DK148036B - METHOD OF ANALOGUE FOR THE PREPARATION OF EPIMERE 4 '' - AMINO-ERYTHROMYCIN COMPOUNDS OR ACID ADDITION SALTS. - Google Patents

METHOD OF ANALOGUE FOR THE PREPARATION OF EPIMERE 4 '' - AMINO-ERYTHROMYCIN COMPOUNDS OR ACID ADDITION SALTS. Download PDF

Info

Publication number
DK148036B
DK148036B DK051878AA DK51878A DK148036B DK 148036 B DK148036 B DK 148036B DK 051878A A DK051878A A DK 051878AA DK 51878 A DK51878 A DK 51878A DK 148036 B DK148036 B DK 148036B
Authority
DK
Denmark
Prior art keywords
erythromycin
reaction
compounds
amino
product
Prior art date
Application number
DK051878AA
Other languages
Danish (da)
Other versions
DK51878A (en
DK148036C (en
Inventor
Frank Christian Sciavolino
Original Assignee
Pfizer
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US05/856,479 external-priority patent/US4150220A/en
Application filed by Pfizer filed Critical Pfizer
Publication of DK51878A publication Critical patent/DK51878A/en
Publication of DK148036B publication Critical patent/DK148036B/en
Application granted granted Critical
Publication of DK148036C publication Critical patent/DK148036C/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H17/00Compounds containing heterocyclic radicals directly attached to hetero atoms of saccharide radicals
    • C07H17/04Heterocyclic radicals containing only oxygen as ring hetero atoms
    • C07H17/08Hetero rings containing eight or more ring members, e.g. erythromycins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Oncology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Communicable Diseases (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Saccharide Compounds (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Description

148036148036

Den foreliggende opfindelse angår en analogifremgangsmåde til fremstilling af hidtil ukendte epimere 4"-amino-erythromycin-forbin-delser med formlen: R1 1<CH3’2 . Ri fCH3>2 '»vA \Λ °γ! ° ΛThe present invention relates to an analogous process for the preparation of novel epimeric 4 "amino-erythromycin compounds of the formula: R1 1 <CH3'2. Ri fCH3> 2" vA \ Λ ° γ! ° Λ

R3oi X ellerR30-L XR3O X or R30-L X

^ V χ0,,,,ί°Ύ °B X^NH2 l X^NH 2 'OCH ™ 7 t>CH, III υ^η3 IV 3 2 148036 eller farmaceutisk acceptable syreadditionssalte deraf, hvor og hver er valgt fra gruppen bestående af hydrogen og alkanoyl med 2 3 2-3 C-atomer, R er alkanoyl med 2-3 C-atomer, og R er hydrogen, 0 2 3 3 4 I* hvorhos R og R eller R og R tilsammen også kan være -C-, eller 2 3 en blanding af forbindelser med formlerne III og IV, hvori R og R ,^ V χ0 ,,,, ί ° Ύ ° BX ^ NH2 l X ^ NH 2 'OCH ™ 7 t> CH, III υ ^ η3 IV 3 2 148036 or pharmaceutically acceptable acid addition salts thereof, each and each selected from the group consisting of hydrogen and alkanoyl having 2 3 2-3 C atoms, R is alkanoyl having 2-3 C atoms and R is hydrogen, 0 2 3 3 4 I * wherein R and R or R and R together may also be -C - or 2 3 a mixture of compounds of formulas III and IV wherein R and R are

OISLAND

3 4 H3 4 H

henholdsvis R og R tilsammen er -C-.R and R respectively are -C-.

Erythromycin er et antibioticum dannet ved dyrkning af en stamme af Streptomyces erythreus i et egnet medium, som beskrevet i U.S.-patentskrift nr. 2.653.899. Erythromycin, der fremstilles i to former, A og B, er repræsenteret ved følgende struktur: 8· H ?'FH3»2 - 10 6L 6JU' H0,,,"lil H0Si*"*0 6” ΠErythromycin is an antibiotic formed by growing a strain of Streptomyces erythreus in a suitable medium, as described in U.S. Patent No. 2,653,899. Erythromycin produced in two forms, A and B, is represented by the following structure: 8 · H? FH3 »2 - 10 6L 6JU 'H0 ,,," lil H0Si * "* 0 6” Π

I1" WI1 "W.

0 Z 'ΌΗ ''och30 Z 'ΌΗ' 'also3

Erythromycin RErythromycin R

A -OHA -OH

B -HB -H

Strukturen viser, at det antibiotiske stof udgøres af tre hoveddele, nemlig et sukker-fragment kendt som cladinose, en anden sukker-del indeholdende en basisk amino-substituent kendt som desos-amin og en 14-leddet lactonring omtalt som erythronolid A eller B eller, som anvendt heri, macrolid-ringen. Mens nummereringssystemet for macrolid-ringen er i ikke-mærketal, er nummereringen for desos-aminen i mærketal og nummereringen for cladinose i tal med dobbeltmærke.The structure shows that the antibiotic is made up of three main parts, namely a sugar fragment known as cladinose, another sugar moiety containing a basic amino substituent known as desosamine and a 14-membered lactone ring referred to as erythronolide A or B or , as used herein, the macrolide ring. While the numbering system for the macrolide ring is in unmarked numbers, the numbering for the desos amine is in the marking and the numbering for cladinose is in double-labeled numbers.

Der har været fremstillet adskillige derivater af erythromycin med det formål at modificere dets biologiske eller farmakodyna-miske egenskaber.Several derivatives of erythromycin have been prepared for the purpose of modifying its biological or pharmacodynamic properties.

U.S.-patentskrift nr. 3.417.077 beskriver reaktionsproduktet mellem erythromycin og ethylencarbonat som et meget aktivt antibak-terielt middel. U.S.-Patentskrift nr. 3.884.903 beskriver 4"-deoxy- 3 148036 4"-oxo-erythromycin A og B-derivater som værende anvendelige som antibiotics.U.S. Patent No. 3,417,077 describes the reaction product between erythromycin and ethylene carbonate as a highly active antibacterial agent. U.S. Patent No. 3,884,903 discloses 4 "deoxy-3" oxo-erythromycin A and B derivatives useful as antibiotics.

Erythromycylamin, 9-amino-derivatet af erythromycin Af har været genstand for betydelig undersøgelse [britisk patentskrift nr. 1.100.504, Tetrahedron Letters, 1645 (1967) og Croatica Chemica Acta, 39, 273 (1967)] og for en vis kontrovers med hensyn til dets strukturelle identitet [Tetrahedron Letters, 157 (1970) og britisk patentskrift nr. 1.341.022]. Sulfonamid-derivater af erythromycylamin er i U.S.-patentskrift nr. 3.983.103 rapporteret at være nyttige som an-tibakterielle midler. Andre derivater er også rapporteret at have an-tibakteriel aktivitet in vitro og in vivo [Ryden et al., J. Med.Erythromycylamine, the 9-amino derivative of erythromycin Af has been the subject of considerable study [British Patent No. 1,100,504, Tetrahedron Letters, 1645 (1967) and Croatica Chemica Acta, 39, 273 (1967)] and to some controversy with for its structural identity [Tetrahedron Letters, 157 (1970) and British Patent Specification No. 1,341,022]. Sulfonamide derivatives of erythromycylamine have been reported to be useful as antibacterial agents in U.S. Patent No. 3,983,103. Other derivatives have also been reported to have antibacterial activity in vitro and in vivo [Ryden et al., J. Med.

Chem., 16, 1059 (1973) og Massey et al., J. Med. Chem., 17, 105 (1974)].Chem., 16, 1059 (1973) and Massey et al., J. Med. Chem., 17, 105 (1974)].

Det har nu vist sig, at de hidtil ukendte epimere 4'-amino- erythromycin-forbindelser med ovennævnte formel III eller IV eller syreadditionssalte deraf udmærker sig som antibakterielle midler, idet de f.eks. besidder en overraskende bedre aktivitet over for Neisseria sicca end de kendte erythromycinforbindelser, således som nedenfor nærmere påvist.It has now been found that the novel epimeric 4'-amino erythromycin compounds of the above Formula III or IV or acid addition salts thereof are distinguished as antibacterial agents, e.g. possess a surprisingly better activity against Neisseria sicca than the known erythromycin compounds, as will be further demonstrated below.

En foretrukket gruppe af forbindelser inden for denne klasse 2 3 af antibakterielle midler er dem med formlen III, hvor R og R til- 0A preferred group of compounds within this class 23 of antibacterial agents are those of Formula III wherein R and R are

IIII

sammen er -C-.together is -C-.

En anden foretrukket gruppe af forbindelser inden for nævnte 4 klasse af antibakterielle midler er dem med formlen IV, hvor R er 0Another preferred group of compounds within said 4 class of antibacterial agents are those of Formula IV wherein R is 0

3 4 M3 4 M

hydrogen, og også hvor R og R tilsammen er -C-.hydrogen, and also where R and R together are -C-.

Fremgangsmåden ifølge opfindelsen til fremstilling af de omhandlede forbindelser er ejendommelig ved, at en tilsvarende forbindelse med formlen: R1 1(CH3»2 r1 ,M(CH3>2 H° 1 "γΝ 0 i χΛ v°v JX....ΑχThe process according to the invention for the preparation of the present compounds is characterized in that a corresponding compound of the formula: R1 1 (CH3> 2 r1, M (CH3> 2 H ° 1 "γΝ 0 in i v ° v JX .... Αχ

aI X —.r 80 XaI X —.r 80 X

* ri |ζ * ^ fC* ri | ζ * ^ fC

I Υ>νγ I γνγγ X^* ° X^rI Υ> νγ I γνγγ X ^ * ° X ^ r

Och3 6ch3 4 148036 12 3 hvor R , R og R er som ovenfor defineret, Y' er NH, N-OH eller N-OCOCHg, og Y" er NH, reduceres, idet (a) når Y' er NH, N-OH eller N-OCOCHg, eller Y" er NH, nævnte reduktion gennemføres ved katalytisk reduktion, , eller (b) når Y' eller Y" er NH, denne fba±>indelse er fremstillet in situ ud fra den tilsvarende keton ved kondensation af ketonen med ammoniumsaltet af en alkansyre, og reduktionen gennemføres ved en hydridreduktion eller ved katalytisk hydrogenering, og at, om ønsket, 1 4 (i) en vundet forbindelse, hvor R og/eller R er hydrogen, alkanoyleres til dannelse af en tilsvarende forbindelse, hvor R1 og/ 4 eller R er alkanoyl med 2 eller 3 C-atomer, eller (ii) en vundet forbindelse, hvor R^ er alkanoyl med 2-3 C-atomer, omdannes til den tilsvarende forbindelse, hvor R1 er hydrogen, og/ellerOch3 6ch3 4 where R, R and R are as defined above, Y 'is NH, N-OH or N-OCOCHg, and Y' is NH, is reduced as (a) when Y 'is NH, N- OH or N-OCOCH 3, or Y "is NH, said reduction is carried out by catalytic reduction, or (b) when Y 'or Y" is NH, this fba is prepared in situ from the corresponding ketone by condensation of the ketone with the ammonium salt of an alkanoic acid, and the reduction is carried out by a hydride reduction or by catalytic hydrogenation and, if desired, (i) a won compound wherein R and / or R is hydrogen is alkanoylated to form a corresponding compound, wherein R 1 and / 4 or R are alkanoyl of 2 or 3 C atoms, or (ii) a won compound wherein R 1 is alkanoyl of 2-3 C atoms is converted to the corresponding compound wherein R 1 is hydrogen, and /or

• (iii) en vundet blanding af forbindelser med formlerne III(Iii) a won mixture of compounds of formulas III

2 3 3 4 og IV, hvor grupperne R og R , henholdsvis grupperne R og R til- 02 3 3 4 and IV, with groups R and R, groups R and R respectively being 0

UU

sammen er -C-, opdeles i de enkelte forbindelser ved selektiv krystallisation af diethylether, eller omkrystalliseres til udvindingtogether are -C-, divided into the individual compounds by selective crystallization of diethyl ether, or recrystallized for recovery

OISLAND

2 3 W2 3 W

af alene forbindelsen, hvor R og R tilsammen er -C-, af acetone/ vand, og/eller (iv) en vundet forbindelse overføres i et syreadditionssalt deraf.of the compound alone, wherein R and R together are -C-, of acetone / water, and / or (iv) a won compound is transferred into an acid addition salt thereof.

Fremstillingen af de til den foreliggende fremgangsmåde anvendelige keton-mellemproduktforbindelser (= 0 ved 4"-stillingen) kan foregå ved oxidation af de tilsvarende 4"-OH-forbindelser. Denne oxidation kan gennemføres ved omsætning med trifluoreddikesyreanhy-drid og dimethylsulfoxid efterfulgt af tilsætning af en tertiær amin, såsom triethylamin.The preparation of the ketone intermediate compounds useful for the present process (= 0 at the 4 "position) may be carried out by oxidation of the corresponding 4" OH compounds. This oxidation can be accomplished by reaction with trifluoroacetic anhydride and dimethyl sulfoxide followed by the addition of a tertiary amine such as triethylamine.

I praksis bliver trifluoreddikesyreanhydridet og dimethylsulfoxid indledningsvis kombineret i et reaktions-indifferent opløsningsmiddel ved ca. -65°C. Efter 10-15 minutter bliver ovennævnte 4"-OH-forbindelser tilsat med en sådan hastighed, at temperaturen bibeholdes ved ca. -65°C og ikke overstiger -30°C. Ved temperaturer over -30°C er trifluoreddikesyreanhydrid-dimethylsulfoxid-komplekset ikke stabilt. Reaktionstemperaturen bibeholdes mellem -30 og -65°C i ca. 15 minutter og sænkes derefter til ca. -70°C. En tertiær amin 5 148036 tilsættes på én gang, og reaktionsblandingen får lov at opvarme i løbet af en periode på 10-15 minutter. Reaktionsblandingen behandles derefter med vand og oparbejdes.In practice, the trifluoroacetic anhydride and dimethyl sulfoxide are initially combined in a reaction-inert solvent at ca. -65 ° C. After 10-15 minutes, the above 4 "OH compounds are added at such a rate that the temperature is maintained at about -65 ° C and does not exceed -30 ° C. At temperatures above -30 ° C, the trifluoroacetic anhydride-dimethyl sulfoxide complex The reaction temperature is maintained between -30 and -65 ° C for about 15 minutes and then lowered to about -70 ° C. A tertiary amine is added at once and the reaction mixture is allowed to warm over a period of time. The reaction mixture is then treated with water and worked up.

Med hensyn til mængderne af reaktanter kræves for hvert mol anvendt 4"-0H-forbindelse ét mol af hver af trifluoreddikesyreanhy-drid og dimethylsulfoxid. Forsøg har vist, at det er fordelagtigt at anvende et overskud på 1-5 gange af anhydridet og dimethylsulfoxid for at fremskynde reaktionens fuldendelse. Den anvendte tertiære amin skal svare til den anvendte molære mængde af trifluoreddikesy-reanhydrid.With respect to the amounts of reactants, for each mole of 4 "-OH compound, one mole of each of trifluoroacetic anhydride and dimethyl sulfoxide is required. Tests have shown that it is advantageous to use an excess of 1-5 times the anhydride and dimethyl sulfoxide for The tertiary amine used must correspond to the molar amount of trifluoroacetic anhydride used.

Det ved denne proces anvendte reaktions-indifferente opløsningsmiddel skal være et sådant, der i betydelig grad opløser reaktanterne og ikke i større grad reagerer med nogen af reaktanterne eller med de dannede produkter. Da denne oxidationsproces gennemføres ved fra -30 til -65°C, foretrækkes det, at nævnte opløsningsmiddel, foruden at have de ovennævnte karakteristika, har et frysepunkt under reaktionstemperaturen. Sådanne opløsningsmidler eller blandinger deraf, der opfylder disse kriterier, er toluen, methylenchlorid, ethylacetat, chloroform eller tetrahydrofuran. Opløsningsmidler, der opfylder de ovennævnte krav, men som har et frysepunkt over reaktionstemperaturen, kan anvendes i mindre mængder i kombination med et af de foretrukne opløsningsmidler. Det for denne proces særligt foretrukne opløsningsmiddel er methylenchlorid.The reaction-inert solvent used in this process must be one which significantly dissolves the reactants and does not to a greater extent react with any of the reactants or with the products formed. Since this oxidation process is carried out at -30 to -65 ° C, it is preferred that said solvent, in addition to having the above characteristics, have a freezing point below the reaction temperature. Such solvents or mixtures thereof meeting these criteria are toluene, methylene chloride, ethyl acetate, chloroform or tetrahydrofuran. Solvents which meet the above requirements but which have a freezing point above the reaction temperature can be used in smaller amounts in combination with one of the preferred solvents. The particularly preferred solvent for this process is methylene chloride.

Den ved denne proces fremstillede foretrukne forbindelse er 2'-acetyl-4"-deoxy-4"-oxo-erythromycin A-6,9-hemiketal-ll,12-carbo-natester.The preferred compound prepared by this process is 2'-acetyl-4 "-deoxy-4" -oxo-erythromycin A-6,9-hemiketal-11,12-carbonate ester.

Reaktionstiden er ikke kritisk og afhænger af reaktionstemperatur og udgangs-reagensernes iboende reaktivitet. Ved temperaturer på fra ca. -30 til ca- -65°C er reaktionen bragt til ende i løbet af 15 til 30 minutter.The reaction time is not critical and depends on the reaction temperature and the inherent reactivity of the starting reagents. At temperatures of approx. -30 to about -65 ° C, the reaction is completed in 15 to 30 minutes.

Med hensyn til rækkefølgen for tilsætningen af reagenserne foretrækkes det, at trifluoreddikesyreanhydridet kombineres aed di-methylsulfoxidet efterfulgt af tilsætningen af den anvendte 4"-OH-forbindelse. Det foreslås endvidere, som ovenfor nævnt, at reaktionstemperaturen holdes under -30°C. Dette er i overensstemmelse med læren ifølge Omura et al., J. Org. Chem., 41, 957 (1976).As to the order of addition of the reagents, it is preferred that the trifluoroacetic anhydride be combined with the dimethyl sulfoxide followed by the addition of the 4 "OH compound used. It is further proposed, as mentioned above, that the reaction temperature be kept below -30 ° C. in accordance with the teachings of Omura et al., J. Org. Chem., 41, 957 (1976).

En anden oxidationsmetode anvender N-chlorsuccinimid og di-methylsulfid som oxiderende middel. I praksis bliver disse to rea 6 148036 genser først kombineret i et reaktions-indifferent opløsningsmiddel ved ca. 0°C. Efter 10-20 minutter sænkes temperaturen til fra 0 til -25°C, og 4"-OH-forbindelsen tilsættes, idet ovennævnte temperatur opretholdes. Efter 2-4 timers reaktionstid tilsættes en tertiær amin, såsom triethylamin, reaktionsblandingen hydrolyseres og oparbejdes.Another oxidation method uses N-chlorosuccinimide and dimethyl sulfide as the oxidizing agent. In practice, these two reaes are first combined in a reaction-inert solvent at ca. 0 ° C. After 10-20 minutes, the temperature is lowered from 0 to -25 ° C and the 4 "OH compound is added, maintaining the above temperature. After 2-4 hours of reaction time, a tertiary amine such as triethylamine is added, the reaction mixture is hydrolyzed and worked up.

Med hensyn til mængderne af reaktanter kræves for hvert mol anvendt 4"-OH-forbindelse ét mol af hver af N-chlorsuccinimid og di-methylsulfid. Forsøg har vist, at det er fordelagtigt at anvende et overskud på 1-20 gange af succinimid- og sulfid-reaktanterne for at fremskynde reaktionens fuldendelse. Den anvendte tertiære amin skal svare til den anvendte molære mængde af succinimid.With respect to the amounts of reactants, for each mole of 4 "OH compound used, one mole of each of N-chlorosuccinimide and dimethyl sulfide is required. Tests have shown that it is advantageous to use an excess of 1-20 times the succinimide. and the sulfide reactants to accelerate the completion of the reaction The tertiary amine used must correspond to the molar amount of succinimide used.

Det ved denne proces anvendte reaktions-indifferen te opløsningsmiddel skal være et sådarit, som i betydelig grad opløser reaktanterne og ikke i nogen større grad reagerer med hverken reaktanterne eller de fremstillede produkter. Da reaktionen gennemføres ved fra ca. 0° til ca. -25°C, foretrækkes det, at opløsningsmidlet, foruden at have de ovennævnte karakteristika, har et frysepunkt under reaktionstemperaturen. Sådanne opløsningsmidler eller blandinger deraf, der opfylder disse kriterier, er toluen, ethyl-acetat, chloroform, methylenchlorid eller tetrahydrofuran. Opløsningsmidler, der opfylder de ovennævnte krav, men som har et frysepunkt over reaktionstemperaturen, kan også anvendes i mindre mængder i kombination med et eller flere af de foretrukne opløsningsmidler.The reaction-inert solvent used in this process must be such that it substantially dissolves the reactants and does not to any great extent react with neither the reactants nor the products produced. Since the reaction is carried out at from ca. 0 ° to approx. -25 ° C, it is preferred that the solvent, in addition to having the above characteristics, have a freezing point below the reaction temperature. Such solvents or mixtures thereof meeting these criteria are toluene, ethyl acetate, chloroform, methylene chloride or tetrahydrofuran. Solvents meeting the above requirements but having a freezing point above the reaction temperature may also be used in smaller amounts in combination with one or more of the preferred solvents.

Det for den omhandlede proces særligt foretrukne opløsningsmiddel er toluen-benzen.The particularly preferred solvent for the process in question is toluene-benzene.

Den ved denne proces fremstillede foretrukne forbindelse er 2'-acetyl-4"-deoxy-4"-oxo-erythromycin A-6,9-hemiketal-ll,12-car-bonatester.The preferred compound prepared by this process is 2'-acetyl-4 "-deoxy-4" -oxo-erythromycin A-6,9-hemiketal-11,12-carbonate ester.

Reaktionstiden er ikke kritisk og afhænger af koncentration, reaktionstemperatur og reagensernes iboende reaktivitet. Ved en reak- . tionstemperatur på fra 0 til -25°C ligger reaktionstiden på fra ca.The reaction time is not critical and depends on concentration, reaction temperature and the intrinsic reactivity of the reagents. By a reaction. The reaction time is from about 0 to -25 ° C.

2 til ca. 4 timer.2 to approx. 4 hours.

Med hensyn til tiIsætningsrækkefølgen er det, som ovenfor nævnt, foretrukket, at 4“-OH-forbindelsen sættes til en forblanding af succinimid-derivat og dimethylsulfid.As to the order of addition, as mentioned above, it is preferred that the 4 "-OH compound be added to a premix of succinimide derivative and dimethyl sulfide.

Begge de ovennævnte oxidationsmetoder betragtes som enestående på grund af selektiviteten af oxidationen, der udelukkende finder sted ved 4"-hydroxy-substituenten efterladende andre sekundære alko- 7 148036 holer i molekylet upåvirkede.Both of the above oxidation methods are considered unique due to the selectivity of the oxidation which takes place solely at the 4 "hydroxy substituent leaving other secondary alcohols in the molecule unaffected.

En keton-mellemproduktforbindelse for forbindelserne med 1 2 formlen III, i hvilken keton R og R hver er alkanoyl med 2-3 C- 3 atomer, og R er hydrogen, kan vindes ved at behandle en keton-mellemproduktforbindelse for forbindelserne med formlen IV, hvor R"*" er 2 alkanoyl med 2-3 C-atomer, med et alkansyreanhydrid (R 0) og pyriddn.A ketone intermediate compound for the compounds of formula III, in which ketones R and R are each alkanoyl of 2-3 C atoms and R is hydrogen, can be obtained by treating a ketone intermediate compound for the compounds of formula IV, wherein R "*" is 2 alkanoyl having 2-3 C atoms, with an alkanoic anhydride (R0) and pyridine.

I praksis bringes sidstnævnte keton i kontakt med et overskud af anhydridet i pyridin som opløsningsmiddel. Det foretrækkes, at så meget som et fire ganges overskud af anhydridet anvendes ved reaktionen.In practice, the latter ketone is contacted with an excess of the anhydride in pyridine as a solvent. It is preferred that as much as a four-fold excess of the anhydride be used in the reaction.

Reaktionen gennemføres hensigtsmæssigt ved stuetemperaturer. Ved disse reaktionstemperaturer er reaktionstiden fra ca. 12 til ca. 24 timer.The reaction is conveniently carried out at room temperature. At these reaction temperatures, the reaction time is from ca. 12 to approx. 24 hours.

Fjernelse af en alkanoyl-gruppe ved 2'-stillingen af ketonmel lemproduktforbindelserne gennemføres ved en solvolysereaktion bestående i henstilling med omrøring med et overskud af methanol natten over ved stuetemperatur. Fjernelse af methanolen og påfølgende rensning, om nødvendig, af det som inddampningsrest vundne produkt tilvejebringer den tilsvarende forbindelse, hvor R·*" er hydrogen.Removal of an alkanoyl group at the 2 'position of the ketone flour product compounds is accomplished by a solvolysis reaction consisting of stirring with an excess of methanol overnight at room temperature. Removal of the methanol and subsequent purification, if necessary, of the product obtained as the residue of evaporation provides the corresponding compound wherein R R is hydrogen.

Foretrukne keton-mellemproduktforbindelser for fremstillingen af forbindelserne med formlerne IIIog IV er 2,-acetyl-4"-deoxy-4“-oxo-erythromycin A-6,9-hemiketal-ll,12-carbonatester og 4"-deoxy-4"-oxo-erythromycin A-6,9-hemiketal-ll,12-carbonatester.Preferred ketone intermediates for the preparation of the compounds of formulas III and IV are 2, -acetyl-4 "-deoxy-4" -oxo-erythromycin A-6,9-hemiketal-11, 12-carbonate ester and 4 "-deoxy-4" -oxo-erythromycin A-6,9-hemiketal-11, 12-carbonate ester.

Adskillige synteseveje kan anvendes ved fremstillingen af de omhandlede forbindelser med formlerne III og IV ud fra keton-mellem-produktforbindelserne.Several synthetic routes can be used in the preparation of the compounds of formulas III and IV from the ketone intermediate compounds.

Fremstilling af forbindelserne med formlen III gennemføres ved kondensation af keton-forbindelsen med ammoniumsaltet af en lavere alkansyre og påfølgende reduktion af den in situ dannede imin. Betegnelsen "lavere alkan" refererer her til en syre med 2-4 C-atomer.Preparation of the compounds of formula III is carried out by condensing the ketone compound with the ammonium salt of a lower alkanoic acid and subsequently reducing the in situ formed imine. The term "lower alkane" here refers to an acid having 2-4 C atoms.

I praksis bliver en opløsning af ketonen i en lavere alka-nol, såsom methanol eller isopropanol, behandlet med ammoniumsaltet af en lavere alkansyre, såsom eddikesyre, og den afkølede reaktionsblanding behandles med reduktionsmidlet natriumcyanoborhydrid. Reaktionen får lov at forløbe ved stuetemperatur gennem flere timer, førend der hydrolyseres, og produktet isoleres.In practice, a solution of the ketone in a lower alkanol such as methanol or isopropanol is treated with the ammonium salt of a lower alkanoic acid such as acetic acid and the cooled reaction mixture is treated with the reducing agent sodium cyanoborohydride. The reaction is allowed to proceed at room temperature for several hours before hydrolyzing and the product is isolated.

Selvom 1 mol af ammoniumalkanoatet kræves pr. mol keton, foretrækkes det at anvende et overskud, så stort som ti gange, for at sikre fuldstændig og hurtig dannelse af iminen. Sådanne overskuds 8 148036 mængder synes kun at have lille skadelig indvirkning på kvaliteten af produktet.Although 1 mole of the ammonium alkanoate is required per moles of ketone, it is preferred to use an excess, as large as ten times, to ensure complete and rapid formation of the imine. Such surplus amounts appear to have little detrimental effect on the quality of the product.

Med hensyn til mængden af reduktionsmiddel, der skal anvendes pr. mol keton, foretrækkes dét, at der anvendes ca. to mol natrium-cyanoborhydrid pr. mol keton.As to the amount of reducing agent to be used per mole of ketone, it is preferred that approx. two moles of sodium cyanoborohydride per mole of ketone.

Reaktionstiden vil variere med koncentration, reaktionstemperatur og reagensernes iboende reaktivitet. Ved stuetemperatur, der er den foretrukne reaktionstemperatur, er reaktionen i det væsentlige fuldendt efter to til tre timer.The reaction time will vary with concentration, reaction temperature and the intrinsic reactivity of the reagents. At room temperature which is the preferred reaction temperature, the reaction is substantially complete after two to three hours.

Når det lavere alkanol-opløsningsmiddel er methanol, forekommer der som ovenfor nævnt en betydelig solvolyse af enhver alkanoyl-gruppe ved 2'-stillingen. For at undgå fjernelse af en sådan gruppe foretrækkes det, at der som reaktionsopløsningsmiddel anvendes iso-propanol.When the lower alkanol solvent is methanol, as mentioned above, a significant solvolysis of any alkanoyl group occurs at the 2 'position. To avoid removal of such a group, it is preferred that isopropanol is used as the reaction solvent.

Det foretrukne ammoniumalkanoat for denne reaktion er som nævnt ammoniumacetat.The preferred ammonium alkanoate for this reaction is, as mentioned, ammonium acetate.

Ved isoleringen af de ønskede forbindelser med formlen III fra foreliggende ikke-basiske biprodukter eller udgangsmateriale kan der drages fordel af slutproduktets basiske natur. En vandig opløsning af produktet ekstraheres således over et område af gradvis stigende pH, således at neutrale eller ikke-basiske materialer ekstraheres ved lavere pH-værdier og produktet ved et pH højere end 5.By isolating the desired compounds of formula III from the present non-basic by-products or starting material, the basic nature of the final product can be taken advantage of. An aqueous solution of the product is thus extracted over a range of gradually increasing pH, so that neutral or non-basic materials are extracted at lower pH values and the product at a pH higher than 5.

De ekstraherende opløsningsmidler, enten ethylacetat eller diethyl-ether, returvaskes med saltopløsning og vand, tørres over natriumsulfat, og produktet vindes ved at fjerne opløsningsmidlet. Yderligere rensning, om nødvendig, kan gennemføres ved søjlechromatografi på silicagel ved i og for sig kendte metoder.The extracting solvents, either ethyl acetate or diethyl ether, are washed back with brine and water, dried over sodium sulfate, and the product is recovered by removing the solvent. Further purification, if necessary, can be carried out by column chromatography on silica gel by methods known per se.

Som ovenfor nævnt kan solvolyse af 2 *-alkanoyl-gruppen i en forbindelse med formlen III gennemføres ved at lade en methanolop-løsning af nævnte alkanoyl-forbindelse henstå natten over ved stuetemperatur .As mentioned above, solvolysis of the 2 * alkanoyl group of a compound of formula III can be carried out by leaving a methanol solution of said alkanoyl compound overnight at room temperature.

Under den reduktive aminering af keton-mellemproduktforbindel·· 0 2 3 il i ser, hvor R og R tilsammen er -C-, og R er alkanoyl med 2-3 C- atomer eller hydrogen, er det iagttaget, at der dannes en blanding 2 3 3During the reductive amination of ketone intermediate compound · · 0 2 3 µl in series where R and R together are -C- and R is alkanoyl with 2-3 C atoms or hydrogen, it is observed that a mixture is formed 2 3 3

af aminer med formlerne III og IV, hvori R og R , henholdsvis Rof amines of formulas III and IV, wherein R and R and R, respectively

0 4 li og R tilsammen er -C-. Dette kan repræsenteres ved følgende reaktionsskema : 9 148036 R1 N(CH ) / NH4OCOCH3 °"\ 1 I NaCNBH., > 0'/^N ai' ι\λυυ 0 >0“° x 'OCH3 (R2 + R3 = ) 1 ^(CH3}20 4 li and R together are -C-. This can be represented by the following reaction scheme: 9 148036 R1 N (CH) / NH4OCOCH3 ° "\ 1 I NaCNBH.,> 0 '/ ^ N ai' ι \ λυυ 0> 0" ° x 'OCH3 (R2 + R3 =) 1 ^ (CH 3} 2

HO R1 ?(CH3>2 ? R-0* IHO R1? (CH3> 2? R-0 * I

χγ "yK ογΝ ryχγ "yK ογΝ row

°K>I l + °<A I° K> I l + ° <A I

* po h $^Unt*f° V* po h $ ^ Unt * f ° V

° /\ NH2 O /¾1¾ III 7 OCH3 IV X^H3 (R2 + R3 = -å-) (R3 + R4 = -$-)° / \ NH2 O / ¾1¾ III 7 OCH3 IV X ^ H3 (R2 + R3 = -å-) (R3 + R4 = - $ -)

De viste aminprodukter III og IV adskilles hensigtsmæssigt ved selektiv krystallisation af diethylether. Omkrystallisation af blandingen af III og IV af acetone-vand inducerer hemiketal-dannelse i aminen med formlen IV resulterende i isolering af III som det eneste produkt.The amine products III and IV shown are conveniently separated by selective crystallization of diethyl ether. Recrystallization of the mixture of III and IV of acetone-water induces hemiketal formation in the amine of formula IV resulting in the isolation of III as the sole product.

Den første direkte syntesevej til amin-forbindelserne med formlen IV er den samme vej som ovenfor diskuteret for forbindelserne med formlen III og omfatter kondensation af keton-mellempro-duktforbindelsen for forbindelsen med formlen IV med et ammoniumal-kanoat efterfulgt af reduktion af den in situ dannede imin med na-triumcyanoborhydrid.The first direct synthesis route for the amine compounds of formula IV is the same route as discussed above for the compounds of formula III and comprises condensation of the ketone intermediate compound for the compound of formula IV with an ammonium alkanoate followed by reduction of the in situ formed imine with sodium cyanoborohydride.

13 413 4

Forbindelser med formlen IV, hvor R , R og R er scxti ovenfor defineret, fremstilles også ved reduktion af den ovennævnte imin under anvendelse af hydrogen og en passende hydrogeneringskatalysator. I praksis bliver den pågældende keton-mellemproduktforbindelse en lavere alkanol, såsom methanol eller isopropanol, behandlet med ammoniumsaltet af en lavere alkansyre, såsom eddikesyre, og hydrogeneringskatalysatoren, og blandingen rystes i en hydrogenatmosfære, indtil reaktionen er i det væsentlige fuldendt.Compounds of formula IV wherein R, R and R are as defined above are also prepared by reducing the above imine using hydrogen and an appropriate hydrogenation catalyst. In practice, the ketone intermediate compound in question is lower alkanol, such as methanol or isopropanol, treated with the ammonium salt of a lower alkanoic acid, such as acetic acid, and the hydrogenation catalyst, and the mixture is shaken in a hydrogen atmosphere until the reaction is substantially complete.

ίο 148036ίο 148036

Selvom 1 mol af ammoniumalkanoatet kræves pr. mol keton, foretrækkes det at anvende et overskud, så stort som ti gange, for at sikre fuldstændig og hurtig dannelse af iminen. Sådanne overskudsmængder har vist sig kun at have lille skadelig indvirkning på kvaliteten af produktet.Although 1 mole of the ammonium alkanoate is required per moles of ketone, it is preferred to use an excess, as large as ten times, to ensure complete and rapid formation of the imine. Such surplus quantities have been found to have little detrimental effect on the quality of the product.

Hydrogeneringskatalysatoren kan vælges blandt mange forskellige midler. Raney-nikkel og 5-10 procent palladium-på-trækul er imidlertid de foretrukne katalysatorer. Disse kan anvendes i varierende mængder afhængige af, hvor hurtigt reaktionen skal fuldendes. Mængder på 10-200 vægtprocent af ketonen kan anvendes effektivt.The hydrogenation catalyst can be selected from a variety of agents. However, Raney nickel and 5-10 percent palladium-on-charcoal are the preferred catalysts. These can be used in varying amounts depending on how quickly the reaction is to be completed. Amounts of 10-200% by weight of the ketone can be used effectively.

Trykket af det luftformige hydrogen i hydrogeneringsbeholderen influerer også på reaktionshastigheden. Det foretrækkes, med henblik på en passende reaktionstid, at der anvendes et indledende tryk på 3,5 kg/cm . Det foretrækkes også for simpelheds skyld, at reduktionen gennemføres ved stuetemperatur.The pressure of the gaseous hydrogen in the hydrogenation vessel also influences the reaction rate. For an appropriate reaction time, an initial pressure of 3.5 kg / cm is preferred. For simplicity, it is also preferred that the reduction be carried out at room temperature.

Reaktionstiden afhænger af en række faktorer omfattende temperatur, tryk, koncentration af reaktanterne og reagensernes iboende reaktivitet. Under de ovennævnte foretrukne betingelser er reaktionen fuldendt i løbet af 12-24 timer.The reaction time depends on a number of factors including temperature, pressure, concentration of the reactants and the intrinsic reactivity of the reagents. Under the above preferred conditions, the reaction is completed in 12-24 hours.

Produktet isoleres ved frafiltrering af den forbrugte katalysator og fjernelse af opløsningsmidlet i vakuum. Det som inddamp-ningsrest foreliggende materiale behandles derefter med vand, og produktet isoleres fra ikke-basiske materialer ved ektraktion af det basiske produkt fra vand ved varierende pH-værdier, som ovenfor beskrevet.The product is isolated by filtration of the spent catalyst and removal of the solvent in vacuo. The residual material is then treated with water and the product is isolated from non-basic materials by extraction of the basic product from water at varying pH values as described above.

Som ovenfor omtalt, foreligger der, når det lavere alkanol-opløsningsmiddel er methanol, betydelig solvolyse af en hvilken som helst alkanoylgruppe ved 2'-stillingen. For at undgå fjernelse af en sådan gruppe, foretrækkes det, at der som reaktions-opløsningsmiddel anvendes isopropanol.As discussed above, when the lower alkanol solvent is methanol, there is considerable solvolysis of any alkanoyl group at the 2 'position. In order to avoid removal of such a group, it is preferred that isopropanol is used as the reaction solvent.

Den anden syntesevej til de antibakterielle 4"-amino-erythro- mycin-forbindelser med formlen IV omfatter indledningsvis omdannelse af keton-mellemproduktforbindelsen til en oxim eller et oxim-derivaiv 0 <1 dvs. Y'=N-0H eller N-O-CCHg, efterfulgt af reduktion af oximen eller derivatet deraf.The second synthetic route to the antibacterial 4 "amino-erythromycin compounds of formula IV initially involves conversion of the ketone intermediate compound to an oxime or an oxime derivative 0 <1 i.e. Y '= N-OH or NO-CCH followed by reduction of the oxime or derivative thereof.

Oxim forbi ndpl bpiup kan fremstilles ved at omsætte nævnte ketoner med hydroxylamin-hydrochlorid og bariumcarbonat i methanol eller isopropanol ved stuetemperatur. I praksis foretrækkes det at anvende et overskud af hydroxylamin, og så meget som et overskud på 3 gange 11 148036 tilvejebringer det Ønskede mellemprodukt i gode udbytter. Anvendelse af stuetemperaturer og et overskud af hvdroxylaminen tillader fremstilling af det ønskede oxim-derivat i løbet af en reaktionstid på 1 til 3 timer. Bariumcarbonatet anvendes i molære mængder på to gange den molære mængde af det anvendte hydroxylamin-hydrochlorid. Produktet isoleres ved at sætte reaktionsblandingen til vand efterfulgt af basificering til pH 9,5 og ekstraktion med et med vand ikke-blandbart opløsningsmiddel, såsom ethylacetat.Oxime past ndpl bpiup can be prepared by reacting said ketones with hydroxylamine hydrochloride and barium carbonate in methanol or isopropanol at room temperature. In practice, it is preferable to use an excess of hydroxylamine, and as much as an excess of 3 times the desired intermediate provides good yields. Use of room temperatures and an excess of the hydroxylamine allow preparation of the desired oxime derivative over a reaction time of 1 to 3 hours. The barium carbonate is used in molar amounts of twice the molar amount of the hydroxylamine hydrochloride used. The product is isolated by adding the reaction mixture to water followed by basification to pH 9.5 and extraction with a water immiscible solvent such as ethyl acetate.

Alternativt kan reaktionsblandingen filtreres og filtratet koncentreres til tørhed i vakuum. Inddampningsresten opdeles derefter mellem vand ved pH 9,0-9,5 og et med vand ikke-blandbart opløsningsmiddel . 0Alternatively, the reaction mixture can be filtered and the filtrate concentrated to dryness in vacuo. The residue is then partitioned between water at pH 9.0-9.5 and a water-immiscible solvent. 0

Fremstilling af O-acetyloxim-forbindelserne (Y^N-O-CCH^) gennemføres ved acetylering af den tilsvarende oxim. Ifølge forsøg bliver 1 mol af oximen omsat med 1 mol eddikesyreanhydrid i nærværelse af 1 mol pyridin eller triethylamin. Anvendelsen af et overskud af anhydridet eller pyridin hjælper til at fuldende reaktionen, og et overskud på 30-40% foretrækkes. Reaktionen gennemføres bedst i et aprotisk opløsningsmiddel, såsom benzen eller ethylacetat, ved stuetemperatur natten over. Efter endt reaktion tilsættes vand, pH indstilles på 9,0, og produktet fraskilles i opløsningsmiddellaget.Preparation of the O-acetyloxime compounds (Y YN-O-CCH ^) is carried out by acetylation of the corresponding oxime. According to experiments, 1 mole of the oxime is reacted with 1 mole of acetic anhydride in the presence of 1 mole of pyridine or triethylamine. The use of an excess of the anhydride or pyridine helps to complete the reaction and an excess of 30-40% is preferred. The reaction is best carried out in an aprotic solvent, such as benzene or ethyl acetate, at room temperature overnight. After the reaction is complete, water is added, the pH is adjusted to 9.0 and the product is separated into the solvent layer.

De foretrukne oximer og oximderivater, der er nyttige mellemprodukter for forbindelserne med formlen IV, er 2'-acetyl-4"-deoxy-4"-oxo-erythromycin A-oxim, 2 f-acetyl-4"-deoxy-4"-oxo-erythromycin A-O-acetyloxim, 4"-deoxy-4"-oxo-erythromycin A-oxim og 4"-deoxy-4"-oxo-erythromycin A-O-acetyloxim.The preferred oxymers and oxime derivatives which are useful intermediates for the compounds of formula IV are 2'-acetyl-4 "-deoxy-4" -oxo-erythromycin A-oxime, 2β-acetyl-4 "-deoxy-4" - oxo-erythromycin AO-acetyloxime, 4 "-deoxy-4" -oxo-erythromycin A-oxime, and 4 "-deoxy-4" -oxo-erythromycin AO-acetyloxime.

Reduktion af oximen eller oximderivatet gennemføres ved katalytisk hydrogenering, ved hvilken en opløsning af oximen eller derivatet deraf i en lavere alkanol, såsom isopropanol, og en Raney-nik-kel-katalysator rystes i en hydrogenatmosfære ved et indledende tryk på 70,3 kg/cm ved stuetemperatur natten over. Frafiltrering af forbrugt katalysator efterfulgt af fjernelse af opløsningsmidlet fra filtratet fører til isolering af den ønskede antibakterielle 4"-amino-erythromycin-forbindelse med formlen IV. Hvis methanol anvendes som opløsningsmiddel ved denne reduktion, er solvolyse af en 2'-alkanoyl-gruppe sandsynlig. For at undgå denne bireaktion anvendes isopropanol.Reduction of the oxime or oxime derivative is accomplished by catalytic hydrogenation, in which a solution of the oxime or derivative thereof in a lower alkanol such as isopropanol and a Raney-nickel catalyst are shaken in a hydrogen atmosphere at an initial pressure of 70.3 kg / ml. cm at room temperature overnight. Filtration of spent catalyst followed by removal of the solvent from the filtrate leads to isolation of the desired antibacterial 4 "amino erythromycin compound of formula IV. If methanol is used as a solvent in this reduction, solvolysis of a 2 'alkanoyl group is likely To avoid this side reaction, isopropanol is used.

Foretrukne blandt de omhandlede forbindelser med formlerne III og IV er begge epimere af 4"-deoxy-4"-amino-erythromycin A-6,9-hemiketal-ll,12-carbonatester og af 4”-deoxy-4"-amino-erythromycin APreferred among the present compounds of formulas III and IV are both epimers of 4 "-deoxy-4" -amino-erythromycin A-6,9-hemiketal-11, 12-carbonate ester and of 4 "-deoxy-4" -amino. erythromycin A

12 148036 og af 4"-deoxy-4"-deoxy-4"-amino-erythromycin A-ll,12-carbonatester.12 148036 and of 4 "-deoxy-4" -deoxy-4 "-amino-erythromycin A-11, 12-carbonate ester.

Eksempler på syrer, der tilvejebringer farmaceutisk acceptable anioner, er saltsyre, hydrogenbromidsyre, hydrogeniodidsyre, salpetersyre, svovlsyre eller svovlsyrling, phosphorsyre, eddikesyre, mælkesyre, citronsyre, vinsyre, ravsyre, maleinsyre, gluconsyre eller asparaginsyre.Examples of acids which provide pharmaceutically acceptable anions are hydrochloric, hydrobromic, hydroiodic, nitric, sulfuric or sulfuric, phosphoric, acetic, lactic, citric, tartaric, succinic, maleic, gluconic or aspartic.

Som ovenfor nævnt er stereokemien for de udgangsmaterialer, der fører til de omhandlede antibakterielle forbindelser, stereokemien for det naturlige materiale. Oxidationen af en 4"-hydroxy-grup-pe til en keton-gruppe og den påfølgende omdannelse af keton-forbindelsen til 4"-amino-forbindelsen indebærer en lejlighed for stereokemien for 4"-substituenten til at ændres fra stereokemien for det naturlige produkt. Når keton-mellemproduktforbindelserne omdannes til aminer ved en af de ovenfor beskrevne fremgangsmåder, er det følgeligt muligt, at der dannes to epimere aminer. Ved forsøg er det iagttaget,at begge aminer er tilstede i slutproduktet i varierende mængder afhængigt af valget af syntesemetode. Hvis det isolerede produkt overvejende består af den ene af de epimere, kan nævnte epimer renses ved gentagen omkrystallisation af et egnet opløsningsmiddel til et konstant smeltepunkt. Den anden epimer, dvs. den der er til stede i mindre mængder i dét oprindeligt isolerede faste materiale, er det overvejende produkt i modervæsken. Den kan udvindes derfra ved på området i og for sig kendte metoder, som for eksempel inddampning af modervæsken og gentagen omkrystallisation af inddampningsresten til et produkt med konstant smeltepunkt.As mentioned above, the stereochemistry of the starting materials leading to the subject antibacterial compounds is the stereochemistry of the natural material. The oxidation of a 4 "hydroxy group to a ketone group and the subsequent conversion of the ketone compound to the 4" amino compound provide an opportunity for the stereochemistry of the 4 "substituent to be changed from the stereochemistry of the natural product. Consequently, when the ketone intermediate compounds are converted to amines by one of the methods described above, it is possible that two epimeric amines are formed and in experiments both amines are observed to be present in the final product in varying amounts depending on the choice of synthesis method. If the isolated product consists predominantly of one of the epimers, said epimer can be purified by repeated recrystallization of a suitable solvent to a constant melting point, the other epimer, that is, present in smaller amounts in the initially isolated solid material. is the predominant product in the mother liquor and can be extracted therefrom by methods known in the art, such as evaporation of the mother liquor and gent. again recrystallization of the evaporation residue into a product of constant melting point.

Selvom nævnte blanding af epimere kan opdeles ved på området i og for sig kendte metoder, er det af praktiske grunde fordelagtigt at anvende nævnte blanding, således som den er isoleret fra reaktionen. Det er imidlertid ofte fordelagtigt at rense blandingen af epimere ved at underkaste den mindst én omkrystallisation af et egnet opløsningsmiddel, underkaste den søjle- eller højtryksvæske-chromatografi, opløsningsmiddelopdeling eller rivning i et egnet opløsningsmiddel. Mens nævnte rensning ikke nødvendigvis adskiller de epimere, fjerner den sådanne fremmedmaterialer som udgangsmaterialer og uønskede biprodukter.Although said mixture of epimers can be subdivided by methods known in the art per se, it is advantageous for practical reasons to use said mixture as isolated from the reaction. However, it is often advantageous to purify the mixture of epimers by subjecting the at least one recrystallization of a suitable solvent, subjecting the column or high pressure liquid chromatography, solvent partitioning or tearing to a suitable solvent. While said purification does not necessarily separate the epimers, it removes such foreign materials as starting materials and unwanted by-products.

Den absolutte stereokemiske struktur for de epimere er ikke klarlagt. Begge epimere af en given forbindelse udviser imidlertid samme type aktivitet, f.eks. som antibakterielle midler.The absolute stereochemical structure of the epimers has not been established. However, both epimers of a given compound exhibit the same type of activity, e.g. as antibacterial agents.

De omhandlede . forbindelser med formlerne 13 148036 III og, IV udviser in; vi tro-aktivitet over for forskellige grampositive mikroorganismer, f.eks. Staphylococcus aureus og Streptococcus pyogenes, og over for visse gram-negative mikroorganismer, såsom de med sfærisk eller ellipsoid form (cocci). Deres aktivitet kan let påvises ved in vitro-prøver over for forskellige mikroorganismer i et hjerne-hjerte-infusionsmedium ved den sædvanlige dobbelt-serie-fortyndingsteknik. Deres in vitro-aktivitet gør dem anvendelige til lokal anvendelse, såsom i form af salver eller cremer.They provided. compounds of formulas 13 and IV show in; we believe activity against various gram-positive microorganisms, e.g. Staphylococcus aureus and Streptococcus pyogenes, and against certain gram-negative microorganisms, such as those with spherical or ellipsoid form (cocci). Their activity can be readily detected by in vitro tests against various microorganisms in a brain-heart infusion medium by the usual dual-series dilution technique. Their in vitro activity makes them useful for local use, such as in the form of ointments or creams.

Til jji vitro-anvendelse, f.eks. til lokal anvendelse, vil det ofte være hensigtsmæssigt at kombinere det valgte produkt med en farmaceutisk acceptabel bærer, såsom vegetabilsk olie eller mineralolie eller en blødgørende creme. Tilsvarende kan forbindelserne opløses eller dispergeres i flydende bærere eller opløsningsmidler, såsom vand, alkohol, glycoler eller blandinger deraf eller andre farmaceutisk acceptable indifferente medier, dvs. medier der er uden skadelig indvirkning på den aktive bestanddel. Til sådanne formål vil det i almindelighed være acceptabelt at anvende koncentrationer af aktive bestanddele på fra ca. 0,01% til ca. 10% baseret på vægten af den totale komposition.For in vitro use, e.g. for local use, it will often be convenient to combine the selected product with a pharmaceutically acceptable carrier such as vegetable oil or mineral oil or a softening cream. Similarly, the compounds can be dissolved or dispersed in liquid carriers or solvents such as water, alcohol, glycols or mixtures thereof or other pharmaceutically acceptable inert media, i.e. media that have no detrimental effect on the active ingredient. For such purposes, it will generally be acceptable to use active ingredient concentrations of from ca. 0.01% to approx. 10% based on the weight of the total composition.

Endvidere er mange af de omhandlede forbindelser og deres syreadditionssalte aktive over for gram-positive og visse gram-negative mikroorganismer, f.eks. Pasteurella multicida og Neisseria sicca, in vivo via orale og/eller parenterale indgiftsveje på dyr og mennesker. Deres in vivo-aktivitet er mere begrænset med hensyn til modtagelige organismer og bestemmes ved den sædvanlige metode, der omfatter inficering af mus af i det væsentlige ensartet vægt med forsøgsorganismen og påfølgende behandling af musene oralt eller subcutant med forsøgsforbindelsen.1 praksis får musene, f.eks. 10 mus, en intraperitoneal inokulation af passende fortyndede kulturer indeholdende omtrent 1 til 10 gange LD^00 (den laveste koncentration af organismer, der kræves for at bevirke 100% døde). Kontrolforsøg foretages samtidigt, ved hvilke mus får inokulum af lavere fortyndinger som et check på mulig variation i virulens hos forsøgsorganismen. Forsøgsforbindelsen indgives 0,5 time efter inokulation og igen 4, 24 og 48 timer senere. Overlevende mus holdes i fire dage efter den sidste behandling, og antallet af overlevende noteres.Furthermore, many of the compounds of this invention and their acid addition salts are active against gram-positive and certain gram-negative microorganisms, e.g. Pasteurella multicida and Neisseria sicca, in vivo via oral and / or parenteral routes of administration to animals and humans. Their in vivo activity is more limited with respect to susceptible organisms and is determined by the usual method comprising infecting mice of substantially uniform weight with the test organism and subsequent treatment of the mice orally or subcutaneously with the test compound. .g. 10 mice, an intraperitoneal inoculation of appropriately diluted cultures containing approximately 1 to 10 times LD ^ 00 (the lowest concentration of organisms required to cause 100% death). Control trials are conducted simultaneously, at which mice receive inoculum of lower dilutions as a check for possible variation in virulence of the test organism. The test compound is administered 0.5 hours after inoculation and again 4, 24 and 48 hours later. Surviving mice are kept for four days after the last treatment and the number of survivors is noted.

Ved anvendelse in vivo kan de omhandlede forbindelser anvendes oralt eller parenteralt, f.eks. ved subcutan eller intra- 14 148036 muskulær injektion, i en dosis på fra ca. 1 mg/kg til ca. 200 mg/kg legemsvægt pr. dag. Det mest benyttede dosisområde ligger fra ca.When used in vivo, the subject compounds can be used orally or parenterally, e.g. by subcutaneous or intramuscular injection, at a dose of from ca. 1 mg / kg to approx. 200 mg / kg body weight per day. day. The most widely used dose range is from approx.

5 mg/kg til ca. 100 mg/kg legemsvægt pr. dag, og det foretrukne om- . råde ligger fra ca. 5 mg/kg til ca. 50 mg/kg legemsvægt pr. dag.5 mg / kg to approx. 100 mg / kg body weight per day. day, and the preferred if-. advice is from approx. 5 mg / kg to approx. 50 mg / kg body weight per day. day.

Bærere, der egner sig for parenteral injektion, kan være enten vandige, såsom vand, isotonisk saltopløsning, isotonisk dextrose eller Ringer's opløsning, eller ikke-vandige, såsom fede olier af vegetabilsk oprindelse (bomuldsfrø, jordnødolie, majs, sesam), di-methylsulfoxid og andre ikke-vandige bærere, der ikke vil gribe ind i præparatets terapeutiske aktivitet, og som er ikke-toxiske i det anvendte volumen eller mængdeforhold (glycerol, propylenglycol, sorbitol) . Endvidere kan der med fordel fremstilles kompositioner, der er egnede for fremstilling af opløsninger umiddelbart forud for anvendelse. Sådanne kompositioner kan omfatte flydende fortyndingsmidler, f.eks. propylenglycol, diethylcarbonat, glycerol eller sorbitol , puffermidler, hyaluronidase, lokalanæstetica og uorganiske salte til tilvejebringelse af ønskede farmakologiske egenskaber.Carriers suitable for parenteral injection may be either aqueous such as water, isotonic saline, isotonic dextrose or Ringer's solution, or non-aqueous such as vegetable oils (cotton seed, peanut oil, corn, sesame), dimethyl sulfoxide and other non-aqueous carriers which will not interfere with the therapeutic activity of the composition and which are non-toxic in the volume or amount ratio used (glycerol, propylene glycol, sorbitol). Furthermore, compositions suitable for preparing solutions immediately prior to use may be advantageously prepared. Such compositions may comprise liquid diluents, e.g. propylene glycol, diethyl carbonate, glycerol or sorbitol, buffering agents, hyaluronidase, local anesthetics and inorganic salts to provide desired pharmacological properties.

Dé omhandlede forbindelser kan også kombineres med forskellige farmaceutisk acceptable indifferente bærere, omfattende faste fortyndingsmidler, vandige bærere og ikke-toxiske organiske opløsningsmidler, i form af kapsler, tabletter, bolsjer, pastiller, tørblandinger, suspensioner, opløsninger, elixirer og parenterale opløsninger eller suspensioner.The present compounds may also be combined with various pharmaceutically acceptable inert carriers, including solid diluents, aqueous carriers and non-toxic organic solvents, in the form of capsules, tablets, cans, lozenges, suspensions, solutions, elixirs and parenteral solutions or suspensions.

I almindelighed anvendes forbindelserne i forskellige dosisformer ved koncentrationsniveau1er liggende fra ca. 0,5 til ca. 90 vægtprocent af den totale komposition.In general, the compounds are used in various dosage forms at concentration levels ranging from about 0.5 to approx. 90% by weight of the total composition.

Til påvisning af de omhandlede 4"-amino-erythromycin-forbin- ~ delsers særligt gode antibakterielle aktivitet er der nedenfor angivet den minimale hæmningskoncentration (MIC) i mikrogram pr.ml over for en række mikroorganismer for henholdsvis de omhandlede forbindelser med formlen III eller IV og et kendt nært beslægtet erythromycin A-derivat.In order to detect the particularly good antibacterial activity of the 4 "amino-erythromycin compounds of the invention, the minimum inhibitory concentration (MIC) in micrograms per ml is given below for a number of microorganisms for the compounds of formula III or IV, respectively. and a known closely related erythromycin A derivative.

15 148036 I . N (CHU) 2 = R1 I 3 2 H0y^i Λ κ2α>* γ^οΑ148036 I. N (CHU) 2 = R1 I 3 2 H0y ^ i Λ κ2α> * γ ^ οΑ

r3°L Xr3 ° L X

*' π Π"ο„γ °γ 'T- y.* 'π Π "ο" γ ° γ' T- y.

Ill ’0CH3 MIC, mcg/ml.......Ill 'OCH3 MIC, mcg / ml .......

R = ^NH~ R = »1» NH„ R = Λ/ν'ΝΗ0 R = ^NH9 1 2 1 2 1 1 1 zR = ^ NH ~ R = »1» NH „R = Λ / ν'ΝΗ0 R = ^ NH9 1 2 1 2 1 1 1 z

IC = H R = H R = CH3CO R = HIC = H R = H R = CH3CO R = H

R + R3 = R2 + R3 = R2 + R3 = R2=CH,COR + R3 = R2 + R3 = R2 + R3 = R2 = CH, CO

Mikroorganisme _co_ -C0- . -c.0- ώ3 _ 3 _H — ii_ (1) Staph, aur. <0,10 <0,10 0,39 3,12 (2) " " <0,10 <0,10 0,39 12,5 (3) " " 200 200 >200 >200 (4) " " 200 200 >200 >200 (5) " " ^0,10 <0,10 <0,1 >200 (6) " " 200 200 >200 >200 (7) " " 3,12 3,12 3,12 25 (8) Strp. fae. <0,10 <0,10 0,39 50 (9) Strp. pyog. <0,10 <0,10 $0,10 1,56 (10) " (11) Myco. smeg. 50 50 100 0,39 (12) B. sub. $0,10 $0,10 <0,10 1,56 (13) E. coll 3,12 1,56 3,12 100 (14) " " 3,12 1,56 3,12 200 (15) " " 3,12 3,12 6,25 200 (16) Ps. aerug. 50 100 200 >200 (17) Klebs. pn. 12,5 6,25 12,5 200 (18) " " 6,25 6,25 50 >200 (19) Prot. mira. 200 100 200 >200 (20) Prot. morg. 50 50 200 >200 (21) Salm. chol-su. 6,25 6,25 6,25 >200 (22) Sal. typhm. 6,25 6,25 6,25 >200 (23) " " 6,25 6,25 12,5 100 (24) Past, multo. <0,10 <0,10 $0,1 25 (25) Serr. mar. 25 25 50 >200 (26) Ent. aero. 6,25 6,25 50 >200 (27) Ent. cloa. 25 25 25 >200 (28) Neiss. sic. <0,10 .$0,10 $0,1 0,20 16 148036 . ϊ(ΟΗ3>2 °γλ. °γ^ 4 Æ 6.0 R °'“'Γ Ηο'Τ κ3°“4\ IV 7 OCH3 MIC, mcg/ml R = «·*ΝΗ0 R = '*»» NH0 R = λλ-ΝΗ, R = mi NH,Microorganism _co_ -C0-. -c.0- ώ3 _ 3 _H - ii_ (1) Staph, aur. <0.10 <0.10 0.39 3.12 (2) "" <0.10 <0.10 0.39 12.5 (3) "" 200 200> 200> 200 (4) "" 200 200> 200> 200 (5) "" 0.10 <0.10 <0.1> 200 (6) "" 200 200> 200> 200 (7) "" 3.12 3.12 3.12 25 (8) Strp. fae. <0.10 <0.10 0.39 50 (9) Strp. pyog. <0.10 <0.10 $ 0.10 1.56 (10) "(11) Myco. Smeg. 50 50 100 0.39 (12) B. sub. $ 0.10 $ 0.10 <0.10 1, 56 (13) E.coll 3.12 1.56 3.12 100 (14) "" 3.12 1.56 3.12 200 (15) "" 3.12 3.12 6.25 200 (16) Ps. Air 50 50 200 200> 200 (17) Klebs. Pn. 12,5 6.25 12.5 200 (18) "6.25 6.25 50> 200 (19) Prot. Mira. 200 100 200 > 200 (20) Prot. Morning 50 50 200> 200 (21) Psalm Chol-6.25 6.25 6.25> 200 (22) Ps. Typhm 6.25 6.25 6.25 > 200 (23) "" 6.25 6.25 12.5 100 (24) Past, Mult. <0.10 <0.10 $ 0.1 25 (25) Serial Mar 25 25 50> 200 (26) ) Ent. Aero 6.25 6.25 50> 200 (27) Ent. Cloa. 25 25 25> 200 (28) Neiss. Sic. <0.10. $ 0.10 $ 0.1 0.20 16 148036. ϊ (ΟΗ3> 2 ° γλ. ° γ ^ 4 Æ 6.0 R ° '“' Γ Ηο'Τ κ3 °“ 4 \ IV 7 OCH3 MIC, mcg / ml R = «· * ΝΗ0 R = '*» »NH0 R = λλ-ΝΗ, R = mi NH,

1 Δ 1 Δ 1 I1 Δ 1 Δ 1 I

R·1· = H R = H R = CH-.C0 R = HR · 1 · = H R = H R = CH-.C0 R = H

3 3 3 4J 3 4 R-3 = H R3 = H R + R = R + R =3 3 3 4J 3 4 R-3 = H R3 = H R + R = R + R =

Mikroorganisme r4 = H R4 = H -CO- -C0- (1) Staph, aur. 0,39 0,39 0,78 <0,10 (2) " " 0,78 0,78 0,78 <0,10 (3) " " >200 >200 >200 200 (4) " " >200 >200 >200 200 (5) " " - - 0,39 £0,10 (6) " " >200 >200 >200 >200 (7) " " 3,12 6,25 25 6,25 (8) Strp. fae. 0,39 1,56 0,78 <0,10 (9) Strp. pyog. £0,10 £0,10 0,20 £0,10 (10) " " - - 200 (11) Myco. smeg. 100 200 >200 50 (12) B. sub. 1,56 0,39 0,78 <0,10 (13) E. coli 50 25 25 1,56 (14) " " 50 50 25 1,56 (15) " " 50 50 25 3,12 (16) Ps. aerug. 200 >200 >200 100 (17) Klebs. pn. 200 100 >200 6,25 (18) " " >200 200 >200 6,25 (19) Prot. mira. >200 >200 >200 100 (20) Prot. morg. >200 >200 >200 50 (21) Salm. chol-su. 50 200 50 3,12 (22) Sal. typhm. 50 100 100 3,12 (23) " " 50 200 50 6,25 (24) Past, multo. 1,56 1,56 0,39 £0,10 (25 Serr. mar. 200 >200 >200 25 (26) Ent. aero. 100 >200 100 6,25 (27) Ent. cloa. 200 >200 100 12,5 (28) Neiss. sic. 0,39 6,25 <0,10 <0,1 17 148036 , n(ch3)2 '""J 1'"* η-^ΝΛ-^ R'°-r Ho'y .HO -^s.Microorganism r4 = H R4 = H -CO- -C0- (1) Staph, aur. 0.39 0.39 0.78 <0.10 (2) "" 0.78 0.78 0.78 <0.10 (3) ""> 200> 200> 200 200 (4) ""> 200 > 200> 200 200 (5) "" - - £ 0.39 0.10 (6) ""> 200> 200> 200> 200 (7) "" 3.12 6.25 25 6.25 (8) Strp. fae. 0.39 1.56 0.78 <0.10 (9) Strp. pyog. £ 0.10 £ 0.10 0.20 £ 0.10 (10) "" - - 200 (11) Myco. smeg. 100 200> 200 50 (12) B. sub. 1.56 0.39 0.78 <0.10 (13) E. coli 50 25 25 1.56 (14) "" 50 50 25 1.56 (15) "" 50 50 25 3.12 (16) ps. aerug. 200> 200> 200 100 (17) Klebs. pn. 200 100> 200 6.25 (18) ""> 200 200> 200 6.25 (19) Prot. mira. > 200> 200> 200 100 (20) Prot. bre. > 200> 200> 200 50 (21) Salmon. chol-su. 50 200 50 3.12 (22) Sal. typhm. 50 100 100 3.12 (23) "" 50 200 50 6.25 (24) Fits, multo. 1.56 1.56 0.39 £ 0.10 (25 Serr. Mar. 200> 200> 200 25 (26) Ent. Aero. 100> 200 100 6.25 (27) Ent. Cloa. 200> 200 100 12.5 (28) Neiss. 0.39 6.25 <0.10 <0.1 17 148036, n (ch3) 2 "" "J 1" "η- ^ ΝΛ- ^ R '° - r Ho'y .HO - ^ s.

II ^^"’'OSO^CH.II ^^^ OSO ^ CH.

o 7% 2 3 t OCH3o 7% 2 3 t OCH3

Sammenligning MIC, mcg/mlComparison MIC, mcg / ml

Mikroorganisme RJ. ^ RMicroorganism RJ. ^ R

(1) Staph, aur. 1,56 (2) " " 1,56 (3) " " >50 (4) ” " >50 (5) " " 0,39 (6) " " >50 (7) " " 50 (8) Strp. fae. 0,39 (9) Strp. pyog. 0,20 (10) " " >50 (11) Myco. smeg. >50 (12) B. sub. 0,20 (13) E. coli >50 (14) " " >50 (15) " " >50 (16) Ps. aerug. >50 (17) Klebs. pn. >50 (18) " " >50 (19) Prot. mira.(1) Staph, aur. 1.56 (2) "" 1.56 (3) ""> 50 (4) ""> 50 (5) "" 0.39 (6) ""> 50 (7) "" 50 (8) Strp 0.39 (9) Str. pyog. 0.20 (10) ""> 50 (11) Myco. smeg.> 50 (12) B. sub .20 (13) E. coli> 50 (14) ""> 50 (15) ""> 50 (16) Ps. Air.> 50 (17) Klebs. Pn.> 50 (18) ""> 50 (19) Prot. Mira.

(20) Prot. morg. >50 (21) Salm. chol-su.(20) Prot. bre. > 50 (21) Salmon. chol-su.

(22) Sal. typhm. >50 (23) " (24) Past, multo. 12,5 (25) Serr. mar. >50 (26) Ent. aero. >50 (27) Ent. cloa. >50 (28) Neiss. sic. 12,5(22) Sal. typhm. > 50 (23) "(24) Past, Mult. 12.5 (25) Serr. Mar.> 50 (26) Ent. Aero.> 50 (27) Ent. Cloa.> 50 (28) Neiss. Sic. 12.5

Fremgangsmåden ifølge opfindelsen beskrives nærmere gennem følgende eksempler.The process according to the invention is further described by the following examples.

18 14803618 148036

Eksempel 1 4"-Deoxy-4"-amino-erythromycin A.Example 1 4 "-Deoxy-4" -amino-erythromycin A.

En opløsning af 2,17 g 2'-acetyl-4"-deoxy-4"-amino-erythro-mycin A i 50 ml methanol blev henstillet med omrøring ved stuetemperatur natten over. Opløsningsmidlet blev fjernet under reduceret tryk, og det som inddampningsrest vundne skum blev behandlet med en blanding af 50 ml chloroform og 50 ml vand. pH-Værdien af det vandige lag blev indstillet til 9,5, og det organiske lag blev fraskilt. Chloroform-laget blev behandlet med frisk vand, og pH blev indstillet på 4,0. pH-Værdien af det sure vandige lag indeholdende produktet blev gradvis indstillet til 5, 6, 7, 8 og 9 ved tilsætning af base, idet der ved hvert pH blev ekstraheret med frisk chloroform. Ekstrakterne ved pH 6 og 7 indeholdt hovedmængden af produktet, og disse blev samlet og behandlet med frisk vand ved pH 4. Det vandige lag blev igen indstillet gennem pH 5, 6 og 7, idet der ved hvert pH blev ekstraheret med frisk chloroform. Chloroformekstrakten ved pH 6 blev tørret over natriumsulfat og koncentreret, hvorved vandtes 249 mg af produktet som en epimer blanding.A solution of 2.17 g of 2'-acetyl-4 "-deoxy-4" amino-erythromycin A in 50 ml of methanol was left stirring at room temperature overnight. The solvent was removed under reduced pressure and the foam recovered as evaporation residue was treated with a mixture of 50 ml of chloroform and 50 ml of water. The pH of the aqueous layer was adjusted to 9.5 and the organic layer was separated. The chloroform layer was treated with fresh water and the pH was adjusted to 4.0. The pH of the acidic aqueous layer containing the product was gradually adjusted to 5, 6, 7, 8 and 9 by the addition of base, extracting with fresh chloroform at each pH. The extracts at pH 6 and 7 contained the bulk of the product and these were combined and treated with fresh water at pH 4. The aqueous layer was again adjusted through pH 5, 6 and 7, with each chloroform extracted at each pH. The chloroform extract at pH 6 was dried over sodium sulfate and concentrated to give 249 mg of the product as an epimeric mixture.

NMR (δ, CDC13): 3,30 (lH)s, 3,26 (2H)s, 2,30 (6H)s og 1,46 (3H)s.NMR (δ, CDCl3): 3.30 (1H) s, 3.26 (2H) s, 2.30 (6H) s and 1.46 (3H) s.

Eksempel 2 4"-Deoxy-4"-amino-erythromycin A.Example 2 4 "-Deoxy-4" -amino-erythromycin A.

Til en omrørt opløsning af 3,0 g 4"-deoxy-4"-oxo-erythromy-cin A i 30 ml methanol under en nitrogenatmosfære blev der sat 3,16g tørt ammoniumacetat. Efter 5 minutter blev 188 mg natriumcyanoboro-hydrid vasket ind i reaktionsblandingen med 5 ml methanol, og reaktionsblandingen blev henstillet med omrøring ved stuetemperatur natten over. Den lysegule opløsning blev hældt i 300 ml vand, og pH blev indstillet til 6,0. Det vandige materiale blev ekstraheret ved pH 6-7-7,5-8-9 og 10 under anvendelse af 125 ml diethylether til hver ekstraktion. Ekstrakterne ved pH 8, 9 og 10 blev samlet og vasket med 125 ml frisk vand. Det fraskilte vandige lag blev ekstraheret med ether (1X100 ml) ved pH 7, ethylacetat (1x100 ml) ved pH 7, ether (1x100 ml) ved pH 7,5, ethylacetat (1x100 ml) ved pH 7,5 og ethylacetat (1x100 ml) ved pH 8, 9 og 10. Ethylacetatekstrakterne ved pH 9 og 10 blev samlet, vasket med en mættet saltopløsning og tørret over natriumsulfat. Fjernelse af opløsningsmidlet i vakuum gav 30 g af en epimer blanding af det Ønskede produkt som et elfenbensfarvet skum.To a stirred solution of 3.0 g of 4 "deoxy-4" oxo-erythromycin A in 30 ml of methanol under a nitrogen atmosphere was added 3.16 g of dry ammonium acetate. After 5 minutes, 188 mg of sodium cyanoborohydride was washed into the reaction mixture with 5 ml of methanol and the reaction mixture was allowed to stir at room temperature overnight. The pale yellow solution was poured into 300 ml of water and the pH was adjusted to 6.0. The aqueous material was extracted at pH 6-7-7.5-8-9 and 10 using 125 ml of diethyl ether for each extraction. The extracts at pH 8, 9 and 10 were combined and washed with 125 ml of fresh water. The separated aqueous layer was extracted with ether (1X100 mL) at pH 7, ethyl acetate (1x100 mL) at pH 7, ether (1x100 mL) at pH 7.5, ethyl acetate (1x100 mL) at pH 7.5, and ethyl acetate (1x100 ml) at pH 8, 9 and 10. The ethyl acetate extracts at pH 9 and 10 were combined, washed with a saturated brine solution and dried over sodium sulfate. Removal of the solvent in vacuo gave 30 g of an epimeric mixture of the desired product as an ivory foam.

19 148036 NMR (δ, CDC13): 3,30 (3H)s, 2,27 (6H)s og 1,44 (3H)s.NMR (δ, CDCl3): 3.30 (3H) s, 2.27 (6H) s and 1.44 (3H) s.

Eksempel 3· 4"-Deoxy-4"-amino-erythromycin A (enkelt epimer).Example 3 · 4 "-Deoxy-4" -amino-erythromycin A (single epimer).

En opløsning af 10,0 g af epimer-blandingen af 2'-acetyl-4"-deoxy-4"-amino-erythromycin A i 150 ml methanol blev henstillet med omrøring ved stuetemperatur under nitrogen i 72 timer. Opløsningsmidlet blev fjernet i vakuum, og inddampningsresten blev opløst i en omrørt blanding af 150 ml vand og 200 ml chloroform. Det vandige lag blev bortkastet, og 150 ml frisk vand blev tilsat. pH-Værdien af det vandige lag blev indstillet på 5, og chloroformlaget blev fraskilt. pH-Værdien af den vandige fase blev derefter indstillet på 5,5 - 6 - 7-8 og 9, idet der efter hver indstilling blev ekstraheret med 100 ml frisk chloroform. Chloroformekstrakterne fra pH 6, 7 og 8 blev samlet, vasket successivt med vand og en mættet saltopløsning og tørret over natriumsulfat. Fjernelse af opløsningsmidlet under reduceret tryk gav 2,9 g af en epimer blanding af 4"-deoxy-4"-amino-erythromycin A. En prøve på 1,9 g af blandingen blev revet med di-ethylether, hvilket bragte noget af det uopløste skum til at krystallisere. De faste stoffer blev frafiltreret og tørret, hvorved vandtes 67 mg af en enkelt epimer af 4"-deoxy-4"-amino-erythromycin A, smp. 140-147°C.A solution of 10.0 g of the epimer mixture of 2'-acetyl-4 "-deoxy-4" amino-erythromycin A in 150 ml of methanol was allowed to stir at room temperature under nitrogen for 72 hours. The solvent was removed in vacuo and the residue was dissolved in a stirred mixture of 150 ml of water and 200 ml of chloroform. The aqueous layer was discarded and 150 ml of fresh water was added. The pH of the aqueous layer was adjusted to 5 and the chloroform layer was separated. The pH of the aqueous phase was then adjusted to 5.5 - 6 - 7-8 and 9, after each setting extracted with 100 ml of fresh chloroform. The chloroform extracts from pH 6, 7 and 8 were combined, washed successively with water and a saturated brine solution, and dried over sodium sulfate. Removal of the solvent under reduced pressure gave 2.9 g of an epimeric mixture of 4 "-deoxy-4" amino-erythromycin A. A sample of 1.9 g of the mixture was grated with diethyl ether, which yielded some of it. unresolved foam to crystallize. The solids were filtered off and dried to give 67 mg of a single epimer of 4 "-deoxy-4" -amino-erythromycin A, m.p. 140-147 ° C.

Eksempel 4 ll-Acetyl-4"-deoxy-4"-amino-erythromycin A-6,9-hemiketal.Example 4 11-Acetyl-4 "-deoxy-4" -amino-erythromycin A-6,9-hemiketal.

Til en omrørt opløsning af 4,4 g ll-acetyl-4"-deoxy-4"-oxo-erythromycin A-6,9-hemiketal og 4,38 g ammoniumacetat i 75 ml methanol blev der sat 305 mg 85% natriumcyanoborhydrid. Efter omrøring ved stuetemperatur natten over blev reaktionsblandingen hældt i 300 ml vand, hvortil der derefter blev sat 250 ml chloroform. pH-Værdien af det vandige lag blev indstillet til 9,8, og chloroformlaget blev fraskilt. Det vandige lag blev ekstraheret med chloroform igen, og chloroformekstrakterne blev samlet, tørret over natriumsulfat og koncentreret til et hvidt skum. Det resterende skum blev opløst i en omrørt blanding af 125 ml vand og 125 ml frisk chloroform, og pH blev indstillet til 4,9. Chloroformen blev fraskilt og bortkastet, og det vandige lag blev indstillet på pH 5, 6, 7 og 8, idet der efter hver indstilling blev ekstraheret med frisk chloroform. Ekstrakterne fra det vandige materiale ved pH 6 og 7 blev samlet, vasket med en mættet saltopløsning og tørret over natriumsulfat.To a stirred solution of 4.4 g of 11-acetyl-4 "-deoxy-4" -oxo-erythromycin A-6,9-hemiketal and 4.38 g of ammonium acetate in 75 ml of methanol was added 305 mg of 85% sodium cyanoborohydride. After stirring at room temperature overnight, the reaction mixture was poured into 300 ml of water, to which was then added 250 ml of chloroform. The pH of the aqueous layer was adjusted to 9.8 and the chloroform layer was separated. The aqueous layer was extracted with chloroform again and the chloroform extracts were combined, dried over sodium sulfate and concentrated to a white foam. The remaining foam was dissolved in a stirred mixture of 125 ml of water and 125 ml of fresh chloroform and the pH was adjusted to 4.9. The chloroform was separated and discarded, and the aqueous layer was adjusted to pH 5, 6, 7 and 8, with fresh chloroform extracted after each adjustment. The extracts from the aqueous material at pH 6 and 7 were combined, washed with saturated brine and dried over sodium sulfate.

20 14803620 148036

Fjernelse af opløsningsmidlet gav 1,72 g af det ønskede produkt som et hvidt skum. Produktet blev opløst i en minimal mængde diethyl-ether og blev derefter behandlet med hexan indtil opstående uklarhed. Det krystallinske produkt, der dannedes, blev frafiltreret og tørret, 1,33 g, smp. 204,5-206,5°C.Removal of the solvent gave 1.72 g of the desired product as a white foam. The product was dissolved in a minimal amount of diethyl ether and then treated with hexane until cloudy. The crystalline product formed was filtered off and dried, 1.33 g, m.p. 204.5 to 206.5 ° C.

NMR (δ, CDC13): 3,31 (2H)s, 3,28 (lH)s, 2,31 (6H)S, 2,11 (3H)s og 1,5 (3H)s.NMR (δ, CDCl3): 3.31 (2H) s, 3.28 (1H) s, 2.31 (6H) s, 2.11 (3H) s and 1.5 (3H) s.

Eksempel 5 4"-Deoxy-4"-amino-erythromycin A-6,9-hemiketal-ll,12-carbonatester.Example 5 4 "-Deoxy-4" -amino-erythromycin A-6,9-hemiketal-11,12-carbonate ester.

Til 189 g 4"-deoxy-4"-oxo-erythromycin A-6,9-hemiketal-ll, 12-carbonatester i 1200 ml methanol blev der ved stuetemperatur under omrøring sat 193 g ammoniumacetat. Efter 5 minutter blev den resulterende opløsning afkølet til ca. -5°C og blev derefter behandlet med 13,4 g 85% natriumcyanoborhydrid i 200 ml methanol over en tilsætningsperiode på 45 minutter. Kølebadet blev fjernet, og reaktionsblandingen blev henstillet med omrøring ved stuetemperatur natten over. Reaktionsblandingen blev reduceret i volumen til 800 ml i vakuum og sat til en omrørt blanding af 1800 ml vand og 900 ml chloroform. pH-Værdien blev indstillet fra 6,2 til 4,3 med 6N saltsyre, og chloroformlaget blev fraskilt. Chloroformen blev forenet med 1 liter vand, og pH blev indstillet til 9,5. Den organiske fase blev fraskilt, tørret over natriumsulfat og koncentreret under reduceret tryk, hvorved vandtes 174 g af et hvidt skum. Dette resterende materiale blev opløst i en blanding af 1 liter vand og 500 ml ethylacetat, og pH blev indstillet til 5,5. Ethylacetatlaget blev fraskilt, og det vandige lag blev successivt indstillet til pH 5,7 og 9,5, idet der efter hver pH-indstilling blev ekstraheret med 500 ml frisk ethylacetat. Ethylacetatekstrakterne ved pH 9,5 blev tørret over natriumsulfat og koncentreret i vakuum til tørhed, hvorved vandtes 130 g. Af det som inddampningsrest vundne skum blev 120 g opløst i en blanding af 1 liter vand og 1 liter methylenchlo-rid. Det vandige lags pH-værdi blev indstillet successivt til 4,4, 4,9 og 9,4, idet der efter hver indstilling blev ekstraheret med 1 liter frisk methylenchlorid. Methylenchloridekstrakten ved pH 9,4 blev tørret over natriumsulfat og koncentreret under reduceret tryk, hvorved vandtes 32 g af produktet som et hvidt skum. Krystallisation af 250 ml acetone-vand (1:1, volumen:volumen) gav 28,5 g af de krystallinske epimere.To 189 g of 4 "-deoxy-4" -oxo-erythromycin A-6,9-hemiketal-11,12-carbonate ester in 1200 ml of methanol were added 193 g of ammonium acetate at room temperature with stirring. After 5 minutes, the resulting solution was cooled to ca. -5 ° C and then treated with 13.4 g of 85% sodium cyanoborohydride in 200 ml of methanol over a 45 minute addition period. The cooling bath was removed and the reaction mixture was allowed to stir at room temperature overnight. The reaction mixture was reduced in volume to 800 ml in vacuo and added to a stirred mixture of 1800 ml of water and 900 ml of chloroform. The pH was adjusted from 6.2 to 4.3 with 6N hydrochloric acid and the chloroform layer was separated. The chloroform was combined with 1 liter of water and the pH was adjusted to 9.5. The organic phase was separated, dried over sodium sulfate and concentrated under reduced pressure to give 174 g of a white foam. This residual material was dissolved in a mixture of 1 liter of water and 500 ml of ethyl acetate and the pH was adjusted to 5.5. The ethyl acetate layer was separated and the aqueous layer was successively adjusted to pH 5.7 and 9.5, extracting with 500 ml of fresh ethyl acetate after each pH adjustment. The ethyl acetate extracts at pH 9.5 were dried over sodium sulfate and concentrated in vacuo to dryness to give 130 g. Of the foam obtained as evaporation residue, 120 g was dissolved in a mixture of 1 liter of water and 1 liter of methylene chloride. The pH of the aqueous layer was successively adjusted to 4.4, 4.9 and 9.4, extracting with 1 liter of fresh methylene chloride after each adjustment. The methylene chloride extract at pH 9.4 was dried over sodium sulfate and concentrated under reduced pressure to give 32 g of the product as a white foam. Crystallization of 250 ml of acetone-water (1: 1, v / v) gave 28.5 g of the crystalline epimers.

NMR 100 Mz (δ, CDC13): 5,20 (lH)m, 3,37 (l,5H)s, 3,34 (l,5)s, 2,36 (6H)s, 1,66 (3H)s og 1,41 (3H)s.NMR 100 Mz (δ, CDCl 3): 5.20 (1H) m, 3.37 (1.5H) s, 3.34 (1.5) s, 2.36 (6H) s, 1.66 (3H) ) s and 1.41 (3H) s.

148036 21148036 21

Eksempel 6Example 6

Adskillelse af de epimere af 4"-deoxy-4"-amino-erythro- mycin A-6,9-hemiketal-ll,12-carbonatester.Separation of the epimers of 4 "-deoxy-4" -amino-erythromycin A-6,9-hemiketal-11,12-carbonate ester.

På en højtryks-væske-chromatografisøjle (1/2" x 9 cm) pakket med Gf 254-silicagel imprægneret med formamid og elueret med chloro- 2 form påførtes 200 mg. Et tryk på 16,87 kg/cm. anvendtes ved en hastig-hed på 4,76 cm pr. minut, og der anvendtes en fraktionsstørrelse på 10 ml. Fraktionerne 14 til 21 og 24 til 36 blev opsamlet.On a high pressure liquid chromatography column (1/2 "x 9 cm) packed with Gf 254 silica gel impregnated with formamide and eluted with chloro-2 form was applied 200 mg. A pressure of 16.87 kg / cm was applied at a rapid rate. at a rate of 4.76 cm per minute and a fraction size of 10 ml was used. Fractions 14 to 21 and 24 to 36 were collected.

Fraktionerne 14 til 21 blev samlet og koncentreret til ca.Fractions 14 to 21 were pooled and concentrated to ca.

50 ml. Vand (50 ml) blev tilsat, og pH blev indstillet til 9,0. Chlo-roformlaget blev fraskilt, tørret over natriumsulfat og koncentreret, hvorved vandtes 106 mg af et hvidt skum. Rivning med diethyl-ether bragte skummet til at krystallisere. Efter omrøring ved stuetemperatur i 1 time blev det krystallinske produkt frafiltreret og tørret. Der vandtes 31,7 mg, smp. 194-196°C.50 ml. Water (50 ml) was added and the pH was adjusted to 9.0. The chloroform layer was separated, dried over sodium sulfate and concentrated to give 106 mg of a white foam. Diethyl ether tearing caused the foam to crystallize. After stirring at room temperature for 1 hour, the crystalline product was filtered off and dried. 31.7 mg, m.p. 194-196 ° C.

NMR 100 Mz (δ, CDC13): 5,24 (lH)d, 5,00 (lH)t, 3,40 (3H)s, 2,40 (6H)s, 1,66 (3H)s og 1,40 (3H)s.NMR 100 Mz (δ, CDCl 3): 5.24 (1H) d, 5.00 (1H) t, 3.40 (3H) s, 2.40 (6H) s, 1.66 (3H) s and 1 , 40 (3H) s.

Fraktioner 24 til 36 blev samlet og oparbejdet som ovenfor, hvorved vandtes 47,1 mg produkt som et hvidt skum, der var identisk med materialet fra Eksempel 10.Fractions 24 to 36 were pooled and worked up as above, yielding 47.1 mg of product as a white foam identical to the material of Example 10.

Eksempel 7Example 7

Til en suspension af 11,1 g 2'-acetyl-4"-deoxy-4"-oxo-ery-thromycin A-6,9-hemiketal-ll,12-carbonatester i 300 ml'isopropanol blev der ved stuetemperatur under omrøring sat 10,7 g ammoniumacetat. Efter 5 minutter blev der over en periode på 30 minutter tilsat 747 mg natriumcyanoborhydrid i 130 ml isopropanol, og den resulterende reaktionsblanding blev henstillet med omrøring ved stuetemperatur natten over. Den bleggule opløsning blev hældt i 1100 ml vand, hvortil der derefter blev sat 400 ml diethylether. pH-Værdien blev indstillet på 4,5, og etherlaget blev fraskilt. Det vandige lag blev gjort basisk til pH 9,5 og ekstraheret med chloroform (2 x 500 ml). Chloroformekstrakterne blev samlet, tørret over natriumsulfnt og koncentreret, hvorved vandtes 7,5 g af et gult skum. Omkrystallisation af dette resterende materiale af diethylether gav 1,69 g, der blev bevaret sammen med modervæskerne.To a suspension of 11.1 g of 2'-acetyl-4 "-deoxy-4" -oxoerythromycin A-6,9-hemiketal-11,12-carbonate ester in 300 ml of isopropanol was stirred at room temperature with stirring. added 10.7 g of ammonium acetate. After 5 minutes, 747 mg of sodium cyanoborohydride in 130 ml of isopropanol was added over a period of 30 minutes and the resulting reaction mixture was allowed to stir at room temperature overnight. The pale yellow solution was poured into 1100 ml of water, to which was added 400 ml of diethyl ether. The pH was adjusted to 4.5 and the ether layer was separated. The aqueous layer was basified to pH 9.5 and extracted with chloroform (2 x 500 ml). The chloroform extracts were combined, dried over sodium sulfate and concentrated to give 7.5 g of a yellow foam. Recrystallization of this residual diethyl ether material gave 1.69 g, which was preserved with the mother liquors.

Modervæsken blev behandlet med 75 ml vand, og pH blev indstillet til 5,0. Etherlaget blev erstattet med 75 ml frisk ether, og pH blev indstillet til 5,4. Etheren blev erstattet med ethylace-tat, og pH blev hævet til 10. Det basificerede vandige lag blev eks- 22 148036 traheret med ethylacetat (2 x 75 ml), og den første ethylacetateks-trakt blev tørret over natriumsulfat og koncentreret til tørhed. Det som inddampningsrest vundne skum (1,96 g) blev sat til en blanding af 75 ml vand og 50 ml diethylether, og pH blev indstillet til 5,05. Etheren blev fraskilt, og det vandige lag blev successivt indstillet på pH 5,4 - 6,0 - 7,05 og 8,0, idet der efter hver pH-indstilling blev ekstraheret med 50 ml frisk diethylether. pH-Værdien blev til slut indstillet på 9,7, og det vandige lag blev ekstraheret med 50 ml ethylacetat. Etherekstrakten fra pH 6,0 blev kombineret med 75 ml vand, og pH blev indstillet til 9,7. Etherlaget blev fraskilt, tørret og koncentreret i vakuum, hvorved vandtes 460 mg af et hvidt skum.The mother liquor was treated with 75 ml of water and the pH was adjusted to 5.0. The ether layer was replaced with 75 ml of fresh ether and the pH was adjusted to 5.4. The ether was replaced with ethyl acetate and the pH was raised to 10. The basic aqueous layer was extracted with ethyl acetate (2 x 75 mL) and the first ethyl acetate extract was dried over sodium sulfate and concentrated to dryness. The foam obtained as evaporation residue (1.96 g) was added to a mixture of 75 ml of water and 50 ml of diethyl ether and the pH was adjusted to 5.05. The ether was separated and the aqueous layer was successively adjusted to pH 5.4 - 6.0 - 7.05 and 8.0, extracting with 50 ml of fresh diethyl ether after each pH adjustment. The pH was finally adjusted to 9.7 and the aqueous layer was extracted with 50 ml of ethyl acetate. The ether extract from pH 6.0 was combined with 75 ml of water and the pH was adjusted to 9.7. The ether layer was separated, dried and concentrated in vacuo to give 460 mg of a white foam.

NMR 100 Mz (δ, CDClj): 5,20 (lH)t, 3,43 (2H)s, 3,40 (lH)s, 2,38 (6H)s, 2,16 (3H)s, 1,70 (3H)s og 1,54 (3H).NMR 100 Mz (δ, CDCl 3): 5.20 (1H) t, 3.43 (2H) s, 3.40 (1H) s, 2.38 (6H) s, 2.16 (3H) s, 1 , 70 (3H) s and 1.54 (3H).

Disse NMR-data viser, at produktet var de epimere af 2'-ace-tyl-4"-deoxy-4"-amino-erythromycin A-6,9-hemiketal-ll,12-carbonates-ter.These NMR data show that the product was the epimers of 2'-acetyl-4 "-deoxy-4" amino-erythromycin A-6,9-hemiketal-11,12-carbonates.

De ovennævnte 1,69 g blev opløst i en blanding af 75 ml vand og 75 ml diethylether, og pH blev indstillet på 4,7. Etheren blev fraskilt, og det vandige lag blev ekstraheret yderligere med frisk ether (75 ml) ved pH 5,05 og 5,4 og med ethylacetat (2 x 75 ml) ved pH 9,7. De samlede ethylacetatekstrakter blev tørret over natriumsulfat og koncentreret under reduceret tryk, hvorved vandtes 1,26 g af et hvidt skum. Krystallisation af dette resterende materiale gav 411 mg produkt, smp. 193-196°C (dek.). Modervæsken blev koncentreret til tørhed, og inddampningsresten blev opløst i varm ethylacetat. Opløsningen blev henstillet natten over ved stuetemperatur. De krystallinske faste stoffer,der udfældede, blev frafiltreret og tørret, hvorved vandtes 182 mg yderligere produkt, smp. 198-202°C (dek.).The above 1.69 g was dissolved in a mixture of 75 ml of water and 75 ml of diethyl ether and the pH was adjusted to 4.7. The ether was separated and the aqueous layer was further extracted with fresh ether (75 ml) at pH 5.05 and 5.4 and with ethyl acetate (2 x 75 ml) at pH 9.7. The combined ethyl acetate extracts were dried over sodium sulfate and concentrated under reduced pressure to give 1.26 g of a white foam. Crystallization of this residue gave 411 mg of product, m.p. 193-196 ° C (dec.). The mother liquor was concentrated to dryness and the residue was dissolved in hot ethyl acetate. The solution was left to stand overnight at room temperature. The crystalline solids which precipitated were filtered off and dried to give 182 mg of additional product, m.p. 198-202 ° C (dec.).

NMR 100 Mz (δ, CDC13): 5,10 (lH)t, 3,34 (2H)s, 3,30 (IH)s, 2,30 (6H)s, 2,08 (3H)s, 1,62 (3H)s og 1,48 (3H)s.NMR 100 Mz (δ, CDCl 3): 5.10 (1H) t, 3.34 (2H) s, 3.30 (1H) s, 2.30 (6H) s, 2.08 (3H) s, 1 , 62 (3H) s and 1.48 (3H) s.

Disse NMR-data viste, at produktet var de epimere af 2'-ace-tyl-4 "-deoxy-4 "-amino-e.rythromycin A-ll, 12-carbonatester.These NMR data indicated that the product was the epimers of 2'-acetyl-4 "-deoxy-4" amino-erythromycin A-11,12-carbonate ester.

23 14803623 148036

Eksempel 8Example 8

En opløsning af 400 mg 2,-acetyl-4"-deoxy-4,,-amino-erythro-mycin A-6,9~hemiketal-ll,12-carbonatester i 20 ml methanol blev henstillet med omrøring natten over ved stuetemperatur. Reaktipnsopløs-ningen blev hældt i 100 ml vand efterfulgt af tilsætning af 50 ml ethylacetat. pH-Værdien blev indstillet på 9,5, og den organiske fase blev fraskilt. Ekstraktionen blev gentaget med 50 ml frisk ethylacetat. De samlede ethylacetatekstrakter blev tørret over natriumsulfat og koncentreret, hvorved vandtes 392 mg af et hvidt skum. Rivning med diethylether og skrabning med en glasstav frembragte krystallisation. Efter henstand ved stuetemperatur i 30 minutter blev de krystallinske faste stoffer frafiltreret og tørret og udgjorde 123 mg, og modervæsken blev bevaret. Produktet var ifølge NMR identisk med materiale fremstillet i Eksempel 9, NMR 100 Mz (δ, CDC13): 3,26 (3H)s, 2,32 (6H)s, 1,61 (3H)s og 1,44 (3H)s.A solution of 400 mg of 2, -acetyl-4 "-deoxy-4" - amino-erythromycin A-6,9-hemiketal-11,12-carbonate ester in 20 ml of methanol was left stirring overnight at room temperature. The reaction solution was poured into 100 ml of water followed by the addition of 50 ml of ethyl acetate, the pH was adjusted to 9.5 and the organic phase was separated, and the extraction was repeated with 50 ml of fresh ethyl acetate. and concentrated to give 392 mg of a white foam. Tearing with diethyl ether and scraping with a glass rod produced crystallisation. according to NMR identical to material prepared in Example 9, NMR 100 Mz (δ, CDCl 3): 3.26 (3H) s, 2.32 (6H) s, 1.61 (3H) s and 1.44 (3H) s .

Disse NMR-data viste, at det krystallinske produkt var en enkelt epimer af 4"-deoxy-4"-amino-erythromycin A-ll,12-carbonatester.These NMR data showed that the crystalline product was a single epimer of 4 "-deoxy-4" -amino-erythromycin A-11,12-carbonate ester.

Den bevarede modervæske blev koncentreret i vakuum, hvorved vandtes 244 mg af et hvidt skum.The preserved mother liquor was concentrated in vacuo to give 244 mg of a white foam.

NMR-Data viste, at dette produkt var en blanding af de epi-mere af 4"-deoxy-4"-amino-erythromycin A-6,9-hemiketal-ll,12-carbo-natester og identisk med produktet fra Eksempel 5.NMR data showed that this product was a mixture of the epimers of 4 "-deoxy-4" amino-erythromycin A-6,9-hemiketal-11, 12-carbonate ester and identical to the product of Example 5 .

Eksempel 9Example 9

Af epimer-blandingen af 4"-deoxy-4"-amino-erythromycin A-11,12-carbonatester fra det ikke-krystallinske produkt i Eksempel 5 blev 8 g opløst i 50 ml diethylether. Produktet blev bragt til at krystallisere ved skrabning med en glasstav. Efter 20 minutters omrøring blev det krystallinske produkt frafiltreret og tørret. Der vandtes 1,91 g, smp. 198,5-200°C.From the epimeric mixture of 4 "-deoxy-4" -amino-erythromycin A-11,12 carbonate ester from the non-crystalline product of Example 5, 8 g was dissolved in 50 ml of diethyl ether. The product was crystallized by scraping with a glass rod. After 20 minutes of stirring, the crystalline product was filtered off and dried. 1.91 g, m.p. 198.5 to 200 ° C.

24 148036 NMR 100 Μζ (δ, CDC13): 3,26 (3H)s, 2,30 (6H)s, 1,61 (3H)s og 1,45 (3H)s.24 NMR 100 Μζ (δ, CDCl3): 3.26 (3H) s, 2.30 (6H) s, 1.61 (3H) s and 1.45 (3H) s.

Disse NMR-data viste, at det krystallinske produkt var en enkelt epimer af 4"-deoxy-4"-amino-erythromycin A-ll,12-carbonates ter og identisk med ketonproduktet i Eksempel 8.These NMR data showed that the crystalline product was a single epimer of 4 "deoxy-4" amino erythromycin A-11, 12 carbonates and identical to the ketone product of Example 8.

Eksempel 10Example 10

Af den epimere fra Eksempel 9 blev 1 g opløst i 20 ml acetone og opvarmet ved dampbadstemperaturer, indtil kogepunktet var nået. Vand (25 ml) blev tilsat, og den resulterende opløsning blev henstillet med omrøring ved stuetemperatur. Efter 1 times omrøring blev det dannede bundfald frafiltreret og tørret, hvorved vandtes 581 mg, smp. 147-149°C.Of the epimer of Example 9, 1 g was dissolved in 20 ml of acetone and heated at steam bath temperatures until the boiling point was reached. Water (25 ml) was added and the resulting solution was allowed to stir at room temperature. After stirring for 1 hour, the precipitate formed was filtered off and dried to give 581 mg, m.p. 147-149 ° C.

NMR 100 Μζ (δ, CDC13): 5,12 (lH)d, 3,30 (3H)s, 2,30 (6H)s, 1,62 (3H)s og 1,36 (3H)s.NMR 100 Μζ (δ, CDCl3): 5.12 (1H) d, 3.30 (3H) s, 2.30 (6H) s, 1.62 (3H) s and 1.36 (3H) s.

Disse NMR-data viste, at produktet var en enkelt epimer af 4"-deoxy-4"-amino-erythromycin A-6,9-hemiketal-ll,12-carbonatester og identisk med den epimere i fraktionerne 24-36 i Eksempel 6.These NMR data showed that the product was a single epimer of 4 "-deoxy-4" amino-erythromycin A-6,9-hemiketal-11, 12-carbonate ester and identical to the epimer in fractions 24-36 of Example 6 .

Eksempel 11 4"-Deoxy-4"-amino-erythromycin A.Example 11 4 "-Deoxy-4" -amino-erythromycin A.

20 g 4"-Deoxy-4"-oxo-erythromycin A, 31,6 g ammoniumacetat og 10 g 10% palladium-på-trækul i 200 ml methanol blev rystet ved stuetemperatur i en hydrogenatmosfære ved et indledende tryk på 2 3,5 kg/cm natten over. Den forbrugte katalysator blev frafiltreret, og filtratet blev koncentreret til tørhed i vakuum. Inddampnings-resten blev fordelt mellem vand-chloroform ved en pH-værdi på 5,5.20 g of 4 "Deoxy-4" oxo-erythromycin A, 31.6 g of ammonium acetate and 10 g of 10% palladium-on-charcoal in 200 ml of methanol were shaken at room temperature in a hydrogen atmosphere at an initial pressure of 2 3.5 kg / cm overnight. The spent catalyst was filtered off and the filtrate was concentrated to dryness in vacuo. The evaporation residue was partitioned between water chloroform at a pH of 5.5.

Det vandige lag blev fraskilt, pH blev indstillet på 9,6, og chloroform blev tilsat. Det organiske lag blev fraskilt, tørret over natriumsulfat og koncentreret under reduceret tryk til tørhed. Det som inddampningsrest vundne hvide skum (19 g) blev revet med 150 ral di-ethylether ved stuetemperatur i 30 minutter. De resulterende faste stoffer blev frafiltreret og tørret, hvorved vandtes 9,45 g af en enkelt epimer, der ikke kunne skelnes fra den i Eksempel 3 vundne.The aqueous layer was separated, the pH was adjusted to 9.6, and chloroform was added. The organic layer was separated, dried over sodium sulfate and concentrated under reduced pressure to dryness. The white foam (19 g) obtained as evaporation residue was grated with 150 µl of diethyl ether at room temperature for 30 minutes. The resulting solids were filtered off and dried, yielding 9.45 g of a single epimer indistinguishable from that obtained in Example 3.

Claims (3)

1. Analogifremgangsmåde til fremstilling af epimere 4"-amino-erythromycin-forbindelser med formlen:An analogous process for preparing epimeric 4 "amino-erythromycin compounds of the formula: 1 N(CH3)2 ^CH3}2 , ΐχύ .y\1 N (CH3) 2 ^ CH3} 2, ΐχύ .y \ 3. I eller r3o-1 Jl ,ι»Ί p«, n *»'*] rV _ C) 1 Γ°ν V ° iv V" 8 nh2 o \Χυνη2 ' S)CH- /T>CH3 III 3 IV eller farmaceutisk acceptable syreadditionssalte deraf, hvor og 4 R hver er valgt fra gruppen bestående af hydrogen og alkanoyl med 2 3 2-3 C-atomer, R er alkanoyl med 2-3 C-atomer, og R er hydrogen, 0 2 3 3 4 M hvorhos R og R eller R og R tilsammen også kan være -C-, eller 2 3 en blanding af forbindelser med formlerne III og IV, hvori R og R , 0 3 4 11 henholdsvis R og R tilsammen er -C-, kendetegnet ved, at en tilsvarende forbindelse med formlen: ! N(CH3)2 1 j><CIi3>2 H° 1 VS 0 I vy ΕΧγ '„/S»····0 T T π nu R3°J I eller HoJ I VVr XXrY >Y ° /f' 'DCH3 0cH33. I or r3o-1 Jl, ι »Ί p«, n * »'*] rV _ C) 1 Γ ° ν V ° iv V" 8 nh2 o \ Χυνη2' S) CH- / T> CH3 III 3 IV or pharmaceutically acceptable acid addition salts thereof, wherein and 4 R are each selected from the group consisting of hydrogen and alkanoyl having 2 to 2-3 C atoms, R being alkanoyl having 2-3 C atoms, and R being hydrogen, 0 2 3 3 4 M wherein R and R or R and R taken together may also be -C-, or 2 3 a mixture of compounds of formulas III and IV wherein R and R, R 3 and R together are -C- , characterized in that a corresponding compound of the formula:! N (CH3) 2 1 j> <Cl3 3> 2 H ° 1 VS 0 I vy ΕΧγ '„/ S» ···· 0 TT π now R3 ° JI or HoJ In VVr XXrY> Y ° / f '' DCH3 0cH3
DK51878A 1977-02-04 1978-02-03 METHOD OF ANALOGUE FOR THE PREPARATION OF EPIMERE 4 '' - AMINO-ERYTHROMYCIN COMPOUNDS OR ACID ADDITION SALTS. DK148036C (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US76548077A 1977-02-04 1977-02-04
US76548077 1977-02-04
US05/856,479 US4150220A (en) 1977-02-04 1977-12-01 Semi-synthetic 4"-erythromycin A derivatives
US85647977 1977-12-01

Publications (3)

Publication Number Publication Date
DK51878A DK51878A (en) 1978-08-05
DK148036B true DK148036B (en) 1985-02-11
DK148036C DK148036C (en) 1985-07-15

Family

ID=27117613

Family Applications (1)

Application Number Title Priority Date Filing Date
DK51878A DK148036C (en) 1977-02-04 1978-02-03 METHOD OF ANALOGUE FOR THE PREPARATION OF EPIMERE 4 '' - AMINO-ERYTHROMYCIN COMPOUNDS OR ACID ADDITION SALTS.

Country Status (30)

Country Link
JP (1) JPS5827798B2 (en)
AR (1) AR222147A1 (en)
AU (1) AU501298B1 (en)
BG (2) BG33159A3 (en)
CA (1) CA1106367A (en)
CH (1) CH628906A5 (en)
CS (1) CS221801B2 (en)
DD (1) DD140048A5 (en)
DE (1) DE2804507C2 (en)
DK (1) DK148036C (en)
ES (2) ES466057A1 (en)
FI (1) FI780354A (en)
FR (2) FR2379550A1 (en)
GB (2) GB1585315A (en)
GR (1) GR68691B (en)
HU (1) HU182559B (en)
IE (1) IE46661B1 (en)
IL (2) IL53968A0 (en)
IT (1) IT1094209B (en)
LU (1) LU79004A1 (en)
NL (1) NL176174C (en)
NO (2) NO146472C (en)
NZ (1) NZ186385A (en)
PH (2) PH14421A (en)
PL (1) PL116228B1 (en)
PT (1) PT67568B (en)
RO (4) RO77345A (en)
SE (2) SE445223B (en)
SU (1) SU927122A3 (en)
YU (3) YU40913B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4133950A (en) * 1978-01-03 1979-01-09 Pfizer Inc. 4"-Deoxy-4"-carbamate and dithiocarbamate derivatives of oleandomycin and its esters
US4124755A (en) * 1978-01-03 1978-11-07 Pfizer Inc. 11-Alkanoyl-4"-deoxy-4"-isonitrilo-oleandomycin derivatives
US4382085A (en) * 1982-03-01 1983-05-03 Pfizer Inc. 4"-Epi erythromycin A and derivatives thereof as useful antibacterial agents
US4518590A (en) * 1984-04-13 1985-05-21 Pfizer Inc. 9α-Aza-9α-homoerythromycin compounds, pharmaceutical compositions and therapeutic method
US6407074B1 (en) 1997-06-11 2002-06-18 Pfizer Inc C-4″-substituted macrolide derivatives
HN1998000074A (en) * 1997-06-11 1999-01-08 Pfizer Prod Inc DERIVATIVES FROM MACROLIDES C-4 SUBSTITUTED

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3836519A (en) * 1973-05-04 1974-09-17 Abbott Lab Sulfonyl derivatives of erythromycin
US3884903A (en) * 1973-06-21 1975-05-20 Abbott Lab 4{41 -Deoxy-4{41 -oxoerythromycin B derivatives

Also Published As

Publication number Publication date
RO81622A (en) 1983-04-29
GB1585316A (en) 1981-02-25
IT7820005A0 (en) 1978-02-03
ES466057A1 (en) 1978-10-01
DD140048A5 (en) 1980-02-06
YU40913B (en) 1986-08-31
NZ186385A (en) 1980-10-08
AR222147A1 (en) 1981-04-30
SE445223B (en) 1986-06-09
RO81622B (en) 1983-04-30
YU7378A (en) 1983-04-30
PL116228B1 (en) 1981-05-30
IL53968A0 (en) 1978-04-30
PH14421A (en) 1981-07-10
YU227983A (en) 1984-04-30
NO811913L (en) 1978-08-07
AU501298B1 (en) 1979-06-14
NO150484B (en) 1984-07-16
DK51878A (en) 1978-08-05
FR2379550A1 (en) 1978-09-01
SE8300870L (en) 1983-02-16
DE2804507A1 (en) 1978-08-10
SE457086B (en) 1988-11-28
BG32718A3 (en) 1982-09-15
PL204428A1 (en) 1979-06-04
DK148036C (en) 1985-07-15
GB1585315A (en) 1981-02-25
BG33159A3 (en) 1982-12-15
NL176174C (en) 1985-03-01
NO780389L (en) 1978-08-07
CH628906A5 (en) 1982-03-31
PT67568A (en) 1978-02-01
NO146472C (en) 1982-10-06
FR2379550B1 (en) 1980-07-04
YU40799B (en) 1986-06-30
NO146472B (en) 1982-06-28
PT67568B (en) 1979-06-18
CS221801B2 (en) 1983-04-29
GR68691B (en) 1982-02-01
RO77345A (en) 1981-08-17
ES472429A1 (en) 1979-04-01
CA1106367A (en) 1981-08-04
FR2385735A1 (en) 1978-10-27
IE46661B1 (en) 1983-08-24
LU79004A1 (en) 1979-09-06
JPS5827798B2 (en) 1983-06-11
JPS53101337A (en) 1978-09-04
NL7801262A (en) 1978-08-08
IL61997A0 (en) 1981-02-27
IE780239L (en) 1978-08-04
SE7800270L (en) 1978-08-05
RO79686A7 (en) 1982-08-17
FI780354A (en) 1978-08-05
PH16675A (en) 1983-12-13
HU182559B (en) 1984-02-28
NL176174B (en) 1984-10-01
YU40798B (en) 1986-06-30
IT1094209B (en) 1985-07-26
FR2385735B1 (en) 1980-10-24
SU927122A3 (en) 1982-05-07
RO79687A7 (en) 1982-08-17
YU26583A (en) 1984-02-29
NO150484C (en) 1984-10-24
SE8300870D0 (en) 1983-02-16
DE2804507C2 (en) 1982-11-04

Similar Documents

Publication Publication Date Title
DK172636B1 (en) 6-o-methylerythromycin a derivative
US5869629A (en) Synthesis of 9-deoxo-9a-aza-11,12-deoxy-9a-methyl-9a-homoerythromycin A 11,12 Hydrogenorthoborate dihydrate and a process for the preparation of azitromicin dihydrate
DK159322B (en) ANAL ANALOGUM PREPAR OF PREPARATION OF 4AE-EPI-9-DOSO-9-METHYL-9-METHYL-9-P BY THE PROCEDURE
NO160261B (en) ANALOGY PROCEDURE FOR PREPARING THE THERAPEUTIC ACTIVE COMPOUND N-METHYL-11-AZA-10-DEOKSO-10-DIHYDROERYTROMYCIN A.
US4150220A (en) Semi-synthetic 4&#34;-erythromycin A derivatives
DK157495B (en) ANALOGY PROCEDURE FOR PREPARING 4AE-EPI-ERYTHROMYCINE A OR DERIVATIVES THEREOF
DK158357B (en) 9-DEOXO-9A- (ETHYL OR N-PROPYL) -9A-AZA-9A-HOMOERYTHROMYCIN A AND PHARMACEUTICAL ACCEPTABLE ACID ADDITION SALTS AND THEIR PHARMACEUTICAL PREPARATIONS CONTAINING THESE COMPOUNDS
DK159853B (en) METHOD OF ANALOGUE FOR PREPARING 9-DIHYDRO-11,12-O-ISOPROPYLIDENE ERYTHROMYCIN A OR -4AE-EPI-ERYTHROMYCIN A OR 2&#39;-O-ACYLATES THEREOF OR PHARMACEUTICAL ACCEPTABLE ACCEPTABLE ACCEPTABLE
DK148036B (en) METHOD OF ANALOGUE FOR THE PREPARATION OF EPIMERE 4 &#39;&#39; - AMINO-ERYTHROMYCIN COMPOUNDS OR ACID ADDITION SALTS.
NO146711B (en) ANALOGY PROCEDURE FOR THE PREPARATION OF OLEANDOMYCIN AND ERYTHROMYCIN DERIVATIVES
DK172766B1 (en) Derivatives of the neutral macrolide designated CP-63693 and pharmaceutical compositions containing these
CA1106366A (en) Semi-synthetic 4&#34;-amino-oleandomycin derivatives
US4283527A (en) Erythromycylamine 11,12-carbonate and derivatives thereof
EP0114486B1 (en) Alkylation of oleandomycin
CA1128506A (en) Semi-synthetic 4&#34;-erythromycin a derivatives
FI68404B (en) FREQUENCY REQUIREMENT FOR THERAPEUTIC USE OF THERAPEUTIC 4 &#34;DEOXI-4&#34; -AMINOERYTROMYCIN-A DERIVATIVES
KR820001217B1 (en) Process for preparing semi-synthetic 4-erythromycin a derivative
KR820001218B1 (en) Process for preparing semi-synthetic 4-amino-oleandomycin derivatives
DK148421B (en) ANALOGY PROCEDURE FOR THE PREPARATION OF 4 &#39;&#39; - DEOXY-4 &#39;&#39; - (SUBSTITUTED) AMINO-OLEANDOMYCIN DERIVATIVES OR SALTS THEREOF
IE47968B1 (en) Oleandomycin-derived carbamates and thiocarbamates
DK148845B (en) ANALOGY PROCEDURE FOR PREPARING 4 &#39;&#39; - DEOXY-4 &#39;&#39; - SULPHONYLAMINO-OLEANDOMYCIN DERIVATIVES OR THEIR ACID ADDITION SALTS
DK158473B (en) CYCLIC ETHERS OF 9-DEOXO-9A-AZA-9A-HOMOERYTHROMYCIN AND ITS 4AE EPIMES, COMPOUNDS FOR USE AS EXTERIOR MATERIALS, INCLUDING EXEMPLATES, INCLUDING PHARMACEUTICAL PREPARATIONS
IE46662B1 (en) Erythromycin a intermediates
CS241099B2 (en) Method of 4&#34;-epi-9-deoxo-9a-methyl-9a-aza-9a-homoerythromycine a preparation

Legal Events

Date Code Title Description
PBP Patent lapsed