) på ca. 1 kbp fra vacciniavirus-indsættelsesvektoren pFeLVID. Plasmidet pFeLVID ligner pFeLN/1 C, bortset 15 fra at env-sekvenseme svarende til det immunsuppresive område (nukleotid 1548 til 1628) var deleteret ved oligonukleotid-dirigeret mutagenese (Man-decki, Proc. Natl. Acad. Sci. USA 83:7177-7181 [1987]). Sstll/Pstl-fragmentet på 1 kbp, der mangler nukleotideme 1548 til 1628, blev indsat i et 10,4 kbp Sstll/Pstl-fragment indeholdende det resterende H6/FeLV-env-gen afledt fra 20 pFeLVF2.An additional FP-1 insertion vector, pFeLVF3, was derived from pFeLVF210 by removing the FeLV env sequences corresponding to the putative immunosuppressive region (Cianciolo et al., Science 230: 453-455 [1985]) (nucleotide ✓ 1548 to 1628 in the code sequence). This was done by isolating an SstII / PstI fragment (sites described above) of ca. 1 kbp from the vaccinia virus insertion vector pFeLVID. The plasmid pFeLVID is similar to pFeLN / 1 C except that the env sequences corresponding to the immunosuppressive region (nucleotide 1548 to 1628) were deleted by oligonucleotide-directed mutagenesis (Man-decki, Proc. Natl. Acad. Sci. USA 83: 7177 -7181 [1987]). The 1 kbp SstII / PstI fragment lacking nucleotides 1548 to 1628 was inserted into a 10.4 kbp SstII / PstI fragment containing the residual H6 / FeLV env gene derived from 20 pFeLVF2.

Indsættelsesplasmideme pFeLVF2 og pFeLVF3 blev anvendt ved in vitro rekombinations-afprøvninger med FP-1 som det reddende virus. Afkom fra rekombinationen blev udpladet på CEF-monolag og rekombinant virus selek-25 teret ved plakhybridisering på CEF-monolag. Rekombinant afkom, identificeret ved hybridiseringsanalyser, blev selekteret og underkastet 4 runder plakoprensning for at opnåen homogen population. En FP-1-rekombinant, husende det fuldstændige FeLV-env-gen, er blevet designeret vFP-25, og en FP-1-rekombinant, indeholdende det fuldstændige gen manglende det im-30 munsuppressive område, blev designeret vFP-32. Begge rekombinanter er ved immunpræcipitering under anvendelse af et bovint anti-FeLV polyklonaltThe insertion plasmids pFeLVF2 and pFeLVF3 were used in in vitro recombination assays with FP-1 as the rescue virus. Offspring from the recombination were plated on CEF monolayers and recombinant virus selected by plaque hybridization on CEF monolayers. Recombinant progeny, identified by hybridization assays, were selected and subjected to 4 rounds of plaque purification to obtain homogeneous population. An FP-1 recombinant harboring the complete FeLV env gene has been designated vFP-25, and an FP-1 recombinant containing the complete gene lacking the immunosuppressive region was designated vFP-32. Both recombinants are immunoprecipitated using a bovine anti-FeLV polyclonal

50 I50 I

DK 175904 B1 IDK 175904 B1 I

serum (Antibodies, Inc., Davis, CA) vist at udtrykke det passende genpro- Iserum (Antibodies, Inc., Davis, CA) shown to express the appropriate gene protein

dukt. Det er bemærkelsesværdigt, at disse FP-1-rekombinanter udtrykker det Iproduct. Remarkably, these FP-1 recombinants express it

fremmede FeLV-env-gen i CRFK-cellelinjen (ATCC #CCL94), som stammer Iforeign FeLV env gene in the CRFK cell line (ATCC # CCL94) originating in

fra katte. Ifrom cats. IN

Til konstruktion af kanariepox (CP) rekombinanter blev et 2,2 kbp fragment IFor the construction of canary pox (CP) recombinants, a 2.2 kbp fragment I was added

indeholdende H6/FeLV-env-sekvenseme udskåret fra pFeLVF2 ved ned- Icontaining the H6 / FeLV env sequences cut from pFeLVF2 at down I

brydning med Smal og Hpal. Smal-stedet ligger på 5'-grænsen af H6- Iwrestling with Smal and Hpal. The narrow site is on the 5 'boundary of H6-I

promotorsekvensen. Hpal-stedet er beliggende 180 bp nedstrøms fra transla- Ipromoter sequence. The Hpal site is located 180 bp downstream of the transla I

10 tionsterminerings-signalet for kappeproteinets åbne læseramme. I10, the termination signal for the envelope protein's open reading frame. IN

Den 2,2 kbp H6/FeLV-env-sekvens blev indsat i det ikke-essentielle EcoRI- IThe 2.2 kbp H6 / FeLV env sequence was inserted into the non-essential EcoRI-I

sted i indsættelsesplasmidet pRW764.2, efter at EcoRI-stedet var gjort Isite in the insertion plasmid pRW764.2 after the EcoRI site was made I

stump-endet. Denne indsættelsesvektor tillader dannelse af CP- Iblunt-ended. This insertion vector allows formation of CP-I

15 rekombinanter indeholder fremmede gener i CP-genomets C4-locus. Det re- IFifteen recombinants contain foreign genes in the C4 locus of the CP genome. It re- I

kombinante CP-indsættelsesplasmid designeredes derpå pFeLVCP2. Denne Icombining CP insertion plasmid was then designated pFeLVCP2. This one

konstruktion tilvejebringer et perfekt ATG til ATG substituering. Iconstruction provides a perfect ATG for ATG substitution. IN

Indsættelsesplasmidet pFeLVCP2 blev anvendt ved en in vitro afprøvning for IThe insertion plasmid pFeLVCP2 was used in an in vitro assay for I

20 rekombination med CP som det reddende virus. Afkom af rekombinanterne I20 recombination with CP as the rescue virus. Progeny of the recombinants I

blev udpladet påmonolag af CEF og rekombinant virus selekteret ved hjælp Iwere plated on CEF monolayer and recombinant virus selected by means of I

af en _-galactosidase-koblet protein-A-immunundersøgelse under an- Iof a β-galactosidase-coupled protein A immunoassay under an- I

vendelse af et bovint anti-FeLV kommercielt polyklonalt serum (Antibodies, Ireversal of a bovine anti-FeLV commercial polyclonal serum (Antibodies, I

Inc., Davis, CA). Positivt farvede plakker blev selekteret og underkastet fire IInc., Davis, CA). Positively colored plaques were selected and submitted to four I

25 omgange plakoprensning til opnåelse af en homogen population. En rekom- I25 rounds of plaque purification to obtain a homogeneous population. A recom- I

binant, der udtrykker hele FeLV-env-genet, er blevet designeret vCP-36. Ibinant expressing the entire FeLV env gene has been designated vCP-36. IN

DK 175904 B1 51 EKSEMPEL 16- Konstruktion af fierkræpox-virus-rekombinant vFP-22.EXAMPLE 16- Construction of fiery creepox virus recombinant vFP-22.

der udtrykker det Rous-associerede virus type 1 (RAV-1) kappe (env) gen 5 Klonen penvRVIPT af RAV-1-kappegenet indeholder 1,1 kbp af RAV-1 -env-DNA-kodesekvens, klonet ind i M13mp18 som et Kpnl-Sacl-fragment. Dette fragment er intakt i 5'-enden, men mangler en del af 3'-sekvensen, og blev anvendt ved de følgende operationer. Et geloprenset EcoRI-Pstl-fragment på 1,1 kbp fra penvRVIPT blev indsat i EcoRI- og Pstl-stedeme i pUC9 til dan-10 nelse af pRW756. Dette plasmid blev derpå nedbrudt med Kpnl og Hindlll, der skar i vektoren 59 baser opstrøms fra ATG. Der indsattes et Kpnl-Hindlll-fragment på 146 bp indeholdende den oven for beskrevne vaccinia-H6-promotor til dannelse af plasmid pCE6.expressing the Rous-associated virus type 1 (RAV-1) envelope (env) gene 5 The clone penvRVIPT of the RAV-1 envelope gene contains 1.1 kbp of RAV-1 and env DNA coding sequence, cloned into M13mp18 as a KpnI-SacI fragment. This fragment is intact at the 5 'end but lacks part of the 3' sequence and was used in the following operations. A 1.1 kbp gel purified EcoRI-Pstl fragment from penvRVIPT was inserted into the EcoRI and Pstl sites of pUC9 to form pRW756. This plasmid was then digested with KpnI and HindIII, which cut into the vector 59 bases upstream of ATG. A 146 bp KpnI-HindIII fragment containing the vaccinia H6 promoter described above to insert plasmid pCE6 was inserted.

15 For at sikre, at det initierende ATG fra RAV env genet var beliggende ved siden af 3-enden af H6-promotoren med fremmede sekvenser deleteret, blev to komplementære syntetiske oligonukleotider konstrueret med EcoRV- og Banll-steder i termini. Oligonukleotidsekvensen var 5-AT C-CGT-TAA-GTT-T GT-AT C-GTA-ATG-AGG-CG A-GCC-3'.To ensure that the initiating ATG of the RAV env gene was located adjacent to the 3 end of the foreign sequence H6 promoter, two complementary synthetic oligonucleotides were constructed with EcoRV and BanII sites in termini. The oligonucleotide sequence was 5-AT C-CGT-TAA-GTT-T GT-AT C-GTA-ATG-AGG-CG A-GCC-3 '.

2020

Plasmidet pCE6 blev nedbrudt med EcoRV, der skærer i H6-promotoren 24 baser opstrøms for ATG, og med Banll, der skærer i RAV-env-kodesekvensen 7 baser nedstrøms for ATG. DNA-segmenteme blev ligeret og anvendt til transformation af celler af E. coli. Det resulterende plasmid, 25 pCE7, tilførte slutkonstruktionen H6-promotoren og korrekt 5-sekvens.Plasmid pCE6 was digested with EcoRV cutting in the H6 promoter 24 bases upstream of ATG, and with Ban11 cutting in the RAV env code sequence 7 bases downstream of ATG. The DNA segments were ligated and used to transform cells of E. coli. The resulting plasmid, 25 pCE7, supplied the final construct with the H6 promoter and correct 5 sequence.

Klonen mp19env (190) fandtes ved restriktionskortlægning at indeholde hele RAV-1 env genet. Et Kpnl-Sacl-fragment af mp19env (190) på 1,9 kbp indeholdende hele genet blev indsat i Kpnl- og Sacl-stederne af pUC18 til dan-30 nelse af pCE3. Dette plasmid blev nedbrudt med Hpal, der skærer 132 baser nedstrøms fra det initierende ATG i kodesekvensen for RAV-1, og Sacl, derThe clone mp19env (190) was found to contain the entire RAV-1 env gene by restriction mapping. A 1.9 kbp KpnI-Sacl fragment of 1.9 kbp containing the whole gene was inserted into the KpnI and Sacl sites of pUC18 to form pCE3. This plasmid was digested with HpaI, which cuts 132 bases downstream of the initiating ATG in the coding sequence of RAV-1, and Sac1, which

52 I52 I

DK 175904 B1 IDK 175904 B1 I

skærer ved genets 3'-terminus. FPV-indsættelsesvektoren pCE11, der før er Iintersects at the 3 'terminus of the gene. The FPV insertion vector pCE11, previously I

beskrevet, blev nedbrudt med Smal og Sacl, hvilket skar plasmidet i poly- Idescribed, was digested with SmaI and Sac1, which cut the plasmid into poly-I

linkerregionen. Hpal-Sacl-fragmentet af pCE3 blev ligeret med pCE11 til Ilinker region. The hpaI-Sac1 fragment of pCE3 was ligated with pCE11 to I

dannelse af pCE14. Iformation of pCE14. IN

Plasmidet pCE7 blev derpå nedbrudt med Xhol og Hindill til dannelse af et IPlasmid pCE7 was then digested with XhoI and Hindill to form an I

fragment på 332 bp indeholdende H6-promotoren og korrekt 5'-sekvens. I332 bp fragment containing the H6 promoter and correct 5 'sequence. IN

Plasmid pCE14 blev nedbrudt med Hindill, der skar i vektorens polylinker- IPlasmid pCE14 was digested with Hindill, which cut into the polylinker I vector of the vector

region, og Xhol, der skar i kodesekvensen. Dette DNA ligeredes med Hindill- Iregion, and Xhol, which cut into the code sequence. This DNA was ligated to Hindill-I

10 Xhol-fragmentet opnået fra pCE7, hvorved dannedes pCE15, der var den IThe Xho I fragment obtained from pCE7, forming pCE15 which was the I

endelige RAV-1-kappegen-konstruktion. Ifinal RAV-1 mantle gene construction. IN

Dette plasmid blev brugt ved en in vitro afprøvning for rekombination med IThis plasmid was used in an in vitro assay for recombination with I

fjerkræpox FP-1 som redningsvirus. Afkom af rekombinationen blev udpladet Ipoultry pox FP-1 as a rescue virus. The offspring of the recombination were plated

15 på CEF-monolag og plakkerne underkastet en β-galactosidase-koblet pro- I15 on CEF monolayers and the plaques subjected to β-galactosidase-coupled pro-I

tein-A-immunundersøgelse under anvendelse af et anti-RAV-1 polyklonalt Itein-A immunoassay using an anti-RAV-1 polyclonal I

serum. Positivt farvede plakker blev selekteret og underkastet fire omgange Iserum. Positively colored plaques were selected and submitted to four laps I

plakoprensning for at opnå en homogen population. Rekombinanten blev Iplaque purification to obtain a homogeneous population. The recombinant became I

designeret vFP-22. Immunpræcipiteringsforsøg under anvendelse af celle- Idesignated vFP-22. Immunoprecipitation experiments using cell I

20 lysater inficeret med vFP-22 har påvist specifik praecipitering af to proteiner ITwenty lysates infected with vFP-22 have demonstrated specific precipitation of two proteins I

med tilsyneladende molekylvægte på 76,5 kD og 30 kD, der svarer til kap- Iwith apparent molecular weights of 76.5 kD and 30 kD corresponding to Chapter I

pegenets to genprodukter. Der sås ikke noget prækursor-genprodukt. Ithe two gene products of the pointer. No precursor gene product was seen. IN

Ved indledende forsøg er induceret et immunrespons påRAV-l- IIn preliminary experiments, an immune response to RAV-1-I is induced

25 kappegenprodukt i kyllinger inokuleret med vFP-22. I25 coat gene product in chickens inoculated with vFP-22. IN

DK 175904 B1 53 1 EKSEMPEL 17 - Konstruktion af avipox-virus rekombinanter. der udtryk ker GP51.30 kappe (env) genet fra okseleukæmi-virus (BLV) 5 (1) Konstruktion af pBLVFI og pBLVF2EXAMPLE 17 - Construction of avipox virus recombinants. expressing the GP51.30 mantle (env) gene from Bovine Leukemia Virus (BLV) 5 (1) Construction of pBLVFI and pBLVF2

Plasmideme pBLVFI og pBLVF2 indeholder gp51.30-env-genet fra BLV. I begge plasmider er BLV-env-genet under transkriptionel kontrol af H6-promotoren fra vacciniavirus og er klonet mellem flankerende arme af 10 fjerkræpox (locus f7). Nukleotidsekvensen af de to plasmider er identisk, undtagen i codonpositioner 268 og 269. (pBLVFI koder for et protein indeholdende aminosyrerne Arg-Ser i disse to positioner, hvorimod pBLVF2 koder for et protein indeholdende aminosyrerne Gln-Thr).Plasmids pBLVFI and pBLVF2 contain the gp51.30 env gene from BLV. In both plasmids, the BLV env gene is under transcriptional control of the H6 promoter of vaccinia virus and is cloned between flanking arms of 10 poultry pox (locus f7). The nucleotide sequence of the two plasmids is identical except in codon positions 268 and 269. (pBLVFI encodes a protein containing the amino acids Arg-Ser at these two positions, whereas pBLVF2 encodes a protein containing the amino acids Gln-Thr).

15 pBLVFI og pBLVF2 blev konstrueret ved følgende procedure. Plasmid pNS97-1, et plasmid indeholdende hele BLV-env-genet, blev skåret med BamHI og delvis skåret med Mstll. Fragmentet på 2,3 kbp, indeholdende hele gp51.30 genet, blev isoleret på en agarosegel og de udragende ender udfyldt med E. coli DNA polymerase I (Klenow fragment). Der blev derpå lig-20 eret Pstl-linkere til enderne af fragmentet, som, efter nedbrydning med Pstl, blev ligeret ind i Pstl-stedet af pTP 15 (eksempel 15). Herved placeres BLV-genet ved siden af Vaccinia-H6-promotoren. (pTP15 indeholder Vaccinia-H6-promotoren klonet i et ikke-essentielt locus i vacciniagenomet).15 pBLVFI and pBLVF2 were constructed by the following procedure. Plasmid pNS97-1, a plasmid containing the entire BLV env gene, was cut with BamHI and partially cut with MstII. The 2.3 kbp fragment containing the entire gp51.30 gene was isolated on an agarose gel and the protruding ends filled with E. coli DNA polymerase I (Klenow fragment). Pst I linkers were then ligated to the ends of the fragment, which, after digestion with Pst I, was ligated into the Pst I site of pTP 15 (Example 15). This places the BLV gene next to the Vaccinia H6 promoter. (pTP15 contains the Vaccinia H6 promoter cloned at a non-essential locus of the vaccinia genome).

25 Dette plasmid blev derpå skåret med EcoRV og delvis skåret med Avail.This plasmid was then cut with EcoRV and partially cut with Avail.

Fragmentet på 5,2 kbp blev isoleret og oligonukleotiderne S'-ATCCGTTAAGTTTGTATCGTAATGCCCAAAGAACGACG-S' og 5'-GACCGTCGTTCTTTGGGCATTACGATACAAACTTAACGGAT-3' anvendt til recirkularisering af plasmidet. Herved fjernes unødvendige baser mellem 30 BLV-genet og H6-promotoren.The 5.2 kbp fragment was isolated and the oligonucleotides S'-ATCCGTTAAGTTTGTATCGTAATGCCCAAAGAACGACG-S 'and 5'-GACCGTCGTTCTTTGGGCATTACGATACAAACTTAACGGAT-3' used for recirculation of plasmid. This eliminates unnecessary bases between the BLV gene and the H6 promoter.

!!

54 I54 I

DK 175904 B1 IDK 175904 B1 I

Det resulterende plasmid blev skåret med Pstl og delvis skåret med Bgltl, ogThe resulting plasmid was cut with Pstl and partially cut with Bgltl, and

1,7 kbp fragmentet indeholdende det H6-promoterede BLV-gen klonedes ind IThe 1.7 kbp fragment containing the H6 promoted BLV gene was cloned into I

i BamHI-Pstl-stedet af pCE11, den tidligere beskrevne fjerkræpox-virus-ind- Iin the Bam HI-Pst I site of pCE11, the previously described poultry epox virus virus.

sættelsesvektor, under anvendelse af locus f7. Dette placerer det H6- Isentence vector, using locus f7. This places it H6-I

5 promoterede BLV-gen mellem flankerende arme af fjerkræpox. Dette plasmid5 promoted BLV gene between flanking arms of poultry pox. This plasmid

blev designeret pBLVFI. Iwas designated pBLVFI. IN

Der blev anvendt en identisk procedure til konstruktion af pBLVF2 med und- IAn identical procedure was used to construct pBLVF2 with sub-I

tagelse af, at et yderligere in vitro mutagenesetrin blev udført, før det H6- Iassuming that an additional in vitro mutagenesis step was performed prior to the H6-I

10 promoterede BLV-gen klonedes ind i pCE11. Denne mutagenese blev udført I10 promoted BLV genes were cloned into pCE11. This mutagenesis was carried out

ved følgende procedure. Plasmid pNS97-1 blev skåret med Xmal og delvis Iby the following procedure. Plasmid pNS97-1 was cut with Xmal and partial I

skåret med Stul. Fragmentet på 5,2 kbp blev isoleret, og oligonukleotideme Icut with Chair. The 5.2 kbp fragment was isolated and the oligonucleotides I

5-CCGGGT CAGACAAACT CCCGT CGCAGCCCTGACCTTAGG-3' og I5-CCGGGT CAGACAAACT CCCGT CGCAGCCCTGACCTTAGG-3 'and I

5'-CCTAAGGT CAGGGCTGCG ACGGGAGTTT GT CT GAC-3' I5'-CCTAAGGT CAGGGCTGCG ACGGGAGTTT GT CT GAC-3 'I

15 brugt til recirkularisering af plasmidet. Dette ændrer nukleotidsekvensen af I15 used to recirculate the plasmid. This alters the nucleotide sequence of I

codoneme 268 og 269 fra CGC-AGT til CAA-ACT. Icodons 268 and 269 from CGC-AGT to CAA-ACT. IN

(2) Konstruktion af rekombinant vira I(2) Construction of recombinant viruses I

20 Plasmiderne pBLVFI og pBLVF2 blev anvendt ved en in vitro afprøvning for IThe plasmids pBLVFI and pBLVF2 were used in an in vitro assay for I

rekombination under anvendelse af FP-1 som redningsvirus. Rekombinant Irecombination using FP-1 as rescue virus. Recombinant I

afkom blev selekteret ved in situ plakhybridisering, og når populationen ved Ioffspring were selected by in situ plaque hybridization and when the population at I

dette kriterium blev bedømt som værende ren, blev plakkeme undersøgt ved Ithis criterion was judged to be clean, the plaques were examined by I

en β-galactosidase protein-A-immunundersøgelse under anvendelse af en Ia β-galactosidase protein A immunoassay using an I

25 præparation af BLV-gp-specifikt monoklonalt antistof. Begge rekombinanter IPreparation of BLV-gp-specific monoclonal antibody. Both recombinants I

vFP23 og vFP24, dannet fra hhv. plasmid pBLVFI og pBLVF2, udviste posi- IvFP23 and vFP24, formed from respectively. plasmid pBLVFI and pBLVF2, exhibited posi- I

tiv farvning ved immunundersøgelsen, hvilket indikerede, at et immunologisk Itive staining by the immunoassay, indicating that an immunological I

genkendeligt glycoprotein blev udtrykt på overfladen af de inficerede celler. Irecognizable glycoprotein was expressed on the surface of the infected cells. IN

30 Plasmiderne pBLVK4 og pBLVK6 indeholder hhv. BLV-env-gp51.30-genet og IThe plasmids pBLVK4 and pBLVK6 contain, respectively. The BLV env gp51.30 gene and I

BLV-gp51.30-cleavage-minus-genet. Begge gener er indklonet i det unikke IBLV gp51.30-cleavage-less gene. Both genes are cloned into the unique I

DK 175904 B1 55DK 175904 B1 55

EcoRI-sted af pRW764.2 (locus C3) (pRW764.2 er beskrevet i eksempel 13) og er under transkriptionskontrol af Vaccinia-H6-promotoren.EcoRI site of pRW764.2 (locus C3) (pRW764.2 is described in Example 13) and is under transcriptional control of the Vaccinia H6 promoter.

Plasmiderne opnåedes ved følgende procedure: pBLVFI og pBLVF2 blev 5 skåret med restriktionsenzymet Hindlll. Oligonukleotidet BKL1 (AGCTTGAATTCA) blev klonet ind i dette sted, hvorved dannedes et EcoRI-sted 3' i forhold til BLV-genet. Da der også er et EcoRI-sted 5’ i forhold til BLV-genet, blev disse plasmider (pBLVKI og pBLVK2) skåret med EcoRI, og fragmentet indeholdende det H6-promoterede BLV-gen blev klonet ind i 10 EcoRI-stedet af pRW764.2. De resulterende plasmider blev designeret hhv. pBLVK4 og pBLVK6. Disse plasmider blev anvendt ved en in vitro afprøvning for rekombination med kanariepox som redningsvirus. Rekombinanter blev udvalgt og oprenset på basis af overfladeudtrykkelse af glycoproteinet, vist ved en immunprøvning. Rekombinanteme blev designeret vCP-27 og vCP-15 28 fra hhv. plasmiderne pBLVK4 og pBLVK6.The plasmids were obtained by the following procedure: pBLVFI and pBLVF2 were cut with the restriction enzyme HindIII. The oligonucleotide BKL1 (AGCTTGAATTCA) was cloned into this site, thereby forming an EcoRI site 3 'relative to the BLV gene. Since there is also an EcoRI site 5 'relative to the BLV gene, these plasmids (pBLVKI and pBLVK2) were cut with EcoRI and the fragment containing the H6 promoted BLV gene was cloned into the EcoRI site of pRW764. 2nd The resulting plasmids were designated respectively. pBLVK4 and pBLVK6. These plasmids were used in an in vitro assay for recombination with canary pox as rescue virus. Recombinants were selected and purified on the basis of surface expression of the glycoprotein, shown by an immunoassay. The recombinants were designated vCP-27 and vCP-15 28, respectively. plasmids pBLVK4 and pBLVK6.

Fjerkræpox-rekombinanter vFP-23 og vFP-24 er blevet inokuleret i får og kvæg ved forskellige indgivelsesveje. Dyrene fik to inokuleringer, den anden 45 dage efter den første. Serumprøver blev taget 5 uger efter den første ino-20 kulering og to uger efter den anden inokulering. Antistof mod gp51 blev målt ved en kompetitiv ELISA-afprøvning og titeren udtrykt som den reciprokke af serumfortyndingen, hvilket giver en 50% reduktion af kompetition. Resultaterne er vist i tabel XI.Poultry pox recombinants vFP-23 and vFP-24 have been inoculated in sheep and cattle by various routes of administration. The animals received two inoculations, the second 45 days after the first. Serum samples were taken 5 weeks after the first inoculation and two weeks after the second inoculation. Antibody to gp51 was measured by a competitive ELISA assay and the titer expressed as the reciprocal of serum dilution, giving a 50% reduction in competition. The results are shown in Table XI.

25 Ingen af de afprøvede arter udviste et påviseligt immunrespons efter den første inokulering. Både får og kvæg udviste en signifikant antistof-stigning efter den anden inokulering.None of the tested species exhibited a detectable immune response after the first inoculation. Both sheep and cattle showed a significant antibody increase after the second inoculation.

56 I56 I

DK 175904 B1 IDK 175904 B1 I

TABEL XI ITABLE XI I

Inokulerinq af får og kvæg med vFP-23 oa vFP-24Inoculation of sheep and cattle with vFP-23 and vFP-24

5 Dyr Vims Dosis og indqivelsesvei ELISA Titer I5 Animals Vims Dose and route of administration ELISA Titer I

Første Anden Første Anden IFirst Second First Second I

j Kvæg B56 FP-1 loVlO83 108+108 0 0 Ij Cattle B56 FP-1 loVlO83 108 + 108 0 0 I

B59 FP-1 ID subcut 0 0 IB59 FP-1 ID subcut 0 0 I

10 Får M89 FP-1 0 0 I10 Get M89 FP-1 0 0 I

M91 FP-1 0 0 IM91 FP-1 0 0 I

Kvæg B62 vFP-23 108+108 1 08+108 0 200b ICattle B62 vFP-23 108 + 108 1 08 + 108 0 200b I

B63 vFP-23 ID subcut 0 80 IB63 vFP-23 ID subcut 0 80 I

15 Får M83 vFP-23 0 80 M84 vFP-23 0 50015 Get M83 vFP-23 0 80 M84 vFP-23 0 500

• M85 vFP-23 0 100 I• M85 vFP-23 0 100 I

Kvæg B52 vFP-24 1 08+108 1 08+108 0 200 ICattle B52 vFP-24 1 08 + 108 1 08 + 108 0 200 I

20 B53 vFP-24 ID subcut 0 60 I20 B53 vFP-24 ID subcut 0 60 I

Får M87 vFP-24 0 200 IGet M87 vFP-24 0 200 I

M92 vFP-24 0 20 IM92 vFP-24 0 20 I

M93 vFP-24 0 20 IM93 vFP-24 0 20 I

25 a Intradermale injektioner blev givet to steder I25 a Intradermal injections were given at two sites I

b Titer udtrykt som den reciprokke af fortyndingen, Ib Titer expressed as the reciprocal of the dilution, I

hvilket giver 50% kompetition. Iproviding 50% competition. IN

EKSEMPEL 18 - Konstruktion af fierkræpox-vims FP-1 rekombinant vFP- IExample 18 - Construction of wild crepe pox FP-1 recombinant vFP-I

30 26. der udtrykker infektiøs-bronchitis-vims-Mass-41- I30 26. expressing infectious-bronchitis-vims-Mass-41-I

matrixqenet Ithe matrix gene I

Plasmid plBVM63 indeholder en infektiøs-bronchitis-virus (IBV) cDNA-klon af IPlasmid plBVM63 contains an infectious bronchitis virus (IBV) cDNA clone of I

stamme Mass-41-matrixgenet. Et EcoRI-fragment på 8 kbp af plBVM63 in- Istrain Mass-41 matrix gene. An 8 kbp EcoRI fragment of p1BM63 in- I

35 deholder matrixgenet med peplomergenet opstrøms (51), og videre opstrøms I35 contains the matrix gene with the peplomer gene upstream (51), and further upstream I

er der et EcoRV-sted. Plasmid pRW715 har en EcoRI-koblingssekvens, der Ithere is an EcoRV site. Plasmid pRW715 has an EcoRI coupling sequence which I

forbinder de to Pvull-steder i pUC9. EcoRI-fragmentet på 8 kbp fra plBVM63 Iconnects the two Pvull sites in pUC9. The 8 kbp EcoRI fragment from p1BM63 I

DK 175904 B1 57 blev indsat i EcoRI-stedet i pRW715, hvorved dannedes pRW763. Plasmid j pRW776 blev dannet til deletering af det 5-beliggende EcoRI-sted i pRW763, ! hvilket efterlod et unikt EcoRI-sted nedstrøms (3*) fra matrixgenet. Det isol erede lineære delvise EcoRI-nedbrydningsprodukt af pRW763 blev skåret 5 igen med RcoRV. Det største fragment blev isoleret, gjort stump-endet med Klenow-fragmentet fra DNA polymerase I og selvligeret til dannelse af pRW776. Konstruktionen pRW776 har de fuldstændige IBV-peplomergener og IBV-matrixgener efterfulgt af et enkelt EcoRI-sted.DK 175904 B1 57 was inserted into the EcoRI site of pRW715, thereby forming pRW763. Plasmid j pRW776 was generated for deletion of the 5-site Eco RI site in pRW763. leaving a unique EcoRI site downstream (3 *) of the matrix gene. The isolated linear partial EcoRI degradation product of pRW763 was cut again with RcoRV. The largest fragment was isolated, blunt-ended with the Klenow fragment of DNA polymerase I, and self-ligated to form pRW776. Construction pRW776 has the complete IBV peplomer genes and IBV matrix genes followed by a single EcoRI site.

10 Kun 5’- og 3-endeme af matrixgenet på ca. 0,9 kbp er blevet sekventeret. Begyndende ved den translationsinitierende codon (ATG) indeholder 5'-sekvensen af matrixgenet det følgende understregede Rsal-sted: ATGTCCAACGAGACAAATTGTAC. Den tidligere beskrevne H6-promotor blev forbundet til matrixgenet med et syntetisk oligonukleotid. Det syntetiske 15 oligonukleotid indeholdt H6-sekvensen fra dens RcoRV-sted til ATG og ind i den matrix-kodende sekvens gennem det første Rsal-sted. Oligonukleotidet blev syntetiseret med BamHI- og EcoRI-kompatible ender til indsættelse i pUC9, hvorved dannedes pRW772. EcoRI-enden ligger 3' i forhold Rsal-stedet. Begyndende ved den BamHI-kompatible ende, med ATG under- 20 streget, er sekvensen af det dobbeltstrengede syntetiske oligonukleotid:10 Only the 5 'and 3 ends of the matrix gene of ca. 0.9 kbp has been sequenced. Starting at the translation initiation codon (ATG), the 5 'sequence of the matrix gene contains the following stressed Rsal site: ATGTCCAACGAGACAAATTGTAC. The previously described H6 promoter was linked to the matrix gene with a synthetic oligonucleotide. The synthetic oligonucleotide contained the H6 sequence from its RcoRV site to ATG and into the matrix coding sequence through the first Rsal site. The oligonucleotide was synthesized with BamHI and EcoRI compatible ends for insertion into pUC9, thereby forming pRW772. The EcoRI end is 3 'relative to the Rsal site. Starting at the BamHI-compliant end, with ATG underlined, is the sequence of the double-stranded synthetic oligonucleotide:

GATCGCGATATCCGTTAAGTTTGTATCGTAATGTCCAACGAGACAAATTGTACGGATCGCGATATCCGTTAAGTTTGTATCGTAATGTCCAACGAGACAAATTGTACG

CGCTATAGGCAATTCAAACATAGCATTACAGGTTGCTCTGTTTAACATGCTTAACGCTATAGGCAATTCAAACATAGCATTACAGGTTGCTCTGTTTAACATGCTTAA

25 Det lineære delvise Rsal-nedbrydningsprodukt af pRW772 blev isoleret og skåret igen med RcoRI. pRW772-fragmentet, indeholdende en enkelt skæring i det ovennævnte Rsal-sted og skåret igen med EcoRI, blev isoleret, behandlet med phosphatase og anvendt som en vektor for pRW776-nedbrydningsproduktet nedenfor.The linear partial Rsal degradation product of pRW772 was isolated and cut again with RcoRI. The pRW772 fragment, containing a single cut at the above Rsal site and cut again with EcoRI, was isolated, treated with phosphatase and used as a vector for the pRW776 degradation product below.

3030

58 I58 I

DK 175904 B1 IDK 175904 B1 I

Det isolerede lineære delvise Rsal-nedbrydningsprodukt af pRW776 blev IThe isolated linear partial Rsal degradation product of pRW776 was I

skåret igen med RcoRI. EcoRI ligger lige efter 3-enden af matrixgenet. Et Icut again with RcoRI. EcoRI is located just after the 3-end of the matrix gene. And I

isoleret Rsal-EcoRI-fragment på ca. 0,8 kbp, indeholdende matrix- Iisolated Rsal-EcoRI fragment of ca. 0.8 kbp, containing matrix I

kodesekvensen fra det ovennævnte Rsal-sted, blev indsat i ovennævnte Ithe code sequence from the above Rsal site, was inserted into the above I

5 pRW772-vektor til dannelse af pRW783. Den fuldstændige H6-promotor blev I5 pRW772 vector to form pRW783. The complete H6 promoter became I

dannet ved tilføjelse af sekvenser 5' i forhold til EcoRV-stedet. H6- Iformed by adding sequences 5 'to the EcoRV site. H6- I

promotorens 5’-ende var et Hinfl-sted, der var stump-endet ind i pUC9's Sall- Ithe 5 'end of the promoter was a Hinfl site that was blunt-ended into pUC9's SalI-I

sted, hvorved dannedes et EcoRI-sted; 5’ i forhold til H6-promotoren ligger Isite thereby forming an EcoRI site; 5 'relative to the H6 promoter is I

pUC9's Hindlll-sted. Hindlll-EcoRV-fragmentet indeholdende 5’ H6- IpUC9 HindIII site. The HindIII EcoRV fragment containing 5 'H6-I

10 promotoren blev indsat mellem Hindlll- og EcoRV-stedeme i pRW783 til IThe promoter was inserted between the HindIII and EcoRV sites of pRW783 to I

dannelse af pRW786. pRW786’s EcoRI-fragment, indeholdene det fuld- Iformation of pRW786. pRW786's EcoRI fragment, containing the full I

stændige H6-promoterede matrixgen, blev gjort stump-endet med Klenow- Iconstant H6 promoted matrix gene, was blunt-ended with Klenow-I

fragment fra DNA-polymerase I og indsat i det stump-endede BamHI-sted i IDNA polymerase I fragment and inserted into the blunt-ended BamHI site of I

pRW731.15 {locus fS) til dannelse af pRW789. pRW731.15-BamHI-stedet er IpRW731.15 {locus fS) to form pRW789. The pRW731.15 BamHI site is I

15 det FP-1 -locus, der i eksempel 6 bruges til konstruktion af vFP-8. I15 shows the FP-1 locus used in Example 6 for constructing vFP-8. IN

Plasmid pRW789 blev anvendt ved konstruktionen af vFP-26. Rekombinante IPlasmid pRW789 was used in the construction of vFP-26. Recombinant I

plakker blev selekteret og behandlet ved in situ plakhybridisering. Iplaques were selected and treated by in situ plaque hybridization. IN

20 Ved indledende afprøvninger er induceret et immunrespons mod IBV- I20 Initial tests induced an immune response to IBV-I

matrixproteinet i kyllinger inokuleret med vFP-26. Ithe matrix protein in chickens inoculated with vFP-26. IN

EKSEMPEL 19- Konstruktion af fierkræpox-virus FP-1 rekombinant vFP- IEXAMPLE 19 - Construction of fiery creepox virus FP-1 recombinant vFP-I

31. der udtrykker infektiøs-bronchitis-virus flBV) * I31. expressing infectious-bronchitis virus flBV) * I

25 peplomer I25 peplomer I

Infektiøs-bronchitis-virus (IBV) Mass-41 cDNA-klon pIBVM 63 og dens IInfectious bronchitis virus (IBV) Mass-41 cDNA clone pIBVM 63 and its I

subklon pRW776 er blevet beskrevet ved konstruktionen af vFP-26 i eksem- Isubclone pRW776 has been described in the construction of vFP-26 in Example I

pel 18. Subklon pRW776 indeholder IBV-peplomergenet på 4 kbp efterfulgt Ipel 18. Subclone pRW776 contains the 4 kbp IBV peplomer gene followed by I

30 af matrixgenet med et unikt EcoRI-sted i 3'-enden. Kun 5'- og 3'-enderne af I30 of the matrix gene with a unique EcoRI site at the 3 'end. Only the 5 'and 3' ends of I

IBV-peplomergenet på ca. 4 kbp er blevet sekventeret. Et unikt Xbal-sted IThe IBV peplomer gene of ca. 4 kbp has been sequenced. A unique Xbal site I

DK 175904 B1 59 adskiller de to gener. 5’-enden af peplomergenet, der starter ved translations-initieringscodonen (ATG), indeholder det følgende understregede Rsal-sted: ATGTTGGTAACACCTCTTTTACTAGTGACTCTTTTGTGTGTAC. Den tidligere beskrevne H6-promotor blev forbundet med peplomergenet ved et 5 syntetisk oligonukleotid. Det syntetiske oligonukleotid indeholder H6-promotorsekvensen fra Nrul-stedet til ATG og ind i den peplomer-kodende sekvens gennem det første Rsal-sted. Oligonukleotidet blev syntetiseret med BamHI- og EcoRI-kompatible ender til indsættelse i pUC9, hvorved dannedes pRW768. EcoRI-enden ligger 3’ i forhold Rsal-stedet. Begyndende 10 ved den BamHI-kompatible ende, med ATG understreget, er sekvensen af det dobbeltstrengede syntetiske oligonukleotid:DK 175904 B1 59 separates the two genes. The 5'-end of the peplomer gene starting at the translation initiation codon (ATG) contains the following stressed Rsal site: ATGTTGGTAACACCTCTTTTACTAGTGACTCTTTTGTGTGTAC. The previously described H6 promoter was associated with the peplomer gene by a synthetic oligonucleotide. The synthetic oligonucleotide contains the H6 promoter sequence from the Nrul site to ATG and into the peplomer coding sequence through the first Rsal site. The oligonucleotide was synthesized with BamHI and EcoRI compatible ends for insertion into pUC9, thereby forming pRW768. The EcoRI end is 3 'relative to the Rsal site. Starting at the BamHI-compatible end, with ATG underlined, is the sequence of the double-stranded synthetic oligonucleotide:

GATCTCGCGATATCCGTTAAGTTTGTATCGTAATGTTGGTAACACCTCTTGATCTCGCGATATCCGTTAAGTTTGTATCGTAATGTTGGTAACACCTCTT

AGCGCTATAGGCAATTCAAACATAGCATTACAACCATTGTGGAGAAAGCGCTATAGGCAATTCAAACATAGCATTACAACCATTGTGGAGAA

15 TTACTAGTGACTCTTTTGTGTGTACG15 TTACTAGTGACTCTTTTGTGTGTACG

AATGATCACTGAGGAAACACACATGCTTAAAATGATCACTGAGGAAACACACATGCTTAA

Det isolerede lineære delvise Rsal-nedbrydningsprodukt af pRW768 blev skåret igen med EcoRI. pRW768-fragmentet, indeholdende en enkelt 20 skæring i det ovennævnte Rsal-sted og skåret igen med EcoRI blev isoleret, behandlet med phosphatase og anvendt som en vektor for pRW776-ned-brydningsproduktet nedenfor.The isolated linear partial Rsal degradation product of pRW768 was cut again with EcoRI. The pRW768 fragment containing a single cut at the above Rsal site and cut again with EcoRI was isolated, treated with phosphatase and used as a vector for the pRW776 degradation product below.

Det isolerede lineære delvise Rsal-nedbrydningsprodukt af pRW776 blev 25 skåret igen med RcoRI. pRW776 fragmentet på 5 kbp, indeholdende en enkelt skæring i det ovennævnte Rsal-sted, til EcoRI-stedet blev isoleret; fragmentet indeholder IBV-sekvenser fra ovennævnte peplomer-Rsal-sted til EcoRI-stedet i 3-enden af matrixgenet. Indsættelse af pRW776-fragmenet i ovennævnte pRW768-vektor frembragte pRW788. Matrixgenet blev fjernet 30 ved det oven for fremhævede Xbal-sted. 5' H6-promotoren blev indføjet i Nrul-stedet ved indsættelse af det stump-endede pRW788-Nrul-Bbal-frag-The isolated linear partial Rsal degradation product of pRW776 was cut again with RcoRI. the 5 kbp pRW776 fragment containing a single cut at the above Rsal site to the EcoRI site was isolated; the fragment contains IBV sequences from the above peplomer-Rsal site to the EcoRI site at the 3-end of the matrix gene. Insertion of the pRW776 fragment into the above pRW768 vector produced pRW788. The matrix gene was removed at the Xba site highlighted above. The 5 'H6 promoter was inserted into the Nrul site by insertion of the blunt-ended pRW788-Nrul-Bbal fragment.

I DK 175904 B1 II DK 175904 B1 I

I 60 II 60 I

I ment på 5 kbp i den stump-endede pRW760 Nrul-BamHI-vektor til frem- IIntended at 5 kbp in the blunt-ended pRW760 Nrul-BamHI vector for production.

I bringelse af pRW790. Vektoren pRW760 er beskrevet ί eksempel 11; kort IIn bringing the pRW790. The vector pRW760 is described in Example 11; card I

I beskrevet er det et Vaccinia-H6-promoteret influenza-nukleoprotein flankeret IAs described, it is a Vaccinia H6 promoted influenza nucleoprotein flanked I

I af det ikke-essentielle FP-1 locus f7. pRW760-vektoren blev fremstillet ved at II of the non-essential FP-1 locus f7. The pRW760 vector was prepared by I

I 5 fjerne 3' Ηδ-sekvenserne fra Nrul-stedet til enden af nukleoproteinet ved IIn 5, remove the 3 'Ηδ sequences from the Nrul site to the end of the nucleoprotein at I

I BamHI. pRW790 er H6-promoteret IBV-peplomer i Hincll-stedet af IIn BamHI. pRW790 is H6-promoted IBV peplomer in the HincII site of I

I pRW731.13. Rekombination af donorplasmidet pRW790 med FP-1 re- IIn pRW731.13. Recombination of the donor plasmid pRW790 with FP-1 re-I

I suiterede i vFP-31. Immunpræcipiteringsforsøg med anvendelse af CEF- IYou cited in vFP-31. Immunoprecipitation experiments using CEF-I

I lysater fremstillet fra celler inficeret med vFP-31 har vist specifik præcipiter- IIn lysates prepared from cells infected with vFP-31, specific precipitator I has been shown

I 10 ing af en lille mængde prækursorprotein med en molekylvægt på ca. 180 kD IIn 10 µg of a small amount of precursor protein with a molecular weight of approx. 180 kD I

I og af kløvningsprodukterne på90 kD. IIn and out of the 90 kD cleavage products. IN

I EKSEMPEL 20 - Konstruktion af fierkræpox-virus FP-1-rekombinant vFP- IIn Example 20 - Construction of fiery creepox virus FP-1 recombinant vFP-I

I 30. der udtrykker herpes simplex-virus-qD II 30. expressing herpes simplex virus qD I

I 15 II 15 I

I Herpes simplex-virus (HSV) type-1-stamme-KOS-glycoprotein-D-gen (gD) IIn Herpes simplex virus (HSV) type 1 strain KOS glycoprotein D gene (gD) I

I blev klonet ind i pUC9 BamHI-stedet som et 5' BamHI koblet Hpall til 3' II was cloned into the pUC9 BamHI site as a 5 'BamHI coupled Hpall to 3' I

I BamHI koblet Nrul fragment; med 5-enden ved siden af pUC9's Pstl-sted. 5'- IIn BamHI, the Nrul fragment is linked; with the 5-end adjacent to pUC9's Pstl site. 5'- I.

I sekvensen af HSV-gD, begyndende ved translationsinitieringscodonen IIn the sequence of HSV-gD, beginning with the translation initiation codon I

I 20 (ATG), indeholder følgende understregede Ncol-sted: II 20 (ATG), contains the following underlined NcoI site: I

I ATGGGGGGGGCTGCCGCCAGGTTGGGGGCCGTGATTTTGTTTGTCGTCATAGTGGG II ATGGGGGGGGCTGCCGCCAGGTTGGGGGCCGTGATTTTGTTTGTCGTCATAGTGGG I

I cctccatgg. Den tidligere beskrevne Vaccinia-H6-promotor blev forbundet IIn cctccatgg. The previously described Vaccinia H6 promoter was linked I

I med HSV-gD-genet ved et syntetisk oligonukleotid. Det syntetiske oligonuk- II with the HSV gD gene at a synthetic oligonucleotide. The synthetic oligonucleotide

I leotid indeholder 3'-delen af H6-promotoren fra Nrul til ATG ind i gD-kode- IIn leotide, the 3 'portion of the H6 promoter from Nrul to ATG contains into gD code I

I 25 sekvensen til Ncol-stedet. Oligonukleotidet blev syntetiseret med en 5’-Pstl- IIn the sequence to the Ncol site. The oligonucleotide was synthesized with a 5'-PstI-I

I kompatibel ende. gD-klonen i pUC9 blev skåret med Pstl og Ncol, og 5’- IAt compatible end. The gD clone in pUC9 was cut with Pst I and Nco I, and 5'-I

I HSV-sekvensen fjernet til udskiftning med det syntetiske oligonukleotid, IIn the HSV sequence removed for replacement with the synthetic oligonucleotide, I

I hvorved dannedes pRW787. Sekvensen af det dobbeltstrengede syntetiske IIn which pRW787 was formed. The sequence of the double stranded synthetic I

I oligonukleotid er: IIn oligonucleotide:

I 30 II 30 I

DK 175904 B1 61 GTCGCGATATCCGTTAAGTTTGTATCGTAATGGGAGGTGCCG-ACGTCAGCGCTATAGGCAATTCAAACATAGCATTACCCTCCACGGC -DK 175904 B1 61 GTCGCGATATCCGTTAAGTTTGTATCGTAATGGGAGGTGCCG-ACGTCAGCGCTATAGGCAATTCAAACATAGCATTACCCTCCACGGC -

CAGCTAGATTAGGTGCTGTTATTTTATTTGTAGTTATAGTAGGACTC 5 GTCGATCTAATCCACGACAATAAAATAAACATCAATATCATCCTGAGGTACCAGCTAGATTAGGTGCTGTTATTTTATTTGTAGTTATAGTAGGACTC 5 GTCGATCTAATCCACGACAATAAAATAAACATCAATATCATCCTGAGGTAC

Nedbrydning af pRW787 med Nrul og BamHI frembringer et fragment på ca.Degradation of pRW787 with Nrul and BamHI produces a fragment of ca.

1,3 kbp indeholdende 3’-H6-promotoren fra Nrul-stedet, gennem HSV-gD-kodesekvensen til BamHI-stedet. pRW760-vektoren, skåret med Nrul og 10 BamHI, er beskrevet i eksempel 11. Indsættelse af 1,3 kbp-fragmentet i pRW760-vektoren førte til pRW791. pRW791-vektoren indeholder det fuldstændige vaccinia-H6-promoterede HSV-gD-gen i det ikke-essentielle FP-1-Hincll-sted i pRW731.13 (locus f7).1.3 kbp containing the 3'-H6 promoter from the Nrul site, through the HSV-gD coding sequence to the BamHI site. The pRW760 vector, cut with Nrul and 10 BamHI, is described in Example 11. Insertion of the 1.3 kbp fragment into the pRW760 vector led to pRW791. The pRW791 vector contains the complete vaccinia H6 promoted HSV gD gene in the non-essential FP-1 HincII site of pRW731.13 (locus f7).

15 Rekombination af donorplasmidet pRW791 med FP-1 resulterede i vFP-30. Overfladeudtrykkelse af glycoproteinet blev påvist i rekombinante plakker under anvendelse af en β-galactosidase-koblet protein-A-immunprøvning og HSV-1-specifikke sera.Recombination of the donor plasmid pRW791 with FP-1 resulted in vFP-30. Surface expression of the glycoprotein was detected in recombinant plaques using a β-galactosidase-coupled protein-A immunoassay and HSV-1-specific sera.

20 EKSEMPEL 21 - Anvendelse af entomopox-promotorer til regulering af udtrvkkelse af fremmede gener i pox-virus-vektorer (a) Baggrund. Poxvira fra insekter (entomopox) klassificeres for øjeblikket i underfamilien Entomopoxvirinae, der yderligere underopdeles i tre slægter ' 25 (A, B og C) svarende til entomopoxvira isoleret fra insektordnerne, hhv. Col- eoptera, Lepidoptera og Orthoptera. Entomopox-vira har et snævert værtområde i naturen og er ikke kendt for at replikere i nogen vertebratarter.Example 21 - Use of entomopox promoters to regulate foreign gene expression in pox virus vectors (a) Background. Insect pox viruses (entomopox) are currently classified into the subfamily Entomopoxvirinae, further subdivided into three genera '25 (A, B and C) corresponding to entomopoxviruses isolated from the insect sequences, respectively. Col- eoptera, Lepidoptera and Orthoptera. Entomopox viruses have a narrow host range in nature and are not known to replicate in any vertebrate species.

Entomopox-viruset anvendt ved disse forsøg var oprindeligt isoleret fra infi-30 ærede larver af Amsacta moorei (Lepidoptera: arctildae) fra Indien. (RobertsThe Entomopox virus used in these experiments was initially isolated from infected 30 larvae of Amsacta moorei (Lepidoptera: arctildae) from India. (Roberts

62 I62 I

DK 175904 B1 IDK 175904 B1 I

og Granados, J. Invertebr. Pathol. 12:141-143 [1968]). Viruset, designeret Iand Granados, J. Invertebr. Pathol. 12: 141-143 [1968]). The virus, designated I

AmEPV, er typearten for slægt B. IAmEPV, is the type species for genus B. I

Vildtype AmEPV blev opnået fra Dr. R. Granados (Boyce Thompson Institute, IWild type AmEPV was obtained from Dr. R. Granados {Boyce Thompson Institute, I

5 Cornell University) som infektiøs hæmolymfe fra inficerede larver af Estig- I5 Cornell University) as infectious hemolymph from infected larvae of Estig- I

mene acrea. Viruset fandtes at replikere i en invertebrat-cellelinje, IPLB- Imene acrea. The virus was found to replicate in an invertebrate cell line, IPLB-I

LD652Y, afledt fra ovarievæv hos Lymantria dispar (gypsy moth) (beskrevet ILD652Y, derived from ovarian tissue of Lymantria dispar (gypsy moth) (described in

af Goodwin et al., In Vitro 14:485-494 [1978]). Cellerne blev dyrket i IPL-528- Iby Goodwin et al., In Vitro 14: 485-494 [1978]). The cells were grown in IPL-528-1

medier suppleret med 4% føtal kalve- og 4% kyllingesera ved 28 °C. Imedia supplemented with 4% fetal calf and 4% chicken sera at 28 ° C. IN

10 I10 I

Vildtype-viruset blev plakprøvet på LD652Y-celler, og én plak, designeret V1, IThe wild type virus was plaque tested on LD652Y cells and one plaque designated V1, I

blev udvalgt til videre forsøg. Dette isolat danner sent i infektionscyklusenwas selected for further experimentation. This isolate forms late in the infection cycle

talrige okklusionslegemer (occlusion bodies - OB) i cytoplasmaet af de infi- Inumerous occlusion bodies (OB) in the cytoplasm of the infi

cerede celler. Icells. IN

15 I15 I

(b) Promotor-identifikation. Identifikationen og kortlægningen af en AmEPV- I(b) Promoter identification. The identification and mapping of an AmEPV-I

promotor blev opnået på følgende måde. Totalt RNA fra sent inficerede Ipromoter was obtained as follows. Total RNA from Late Infected I

LD652Y-celler (48 timer efter infektion) blev isoleret og brugt til fremstilling af ILD652Y cells (48 hours after infection) were isolated and used to prepare I

32P-mærket førstestrengs-cDNA. cDNAet blev derpå anvendt til probe- I32P-labeled first-strand cDNA. The cDNA was then used for probe I

20 undersøgelse af aftryk indeholdende restriktionsnedbrydningsprodukter af I20 examination of imprints containing restriction degradation products of I

AmEPV-genomet. Denne Southern blot afslørede et stærkt signal pået Clal- IAmEPV genome. This Southern blot revealed a strong signal on Clal-I

fragment på 2,6 kbp, hvilket indikerede, at fragmentet kodede for et stærkt I2.6 kbp fragment, indicating that the fragment encoded a strong I

udtrykt gen. Fragmentet blev klonet ind i en plasmidvektor og dets DNA- Iexpressed gene. The fragment was cloned into a plasmid vector and its DNA-I

sekvens bestemt. Isequence determined. IN

25 I25 I

Analyse af sekvensdataene afslørede en åben læseramme i stand til at kode IAnalysis of the sequence data revealed an open reading frame capable of encoding I

! for et 42 kD polypeptid. In vitro translation af det totale RNA 48 timer efter I! for a 42 kD polypeptide. In vitro translation of total RNA 48 hours after I

infektion og adskillelse af produkterne ved SDS-PAGE afslørede et polypep- Iinfection and separation of the products by SDS-PAGE revealed a polypeptide

tid på ca. 42 kD. Itime of approx. 42 kD. IN

30 I30 I

DK 175904 B1 63 (c) Konstruktion af et rekombinant vacciniavirus med udtrvkkelse af et fremmed gen under entomopox-promotorens kontrol. Til bestemmelse af, om en entomopox-promotor ville fungere i et vertebrat-poxvirus-system, blev det følgende plasmid konstrueret. Der blev kemisk syntetiseret et oligonukleotid 5 indeholdendede de 107 baser beliggende i 5'-retningen fra 42K-gen-transla-tionsstartsignalet (herefter betegnet AmEPV-42K-promotoren), flankeret af et Bglll-sted i 5'-enden og de første 14 baser af området kodende for hepatitis-B-virus-præ-S2, der ender i et EcoRI-sted, i 3'-enden. AmEPV-42K-promotor-sekvensen er beskrevet nedenfor.(C) Construction of a recombinant vaccinia virus expressing a foreign gene under the control of the entomopox promoter. To determine whether an entomopox promoter would function in a vertebrate poxvirus system, the following plasmid was constructed. Chemically, an oligonucleotide 5 containing the 107 bases located in the 5 'direction of the 42K gene translation start signal (hereinafter referred to as the AmEPV-42K promoter) was flanked by a BglII site at the 5' end and the first 14 bases of the region encoding hepatitis B virus pre-S2 ending in an EcoRI site at the 3 'end. The AmEPV-42K promoter sequence is described below.

1010

TCAAAAAAATATAAATGATTCACCATC TGATAGAAAAAAAATTTATTGGGAAGA ATATGATAATATTTTGGGATTTCAAA AT TGAAAATATATAATTACAATATAAAATGTCAAAAAAATATAAATGATTCACCATC TGATAGAAAAAAAATTTATTGGGAAGA ATATGATAATATTTTGGGATTTCAAA AT TGAAAATATATAATTACAATATAAAATG

1515

AmpEPV-42K-promotoren blev ligeret til hepatitis B-virus-overfladeantigenet (HBVsAg) som følger. Der konstrueredes et pUC-plasmid indeholdende hepatitis B-overfladeantigenet og det præ-S2-kodende område (type ayw beskrevet af Galibert et al., Nature 281:646-650 [1979]) flankeret af vaccinia-20 virus-arme i det ikke-essentielle område af vacciniå-virus-genomet, der koder for hæmagglutinin (HA) molekylet (HA-arme beskrevet i eksempel 15; HA-område beskrevet af Shida, Virology 150:451-462 [1962]). Oligonukleotidet beskrevet ovenfor blev indsat i dette plasmid ved at anvende det unikke EcoRI-sted i det HBVsAg-kodende område og et unikt Bglll-sted i HA-25 vaccinia-armen. Det resulterende rekombinante vaccinia-virus blev designeret vP547.The AmpEPV-42K promoter was ligated to the hepatitis B virus surface antigen (HBVsAg) as follows. A pUC plasmid containing the hepatitis B surface antigen and the pre-S2 coding region (type ayw described by Galibert et al., Nature 281: 646-650 [1979]) was constructed flanked by vaccinia virus arms in the essential region of the vaccinia virus genome encoding the hemagglutinin (HA) molecule (HA arms described in Example 15; HA region described by Shida, Virology 150: 451-462 [1962]). The oligonucleotide described above was inserted into this plasmid using the unique Eco RI site in the HBVsAg coding region and a unique BglII site in the HA-25 vaccinia arm. The resulting recombinant vaccinia virus was designated vP547.

Udtrykkelse af den indsatte HBVsAg-kodesekvens under kontrol af ento-mopox-42K-pnomotoren blev bekræftet under anvendelse af en immun-30 prøvning. Ækvivalente kulturer af den mammale cellelinje BSC-40 blev inficeret med parentalt vaccinia-virus eller rekombinant vP547. 24 timer efterExpression of the inserted HBVsAg coding sequence under the control of the entomopox 42K pnomotor was confirmed using an immunoassay. Equivalent cultures of the mammalian cell line BSC-40 were infected with parental vaccinia virus or recombinant vP547. 24 hours after

64 I64 I

DK 175904 B1 IDK 175904 B1 I

infektion blev cellerne lyseret og lysatet i seriefortyndinger påført en nitrocel- Iinfection, the cells were lysed and the lysate in serial dilutions applied to a nitro cell I

lulosemembran. Membranen blev først inkuberet med et gede-anti-HBV- Ilulosemembran. The membrane was first incubated with a goat anti-HBV-I

serum og derpå med 125l-Protein A. Efter vaskning blev membranen ekspon- Iserum and then with 125 I Protein A. After washing, the membrane was exposed

eret på en røntgenfilm. Der blev påvist positive signaler i kulturer inficeret Ierected on an x-ray film. Positive signals were detected in cultures infected I

5 med vP547, men ikke i kulturer inficeret med parentalt virus, hvilket indikerer I5 with vP547, but not in cultures infected with parental virus, indicating I

genkendelse af AmEPV-42K-promotoren af vaccinia-virus i mammale celler. Irecognition of the AmEPV-42K promoter of vaccinia virus in mammalian cells. IN

Disse resultater blev verificeret under anvendelse af en Ausria-prøvning (se IThese results were verified using an Ausria test (see I

eksempel 1 for detaljer) til påvisning af HBVsAg i inficerede mammale celler. IExample 1 for details) for detection of HBVsAg in infected mammalian cells. IN

10 Vaccinia-virus-rekombinanter indeholdende HBsAg-genet koblet til AmEPV- I10 Vaccinia virus recombinants containing the HBsAg gene linked to AmEPV-I

42K-promotoren eller vaccinia-virus-H6-promotoren blev anvendt til inficering IThe 42K promoter or vaccinia virus H6 promoter was used for infection I

af BSC-40-celler, og udtrykkelsesniveauet af sAg prøvet ved Ausria- Iof BSC-40 cells, and the expression level of sAg tested by Ausria-I

afprøvningsmetoden. Som det ses i tabel XII, viser dataene, at udtrykkelses- Itesting method. As seen in Table XII, the data show that the expression I

niveauet af HBsAg ved anvendelse af 42K-promotoren var signifikant. Ithe level of HBsAg using the 42K promoter was significant. IN

15 I15 I

TABEL XII ITABLE XII I

Udtrvkkelse af HBVsAo i rekombinant vaccinia-virus IExpression of HBVsAo in recombinant vaccinia virus I

20 Rekombinant virus Promotor Ausria P/N-forhold IRecombinant virus Promoter Ausria P / N ratio I

vP410 Kontrol 1,0 IvP410 Control 1.0 I

vP481 H6 24,3 IvP481 H6 24.3 I

VP547 42K 44,9 IVP547 42K 44.9 I

25 I25 I

Yderligere forsøg blev udført for at fastlægge den tidsmæssige faktor ved IFurther experiments were performed to determine the temporal factor at I

reguleringen af AmEPV-42K-promotoren i en vertebrat-poxvirus-baggrund. Ithe regulation of the AmEPV-42K promoter in a vertebrate poxvirus background. IN

Ækvivalente kulturer af BSC-40 celler blev inficeret med vP547 i nærvær IEquivalent cultures of BSC-40 cells were infected with vP547 in presence I

eller fravær af 40 pg/ml cytosinarabinosid, der er en DNA-repli- Ior the absence of 40 µg / ml cytosine arabinoside, which is a DNA replication

30 kationsinhibitor, som derfor blokerer sen viral transkription. Udtrykkelses- I30 cation inhibitor, which therefore blocks late viral transcription. Expressive I

niveauer 24 timer efter infektion blev prøvet ved en Ausria-afprøvning. Resul- ILevels 24 hours after infection were tested by an Ausria test. Result I

DK 175904 B1 65 taterne indikerede, at 42K-promotoren blev genkendt som en tidlig promotor i et vaccinia-virus-replikationssystem.DK 175904 B1 65 indicated that the 42K promoter was recognized as an early promoter in a vaccinia virus replication system.

Bemærk at brugen af AmEPV-42K-promotoren til udtrykkelse af fremmede 5 gener i et pattedyrsystem er klart forskellig fra brugen af Autographa califor-nica-NPV-polyhedrin-promotoren til genudtrykkelse i invertebratsystemer (Luckow og Summers, Biotechnology 6:47-55 [1988]). Polyhedrin-promotoren genkendes ikke af transkriptionsapparatet i pattedyrceller (Tjla et al., Virology 125:107-117 [1983]). Anvendelsen af AmEPV-42K-promotoren i 10 pattedyrceller repræsenterer den første gang, en insektvirus-promotor er blevet brugt til udtrykkeisen af fremmede gener i en ikke-insekt viral vektor i ikke-invertebratceller.Note that the use of the AmEPV-42K promoter to express foreign 5 genes in a mammalian system is clearly different from the use of the Autographa califorinica NPV polyhedrin promoter for gene expression in invertebrate systems (Luckow and Summers, Biotechnology 6: 47-55 [ 1988]). The polyhedrin promoter is not recognized by the transcriptional apparatus in mammalian cells (Tjla et al., Virology 125: 107-117 [1983]). The use of the AmEPV-42K promoter in 10 mammalian cells represents the first time an insect virus promoter has been used for the expression of foreign genes in a non-insect viral vector in non-invertebrate cells.

Til bestemmelse af, om avipoxvira også ville genkende 42K-entomopox-15 promotoren, blev følgende forsøg udført. Identiske kulturer af CEF-celler blev inokuleret med 10 pfu pr. celle af enten fjerkræpoxvirus, kanariepoxvirus eller vacciniavirus og samtidigt transfekteret med 25 pg af ét af følgende plas-mider: 1) plasmid 42K.17 indeholdende HBV-præ-S2 + sAg-kodesekvensen koblet til 42K-promotoren eller 2) plasmid pMP15.spsP indeholdende den 20 identiske HBVsAg-kodesekvens koblet til den tidligere beskrevne vaccinia-virus-H6-promotor. Efter 24 timer blev kulturerne trosset, cellerne lyseret, og lysatet analyseret for tilstedeværelsen af HBVsAg under anvendelse af en Ausria-afprøvning. (se eksempel 1).To determine whether avipoxviruses would also recognize the 42K entomopox-15 promoter, the following experiments were performed. Identical cultures of CEF cells were inoculated at 10 pfu cell of either poultry epoxic virus, canary epoxic virus or vaccinia virus and simultaneously transfected with 25 µg of one of the following plasmids: 1) plasmid 42K.17 containing the HBV pre-S2 + sAg coding sequence linked to the 42K promoter or 2) plasmid pMP15.spsP containing the 20 identical HBVsAg coding sequence linked to the previously described vaccinia virus H6 promoter. After 24 hours, the cultures were defeated, the cells lysed, and the lysate assayed for the presence of HBVsAg using an Ausria assay. (see Example 1).

25 Resultaterne vist i tabel XIII skal anskues kvalitativt. De indikerer, at transkriptionsapparatet af både fjerkræpox og kanariepox er i stand til at genkende 42K-promotoren og tillade transkription af den koblede HBVsAg-kodesekvens. Skønt udtrykkelsesniveauerne er lavere end de, der opnåedes med vaccinia-virus-H6-promotoren, ligger niveauerne pænt over baggrunds-30 niveauer opnået med de negative kontroller.The results shown in Table XIII must be viewed qualitatively. They indicate that both the poultry pox and canary epox transcription apparatus are able to recognize the 42K promoter and allow transcription of the linked HBVsAg coding sequence. Although the expression levels are lower than those obtained with the vaccinia virus H6 promoter, the levels are well above the background levels obtained with the negative controls.

I DK 175904 B1 II DK 175904 B1 I

I 66 II 66 I

I TABEL XIII II TABLE XIII I

I Genkendelse af 42K-entomoDox-Dromotor af avipoxvira IIn Recognition of the 42K EntomoDox Dromotor of Avipoxviruses I

I 5 Virus Promotor P/N-forhold II 5 Virus Promoter P / N ratio I

I Fjerkræpox 42K 39,1 II Poultry Box 42K 39.1 I

I H6 356,8 II H6 356.8 I

I 10 Kanariepox 42K 90,2 II 10 Canary Pox 42K 90.2 I

I H6 222,2 II H6 222.2 I

I Vaccinia 42K 369,4 II Vaccinia 42K 369.4 I

I H6 366,9 II H6 366.9 I

I 15 II 15 I

I Ingen 42K 7,8 II None 42K 7.8 I

I Ingen H6 7,2 II No H6 7.2 I

I Vaccinia 7,2 IIn Vaccinia 7.2 I

I 20 II 20 I

I EKSEMPEL 22 - Immunisering med VCP-16 til beskyttelse af mus mod IIn Example 22 - Immunization with VCP-16 to protect mice against I

I udfordring med levende rabiesvirus IIn challenge with live rabies virus

I Grupper på tyve mus, 4 til 6 uger gamle, blev inokuleret under foden med 50 IIn Groups of twenty mice, 4 to 6 weeks old, were inoculated under the foot with 50 I

I 25 til 100 μΙ af en række fortyndinger af enten den ene eller den anden af to re· IIn 25 to 100 µΙ of a series of dilutions of either one or the other of two re · I

I kombinanter: (a) vFP-6, fjerkræpox-rabies-rekombinanten beskrevet i ek- IIn combinants: (a) vFP-6, the poultry pox rabies recombinant described in Eq.

I sempel 6, og (b) vCP-16, kanariepox-rabies-rekombinanten beskrevet i ek- IIn Example 6, and (b) vCP-16, the canary pox rabies recombinant described in Eq.

I sempel 13. IIn Sample 13. I

I 30 Efter 14 dage blev 10 mus fra hver gruppe slået ihjel og serum opsamlet. IFor 30 days, 14 mice from each group were killed and serum collected. IN

I Anti-rabies-titeren i serumet blev beregnet ved brug af en RFFI-afprøvning IIn the Anti-rabies titer in the serum was calculated using an RFFI test I

I (beskrevet i eksempel 7). De tilbageværende 10 mus i hver gruppe blev ud- II (described in Example 7). The remaining 10 mice in each group were excised

I fordret ved intracerebral inokulering med CVS-stammen af rabies-virus an- IIn required by intracerebral inoculation with the CVS strain of rabies virus an- I

I vendt i eksempel 7. Hver mus modtog 30 μΙ, svarende til 16 muse-LDso. Efter IIn Reverse Example 7. Each mouse received 30 μΙ, corresponding to 16 mouse LD 50. After I

I 35 28 dage blev overlevende mus vurderet og den beskyttende dosis 50 (PD50) IFor 35 28 days, surviving mice were assessed and the protective dose 50 (PD50) I

I beregnet, resultaterne er vist i tabel XIV. IIn calculated, the results are shown in Table XIV. IN

DK 175904 B1 67DK 175904 B1 67

Beskyttelsesniveauet for mus, fundet ved inokulering af vFP-6, bekræfter resultatet fundet efter inokulering af fjerkræpox-rekombinanten vFP-3 diskuteret i eksempel 7. Det beskyttelsesniveau, som fås ved inokulering af vCP-5 16, er betydeligt højere. På basis af den beregnede PDsoer kanariepox- rabies-rekombinanten 100 gange mere effektiv til beskyttelse mod rabiesudfordring end fjerkræpox-rabies-rekombinanten.The level of protection of mice found by inoculation of vFP-6 confirms the result found after inoculation of the poultry pox recombinant vFP-3 discussed in Example 7. The level of protection obtained by inoculating vCP-5 16 is significantly higher. On the basis of the calculated PDso, the canary pox rabies recombinant is 100 times more effective at protecting against rabies challenge than the poultry pox rabies recombinant.

! TABEL XIV! TABLE XIV

1010

Beskyttende immunitet mod udfordring med rabies-virus udløst af to avipox-rabies-rekombinanterProtective immunity against challenge with rabies virus triggered by two avipox rabies recombinants

Fjerkræpox vFP-6 Kanariepox vCP-16 15 Overle Overle-Poultry pox vFP-6 Canary pox vCP-16 15

Inokulum- RFFI- velses- Inokulum- RFFI- velses- dosis_titer_forhold_dosis_titer_forhold_ 7,5a 2,3b 7/10 . 6,5 2,5 10/10 20 5,5 1,8 5/10 4,5 1,9 8/10 3.5 0,7 0/10 2,5 1,1 1/10 1.5 0,6 0/10 0,5 0,4 0/10 Ϊ PDso = 6.17 1 PD50 = 4,18 a Virustitere udtrykt som log«) TCID50.Inoculum RFFI Exercise Inoculum RFFI Exercise Dose_titer_relation_dose_titer_relation_ 7.5a 2.3b 7/10. 6.5 2.5 10/10 20 5.5 1.8 5/10 4.5 1.9 8/10 3.5 0.7 0/10 2.5 1.1 1/10 1.5 0.6 0 / 10 0.5 0.4 0/10 Ϊ PDso = 6.17 1 PD50 = 4.18 a Virus titers expressed as log «) TCID50.

25 b RFFI-titer udtrykt som logio af højeste serumfortynding der giver over 50% reduktion i antallet af fluorescerende brønde i en RFFI-afprøvning.25 b RFFI titers expressed as logio of highest serum dilution giving over 50% reduction in the number of fluorescent wells in an RFFI test.

I DK 175904 B1 II DK 175904 B1 I

I 68 II 68 I

I EKSEMPEL 23 - Anvendelse af fierkræpox-promotorelementer til udtryk- IEXAMPLE 23 - Use of fiery creepox promoter elements for expression I

I kelse af fremmede aener IIn the presence of alien spirits

I I. Identificering af fierkræpox-aenet. der koder for et genprodukt på 25.8 II I. Identification of the fiery crepe pox. which encodes a gene product of 25.8 I

I 5 kiloDalton (kDI II 5 kiloDalton (kDI I

I Visualisering af proteinarter til stede i fjerkræpox (FP-1) inficerede CEF- IIn Visualization of Protein Species Present in Poultry Pox (FP-1), CEF-I Infected

I lysater, ved farvning af SDS-polyacrylamidgeler med Coomassie-blåt, af- IIn lysates, by staining SDS-polyacrylamide gels with Coomassie blue, I

I slørede en i stor mængde forekommende art med en tilsyneladende mole- IYou blurred a large amount of species with an apparent mole

I 10 kylvægt på 25,8 kD. Dette protein var ikke til stede i uinficerede cellelysater. IIn 10 cooling weights of 25.8 kD. This protein was not present in uninfected cell lysates. IN

I Impulsforsøg med anvendelse af 35S-methionin til radiomærkning af IIn Pulse experiments using 35S-methionine for radiolabelling I

I syntetiserede proteiner på specifikke tidspunkter efter infektion anskuelig- IIn synthesized proteins at specific times after infection, visible I

I gjorde igen rigeligheden af det FP-1-inducerede protein og viste, at det IYou did again the abundance of the FP-1-induced protein and showed that it

I syntetiseres fra 6 til 54 timer efter infektion. På sit højdepunkt udgør dette II is synthesized from 6 to 54 hours after infection. At its peak, this makes up you

I 15 FP-1 -protein på25,8 kD ca. 5% til 10% af totalt protein til stede i cellelysatet. IIn FP-1 protein of 25.8 kD approx. 5% to 10% of total protein present in the cell lysate. IN

Den rigelige forekomst af det FP-1-inducerede 25,8 kD protein tydede på, at IThe abundant presence of the FP-1-induced 25.8 kD protein suggested that I

I genet, der koder for dette genprodukt, reguleres af et stærkt FP-1- IThe gene encoding this gene product is regulated by a strong FP-1- I

I promotorelement. For at lokalisere dette promotorelement med henblik påse- IIn promoter element. In order to locate this promoter element for the purpose I

I 20 nere anvendelse ved udtrykkeisen af fremmede gener i pox-virus- IIn 20 more applications in the expression of foreign genes in pox virus I

I rekombinanter, opnåedes en polysom præparation fra FP-1-inficerede CEF- IIn recombinants, a polysome preparation was obtained from FP-1-infected CEF-I

I celler 54 timer efter infektion. RNA blev isoleret fra denne polysome IIn cells 54 hours after infection. RNA was isolated from this polysome I

præparation og frembragte, når anvendt til at programmere et in vitro kanin- Ipreparation and produced when used to program an in vitro rabbit I

I reticulocyt-translationssystem, fortrinsvis FP-1-proteinet på 25,8 kD. IIn reticulocyte translation system, preferably the FP-1 protein of 25.8 kD. IN

I 25 II 25 I

I Det polysome RNA blev også brugt som en skabelon for syntese af IThe Polysome RNA was also used as a template for the synthesis of I

førstestrengs-cDNA under anvendelse af oligo (dT) 12-18 som en initiator. Ifirst-strand cDNA using oligo (dT) 12-18 as an initiator. IN

I Førstestrengs-cDNAet blev anvendt som en hybridiseringssonde ved South- IThe first-strand cDNA was used as a hybridization probe at South I

I em blot-analyser med nedbrydningsprodukter af FP-1-genomet. Resultater IIn EM blot analyzes with degradation products of the FP-1 genome. Results I

I 30 fra disse hybridiseringsanalyser tydede på, at genet, der koder for 25,8 kD- IIn 30 from these hybridization assays, the gene encoding 25.8 kD-I indicated

I proteinet, var indeholdt i et Hindlll-fragment på 10,5 kbp. Dette genomiske IIn the protein, was contained in a HindIII fragment of 10.5 kbp. This genomic I

DK 175904 B1 69DK 175904 B1 69

Hindlll-fragment blev derefter isoleret og ligeret ind i en kommerciel vektor, pBS (Stratagene, La Jolls, CA), og klonen designeredes pFP23K-1. Yderligere hybridiseringsanalyser under anvendelse af førstestrengs-cDNAet til sondering af nedbrydningsprodukter af pFP23k-1 lokaliserede 25,8 kD-genet 5 til et EcoRV-subfragment på 3,2 kbp. Fragmentet blev subklonet ind i pBS og designeret pFP23k-2.HindIII fragment was then isolated and ligated into a commercial vector, pBS (Stratagene, La Jolls, CA), and the clone was designated pFP23K-1. Further hybridization assays using the first-strand cDNA for probing degradation products of pFP23k-1 located the 25.8 kD gene 5 to a 3.2 kbp EcoRV sub-fragment. The fragment was subcloned into pBS and designated pFP23k-2.

Ca. 2,4 kbp af dette FP-1-EcoRV-fragment er blevet sekventeret ved Sanger dideoxy-kædetermineringsmetoden (Sanger et al., Proc. Natl. Acad. Sci.Ca. 2.4 kbp of this FP-1 EcoRV fragment has been sequenced by the Sanger dideoxy chain termination method (Sanger et al., Proc. Natl. Acad. Sci.

10 USA 74:5463-5467 [1977]). Analyse af sekvensen afslører en åben læseramme (open reading frame - ORF), der koder for et genprodukt med en molekylvægt på 25,8 kD. In vitro transkription af denne ORF med bakteriofag T7 polymerase (Stratagene, La Jolla, CA) i en pBS-vektor frembringer en RNA-art, som, når den anvendes til at programmere et in vitro kanin-15 reticulocyt-translationssystem (Promega Biotec, Madison, Wl), giver en poly-peptid-art med en tilsyneladende molekylvægt på 25,8 kD. I en SDS-polyacrylamidgel bevæger dette polypeptid sig sammen med det i stor mængde forekommende 25,8 kD-protein observeret i lysater fra FP-1-inficerede CEF-celler. Resultaterne tyder på, at dette er genet, der koder for 20 det rigeligt forekommende FP-1-inducerede genprodukt på 25,8 kD.USA 74: 5463-5467 [1977]). Analysis of the sequence reveals an open reading frame (ORF) encoding a gene product with a molecular weight of 25.8 kD. In vitro transcription of this ORF by bacteriophage T7 polymerase (Stratagene, La Jolla, CA) in a pBS vector produces an RNA species which, when used to program an in vitro rabbit reticulocyte translation system (Promega Biotec, Madison, W1), gives a polypeptide species with an apparent molecular weight of 25.8 kD. In an SDS-polyacrylamide gel, this polypeptide moves together with the large amount of 25.8 kD protein observed in lysates from FP-1-infected CEF cells. The results suggest that this is the gene encoding the abundant 25.8 kD FP-1 induced gene product.

II. Anvendelse af opstrøms-promotorelementeme af FP-1-genet på 25.8 kD til udtrvkkelse af katteleukæmivirus (FeLV) env-qenet i rekombinanter af FP-1 og vaccinia.II. Use of the upstream promoter elements of the 25.8 kD FP-1 gene to express the cat leukemia virus (FeLV) env gene in FP-1 and vaccinia recombinants.

2525

Et EcoRV/EcoRI-fragment på 270 bp indeholdende det regulerende område (FP25.8K-promotor) for FP-1-genet på 28,5 kD og 21 bp af kodesekvensen for 25,8 kD-genet blev isoleret fra pFP23k-2. Nedenfor er vist nukleotidsek-vensen af FP25.8K-promotorområdet anvendt til opnåelse af pFeLV25.8F1 30 og pFeLV25.81A. Denne sekvens på 270 nukleotider udgør 249 nukleotiderA 270 bp EcoRV / EcoRI fragment containing the regulatory region (FP25.8K promoter) of the 28.5 kD FP-1 gene and 21 bp of the 25.8 kD gene coding sequence was isolated from pFP23k-2. Below is shown the nucleotide sequence of the FP25.8K promoter region used to obtain pFeLV25.8F130 and pFeLV25.81A. This 270 nucleotide sequence amounts to 249 nucleotides

I DK 175904 B1 II DK 175904 B1 I

I II I

I af området opstrøms for initieringscodonen (ATG) for 25,8 kD genproduktet II of the region upstream of the initiation codon (ATG) of the 25.8 kD gene product I

I og de første 21 bp af kodesekvensen. II and the first 21 bp of the code sequence. IN

I 5’-GATATCCCCATCTCTCCAGAACAGCAGCATAGTGTTAGGACAATCATCTAA- II 5'-GATATCCCCATCTCTCCAGAACAGCAGCATAGTGTTAGGACAATCATCTAA-I

I 5 TGCAATATCATATATGAATCTCACTCCGATAGGATACTTACCACAGCTATTATA- II TGCAATATCATATATGAATCTCACTCCGATAGGATACTTACCACAGCTATTATA-I

I CCTTAATGTATGTTCTATATATTTAAAAACAGAAACAAACGGCTATAA6TTTAT- II CCTTAATGTATGTTCTATATATTTAAAAACAGAAACAAACGGCTATAA6TTTAT- I

I ATGATGTCTATATTATAGTGAGTATATTATAAGTATGCGGGAATATCTTTGATT- II ATGATGTCTATATTATAGTGAGTATATTATAAGTATGCGGGAATATCTTTGATT- I

I TAACAGCGTACGATTCGTGATAAGTAAATATAGGCAATGGATAGCATAAATGAA- II TAACAGCGTACGATTCGTGATAAGTAAATATAGGCAATGGATAGCATAAATGAA- I

I TTC-3' IIn TTC-3 'I

I 10 II 10 I

I Dette fragment blev gjort stump-endet og derpå indsat i en Smal-nedbrudt IThis fragment was blunt-ended and then inserted into a Narrow-degraded I

I FP-1-indsættelsesvektor (pFeLVFI, se eksempel 15) indeholdende FeLV- IIn FP-1 insertion vector (pFeLVFI, see Example 15) containing FeLV-I

I env-sekvenserne. Denne indsættelsesvektor muliggjorde rekombination med IIn the env sequences. This insertion vector allowed recombination with I

I f7-locuset af FP-1-genomet. Indsættelse af FP25.8K-promotorens opstrøm-In the f7 locus of the FP-1 genome. Insertion of the FP25.8K promoter upstream

I 15 ssekvenser 5' i forhold til FeLV-env-genet, og med den rigtige orientering, IIn 15 sequences 5 'relative to the FeLV env gene, and with the correct orientation, I

I blev bekræftet ved sekvensanalyse. Denne indsættelse giver ikke en nøjagtigYou were confirmed by sequence analysis. This insert does not provide an exact

I substition af ATG med ATG, men ATGet fra 25,8 kD-genet er ude af ramme IIn substitution of ATG with ATG, but the ATG of the 25.8 kD gene is out of frame I

I med FeLV-env-ATGet, så der dannes ikke noget fusionsprotein. FP-1- IWith the FeLV env ATGet, no fusion protein is formed. FP-1- I

I indsættelsesplasmidet indeholdende FP25.8KD-promotoren opstrøms fra IIn the insertion plasmid containing the FP25.8KD promoter upstream of I

I 20 FeLV-env-genet blev designeret pFeLV25.8F1. IIn the 20 FeLV env gene, pFeLV25.8F1 was designated. IN

I En lignende konstruktion blev fremstillet ved anvendelse af vacciniavirus- II A similar construct was prepared using vaccinia virus I

I indsættelsesvektoren, pFeLVIA, husende FeLV-genet (se eksempel 15). H6- IIn the insertion vector, pFeLVIA, harboring the FeLV gene (see Example 15). H6- I

I promotoren blev fjernet fra pFeLVIA ved nedbrydning med Bglll og Smal. IIn the promoter, pFeLVIA was removed by degradation with BglII and SmaI. IN

I 25 Efter at Bglll-restriktionsstedet var gjort stump-endet, blev det stump-endede IAfter the BglII restriction site was blunt-ended, the blunt-ended I

I 270 bp EcoRV/EcoRI-fragment indeholdende FP25.8K-promotoren indsat IIn 270 bp EcoRV / EcoRI fragment containing the FP25.8K promoter inserted I

I sidestillet 5' i forhold til FeLV-env-genet. Denne konstruktion blev bekræftet IIn juxtaposition 5 'to the FeLV env gene. This construction was confirmed in

I ved sekvensanalyse. Der er heller ikke en nøjagtig substitution af ATG med II by sequence analysis. There is also no exact substitution of ATG with I

I ATG i denne rekombinant, men ATGet fra 25,8 kD-genet er ikke i ramme II ATG in this recombinant, but the ATGet of the 25.8 kD gene is not in frame I

I 30 med ATGet fra FeLV-genet. Vaccinia (Copenhagen-stamme) indsættelses- IIn 30 with the ATGet of the FeLV gene. Vaccinia (Copenhagen strain) insertion I

DK 175904 B1 71 vektoren, husende 25,8 kD-genets opstrømsområde sidestillet 5' i forhold til FeLV-genet, blev designeret pFeLV25.81 A.The vector, harboring the upstream region of the 25.8 kD gene parallel to 5 'relative to the FeLV gene, was designated pFeLV25.81 A.

Indsættelsesplasmideme pFeLV25.8F1 og pFeLV25.81A blev anvendt ved in 5 vitro rekombination med FP-1 (pFeLV25.8F1) og Copenhagen-stammen af vacciniavirus (pFeLV25.81A) som de reddende vira. Afkom af rekombinationen blev udpladet på passende cellemonolag, og rekombinant virus valgt ved en β-galactosidase-koblet protein-A-immunprøvning og et bovint anti-FeLV-serum (Antibodies, Inc., Davis, CA). Foreløbige resultater tyder på, 10 at FP25.8K-promotoren kan regulere udtrykkeisen af fremmede gener i pox-virus-rekombinanter.The insertion plasmids pFeLV25.8F1 and pFeLV25.81A were used in in vitro recombination with FP-1 (pFeLV25.8F1) and the Copenhagen strain of vaccinia virus (pFeLV25.81A) as the rescue viruses. The progeny of the recombination were plated on appropriate cell monolayers and recombinant virus selected by a β-galactosidase-coupled protein-A immunoassay and a bovine anti-FeLV serum (Antibodies, Inc., Davis, CA). Preliminary results suggest that the FP25.8K promoter may regulate the expression of foreign genes in pox virus recombinants.

EKSEMPEL 24 - Sikkerhed oa virkninqsfuldhed af vFP-6 og vCP-16 i fjerkræ 15Example 24 - Security and efficacy of vFP-6 and vCP-16 in poultry 15

De to avipox-rekombinanter, vFP-6 og vCP-16 (beskrevet i eksemplerne 6 og 13), blev inokuleret i 18 dage gamle kyllingefostre, 1 dag gamle kyllinger og 28 dage gamle kyllinger, og fuglenes respons evalueret ved tre kriterier: 1) virkninger af vaccination på klækningsevne, vaccinationsreaktioner og døde-20 lighed 2) induceret immunrespons mod rabies-glycoproteinet, og 3) induceret immunrespons mod fjerkræpox-antigener. De udførte forsøg er beskrevet nedenfor.The two avipox recombinants, vFP-6 and vCP-16 (described in Examples 6 and 13), were inoculated into 18-day-old chickens, 1-day-old chickens and 28-day-old chicks, and the response of the birds was evaluated by three criteria: 1) effects of vaccination on hatching ability, vaccination reactions and mortality 2) induced immune response to the rabies glycoprotein, and 3) induced immune response to poultry pox antigens. The experiments performed are described below.

A. Sikkertiedsafprøvninaer. Grupper på tyve 18 dage gamle fostre blev ino-25 kuleret i allantoishulen med 3,0 eller 4,0 log-io TCID50 af enten vFP-6 eller vCP-16. Efter udrugning blev kyllingerne observeret i 14 dage, på hvilket tidspunkt de hver fik udtaget blod, og sera opsamledes. De to rekombinanter inokuleret i kyllingefostrene havde ingen virkning på udrugningsevnen af æggene, og kyllingerne forblev sunde under den 14 dage lange obser-30 vationsperiode.A. Securities testing. Groups of twenty 18-day-old fetuses were inoculated into the allantoic cavity with 3.0 or 4.0 log-10 TCID50 of either vFP-6 or vCP-16. After hatching, the chickens were observed for 14 days, at which time they each received blood and sera were collected. The two recombinants inoculated into the chicken embryos had no effect on the hatching ability of the eggs, and the chicks remained healthy during the 14-day observation period.

72 I72 I

DK 175904 B1 IDK 175904 B1 I

Grupper på 10 SPF 1 dag gamle kyllinger blev ved intramuskulær indgivelse IGroups of 10 SPF 1 day old chickens were given intramuscular administration I

inokuleret med 3,0 logio TCIDso af hver af rekombinanterne. Kyllingerne blev Iinoculated with 3.0 logio TCID 50 of each of the recombinants. The chickens became you

observeret i 28 dage og serumprøver opsamlet 14 og 28 dage efter in- Iobserved for 28 days and serum samples collected 14 and 28 days after in- I

okulering. Der sås ingen vaccinationsreaktion på inokuleringsstedet med no- Iinoculate. No vaccination reaction was seen at the inoculation site with no-I

5 gen af rekombinanterne, og kyllingerne forblev sunde under den 28 dage I5 of the recombinants and the chicks remained healthy for 28 days I

lange observationsperiode. Ilong observation period. IN

Grupper på ti 28 dage gamle kyllinger blev inokuleret med hver af de rekom- IGroups of ten 28-day-old chickens were inoculated with each of the recombinations

binante vira, idet de modtog enten 3,0 log«) TCIDso ved intramuskulær ind- Ibinary viruses, receiving either 3.0 logs of TCID 50 by intramuscular injection

10 givelse eller 3,0 logio TCIDso ved cutan indgivelse (vingemembran). Kyllinger I10 or 3.0 logio TCID 50 by cutaneous administration (wing membrane). Chickens I

blev observeret i 28 dage og serumprøver opsamlet 14 og 28 dage efter rno- Iwas observed for 28 days and serum samples collected 14 and 28 days after rno-I

kulering. Der sås ingen reaktion efter intramuskulær inokulering med nogen Ikulering. No reaction was seen after intramuscular inoculation with any I

af rekombinanterne. Cutan inokulering resulterede i en meget lille vaccina- Iof the recombinants. Cutaneous inoculation resulted in a very small vaccine

tionsreaktion over for fjerkræpox med læsioner af heterogen størrelse. Ireaction to poultry pox with heterogeneous size lesions. IN

15 Kanariepox-inokulering førte til dannelsen af en normal cutan læsion på ino- ICanary pox inoculation led to the formation of a normal cutaneous lesion on the inoculum

kuleringsstedet. Alle læsioner var i tilbagegang ved afslutningen af forsøget. Ikuleringsstedet. All lesions were in decline at the end of the trial. IN

B. Immunrespons. RFFI-afprøvningen beskrevet i eksempel 7 blev anvendt til IB. Immune Response. The RFFI test described in Example 7 was used for I

vurdering af niveauerne af antistof mod rabiesglycoproteinet. For hver gruppe Iassessment of antibody levels against the rabies glycoprotein. For each group I

20 blev resultaterne udtrykt med den geometriske middeltiter af det individuelle I20, the results were expressed with the geometric mean titer of the individual I

serum omregnet til internationale enheder (IU) ifølge et standardserum, der Iserum converted to International Units (IU) according to a standard serum that I

indeholdt 23,4 IU. Minimums-positivitetsniveauet blev fastsat til én IU og blev Icontained 23.4 IU. The minimum positivity level was set to one IU and became I

brugt til bestemmelse af % positive fugle. Antistoffer mod avipox-viraene blev Iused to determine% positive birds. Antibodies to the avipox viruses were I

afprøvet ved en ELISA-metode med brug af fjerkræpoxvirus-stammen som et Itested by an ELISA method using the poultry pox virus strain as an I

25 antigen. Hver serumprøve blev fortyndet 1/20 og 1/80. Der konstrueredes en I25 antigen. Each serum sample was diluted 1/20 and 1/80. An I was constructed

standardkurve under anvendelse af positive og negative sera. Minimums- Istandard curve using positive and negative sera. Minimum I

positivitetsniveauet blev beregnet med middelværdien af de forskellige værdi- Ithe positivity level was calculated with the mean of the different value I

er af de negative sera lagt til med to standardafvigelser. Iare of the negative sera added with two standard deviations. IN

30 Resultaterne af serologiske undersøgelser er vist i tabel XV for vFP-6 og ta- IThe results of serological studies are shown in Table XV for vFP-6 and ta-I

bel XVI for vCP-16. Icall XVI for vCP-16. IN

DK 175904 B1 73DK 175904 B1 73

Der observeredes et begrænset serologisk respons for både rabies- og fjerkræpox-antigener med fostre inokuleret med enten vFP-6 eller vCP-16. Fjerkræpox-vektoren inducerede et serologisk respons over for begge anti-5 gener i et større antal fugle, end tilfældet var for kanariepox, men responset var stadig heterogent.A limited serologic response was observed for both rabies and poultry pox antigens with fetuses inoculated with either vFP-6 or vCP-16. The poultry epox vector induced a serological response to both anti-5 genes in a greater number of birds than was the case for canary epox, but the response was still heterogeneous.

1 dag gamle kyllinger inokuleret med vFP-6 havde et godt serologisk respons, med alle fuglene seropositive over for rabies- og fjerkræpox-antigener 10 28 dage efter inokulering. Responset på inokulering med vCP-16 var meget lavere, med 40% af fuglene seropositive over for rabies-glycoprotein på dag 28 og 10% seropositive for avipox-antigener.1 day old chickens inoculated with vFP-6 had a good serological response, with all birds seropositive to rabies and poultry pox antigens 10 28 days after inoculation. The response to inoculation with vCP-16 was much lower, with 40% of birds seropositive to rabies glycoprotein on day 28 and 10% seropositive to avipox antigens.

! 28 dage gamle kyllinger inokuleret intramuskulært med vFP-6 viste 100% i 15 serokonversion for begge antigener 14 dage efter inokulering. Selv om størstedelen af fuglene også serokonverterede efter cutan inokulering, var de opnåede titere lavere for både rabies- og avipox-antigener. Som tidligere, udviste kyllinger, inokuleret ad både intramuskulær og subcutan vej med vCP-16, et varierende respons med et maksimum på 70% serokonversion mod 20 rabies ved intramuskulær inokulering. Det lave serokonversionsniveau for avipox-antigener efter kanariepox-inokulering er eventuelt udtryk for graden j af serologisk slægtskab mellem viraene.! 28 day old chickens inoculated intramuscularly with vFP-6 showed 100% in 15 seroconversion for both antigens 14 days after inoculation. Although the majority of birds also seroconverted after cutaneous inoculation, the titers obtained were lower for both rabies and avipox antigens. As before, chickens, inoculated by both intramuscular and subcutaneous route with vCP-16, exhibited a varying response with a maximum of 70% seroconversion against 20 rabies by intramuscular inoculation. The low seroconversion level of avipox antigens after canary pox inoculation possibly reflects the degree of serological kinship between the viruses.

Resultaterne indikerer, at både vFP-6 og vCP-16 er sikre at inokulere i kyllin-25 ger i forskellige aldre. Fjerkræpox-vektoren vFP-6 synes mere effektiv til in- ;. ducering af et immunrespons i kyllinger. Det er imidlertid signifikant, at begge ! rekombinante avipoxvira, fjerkræpox og kanariepox,. er vist at være nyttige til immunisering in ovum.The results indicate that both vFP-6 and vCP-16 are safe to inoculate in chickens of different ages. The poultry epox vector vFP-6 seems more efficient for inf; inducing an immune response in chickens. However, it is significant that both! recombinant avipox viruses, poultry pox and canary epoxis. have been shown to be useful for immunization in ovum.

DK 175904 B1 IDK 175904 B1 I

Q) IQ) I

>>

Jhjh

w vPw vP

O VO > O os θ' O' O' θ' ^ HO VO> O os θ 'O' O 'θ' ^ H

Ω. o' o' o' O O O O o'Ω. o 'o' o 'O O O O o'

X . o CD O O O O O OX. o CD O O O O O O

O S' lO IV- T- T- T- t- COO S 'lO IV- T- T- T- t- CO

£ i § I£ i § I

« £ i I«£ i I

s ΰ Is ΰ I

Φ ® in o o ti- rv. g T-^ IΦ ® in o o ti- rv. g T- ^ I

-* ^ CNOJ oco T-pr σ> E? 50 P 1- T- 1- CN ro .- * ^ CNOJ oco T-pr σ> E? 50 P 1- T- 1- CN ro.

,ο 2 o* o” o* o" o’ ° o~ ° I, ο 2 o * o "o * o" o '° o ~ ° I

i_ i— tu ωi_ i— tu ω

D 3= _ HD 3 = _ H

CO 2CO 2

^ i ^ I^ i ^ I

-)£ c C Φ-) £ c C Φ

— <( φ O) >5 v? >5 'S I- <(φ O)> 5 v? > 5's I

^o OO O' O' O' o' vo CO O^o'o'S'OOOOS'^ o OO O 'O' O 'o' vo CO O ^ o'o'S'OOOOS '

n* «„pinOOOOOOOn * «" pinOOOOOOO

Q. 9" S' t— COO)T-r-T-T-CDQ. 9 "S 't— COO) T-r-T-T-CD

> 1 I> 1 I

CO) ICO) I

ω ιο JH Iω ιο JH I

o Æ r Io You are

> ^ I> ^ I

5 8 K -55 I5 8 K -55 I

S Qj ^ 5 co -4- IS Qj ^ 5 co -4- I

CD 7 PCNI'-COCMI'-f'-COlOCD 7 PCNI'-COCMI'-f'-CO10

< ® Έ Ο* °°- T-* CO csi T-* o‘ I<® Έ Ο * °° - T- * CO csi T- * o 'I

H s IH s I

COCO

L_L_

^ I^ I

Ο σ>Ο σ>

Q !_ ·— IQ! _ · - I

§ „ I§ "I

b t-i a) f ® 3 «- T-b t-i a) f ® 3 «- T-

«= 5 o ® + + ^ °o ^ oo -«tco I«= 5 o ® + + ^ ° o ^ oo -« tco I

>t0 I— .— CO CO 1- CM T- CM 1- CN> t0 I— .— CO CO 1- CM T- CM 1- CN

Ω IΩ I

(A I(A I

cc

° ^ (rt .. 8 I° ^ (rt .. 8 I

a) .12 Qa) .12 Q

*- (Λ == I* - (Λ == I

Y Ο Ο ·ί μ n mY Ο Ο · ί μ n m

« Ο lL ο Ο O O O«Ο lL ο Ο O O O

σ ο Ο Μσ ο Ο Μ

CC

3 Ε - Ε — φ -ε φ t φ3 Ε - Ε - φ −ε φ t φ

Ε ml ΕI Ε IΕ ml ΕI Ε I

Φ 3 Φ 3 Φ Η Ο) t _Χ Ο) .X Ο)Φ 3 Φ 3 Φ Η Ο) t _Χ Ο) .X Ο)

Φ Φ ® σ> 3 Φ Φ 3 Φ Φ IΦ Φ ® σ> 3 Φ Φ 3 Φ Φ I

q_ 0) Ο) 3> c Ο) Φ) c Ο) Φ) Iq_ 0) Ο) 3> c Ο) Φ) c Ο) Φ) I

ο ι-to c o c c φ ^ croc y· ti)73 = ro ro =-ora = ό roο ι-to c o c c φ ^ croc y · ti) 73 = ro ro = -ora = ό ro

ζ Ooo >>^t: >>co? >>C03 Iζ Ooo >> ^ t: >> co? >> C03 I

(5 ILT- ^r.E ΪΝΟ I(5 ILT- ^ r.E ΪΝΟ I

m o in o m Im o in o m I

x- t- CM CN Hx- t- CM CN H

DK 175904 B1 <0 > <0DK 175904 B1 <0> <0

O vflvP Vp vPsP vPvPO vflvP Vp vPsP vPvP

U 0^0^ .o 0^0^ 0^0^U 0 ^ 0 ^ .o 0 ^ 0 ^ 0 ^ 0 ^

X « LO LO o^O OO OOX «LO LO o ^ O OO OO

O o'· CM N Or- COCO CO r- Q.O o '· CM N Or- COCO CO r- Q.

0> -2 Q0> -2 Q

2 <0 O2 <0 O.

10 ro ro10 ro ro

0) '✓S0) '✓S

g EDg ED

OJ COO) SOI CO r- T- T- cn 2 co lo cm lo o co h- co £ 12 oooo oo oo >♦- L- 2 o' o' o' o’ o‘ o‘ o" o'OJ COO) SOI CO r- T- T- cn 2 co lo cm lo o co h- co £ 12 oooo oo oo> ♦ - L- 2 o 'o' o 'o' o 'o' o "o"

— CD- CD

*- 5=* - 5 =

<1) O<1) Oh

σ I I 3 1 < s or coσ I I 3 1 <s or co

CO ‘m3 -sP vg v° >PCO 'm3 -sP vg v °> P

T— ^2 wO vO 0s* 0s* 0s· 0s* 0sT— ^ 2 wO vO 0s * 0s * 0s · 0s * 0s

• *J5 . ο σ^ο^ΟΟ OO OO• * J5. ο σ ^ ο ^ ΟΟ OO OO

CL C S' O CO τ- h- CO τ- ^ & W o Γ 1-CL C S 'O CO τ- h- CO τ- ^ & W o Γ 1-

i 9» Si 9 »S

η « Tη «T

> o -92 3 5c S -Q — ^ o ro o« i o «S Cl) i r^UJ — 32 05 CO -r- t- 1 5 σ !2 T- i- t-__ CN CO CN CO Ί- < ch 2 o' o" o' o' o' o' o' o' I- .32 2 lo O) Ο 1— c Q CD ·£= ^ s h|5 " ro 1-2^ + + 'i co -^-00 co> o -92 3 5c S -Q - ^ o ro o «io« S Cl) ir ^ UJ - 32 05 CO -r- t- 1 5 σ! 2 T- i- t -__ CN CO CN CO Ί- <ch 2 o 'o "o' o 'o' o 'o' o 'I- .32 2 lo O) Ο 1— c Q CD · £ = ^ sh | 5" ro 1-2 ^ + +' i co - ^ - 00 co

-X .b 00 CO τ- C\l T- CN t- CM-X .b 00 CO τ- C \ l T- CN t- CM

•ro• ro

QQ

COCO

c o ^c o ^

Cl « SCl «S

5β w O5β w O.

Φ O — /"'l Ο λ -<i· co r> coΦ O - / "'l Ο λ - <i · co r> co

-X ‘-‘μΙΟΟΟ Ο O-X '-'μΙΟΟΟ Ο O

σ ^ o o cσ ^ o o c

EE

E _ro -c ro t: ωE _ro -c ro t: ω

E o J1 E j$ EE o J1 E j $ E

ro "^3 to 3 to 05 C O) O) <D 2. ® S 3 0)0)¾ 0)0) o. 0)0) O) z; c Ο) σ> ^ □) σ>«_ o 2. ro r σι t c to t c <o c §- T3 ΐ ro ro = Ό ro ^ Ό ro ^ o co >*oo -a co "3 CD u_ -c- ^ cn.E ϊ(μ oro "^ 3 to 3 to 05 CO) O) <D 2. ® S 3 0) 0) ¾ 0) 0) o. 0) 0) O) z; c Ο) σ> ^ □) σ>« _ o 2. ro r σι tc to tc <oc §- T3 ΐ ro ro = Ό ro ^ Ό ro ^ o co> * oo -a co "3 CD u_ -c- ^ cn.E ϊ (μ o

to 0 10 0 LOto 0 10 0 LO

t— t— CM CMt— t— CM CM

DK 175904 B1 IDK 175904 B1 I

76 I76 I

EKSEMPEL 25 - Sikkerhed og immunoqenicitet af vFP-6-inokulerinq i IExample 25 - Security and immunogenicity of vFP-6 inoculation in I

småorise Ismallorise I

To grupper på tre smågrise blev inokuleret med det rekombinante vFP-6 ved ITwo groups of three piglets were inoculated with the recombinant vFP-6 at I

5 én af to indgivelsesveje: I5 one of two routes of administration:

a) tre dyr modtog 8,1 log™ TCID50 ved intramuskulær inokulering, og Ia) three animals received 8.1 log ™ TCID50 by intramuscular inoculation, and I

b) tre dyr modtog den samme dosis ved oral inokulering. Ib) three animals received the same dose by oral inoculation. IN

Alle dyr fik udtaget blod med ugentlige mellemrum og modtog booster- IAll animals received blood at weekly intervals and received booster I

10 inokulering af den samme dosis ad samme indgivelsesvej på dag 35. I10 inoculation of the same dose by the same route of administration on day 35. I

Smågrisene blev dagligt observeret for kliniske tegn. Sera blev afprøvet for IThe piglets were observed daily for clinical signs. Sera was tested for I

anti-fjerkræpox-antistofer ved en ELISA-afprøvning og en serum- Ianti-poultry pox antibodies by an ELISA assay and a serum I

neutralisations-afprøvning. Rabies-antistoffer blev prøvet ved en RFFI- Ineutralization testing. Rabies antibodies were tested by an RFFI-I

afprøvning. Itesting. IN

15 I15 I

Alle smågrise forblev sunde, og der observeredes ingen læsioner efter ino- IAll piglets remained healthy and no lesions were observed after inoculation

kulering. Temperaturkurver var normale uden nogen tilsyneladende forskel Ikulering. Temperature curves were normal without any apparent difference

mellem inokulerede og uinokulerede dyr. Ibetween inoculated and uninoculated animals. IN

20 Smågrise inokuleret ved såvel intramuskulær som oral indgivelsesvej udvik- I20 Pigs inoculated by intramuscular as well as oral route of administration

lede et serologisk respons på fjerkræpox-antigener som målt ved ELISA og Idirect a serological response to poultry pox antigens as measured by ELISA and I

serum-neutralisation. Et sekundært respons var tydeligt efter booster- ISerum-neutralization. A secondary response was evident after the booster I

inokulering (resultaterne ikke vist). Alle smågrise udviklede ligeledes et im- Iinoculation (results not shown). All piglets also developed an im

munologisk respons på rabies-glycoprotein som målt ved en RFFI- Imonologic response to rabies glycoprotein as measured by an RFFI-I

25 afprøvning, og en booster-virkning er tydelig ved begge indgivelsesveje. I25 testing, and a booster effect is evident in both routes of administration. IN

Disse resultater er vist i tabel XVII. IThese results are shown in Table XVII. IN

Resultaterne indikerer, at inokulering af en fjerkræpox/rabies-rekombinant er IThe results indicate that inoculation of a poultry pox / rabies recombinant is I

uskadelig i smågrise, og at rekombinanten er i stand til at frembringe et sign i- Iharmless in weaners and that the recombinant is capable of generating a sign i- I

30 fikant immunrespons på rabies-glycoproteinet ved oral eller intramuskulær I30 immune response to the rabies glycoprotein by oral or intramuscular I

inokulering. Iinoculation. IN

DK 175904 B1 77DK 175904 B1 77

TABEL XVIITABLE XVII

Antistof mod rabies-glvcoprotein dannet i småorise inokuleret med vFP-6 5 Vaccinations- Dyr Rabies-antistof på dag (RFFI-titer) indgivelsesve] 14 21 28 35b 42 49 984 2,4a 2,2 2,1 2,2 3 3Rabies Glvcoprotein Antibody Formed in Small Theory Inoculated with vFP-6 5

Intramuskulært 985 2,5 2,7 2,6 2,4 3 3 10 986 2,2 2,0 2,1 2,3 3 3 987 3 2 2,1 2 3 3Intramuscular 985 2.5 2.7 2.6 2.4 3 3 10 986 2.2 2.0 2.1 2.3 3 3 987 3 2 2.1 2 3 3

Oralt 988 2,9 2,4 2,2 2,4 2,7 2,5 989 2,8 2 1,7 1,8 2,4 2,5 15 a Titer udtrykt som log10 af højeste serumfortynding der giver over 50% reduktion i antallet af fluorescerende brønde i en RFFI-afprøvning. b Dyrene modtog den anden inokulering på dag 35.Oral 988 2.9 2.4 2.2 2.4 2.7 2.5 989 2.8 2 1.7 1.8 2.4 2.5 15 a Titer expressed as log10 of highest serum dilution yielding over 50 % reduction in the number of fluorescent wells in an RFFI test. b The animals received the second inoculation on day 35.

2020

Claims (9)

1. Rekombinant avipoxvirus, kendetegnet ved, at det indeholder DNA I 5 fra en ikke-avipox-kilde som koder for et antigen af et vertebratpatogen og er I ligeret til en promotor for ekspression af DNA'en, hvor den nævnte DNA og H promotor er indsat i et ikke-essentielt område af avipoxgenomet. IA recombinant avipox virus, characterized in that it contains DNA I5 from a non-avipox source encoding an antigen of a vertebrate pathogen and is ligated to a promoter for expression of the DNA, wherein said DNA and H promoter is inserted into a non-essential region of the avipox genome. IN 2. Virus ifølge krav 1, hvori den nævnte promotor er en vaccinia-promo- I tor, en entomopox-promotor eller en avipox-promotor. IThe virus of claim 1, wherein said promoter is a vaccinia promoter, an entomopox promoter or an avipox promoter. IN 3. Virus ifølge krav 1, hvori den nævnte DNA koder for et antigen af et pattedyrpatogen, især et antigen valgt blandt rabiesantigen, rabies G-anti- I gen, gp51,30-kappeantigen fra okseleukæmivirus, FeLV-kappe-antigen fra I katteleukæmivirus og glycoprotein D-antigen fra herpes simplex-virus. IThe virus according to claim 1, wherein said DNA encodes an antigen of a mammalian pathogen, in particular an antigen selected from rabies antigen, rabies G anti-I gene, gp51.30 coat antigen from bovine leukemia virus, FeLV envelope antigen from I cat leukemia virus and glycoprotein D antigen from herpes simplex virus. IN 4. Virus ifølge krav 1, hvori den nævnte DNA koder for et antigen valgt I 15 blandt fugleinfluenza-hæmagglutinin-antigen, et fusionsprotein-antigen af I Newcastle disease virus, et RAV-1 kappeantigen af Rous-associeret virus, I nucleoprotein-antigen af fugleinfluenzavirus, et matrix-antigen af det infektiø- I se branchitis-virus og peplomer-antigen af det infektiøse bronchitis-virus. IThe virus of claim 1, wherein said DNA encodes an antigen selected for 15 from avian influenza hemagglutinin antigen, a fusion protein antigen of Newcastle disease virus, a RAV-1 envelope antigen of Rous-associated virus, and nucleoprotein antigen. of avian influenza virus, a matrix antigen of the infectious branchitis virus and peplomer antigen of the infectious bronchitis virus. IN 5. Virus ifølge et hvilket som helst af kravene 1-4 til anvendelse ved frem- I 20 stilling af et lægemiddel for vertebrater. IThe virus according to any one of claims 1-4 for use in the manufacture of a medicament for vertebrates. IN 6. Anvendelse af et virus ifølge et hvilket som helst af kravene 1-4 ved I fremstilling af et lægemiddel til behandling af pattedyr for en infektion med et ' I pattedyrpatogen. HUse of a virus according to any one of claims 1-4 in the manufacture of a medicament for treating mammals for an infection with a mammalian pathogen. H 7. Anvendelse ifølge krav 6 hvor pattedyrpatogenet er valgt blandt rabi- I 25 esvirus, okseleukæmivirus, katteleukæmivirus og herpes simplex-virus. I DK 175904 B1Use according to claim 6 wherein the mammalian pathogen is selected from rabies virus, bovine leukemia virus, cat leukemia virus and herpes simplex virus. In DK 175904 B1 8. Anvendelse af et virus ifølge et hvilket som helst af kravene 1-4 ved fremstilling af et lægemiddel til behandling af fugle for en infektion med et fuglepatogen.Use of a virus according to any one of claims 1-4 in the manufacture of a medicament for treating birds for an infection with a bird pathogen. 9. Anvendelse ifølge krav 8 hvor fuglepatogenet er valgt blandt fuglein-5 fluenzavirus, Newcastle disease-virus, Rous-associeret virus og infektiøs bronchitis-virus *Use according to claim 8 wherein the bird pathogen is selected from avian influenza virus, Newcastle disease virus, Rous-associated virus and infectious bronchitis virus *
DK198902036A 1987-08-28 1989-04-27 Recombinant avipox virus, the virus for use in the preparation of a drug for vertebrates and the use of the virus in the manufacture of a drug for treating mammals or birds for infection with a mammal or bird pathogen DK175904B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DK200500158A DK175980B1 (en) 1987-08-28 2005-02-02 Antigen expression in vertebrates using recombinant virus - contg. specific DNA and incapable of replication, esp. avipox, useful as safe, live vaccines

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
US9071187A 1987-08-28 1987-08-28
US9071187 1987-08-28
US11033587A 1987-10-20 1987-10-20
US11033587 1987-10-20
US18605488A 1988-04-25 1988-04-25
US18605488 1988-04-25
US23439088A 1988-08-23 1988-08-23
US23439088 1988-08-23
PCT/US1988/002816 WO1989003429A1 (en) 1987-08-28 1988-08-24 Recombinant avipox virus
US8802816 1988-08-24

Publications (3)

Publication Number Publication Date
DK203689D0 DK203689D0 (en) 1989-04-27
DK203689A DK203689A (en) 1989-06-27
DK175904B1 true DK175904B1 (en) 2005-06-06

Family

ID=27492413

Family Applications (1)

Application Number Title Priority Date Filing Date
DK198902036A DK175904B1 (en) 1987-08-28 1989-04-27 Recombinant avipox virus, the virus for use in the preparation of a drug for vertebrates and the use of the virus in the manufacture of a drug for treating mammals or birds for infection with a mammal or bird pathogen

Country Status (17)

Country Link
JP (3) JP3348156B2 (en)
KR (1) KR970011149B1 (en)
AR (1) AR241939A1 (en)
AT (1) AT408549B (en)
AU (2) AU2427588A (en)
BE (1) BE1002134A5 (en)
CH (2) CH679933A5 (en)
DE (4) DE10399031I1 (en)
DK (1) DK175904B1 (en)
FR (1) FR2621487B1 (en)
GB (1) GB2217718B (en)
IL (1) IL87581A0 (en)
IT (1) IT1229484B (en)
LU (2) LU90951I2 (en)
NL (4) NL195051C (en)
NZ (1) NZ225970A (en)
WO (1) WO1989003429A1 (en)

Families Citing this family (116)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5338683A (en) * 1981-12-24 1994-08-16 Health Research Incorporated Vaccinia virus containing DNA sequences encoding herpesvirus glycoproteins
US5505941A (en) * 1981-12-24 1996-04-09 Health Research, Inc. Recombinant avipox virus and method to induce an immune response
US7045313B1 (en) 1982-11-30 2006-05-16 The United States Of America As Represented By The Department Of Health And Human Services Recombinant vaccinia virus containing a chimeric gene having foreign DNA flanked by vaccinia regulatory DNA
DE10399031I1 (en) * 1987-08-28 2004-01-29 Health Research Inc Recombinant viruses.
US5286639A (en) * 1987-09-16 1994-02-15 Nippon Zeon Co., Ltd. Recombinant avipoxvirus
DE3813093A1 (en) * 1988-04-19 1989-11-09 Immuno Ag RECOMBINANT PLASMIDE, METHOD FOR PRODUCING A RECOMBINANT AVIPOX VIRUS, RECOMBINANT AVIPOX VIRUS, AND USE THEREOF
US5631154A (en) * 1988-06-10 1997-05-20 Therion Biologics, Incorporated Self assembled, defective, non-self-propagating lentivirus particles
GB2220941B (en) * 1988-06-24 1991-09-11 Nat Res Dev Fowlpox virus non-essential regions
US5093258A (en) * 1988-08-26 1992-03-03 Therion Biologics Corporation Recombinant fowlpox virus and recombination vector
CA2001001A1 (en) * 1988-10-21 1990-04-21 Matthew M. Binns Fowlpox virus promoter
US6248333B1 (en) 1990-04-04 2001-06-19 Health Research Inc. Isolated nucleic acid sequence of equine herpesvirus type 1 glycoprotein D (EHV-1 gD)
US5204243A (en) * 1990-02-14 1993-04-20 Health Research Incorporated Recombinant poxvirus internal cores
US5514375A (en) * 1990-08-15 1996-05-07 Virogenetics Corporation Flavivirus recombinant poxvirus vaccine
MY109299A (en) * 1990-08-15 1996-12-31 Virogenetics Corp Recombinant pox virus encoding flaviviral structural proteins
FR2668064B1 (en) * 1990-10-23 1994-12-16 Transgene Sa PHARMACEUTICAL COMPOSITION FOR THE TREATMENT OR PREVENTION OF MALIGNANT TUMOR.
US5503834A (en) * 1990-11-20 1996-04-02 Virogenetics Corporation Measles virus recombinant poxvirus vaccine
US5759841A (en) * 1990-11-20 1998-06-02 Virogenetics Corporation Immunological composition of measles virus utilizing recombinant poxvirus
US6309647B1 (en) 1999-07-15 2001-10-30 Aventis Pasteur Poxvirus—canine dispemper virus (CDV) or measles virus recombinants and compositions and methods employing the recombinants
IE71643B1 (en) * 1990-11-20 1997-02-26 Virogenetics Corp A recombinant poxviral vaccine for canine distemper
US5756102A (en) * 1990-11-20 1998-05-26 Virogenetics Corporation Poxvirus-canine distemper virus (CDV) recombinants and compositions and methods employing the recombinants
US5338679A (en) * 1991-01-08 1994-08-16 Her Majesty The Queen In Right Of Canada, As Represented By National Research Council Canada And Forestry Canada Vertebrate poxvoris expression vector under the control of entomopoxvirus spheroidin gene promoter
US5766597A (en) * 1991-03-07 1998-06-16 Virogenetics Corporation Malaria recombinant poxviruses
EP0575491B1 (en) * 1991-03-07 2003-08-13 Virogenetics Corporation Genetically engineered vaccine strain
US5863542A (en) * 1991-03-07 1999-01-26 Virogenetics Corporation Recombinant attenuated ALVAC canaryopox virus containing heterologous HIV or SIV inserts
US5766598A (en) * 1991-03-07 1998-06-16 Virogenetics Corporation Recombinant attenuated ALVAC canarypoxvirus expression vectors containing heterologous DNA segments encoding lentiviral gene products
US5756101A (en) * 1991-07-01 1998-05-26 Pasteur Merieux Serums Et Vaccins Malaria recombinant poxvirus
CA2106464A1 (en) * 1991-03-20 1992-09-21 Enzo Paoletti Malaria recombinant poxvirus vaccine
DK0592546T3 (en) * 1991-06-14 2003-09-15 Us Gov Health & Human Serv Immunodeficiency virus recombinant poxvirus vaccine
AU670538B2 (en) * 1991-07-26 1996-07-25 Virogenetics Corporation Infectious bursal disease virus recombinant poxvirus vaccine
DE69133333T2 (en) * 1991-08-26 2004-07-29 Baxter Healthcare S.A. A bird pox recombinant virus containing an intact FPV-tk gene
US5443831A (en) * 1991-10-29 1995-08-22 University Of Delaware Gene encoding glycoprotein B of Infectious Laryngotracheitis Virus
US5869312A (en) * 1992-01-13 1999-02-09 Syntro Corporation Recombinant swinepox virus
US6033904A (en) * 1992-01-13 2000-03-07 Syntro Corporation Recombinant swinepox virus
US6328975B1 (en) 1992-01-13 2001-12-11 Syntro Corporation Recombinant swinepox virus
US6497882B1 (en) 1992-01-13 2002-12-24 Syntro Corporation Recombinant swinepox virus
US6127163A (en) * 1992-01-13 2000-10-03 Syntro Corporation Recombinant swinepox virus
JP3706130B2 (en) * 1992-01-13 2005-10-12 ヴァイロジェネティクス コーポレイション Marek's disease virus recombinant poxvirus vaccine
US6251403B1 (en) 1992-01-13 2001-06-26 Syntro Corporation Recombinant swinepox virus
JPH08501452A (en) * 1992-09-21 1996-02-20 ビアジーン,インコーポレイティド Recombinant retrovirus vector for FELV and / or FIV
US5925358A (en) * 1993-02-26 1999-07-20 Syntro Corporation Recombinant fowlpox viruses and uses thereof
AU727278B2 (en) * 1993-02-26 2000-12-07 Syntro Corporation Recombinant fowlpox viruses and uses thereof II
US6136318A (en) * 1993-02-26 2000-10-24 Cochran; Mark D. Recombinant fowlpox viruses and uses thereof
AU6299594A (en) * 1993-02-26 1994-09-14 Nippon Zeon Co., Ltd. Recombinant fowlpox virus s-fpv-043 and uses thereof
US5496731A (en) * 1993-03-25 1996-03-05 Xu; Hong-Ji Broad-spectrum tumor suppressor genes, gene products and methods for tumor suppressor gene therapy
US5843742A (en) * 1994-12-16 1998-12-01 Avigen Incorporated Adeno-associated derived vector systems for gene delivery and integration into target cells
EP0753581A1 (en) 1995-07-10 1997-01-15 Immuno Ag Improved recombinant eukaryotic cytoplasmic viruses, method for their production and their use as vaccines
US5858373A (en) * 1995-12-01 1999-01-12 Virogenetics Corporation Recombinant poxvirus-feline infectious peritionitis virus, compositions thereof and methods for making and using them
EP0954593A1 (en) 1996-07-25 1999-11-10 Therion Biologics Corporation Recombinant pox virus for immunization against tumor-associated antigens
US6106825A (en) * 1997-05-07 2000-08-22 University Of Florida Entomopoxvirus-vertebrate gene delivery vector and method
AU3910097A (en) * 1997-08-05 1999-03-01 Government Of The United States Of America, As Represented By The Secretary Of The Department Of Health And Human Services, The Live recombinant vaccine comprising inefficiently or non-replicating vir us
US6248582B1 (en) * 1997-10-08 2001-06-19 Imran Khan Gene deleted recombinant FeLV proviral DNA for production of vaccines against FeLV
JPH11165762A (en) 1997-12-01 1999-06-22 Lintec Corp Cover tape for carrying chip body and sealing structure
US20020147143A1 (en) 1998-03-18 2002-10-10 Corixa Corporation Compositions and methods for the therapy and diagnosis of lung cancer
US20030235557A1 (en) 1998-09-30 2003-12-25 Corixa Corporation Compositions and methods for WT1 specific immunotherapy
US6221349B1 (en) 1998-10-20 2001-04-24 Avigen, Inc. Adeno-associated vectors for expression of factor VIII by target cells
US6200560B1 (en) 1998-10-20 2001-03-13 Avigen, Inc. Adeno-associated virus vectors for expression of factor VIII by target cells
CA2360347C (en) 1998-12-31 2013-05-07 Chiron Corporation Improved expression of hiv polypeptides and production of virus-like particles
US7935805B1 (en) 1998-12-31 2011-05-03 Novartis Vaccines & Diagnostics, Inc Polynucleotides encoding antigenic HIV Type C polypeptides, polypeptides and uses thereof
WO2001000665A2 (en) 1999-06-28 2001-01-04 Oklahoma Medical Research Foundation Inhibitors of memapsin 2 and use thereof
IL151097A0 (en) 2000-02-23 2003-04-10 Smithkline Beecham Biolog Tumour-specific animal proteins
JP2004513615A (en) 2000-06-28 2004-05-13 コリクサ コーポレイション Compositions and methods for treatment and diagnosis of lung cancer
JP2005502591A (en) 2001-01-12 2005-01-27 カイロン コーポレイション Nucleic acid mucosal immunity
AU2002304856B2 (en) * 2001-03-08 2006-08-24 Intervet International B.V. Leporipox-based vector vaccines
JP4499311B2 (en) * 2001-04-27 2010-07-07 シャープ株式会社 Broadcast receiving terminal
WO2002089747A2 (en) 2001-05-09 2002-11-14 Corixa Corporation Compositions and methods for the therapy and diagnosis of prostate cancer
US20030198621A1 (en) 2001-07-05 2003-10-23 Megede Jan Zur Polynucleotides encoding antigenic HIV type B and/or type C polypeptides, polypeptides and uses thereof
JP5033303B2 (en) 2001-07-05 2012-09-26 ノバルティス バクシンズ アンド ダイアグノスティックス,インコーポレーテッド Polynucleotides encoding polypeptides with antigenic type C HIV, polypeptides and uses thereof
CA2476755C (en) 2001-12-17 2014-08-26 Corixa Corporation Compositions and methods for the therapy and diagnosis of inflammatory bowel disease
RU2389732C2 (en) 2003-01-06 2010-05-20 Корикса Корпорейшн Certain aminoalkyl glucosaminide phospahte derivatives and use thereof
US7960522B2 (en) 2003-01-06 2011-06-14 Corixa Corporation Certain aminoalkyl glucosaminide phosphate compounds and their use
CA2525825A1 (en) 2003-05-15 2005-01-27 Chiron Corporation Hiv polynucleotides and polypeptides derived from botswana mj4
US7261882B2 (en) 2003-06-23 2007-08-28 Reagents Of The University Of Colorado Methods for treating neuropathic pain by administering IL-10 polypeptides
EP1793849A2 (en) 2004-09-22 2007-06-13 GlaxoSmithKline Biologicals SA Immunogenic composition for use in vaccination against staphylococcei
WO2007081447A2 (en) 2005-11-22 2007-07-19 Novartis Vaccines And Diagnostics, Inc. Norovirus and sapovirus antigens
US20090081157A1 (en) 2006-01-09 2009-03-26 Richard Syd Kornbluth Immunostimulatory Combinations for Vaccine Adjuvants
EP2441469A1 (en) 2006-03-14 2012-04-18 Oregon Health and Science University Methods for producing an immune response to tuberculosis
JP5596980B2 (en) 2007-02-28 2014-10-01 アメリカ合衆国 Brachyury polypeptides and methods of use
EP2215269B1 (en) 2007-10-15 2017-12-13 Admedus Vaccines Pty Limited Construct system and uses therefor
US8691502B2 (en) 2008-10-31 2014-04-08 Tremrx, Inc. T-cell vaccination with viral vectors via mechanical epidermal disruption
CN102307477B (en) 2009-01-05 2015-07-29 埃皮托吉尼西斯股份有限公司 Adjunvant composition and using method
WO2010099472A2 (en) 2009-02-27 2010-09-02 The U.S.A. Of America, As Represented By The Secretary, Department Of Health And Human Services Spanx-b polypeptides and their use
EP2501397B1 (en) 2009-11-20 2017-10-04 Oregon Health and Science University Methods for producing an immune response to tuberculosis
WO2011106705A2 (en) 2010-02-26 2011-09-01 The Government Of The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Dna-protein vaccination protocols
US9795658B2 (en) 2010-04-20 2017-10-24 Admedus Vaccines Pty Ltd Expression system for modulating an immune response
EP2670426B1 (en) 2011-01-31 2017-05-10 The General Hospital Corporation Multimodal trail molecules and uses in cellular therapies
WO2012151272A2 (en) 2011-05-02 2012-11-08 Tremrx, Inc. T-cell vaccination with viral vectors via mechanical epidermal disruption
WO2012177595A1 (en) 2011-06-21 2012-12-27 Oncofactor Corporation Compositions and methods for the therapy and diagnosis of cancer
CA2839507A1 (en) 2011-06-24 2012-12-27 Epitogenesis Inc. Pharmaceutical compositions, comprising a combination of select carriers, vitamins, tannins and flavonoids as antigen-specific immuno-modulators
WO2013082106A1 (en) 2011-12-02 2013-06-06 The General Hospital Corporation Differentiation into brown adipocytes
US9605074B2 (en) 2012-08-30 2017-03-28 The General Hospital Corporation Multifunctional nanobodies for treating cancer
WO2014043535A1 (en) 2012-09-14 2014-03-20 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Compositions for the treatment of cancer
WO2014043518A1 (en) 2012-09-14 2014-03-20 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Brachyury protein, non-poxvirus non-yeast vectors encoding brachyury protein, and their use
EP3741385A1 (en) 2013-04-17 2020-11-25 Genzyme Corporation Compositions for use in a method of treating and preventing macular degeneration
AU2014268603B2 (en) 2013-05-21 2018-03-22 President And Fellows Of Harvard College Engineered heme-binding compositions and uses thereof
EP3068783B1 (en) 2013-11-15 2020-09-23 The Board of Trustees of the Leland Stanford Junior University Agonists of hypocretin receptor 2 for use for treating heart failure
JP6719381B2 (en) 2014-02-06 2020-07-08 ジェンザイム・コーポレーション Compositions and methods for treating and preventing macular degeneration
EP3194446B1 (en) 2014-09-18 2022-10-26 Cedars-Sinai Medical Center Compositions and methods for treating fibrosis
WO2016154010A1 (en) 2015-03-20 2016-09-29 Makidon Paul Immunogenic compositions for use in vaccination against bordetella
WO2016168601A1 (en) 2015-04-17 2016-10-20 Khalid Shah Agents, systems and methods for treating cancer
EP3285795B1 (en) 2015-04-22 2022-11-16 Cedars-Sinai Medical Center Enterically delivered bitter oligopeptides for the treatment for type 2 diabetes and obesity
ES2959642T3 (en) 2015-05-13 2024-02-27 The Us Secretary Of The Department Of Health And Human Services METHODS AND COMPOSITIONS TO INDUCE AN IMMUNE RESPONSE THROUGH CONSTRUCTIONS WITH CONSERVED ELEMENTS
WO2016196366A1 (en) 2015-05-29 2016-12-08 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Extension of replicative lifespan in diseases of premature aging using p53 isoforms
US10550379B2 (en) 2015-06-29 2020-02-04 The Board Of Trustees Of The Leland Stanford Junior University Degron fusion constructs and methods for controlling protein production
US10596248B2 (en) 2015-12-09 2020-03-24 Jingang Medicine (Australia) Pty Ltd Immunomodulating composition for treatment
WO2018018082A1 (en) 2016-07-26 2018-02-01 The Australian National University Immunostimulatory compositions and uses therefor
US10917454B1 (en) 2019-08-01 2021-02-09 Rohde & Schwarz Gmbh & Co. Kg System and method for ATC voice quality assurance
WO2023070072A1 (en) 2021-10-21 2023-04-27 The J. David Gladstone Institutes, A Testamentary Trust Established Under The Will Of J. David Gladstone Retroelement-generated transcription factor decoys
WO2023077147A2 (en) 2021-11-01 2023-05-04 Pellis Therapeutics, Inc. T-cell vaccines for patients with reduced humoral immunity
WO2023081756A1 (en) 2021-11-03 2023-05-11 The J. David Gladstone Institutes, A Testamentary Trust Established Under The Will Of J. David Gladstone Precise genome editing using retrons
WO2023141602A2 (en) 2022-01-21 2023-07-27 Renagade Therapeutics Management Inc. Engineered retrons and methods of use
WO2023183588A1 (en) 2022-03-25 2023-09-28 The J. David Gladstone Institutes, A Testamentary Trust Established Under The Will Of J. David Gladstone Methods of assessing engineered retron activity, and uses thereof
WO2023183627A1 (en) 2022-03-25 2023-09-28 The J. David Gladstone Institutes, A Testamentary Trust Established Under The Will Of J. David Gladstone Production of reverse transcribed dna (rt-dna) using a retron reverse transcriptase from exogenous rna
WO2023183589A1 (en) 2022-03-25 2023-09-28 The J. David Gladstone Institutes, A Testamentary Trust Established Under The Will Of J. David Gladstone Rt-dna fidelity and retron genome editing
WO2024020346A2 (en) 2022-07-18 2024-01-25 Renagade Therapeutics Management Inc. Gene editing components, systems, and methods of use
WO2024044673A1 (en) 2022-08-24 2024-02-29 The J. David Gladstone Institutes, A Testamentary Trust Established Under The Will Of J. David Gladstone Dual cut retron editors for genomic insertions and deletions
WO2024044723A1 (en) 2022-08-25 2024-02-29 Renagade Therapeutics Management Inc. Engineered retrons and methods of use

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK489481A (en) * 1980-11-10 1982-05-11 Searle & Co PLASMID VECTOR AND METHOD OF PRODUCING THEREOF
US4603112A (en) * 1981-12-24 1986-07-29 Health Research, Incorporated Modified vaccinia virus
JPH0795954B2 (en) * 1982-11-30 1995-10-18 アメリカ合衆国 Method for producing recombinant poxvirus for expression of foreign gene
FR2563434B1 (en) * 1984-04-25 1986-07-25 Transgene Sa Rabies vaccine and process for its preparation
WO1986000528A1 (en) * 1984-07-05 1986-01-30 Genex Corporation Cloned gene and method for making and using the same
DD235669A1 (en) * 1985-03-26 1986-05-14 Akad Wissenschaften Ddr METHOD FOR PRODUCING A BLV-CODED HUEL PROTEIN
WO1986005806A1 (en) * 1985-03-29 1986-10-09 National Research Development Corporation Infectious bronchitis virus spike protein
AU6170486A (en) * 1985-08-23 1987-02-26 Advanced Genetics Research Institute Defective viral vaccines
AU607399B2 (en) * 1985-09-09 1991-03-07 Cetus Corporation Infectious recombinant virus vaccine for feline leukemia
NZ217645A (en) * 1985-09-25 1991-11-26 Oncogen Recombinant viruses expressing lav/htlv-iii related epitopes and vaccine formulations
AU602875B2 (en) * 1985-12-18 1990-11-01 British Technology Group Limited Newcastle disease virus gene clones
AU8075787A (en) * 1986-09-22 1988-04-07 Australian National University, The Recombinant poxviruses
WO1988002022A1 (en) * 1986-09-22 1988-03-24 Commonwealth Scientific And Industrial Research Or Recombinant poxviruses
EP0261940A3 (en) * 1986-09-23 1989-07-05 Applied Biotechnology, Inc. Pseudorabies vaccines and dna vectors for recombination with pox viruses
DE3853088T2 (en) * 1987-03-27 1995-10-19 Nippon Zeon Co Recombinant avipox virus.
DE10399031I1 (en) * 1987-08-28 2004-01-29 Health Research Inc Recombinant viruses.
GB8724885D0 (en) * 1987-10-23 1987-11-25 Binns M M Fowlpox virus promotors
FR2632863B2 (en) * 1987-10-29 1990-08-31 Transgene Sa RECOMBINANT FOWLPOX VIRUS AND VACCINES DERIVED FROM SUCH VIRUSES
GB2220941B (en) * 1988-06-24 1991-09-11 Nat Res Dev Fowlpox virus non-essential regions
JP3044062B2 (en) * 1989-03-08 2000-05-22 ヘルス・リサーチ・インク Recombinant poxvirus host selection system
BR9106879A (en) * 1990-09-25 1993-07-20 Cantab Pharma Res MUTUANT NON RETROVIRAL VIRUS, USE OF THE SAME, VACCINE AND PROCESS OF MANUFACTURING MUTANT UMVIRUS

Also Published As

Publication number Publication date
JPH02500879A (en) 1990-03-29
DE3890874C5 (en) 2005-10-20
GB8908921D0 (en) 1989-08-02
LU90951I2 (en) 2003-01-15
AT408549B (en) 2001-12-27
NL300130I2 (en) 2005-11-01
IT1229484B (en) 1991-09-03
DE3890874C2 (en) 2003-03-13
KR890701757A (en) 1989-12-21
NL300139I1 (en) 2004-02-02
DK203689D0 (en) 1989-04-27
WO1989003429A1 (en) 1989-04-20
NL300130I1 (en) 2003-09-01
IL87581A0 (en) 1989-01-31
BE1002134A5 (en) 1990-07-24
AU1628895A (en) 1995-08-17
FR2621487B1 (en) 1991-10-18
FR2621487A1 (en) 1989-04-14
JP3348156B2 (en) 2002-11-20
JP3826055B2 (en) 2006-09-27
NL300138I1 (en) 2004-02-02
DE10399031I1 (en) 2004-01-29
GB2217718B (en) 1992-05-20
AU690210B2 (en) 1998-04-23
AU2427588A (en) 1989-05-02
CH679933A5 (en) 1992-05-15
AR241939A1 (en) 1993-01-29
DE10299049I1 (en) 2004-07-01
ATA900788A (en) 1995-05-15
NL300138I2 (en) 2004-03-01
GB2217718A (en) 1989-11-01
KR970011149B1 (en) 1997-07-07
JP2002348255A (en) 2002-12-04
NL8820679A (en) 1989-07-03
IT8821772A0 (en) 1988-08-29
NZ225970A (en) 1991-01-29
NL195051C (en) 2003-07-01
LU91039I2 (en) 2003-11-05
CH679934A5 (en) 1992-05-15
JP2002186494A (en) 2002-07-02
DK203689A (en) 1989-06-27
DE10399032I1 (en) 2004-01-29

Similar Documents

Publication Publication Date Title
DK175904B1 (en) Recombinant avipox virus, the virus for use in the preparation of a drug for vertebrates and the use of the virus in the manufacture of a drug for treating mammals or birds for infection with a mammal or bird pathogen
US5505941A (en) Recombinant avipox virus and method to induce an immune response
US5174993A (en) Recombinant avipox virus and immunological use thereof
EP0431668B1 (en) Recombinant herpesvirus of turkeys and live vector vaccines derived thereof
IT9020063A1 (en) RECOMBINANT HERPESVIRUS POXVIRUS VACCINE
JPH06505874A (en) Genetically engineered vaccine strains
JP2007105040A (en) Recombinant poxvirus-feline infectious peritonitis virus, composition thereof and methods for making and using them
US5891442A (en) Infectious bursal disease virus recombination poxvirus vaccine
US5651972A (en) Use of recombinant swine poxvirus as a live vaccine vector
US5641490A (en) Infectious bursal disease virus recombinant poxvirus vaccine
WO2007115385A2 (en) Transfer plasmidic vector and recombinant canarypox virus
EP0471457A2 (en) Herpesvirus-based viral vector which expresses a foot &amp; mouth disease virus epitope
DK175980B1 (en) Antigen expression in vertebrates using recombinant virus - contg. specific DNA and incapable of replication, esp. avipox, useful as safe, live vaccines
DK176068B1 (en) Antigen expression in vertebrates using recombinant virus - contg. specific DNA and incapable of replication, esp. avipox, useful as safe, live vaccines
DK176165B1 (en) Antigen expression in vertebrates using recombinant virus - contg. specific DNA and incapable of replication, esp. avipox, useful as safe, live vaccines
AU761321B2 (en) Recombinant viruses, vaccines containing them and in vitro cell cultures thereof
CA1341403C (en) Recombinant a vipox virus
AU725985B2 (en) Recombinant virus
AU769221B2 (en) Recombinant poxvirus-feline infectious peritonitis virus, compositions thereof and methods for making and using them
IE882620L (en) Recombinant avipox virus
WO1999037327A1 (en) A virus vaccine of enhanced immunogenicity against aujeszky&#39;s disease

Legal Events

Date Code Title Description
CTFF Application for supplementary protection certificate (spc) filed

Spc suppl protection certif: CA 2005 00049

Filing date: 20051206

Expiry date: 20130824

Spc suppl protection certif: CA 2005 00050

Filing date: 20051206

Expiry date: 20130824

CTFF Application for supplementary protection certificate (spc) filed

Spc suppl protection certif: CA 2005 00050

Filing date: 20051206

Expiry date: 20130824

Spc suppl protection certif: CA 2005 00049

Filing date: 20051206

Expiry date: 20130824

PUP Patent expired
CTFG Supplementary protection certificate (spc) issued

Free format text: PRODUCT NAME: REKOMBINANT CANARYPOX VIRUS, DER UDTRYKKER MINDST ET HAEMAGGLUTININ FRA INFLUENZAVIRUS

Spc suppl protection certif: CA 2005 00049

Filing date: 20051206

Free format text: PRODUCT NAME: REKOMBINANT CANARYPOX VIRUS, DER UDTRYKKER ET FELV ANTIGEN

Spc suppl protection certif: CA 2005 00050

Filing date: 20051206