DE4330958A1 - Neue wirkstoffhaltige Mikropartikel, diese enthaltende Mittel, deren Verwendung zur ultraschallgesteuerten Freisetzung von Wirkstoffen sowie Verfahren zu deren Herstellung - Google Patents

Neue wirkstoffhaltige Mikropartikel, diese enthaltende Mittel, deren Verwendung zur ultraschallgesteuerten Freisetzung von Wirkstoffen sowie Verfahren zu deren Herstellung

Info

Publication number
DE4330958A1
DE4330958A1 DE19934330958 DE4330958A DE4330958A1 DE 4330958 A1 DE4330958 A1 DE 4330958A1 DE 19934330958 DE19934330958 DE 19934330958 DE 4330958 A DE4330958 A DE 4330958A DE 4330958 A1 DE4330958 A1 DE 4330958A1
Authority
DE
Germany
Prior art keywords
active ingredient
microparticles
particles
containing microparticles
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
DE19934330958
Other languages
English (en)
Inventor
Werner Dr Weitschies
Thomas Dr Fitzsch
Harald Dr Stahl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer Pharma AG
Original Assignee
Schering AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schering AG filed Critical Schering AG
Priority to DE19934330958 priority Critical patent/DE4330958A1/de
Priority to DE59409568T priority patent/DE59409568D1/de
Priority to ES94926878T priority patent/ES2152990T3/es
Priority to PT94926878T priority patent/PT717617E/pt
Priority to PCT/EP1994/002806 priority patent/WO1995007072A2/de
Priority to AU76551/94A priority patent/AU7655194A/en
Priority to DK94926878T priority patent/DK0717617T3/da
Priority to CA002171303A priority patent/CA2171303C/en
Priority to US08/605,174 priority patent/US6068857A/en
Priority to KR1019960701192A priority patent/KR960704526A/ko
Priority to EP94926878A priority patent/EP0717617B1/de
Priority to AT94926878T priority patent/ATE197124T1/de
Priority to HU9600599A priority patent/HUT74509A/hu
Priority to JP7508417A priority patent/JPH09502191A/ja
Publication of DE4330958A1 publication Critical patent/DE4330958A1/de
Priority to NO19960973A priority patent/NO312007B1/no
Priority to AU77299/98A priority patent/AU7729998A/en
Priority to US09/459,578 priority patent/US6284280B1/en
Priority to GR20010400035T priority patent/GR3035219T3/el
Ceased legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0002Galenical forms characterised by the drug release technique; Application systems commanded by energy
    • A61K9/0009Galenical forms characterised by the drug release technique; Application systems commanded by energy involving or responsive to electricity, magnetism or acoustic waves; Galenical aspects of sonophoresis, iontophoresis, electroporation or electroosmosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0028Disruption, e.g. by heat or ultrasounds, sonophysical or sonochemical activation, e.g. thermosensitive or heat-sensitive liposomes, disruption of calculi with a medicinal preparation and ultrasounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/22Echographic preparations; Ultrasound imaging preparations ; Optoacoustic imaging preparations
    • A61K49/222Echographic preparations; Ultrasound imaging preparations ; Optoacoustic imaging preparations characterised by a special physical form, e.g. emulsions, liposomes
    • A61K49/223Microbubbles, hollow microspheres, free gas bubbles, gas microspheres
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1629Organic macromolecular compounds
    • A61K9/1635Organic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyvinyl pyrrolidone, poly(meth)acrylates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1629Organic macromolecular compounds
    • A61K9/1641Organic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, poloxamers
    • A61K9/1647Polyesters, e.g. poly(lactide-co-glycolide)

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Medicinal Preparation (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Description

Die Erfindung betrifft den in den Patentansprüchen gekennzeichneten Gegenstand, das heißt neue wirkstoffhaltige Mikropartikel, die zusätzlich zum (zu den) Wirkstoff(en) mindestens ein Gas bzw. eine gasförmige Phase enthalten, diese Partikel enthaltende Mittel (mikropartikuläre Systeme), deren Verwendung zur ultraschallgesteuerten in vivo Wirkstoff-Freisetzung, sowie Verfahren zur Herstellung der Partikel und Mittel.
Mikropartikuläre Systeme zur kontrollierten Wirkstofffreigabe gibt es schon seit vielen Jahren. Eine Vielzahl an möglichen Hüllsubstanzen und Wirkstoffen läßt sich hierzu verwenden. Ebenso gibt es eine ganze Reihe unterschiedlicher Herstellungsverfahren. Zusammenstellungen über die verwendeten Hüllsubstanzen und Herstellungsverfahren finden sich z. B. bei: M. Bornschein, P. Melegari, C. Bismarck, S. Keipert: Mikro- und Nanopartikeln als Arzneistoffträgersysteme unter besonderer Berücksichtigung der Herstellungsmethoden, Pharmazie 44 (1989) 585-593 und M. Chasin, R. Langer (eds.): Biodegradable Polymers as Drug Delivery Systems, Marcel Dekker, New York, 1990.
Die Freisetzung von Wirkstoffen aus mikropartikulären Systemen beruht überwiegend auf Diffusions- oder Erosionsprozessen [vgl. C. Washington: Drug release from microdisperse systems: A critical review, Int. J. Pharm. 58 (1990) 1-12 und J. Heller: Bioerodible Systems, in: R.S. Langer, D.L. Wice (eds.): Medical applications of controlled release Vol. 1, CRC Press, Florida, 1984, p. 69-101].
Diese Prinzipien sind jedoch mit dem Nachteil behaftet, daß die zeitliche Steuerbarkeit der Wirkstofffreisetzung aus mikrodispersen Systemen in vivo auf die Geschwindigkeit des Erosionsprozesses und/oder Diffusionsprozesses begrenzt ist und nach Applikation nicht weiter beeinflußt werden kann.
Die bislang bekannten Konzepte zur örtlichen Steuerung der Wirkstofffreisetzung in vivo aus mikropartikulären Systemen beruhen fast ausschließlich entweder auf unspezifischen Anreicherungen der mikropartikulären Wirkstoffträger in bestimmten Zielorganen wie Leber und Milz oder auf Maßnahmen zur gezielten Veränderung der Organverteilung in vivo nach Applikation durch die Veränderung der Oberflächeneigenschaften der mikropartikulären Systeme mit Hilfe von Tensiden oder spezifitätsvermittelnden Stoffen wie z. B. Antikörpern [vgl.: R.H. Müller: Colloidal carriers for controlled drug delivery - Modification, characterization and in vivo distribution -, Kiel, 1989; S. D. Tröster, U. Müller, J. Kreuter: Modification of the biodistribution of poly(methylmethacrylate) nanoparticles in rats by coating with surfactants, Int. J. Pharm. 61 (1991), 85-100; S.S. Davis, L. Illum, J.G. Mcvie, E. Tomlinson (eds.): Microspheres and drug therapy, Elsevier science publishers B.V., 1984 und H. Tsuji, S. Osaka, H. Kiwada: Targeting of liposomes surface­ modified with glycyrrhizin to the liver, Chem. Pharm. Bull. 39 (1991) 1004-1008]. Alle diese Verfahren bieten darüber hinaus jedoch keine weitere Möglichkeit den Ort der Wirkstofffreisetzung nach Applikation aktiv zu beeinflussen. Des weiteren ist es nicht möglich, das Ausmaß und die Geschwindigkeit der Wirkstofffreigabe nach Applikation zu beeinflussen.
Erste Versuche, aktiv den Ort der Wirkstofffreisetzung zu beeinflussen, beruhen auf der Möglichkeit, vorhandene, bzw. induzierte pH- oder Temperaturdifferenzen zur Freisetzung zu benutzen [vgl.: H. Hazemoto, M. Harada, N. Kamatsubara, M. Haga, Y. Kato: PH-sensitive liposomes composed of phosphatidyl-ethanolamine and fatty acid, Chem. Pharm. Bull. 58 (1990) 748-751 und J.N. Weinstein, R.L. Magin, M.B. Gatwin, D.S. Zaharko: Liposomes and local hyperthermia, Science 204 (1979) 188-191]. Diese Methoden sind jedoch mit dem Nachteil behaftet, daß sie entweder begrenzt sind auf Fälle wo die erforderlichen Temperatur- bzw. pH-Differenzen bereits vorliegen (z. B. im Tumorgewebe) oder die entsprechenden zur Freisetzung erforderlichen Parameter nur durch aufwendige, z. T. invasive Maßnahmen herbeigeführt werden müssen. Darüber hinaus ist im letzteren Fall die örtliche Auflösung gering.
Ein weiteres bekanntes Verfahren besteht in der Verwendung von Mikropartikeln, die durch in den Partikeln verkapselte Ferrofluide über äußerlich angelegte Magnetfelder innerhalb bestimmter Körpersegmente anreicherbar sind [K.J. Widder, A.E. Senyei: Magnetic microspheres: A vehicle for selective targeting of drugs, Pharmac. Ther. 20 (1983) 377-395]. Die Verwendung derartiger Mikropartikel erfordert allerdings die gleichzeitige gezielte Anwendung starker, fokussierbarer Magnetfelder. Magnete, die derartige Felder erzeugen, sind jedoch in der Medizin wenig verbreitet. Desweiteren läßt sich die Geschwindigkeit der Wirkstofffreigabe auf diese Weise nicht beeinflussen.
In der U.S. Patentschrift 4,657,543 wird ein Verfahren beschrieben, bei dem die Freisetzung durch Ultraschalleinwirkung auf wirkstoffhaltige Polymerblöcke hervorgerufen wird. Dieser Effekt beruht im wesentlichen auf einer verstärkten Erosion des Polymers unter Schalleinwirkung. Der Nachteil dieses Verfahrens ist, daß es nur für ortsfeste Implantate geeignet ist. Für deutliche Effekte ist zudem die Verwendung sehr hoher Schalldrücke oder von Dauerschallsignalen notwendig, die zur Gewebeschädigung führen können.
In der WO 92/22298 werden Liposomen beschrieben, die sich durch Einstrahlung von Ultraschall, der im Bereich der Resonanzfrequenz der Mikrobläschen liegt, zerstören lassen. Dabei tritt der verkapselte Wirkstoff aus. Die Resonanzfrequenz wird mit ca. 7,5 MHz angegeben. Diagnostischer Ultraschall derart hoher Frequenz weist jedoch aufgrund der hohen Absorption durch Körpergewebe nur eine geringe Eindringtiefe (wenige Zentimeter) auf. Die beschriebenen Liposomen sind deshalb nur für die Freisetzung von Wirkstoffen in oberflächennahen Gebieten des Körpers geeignet.
Es besteht daher für vielfältige Zwecke weiterhin ein Bedarf gezielt applizierbaren Formulierungen, die die genannten Nachteile des Standes der Technik überwinden, d. h. bei denen sowohl der Ort und Zeitpunkt der Wirkstofffreisetzung als auch die Menge der abgegebenen Substanz, gezielt durch einfache, nicht invasive Maßnahmen gesteuert werden kann. Die Formulierungen sollten darüber hinaus eine hohe Stabilität, insbesondere in Hinblick auf mechanische Einflüsse, aufweisen.
Der Erfindung liegt somit die Aufgabe zugrunde derartige Formulierungen zur Verfügung zu stellen, sowie Verfahren zu ihrer Herstellung zu schaffen.
Diese Aufgabe wird durch die Erfindung gelöst.
Es wurde gefunden, daß bei mikropartikulären Systemen, die zusammengesetzt sind aus einem pharmazeutisch verträglichen Suspensionsmedium und Mikropartikeln, die aus einer bioabbaubaren Hülle und einem gas- und wirkstoffhaltigen Kern bestehen, überraschenderweise bei der Bestrahlung mit diagnostischen Ultraschallwellen in einem Frequenzbereich der unterhalb der Resonanzfrequenz der Partikel liegt, die Hülle dieser Partikel zerstört wird und so der (die) verkapselte(n) Wirkstoff(e) gezielt freigesetzt wird (werden).
Die Erfindung betrifft somit neue wirkstoffhaltige Mikropartikel, die neben dem Wirkstoff ein Gas, eine gasförmige Phase oder Gasgemische enthalten, sowie mikropartikuläre Systeme bestehend aus den erfindungsgemäßen Mikropartikeln sowie einem pharmazeutisch verträglichen Suspensionsmedium.
Die erfindungsgemäßen mikropartikulären Systeme sind aufgrund ihrer Eigenschaften für eine gezielte Freisetzung von Wirkstoffen unter Einwirkung von diagnostischen Ultraschall geeignet.
Die Partikel weisen eine Dichte kleiner als 0,8 g/cm³, bevorzugt kleiner als 0,6 g/cm³ auf und haben eine Größe im Bereich von 0,1-8 µm, vorzugsweise 0,3-7 µm. Aufgrund der geringen Größe verteilen sie sich nach i.v. Injektion innerhalb des gesamten Gefäßsystems. Unter Sichtkontrolle auf dem Monitor eines diagnostischen Ultraschallgerätes kann dann durch Intensivierung des Schallsignals eine vom Anwender gesteuerte Freisetzung der enthaltenen Stoffe herbeigeführt werden, wobei die zur Freisetzung erforderliche Frequenz unterhalb der Resonanzfrequenz der Mikropartikel liegt. Geeignete Frequenzen liegen im Bereich von 1-6 MHz, bevorzugt zwischen 1,5-5 MHz.
Dadurch ist erstmalig innerhalb des gesamten Körpers eine kombinierte Steuerung der Wirkstofffreigaberate und des Wirkstofffreigabeortes durch den Anwender möglich. Diese Freisetzung, durch Zerstörung der Partikelhülle, ist überraschenderweise auch mit Ultraschallfrequenzen weit unterhalb der Resonanzfrequenz der Mikrobläschen mit in der medizinischen Diagnostik üblichen Schalldrücken möglich, ohne daß es zu einer Erwärmung des Gewebes kommt. Dieses ist besonderes deswegen bemerkenswert, weil auf Grund der großen mechanischen Stabilität der Partikelhülle - wie sie z. B. in Hinblick auf Lagerstabilität von Vorteil ist - eine Zerstörung der Hülle mit relativ energiearmer Strahlung nicht zu erwarten war.
Die Wirkstofffreigabe kann aufgrund des hohen Gasanteils der Partikel und der damit verbundenen Echogenität, in vivo über die Abnahme des empfangenen Ultraschallsignals kontrolliert werden.
Es wurde weiterhin gefunden, daß die aus den erfindungsgemäßen mikropartikulären Systemen freigesetzten Wirkstoffe im Vergleich zu dem reinen Wirkstoff überraschenderweise eine erhöhte pharmakologische Wirksamkeit zeigen.
Als Hüllmaterialien für die Gas/Wirkstoff enthaltenden Mikropartikel eignen sich prinzipiell alle biologisch abbaubaren und physiologisch verträglichen Materialien, wie z. B. Proteine wie Albumin, Gelatine, Fibrinogen, Collagen sowie deren Derivate wie z. B. succinylierte Gelatine, quervernetzte Polypeptide, Umsetzungsprodukte von Proteinen mit Polyethylenglykol (z. B. mit Polyethylenglykol konjugiertes Albumin), Stärke oder Stärkederivate, Chitin, Chitosan, Pektin, biologisch abbaubare synthetische Polymere wie Polymilchsäure, Copolymere aus Milchsäure und Glykolsäure, Polycyanoacrylate, Polyester, Polyamide, Polycarbonate, Polyphosphazene, Polyaminosäuren, Poly-ε-caprolacton sowie Copolymere aus Milchsäure und ε-Caprolacton und deren Gemische. Besonders geeignet sind Albumin, Polymilchsäure, Copolymere aus Milchsäure und Glykolsäure, Polycyanoacrylate, Polyester, Polycarbonate, Polyaminosäuren, Poly-ε-caprolacton sowie Copolymere aus Milchsäure und ε-Caprolacton.
Das (die) eingeschlossene(n) Gas(e) können beliebig gewählt werden, wobei jedoch physiologisch unbedenkliche Gase wie Luft, Stickstoff, Sauerstoff, Edelgase oder deren Gemische bevorzugt sind. Ebenfalls geeignet sind Ammoniak, Kohlendioxid sowie dampfförmige Flüssigkeiten, wie z. B. Wasserdampf.
Der pharmazeutische Wirkstoff kann ebenfalls beliebig gewählt werden. Als Beispiele seien genannt Arzneistoffe, Toxine, Viren, Virusbestandteile, Bestandteile bakteriologischer Zellwände, Nukleinsäuren (DNA, RNA), Peptide wie z. B. Endothelin, Proteine, Glycoproteine, Hormone, lösliche Botenstoffe, Farbstoffe, Komplement Komponenten, Adjuvantien, trombolytische Agentien, tumornekrose Faktoren, Zytokine (wie z. B. Interleukine, koloniestimulierende Faktoren wie GM- CSF, M-CSF, G-CSF) und/oder Prostaglandine. Bevorzugt werden jedoch Wirkstoffe verwendet, deren applizierte Dosis (bei bolusförmiger Injektion) 100 mg pro Anwendung nicht übersteigt. Dabei ist zu berücksichtigen, daß bei den erfindungsgemäßen mikropartikulären Systemen, wie zuvor beschrieben, eine Erhöhung der pharmakologischen Wirksamkeit erreicht wird, wobei in verschiedenen Fällen eine Wirkungsverstärkung beobachtet werden kann, wodurch die erfindungsgemäßen mikropartikulären Systeme auch für Wirkstoffe einsetzbar sind, die auf konventionellem Wege im Bolus höher als 100 mg pro Anwendung dosiert werden müssen.
Sind noch höhere Dosierungen erforderlich, so empfiehlt es sich die Mittel über einen längeren Zeitraum als Infusionslösung zu verabreichen.
Obgleich es über die genannten Limitierungen hinaus keine weiteren Einschränkungen gibt, können die erfindungsgemäßen mikropartikulären Systeme besonders dort mit Vorteil eingesetzt werden, wo es auf Grund einer geringen in vivo Lebensdauer des Wirkstoffs in freier Form nicht möglich ist, das Zielorgan zu erreichen, ohne daß zuvor Zersetzung des Wirkstoffs eingetreten ist. Zu derartigen Wirkstoffen zählen verschiedene Hormone, Peptide und Proteine.
Ein Verfahren zur Herstellung der erfindungsgemäßen Mikropartikel besteht darin, daß zunächst in an sich bekannter Weise (DE 38 03 972, WO 93/00933, EP 0 514 790, WO 92/17213, US 5,147,631, WO 91/12823, EP 0 048 745) gasgefüllte Mikropartikel hergestellt werden. Erfindungsgemäß werden diese dann mit in überkritischen Gasen gelösten Wirkstoffen befüllt. Dazu werden die mit geeigneten Verfahren getrockneten (z. B. Gefriertrocknung) gashaltigen Mikropartikel mit einer Lösung des Wirkstoffs in einem überkritischen Gas in einem Autoklaven behandelt. Zweckmäßigerweise verfährt man, indem Wirkstoff und gasgefüllter Mikropartikel gemeinsam in einem Autoklaven vorgelegt werden und dieser anschließend mit dem überkritischen Gas oder Gasgemisch befüllt wird. Als überkritische Gase eignen sich je nach Wirkstoff alle Gase, die in einen überkritischen Zustand überführt werden können, insbesondere jedoch überkritisches Kohlendioxid, überkritischer Stickstoff, überkritischer Ammoniak sowie überkritische Edelgase. Nach der Behandlung der Mikropartikel mit der Lösung des Wirkstoffs im überkritischen Gas oder Gasgemisch wird der überschüssige Wirkstoff an der äußeren Oberfläche der Mikropartikel falls erforderlich durch Waschen der Mikropartikel in einem geeigneten Medium entfernt und die so gereinigten Partikel gewünschtenfalls gefriergetrocknet. Dieses Verfahren ist für alle Wirkstoffe geeignet, die sich in überkritischen Gasen oder Gasgemischen lösen, wie z. B. Peptide oder lipophile Arzneistoffe.
Ein alternatives Verfahren, das sich insbesondere zur Verkapselung von Wirkstoffen die in überkritischen Gasen oder Gasgemischen unlöslich sind (wie z. B. Proteine, zuckerhaltige Verbindungen), eignet, beruht auf der Verkapselung einer wirkstoffhaltigen wäßrigen Phase mittels einer Mehrfachemulsion. Als besonders geeignet haben sich Wasser/Öl/Wasser (W/O/W)-Emulsionen erwiesen. Dazu wird das Hüllmaterial in einem geeigneten organischen Lösungsmittel, das nicht in Wasser löslich ist, in einer Konzentration von 0,01-20% (m/V) gelöst. In diese Lösung wird eine wäßrige Lösung des zu verkapselnden Wirkstoffs so emulgiert, daß eine Emulsion vom Typ W/O entsteht. Beide Lösungen können zusätzlich Hilfsstoffe wie Emulgatoren enthalten. Bevorzugt ist es jedoch, aus Gründen der im allgemeinen begrenzten biologischen Verträglichkeit von Emulgatoren, auf diese weitgehend zu verzichten. Als vorteilhaft hat es sich erwiesen, der inneren wäßrigen Phase pharmazeutisch akzeptable Quasiemulgatoren wie z. B. Polyvinylalkohol, Polyvinylpyrrolidon, Gelatine, Albumin oder Dextrane im Konzentrationsbereich von 0,1 bis 25% zuzusetzen. Als besonders vorteilhaft hat es sich erwiesen, in der inneren wäßrigen Phase, gegebenenfalls zusätzlich zu den anderen verwendeten Hilfsstoffen, 0,1-20% (m/V) eines gut wasserlöslichen pharmazeutisch akzeptablen Salzes oder Zuckers oder Zuckeralkohols, wie z. B. Natriumchlorid, Galaktose, Mannitol, Laktose, Saccharose, Glukose, Natriumhydrogenphosphat zu lösen. Es kann außerdem vorteilhaft sein, die innere wäßrige Phase vor der Emulgierung mit der verwendeten organischen Phase zu sättigen. Die hergestellte Emulsion vom Typ W/O sollte eine mittlere Tröpfchengröße der inneren Phase von ca. 0,1 bis 10 µm aufweisen. Diese Emulsion wird unter Rühren in das mindestens gleiche Volumen einer wäßrigen Lösung eines Emulgators oder Quasiemulgators gegeben. Das organische Lösungsmittel wird unter Rühren durch geeignete Verfahren (solvent evaporation) wieder entfernt. Die erhaltenen wassergefüllten Mikropartikel werden erforderlichenfalls gewaschen und anschließend so getrocknet, daß die innere Wasserphase ohne Zerstörung der Mikropartikel entfernt wird. Grundsätzlich geeignete Trocknungsverfahren sind die Gefriertrocknung und die Sprühtrocknung. Bevorzugt ist die Gefriertrocknung. Dazu wird in der Suspension der Mikropartikel ein gerüstbildender Hilfsstoff wie z. B. Zucker, Zuckeralkohole, Gelatine, Gelatine- Derivate, Albumin, Aminosäuren, Polyvinylpyrrolidon, Polyvinylalkohol in einer Konzentration von ca. 0,5-20% (m/V) gelöst. Die Suspension wird anschließend bei möglichst tiefen Temperaturen, bevorzugt unterhalb ca. -30°C eingefroren und dann gefriergetrocknet. Nach der Gefriertrocknung und Redispergierung in einem geeigneten Suspensionsmedium, lassen sich die entstandenen gashaltigen Mikropartikel der erforderlichen Dichte durch Flotation oder Zentrifugation, von eventuell ebenfalls vorhandenen soliden oder immer noch wassergefüllten Mikropartikeln abtrennen und falls erforderlich, möglichst unter Zusatz von Gerüstbildnern, erneut gefriertrocknen. Die Mikropartikel enthalten dann den verkapselten Wirkstoff und Gas bzw. gasförmige Phase nebeneinander.
Die Herstellung der erfindungsgemäßen mikropartikulären Systeme aus den nach den vorbeschriebenen Verfahren hergestellten Partikel erfolgt durch Resuspendieren der Partikel in einem pharmazeutisch verträglichen Suspensionsmedium. Das Resuspendieren in einem geeigneten Medium kann sich unmittelbar an den letzten Verfahrensschritt (die Gefriertrocknung) anschließen, kann aber gewünschtenfalls auch erst durch den behandelnden Arzt vor der Anwendung erfolgen.
In letzterem Fall liegen die erfindungsgemäßen mikropartikulären Systeme als ein Kit, bestehend aus einem ersten die Partikel enthaltenden Behälter und einem zweiten das Suspensionsmedium enthaltenden Behälter, vor. Die Größe des ersten Behälters ist so zu wählen, daß auch das Suspensionsmedium in diesem vollständig Platz findet. So kann z. B. mittels einer Spritze über eine im Verschluß des ersten Behälters befindliche Membran, das Suspensionsmedium vollständig zu den Partikeln gegeben werden und durch anschließendes Schütteln die injektionsfertige Suspension hergestellt werden.
Als Suspensionsmedien kommen alle dem Fachmann bekannten injizierbaren Medien in Frage, wie z. B. physiologische Kochsalzlösung, Wasser p.i. oder 5%ige Glukoselösung.
Die applizierte Menge richtet sich nach dem jeweilig eingeschlossenen Wirkstoff. Als orientierender oberer Grenzwert kann ein Wert angenommen werden, wie er auch bei konventioneller Verabreichung des jeweiligen Wirkstoffs verwendet werden würde. Auf Grund des wirkungsverstärkenden Effekts sowie der Möglichkeit den Wirkstoff spezifisch aus den erfindungsgemäßen mikropartikulären System freizusetzen, liegt die erforderliche Dosis im allgemeinen jedoch unter diesem oberen Grenzwert.
Die nachfolgenden Beispiele dienen der Erläuterung des Erfindungsgegenstandes, ohne ihn auf diese beschränken zu wollen.
Beispiel 1 Coffein-haltige Mikropartikel aus Polycyanacrylat
Gasgefüllte Mikropartikel, die aus Butylcyanacrylsäure gemäß DE 38 03 972 hergestellt wurden, werden unter Zusatz von 2% (m/V) Polyvinylalkohol gefriergetrocknet. Es werden ca. 3·10⁹ Partikel in Form des Lyophilisats zusammen mit 50 mg Coffein in einen Autoklaven gefüllt. Das Gemisch wird bei ca. 45°C und 100-120 bar mit Kohlendioxid behandelt. Die Entfernung des überschüssigen Coffeins wird folgendermaßen durchgeführt: Die dem Autoklaven entnommenen Mikropartikel werden in 3 ml Wasser, das 1% Lutrol F 127 gelöst enthält, resuspendiert. Die Partikel werden durch Zentrifugation abgetrennt und in 3 ml Wasser, das 1% Lutrol F 127 gelöst enthält, resuspendiert. Die Zentrifugation mit anschließender Redispergierung in 3 ml Wasser, das 1% Lutrol F 127 gelöst enthält, wird solange wiederholt, bis im Wasser kein Coffein mehr photometrisch bei 273 nm nachgewiesen werden kann.
Beispiel 2 Fibrinolytische Mikropartikel aus Poly (D,L-Milchsäure-Glykolsäure)
2 g Poly (D,L-Milchsäure-Glykolsäure) (50 : 50) (Resomer RG 503, Boehringer Ingelheim) werden in 20 ml CH₂Cl₂ gelöst. 10 mg r t-PA (Gewebsplasminogenaktivator) werden in 4 ml einer 4%igen wäßrigen Gelatinelösung, die zuvor autoklaviert wurde, gelöst und unter Rühren mit einem schnellaufenden Rührwerk zu der organischen Phase gegeben. Nach vollständiger Emulgierung werden 200 ml einer 4%igen autoklavierten Gelatinelösung unter weiterem Rühren zugegeben. Die Emulsion wird 8 h bei Raumtemperatur gerührt. Die entstandenen Partikel werden durch einen 5 µm-Filter filtriert, durch Zentrifugation separiert, in 50 ml 4%iger autoklavierter Gelatinelösung resuspendiert, bei -78°C eingefroren und gefriergetrocknet. Nach Resuspendierung werden die gashaltigen Mikropartikel durch Zentrifugation (bei 1000 Upm, 30 min) abgetrennt. Die gashaltigen Mikropartikel werden in 20 ml Wasser für Injektionszwecke aufgenommen. Sie weisen eine Dichte kleiner als 0,7 g/cm³ auf.
Beispiel 3 in vitro Freisetzung von Coffein durch Ultraschall
1 ml einer nach Beispiel 1 zubereiteten Partikelsuspension, mit Wasser verdünnt auf eine Konzentration von 108 Partikel/ml wird in ein mit 100 ml entgastem Wasser gefülltes Becherglas gegeben. In das Wasser wird ein 3,5 MHz Schallkopf eines diagnostischen Ultraschallgerätes (HP Sonos 1000) getaucht und die Veränderung des B-Bildes beobachtet. Zunächst wird das Gerät mit einer mittleren Schalleistung (Transmit 20 dB) betrieben, wobei deutliche Echos zu erkennen sind. Eine Prüfung des partikelfreien Wassers auf Coffein bleibt negativ. Wird der Schalldruck erhöht (Transmit < 30 dB), verschwinden die Echos. Die Flüssigkeit enthält nun nachweisbares freies Coffein, mikroskopisch sind überwiegend Bruchstücke der Mikropartikel zu erkennen und nur noch sehr wenige intakte.
Beispiel 4 in vitro Freisetzung von r t-PA durch Ultraschall
1 ml einer nach Beispiel 2 zubereiteten Partikelsuspension, mit Wasser verdünnt auf eine Konzentration von 10⁸ Partikel/ml wird in ein mit 100 ml entgastem Wasser gefülltes Becherglas gegeben. In das Wasser wird ein 3,5 MHz Schallkopf eines diagnostischen Ultraschallgerätes (HP Sonos 1000) getaucht und die Veränderung des B-Bildes beobachtet. Zunächst wird das Gerät mit einer geringen Schalleistung (Transmit ∼10 dB) betrieben, wobei deutliche Echos zu erkennen sind. Eine Prüfung des partikelfreien Wassers auf r t-PA bleibt negativ. Wird der Schalldruck erhöht (Transmit < 30 dB), verschwinden die Echos. Die Flüssigkeit enthält nun nachweisbares freies r t-PA, mikroskopisch sind überwiegend Bruchstücke der Mikropartikel zu erkennen und nur noch sehr wenige intakte. Die mit dem erhöhten Schalldruck behandelte Partikelsuspension weist fibrinolytische Eigenschaften auf.
Beispiel 5 Mitomycin-haltige Mikropartikel aus Polymilchsäure
2 g Polymilchsäure (MG ca. 20 000) werden in 100 ml CH₂Cl₂ gelöst. 20 mg Mitomycin werden in 15 ml 0,9%iger wäßriger Kochsalzlösung gelöst und unter Rühren mit einem schnellaufenden Rührwerk zu der organischen Phase gegeben. Nach vollständiger Emulgierung werden 200 ml einer 1%igen Lösung von Polyvinylalkohol (MG ca. 15 000) in Wasser unter weiterem Rühren zugegeben. Die Emulsion wird 4 h bei Raumtemperatur gerührt. Die entstandenen Partikel werden durch einen 5 µm- Filter filtriert, durch Zentrifugation separiert, in 50 ml einer 5%igen Lösung von Polyvinylpyrrolidon (MG ca. 10 000) in Wasser resuspendiert, bei -50°C eingefroren und anschließend gefriergetrocknet. Nach Resuspendierung werden die gashaltigen Mikropartikel durch Zentrifugation (bei 1000 Upm, 30 min) abgetrennt. Die gashaltigen Mikropartikel werden in 20 ml Wasser für Injektionszwecke aufgenommen. Sie weisen eine Dichte kleiner als 0,7 g/cm³ auf. Sie eignen sich auch als Kontrastmittel für Ultraschall und setzen bei Beschallung mit diagnostischem Ultraschall Mitomycin frei.
Beispiel 6 Vincristinsulfat-haltige Mikropartikel aus Poly-ε-caprolacton
2 g Poly-ε-caprolacton (MG ca. 40 000) werden in 50 ml CH₂Cl₂ gelöst. 10 mg Vincristinsulfat werden in 15 ml einer 5%igen wäßrigen Lösung von Galactose gelöst und unter Rühren mit einem schnellaufenden Rührwerk zu der organischen Phase gegeben. Nach vollständiger Emulgierung werden 200 ml einer 5%igen Lösung von Humanalbumin in Wasser unter weiterem Rühren zugegeben. Die Emulsion wird 4 h bei Raumtemperatur gerührt. Die entstandenen Partikel werden durch einen 5 µm- Filter filtriert, durch Zentrifugation separiert, in 50 ml einer 5%igen Lösung von Humanalbumin in Wasser resuspendiert, bei -50°C eingefroren und anschließend gefriergetrocknet. Nach Resuspendierung werden die gashaltigen Mikropartikel durch Zentrifugation (bei 1000 Upm, 30 min) abgetrennt. Die gashaltigen Mikropartikel weisen eine Dichte kleiner als 0,7 g/cm³ auf. Sie eignen sich als Kontrastmittel für Ultraschall und setzen bei Beschallung mit diagnostischem Ultraschall Vincristinsulfat frei.
Beispiel 7 Ilomedin-haltige Mikropartikel aus Polycyanacrylsäurebutylester
3 g Polycyanacrylsäurebutylester werden in 50 ml CH₂Cl₂ gelöst. 1 mg Ilomedin wird in 15 ml einer 5%igen wäßrigen Lösung von Galactose gelöst und unter Rühren mit einem schnellaufenden Rührwerk zu der organischen Phase gegeben. Nach vollständiger Emulgierung werden 200 ml einer 2,5%igen Lösung von Polyvinylalkohol (MG 15 000) in Wasser unter weiterem Rühren zugegeben. Die Emulsion wird 4 h bei Raumtemperatur gerührt. Die entstandenen Partikel werden durch einen 5 µm-Filter filtriert, durch Zentrifugation separiert, in 50 ml einer 10%igen Lösung von Lactose in Wasser resuspendiert, bei -50°C eingefroren und anschließend gefriergetrocknet. Nach Resuspendierung werden die gashaltigen Mikropartikel durch Zentrifugation (bei 1000 Upm, 30 min) abgetrennt. Die gashaltigen Mikropartikel weisen eine Dichte kleiner als 0,7 g/cm³ auf. Sie eignen sich als Kontrastmittel für Ultraschall und setzen bei Beschallung mit diagnostischem Ultraschall Ilomedin frei.
Beispiel 8 Methylenblau-haltige Mikropartikel aus Poly(D,L-Milchsäure- Glykolsäure)
4 g Poly (D,L-Milchsäure-Glykolsäure) (50 : 50) (Resomer RG 503, Boehringer Ingelheim) werden in 50 ml CH₂Cl₂ gelöst. 20 mg Methylenblau werden in 4 ml einer 4%igen wäßrigen Gelatinelösung, die zuvor autoklaviert wurde, gelöst und unter Rühren mit einem schnellaufenden Rührwerk zu der organischen Phase gegeben. Nach vollständiger Emulgierung werden 200 ml einer 4%igen autoklavierten Gelatinelösung unter weiterem Rühren zugegeben. Die Emulsion wird 8 h bei Raumtemperatur gerührt. Die entstandenen Partikel werden durch einen 5 µm-Filter filtriert, durch Zentrifugation separiert, in 50 ml 4%iger autoklavierter Gelatinelösung resuspendiert, bei -78°C eingefroren und gefriergetrocknet. Nach Resuspendierung werden die gashaltigen Mikropartikel durch Zentrifugation (bei 1000 Upm, 30 min) abgetrennt. Die gashaltigen Mikropartikel werden in 20 ml Wasser für Injektionszwecke aufgenommen. Sie weisen eine Dichte kleiner als 0,7 g/cm³ auf und setzen bei Beschallung mit Ultraschall (Schalldruck <50 dB, Frequenz 2,5 MHz) Methylenblau frei.

Claims (15)

1. Wirkstoffhaltige Mikropartikel, dadurch gekennzeichnet, daß die Partikel neben dem Wirkstoff auch eine gasförmige Phase enthalten.
2. Wirkstoffhaltige Mikropartikel nach Anspruch 1, dadurch gekennzeichnet, daß die Dichte der Partikel kleiner als 0,8 g/cm³ ist.
3. Wirkstoffhaltige Mikropartikel nach Anspruch 1 und 2, dadurch gekennzeichnet, daß die Partikelgröße 0,1-8 µm ist.
4. Wirkstoffhaltige Mikropartikel nach Anspruch 1-3, dadurch gekennzeichnet, daß die Partikelhülle aus mindestens einem biologisch abbaubaren Polymeren aufgebaut ist.
5. Wirkstoffhaltige Mikropartikel nach Anspruch 1-4, dadurch gekennzeichnet, daß als biologisch abbaubares Polymer Proteine, Gelatine, Fibrinogen, Collagen sowie deren Derivate, quervernetzte Polypeptide, Umsetzungsprodukte von Proteinen mit Polyethylenglykol, Stärke oder Stärkederivate, Chitin, Chitosan, Pektin, Polymilchsäure, Copolymere aus Milchsäure und Glykolsäure, Polycyanoacrylate, Polyester, Polyamide, Polycarbonate, Polyphosphazene, Polyaminosäuren, Poly-ε- caprolacton sowie Copolymere aus Milchsäure und ε-Caprolacton oder deren Gemische verwendet wird.
6. Wirkstoffhaltige Mikropartikel nach Anspruch 1-5, dadurch gekennzeichnet, daß als Wirkstoff Arzneistoffe, Toxine, Viren, Virusbestandteile, Bestandteile bakteriologischer Zellwände, lösliche Botenstoffe, Farbstoffe, Komplement Komponenten, Adjuvantien, trombolytische Agentien, Tumornekrose Faktoren, Nukleinsäuren, Peptide, Proteine, Glykoproteine, Hormone, Zytokine und/oder Prostaglandine enthalten ist.
7. Wirkstoffhaltige Mikropartikel nach Anspruch 1-6, dadurch gekennzeichnet, daß als gasförmige Phase Luft, Stickstoff, Sauerstoff, Kohlendioxid, Edelgase, Ammoniak und/oder Wasserdampf enthalten ist.
8. Mikropartikuläre Systeme bestehend aus einem pharmazeutisch verträglichen Suspensionsmedium und Mikropartikeln nach Anspruch 1-7.
9. Mikropartikuläre Systeme nach Anspruch 8, dadurch gekennzeichnet, daß die darin enthaltenden Partikel durch Einstrahlung von diagnostischem Ultraschall unter Freisetzung des eingeschlossenen Wirkstoffs zerstört werden können.
10. Verfahren zur gezielten in vivo Wirkstofffreisetzung aus mikropartikulären Systemen nach Anspruch 8, dadurch gekennzeichnet, daß die darin enthaltenden Partikel nach der Applikation mit diagnostischem Ultraschall bestrahlt werden.
11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, daß die Frequenz des diagnostischen Ultraschalls 1-6 bevorzugt 1,5-5 MHz beträgt.
12. Verfahren zur Herstellung von wirkstoffhaltigen Mikropartikeln nach Anspruch 1, dadurch gekennzeichnet, daß gashaltige Mikropartikel mit einer Lösung des Wirkstoffs in einem überkritischen Gas, bevorzugt in überkritischem Kohlendioxid, überkritischem Stickstoff, überkritischem Ammoniak sowie überkritischen Edelgasen, in einem Autoklaven behandelt, anschließend gewünschtenfalls gewaschen und gefriergetrocknet werden.
13. Verfahren zur Herstellung von wirkstoffhaltigen Mikropartikeln nach Anspruch 1, dadurch gekennzeichnet, daß das Hüllmaterial in einem geeigneten organischen Lösungsmittel, das nicht in Wasser löslich ist, in einer Konzentration von 0,01-20% (m/V) gelöst wird und in diese Lösung eine wäßrige Lösung des zu verkapselnden Wirkstoffs so emulgiert wird, daß eine Wasser in Öl Emulsion mit einer mittleren Teilchengröße der inneren Phase von ca. 0,1 bis 10 µm entsteht, wobei beide Lösungen gegebenenfalls zusätzlich Hilfsstoffe wie Emulgatoren enthalten können und man anschließend diese Emulsion unter Rühren in das mindestens gleiche Volumen einer wäßrigen Lösung eines Emulgators oder Quasiemulgators gibt, das organische Lösungsmittel unter Rühren durch geeignete Verfahren (solvent evaporation) wieder entfernt, die so erhaltenen wassergefüllten Mikropartikel falls gewünscht zunächst wäscht und anschließend, falls gewünscht unter Zugabe von gerüstbildenden Hilfsstoffen gefrier- bzw. sprühtrocknet und falls gewünscht in einem geeigneten Suspensionsmedium redispergiert und die Mikropartikel mit einer Dichte kleiner als 0,8 g/cm³ durch Flotation oder Zentrifugation abtrennt und falls erforderlich gewünschtenfalls unter erneutem Zusatz von Gerüstbildnern, erneut gefriertrocknet.
14. Verfahren zur Herstellung von mikrodispersen Systemen, dadurch gekennzeichnet, daß Mikropartikel nach Anspruch 1 in einem pharmazeutisch verträglichen Suspensionsmedium suspendiert werden.
15. Ein Kit bestehend aus einem ersten Behälter enthaltend die wirkstoff- und gashaltigen Mikropartikel nach Anspruch 1 und einem zweiten Behälter enthaltend eine pharmazeutisch verträgliche Trägerflüssigkeit, die nach Mischen mit dem Inhalt des ersten Behälters eine fließfähige injizierbare Suspension ergibt, wobei a) das Volumen des ersten Behälters so gewählt ist, daß zusätzlich zu den Partikeln auch die Trägerflüssigkeit vollständig Platz darin findet und b) beide Behälter jeweils eine Dosiseinheitsmenge an wirkstoffhaltigen Mikropartikeln bzw. Trägerflüssigkeit enthalten.
DE19934330958 1993-09-09 1993-09-09 Neue wirkstoffhaltige Mikropartikel, diese enthaltende Mittel, deren Verwendung zur ultraschallgesteuerten Freisetzung von Wirkstoffen sowie Verfahren zu deren Herstellung Ceased DE4330958A1 (de)

Priority Applications (18)

Application Number Priority Date Filing Date Title
DE19934330958 DE4330958A1 (de) 1993-09-09 1993-09-09 Neue wirkstoffhaltige Mikropartikel, diese enthaltende Mittel, deren Verwendung zur ultraschallgesteuerten Freisetzung von Wirkstoffen sowie Verfahren zu deren Herstellung
KR1019960701192A KR960704526A (ko) 1993-09-09 1994-08-25 활성 물질 및 가스 함유 미립자(Active Principles and Gas Containing Microparticles)
EP94926878A EP0717617B1 (de) 1993-09-09 1994-08-25 Wirkstoffe und gas enthaltende mikropartikel
PT94926878T PT717617E (pt) 1993-09-09 1994-08-25 Microparticulas com gas e pprincipios activos
PCT/EP1994/002806 WO1995007072A2 (de) 1993-09-09 1994-08-25 Wirkstoffe und gas enthaltende mikropartikel
AU76551/94A AU7655194A (en) 1993-09-09 1994-08-25 Active principles and gas containing microparticles
DK94926878T DK0717617T3 (da) 1993-09-09 1994-08-25 Mikropartikler indeholdende aktive bestanddele og gas
CA002171303A CA2171303C (en) 1993-09-09 1994-08-25 Active principles and gas containing microparticles
US08/605,174 US6068857A (en) 1993-09-09 1994-08-25 Microparticles containing active ingredients, agents containing these microparticles, their use for ultrasound-controlled release of active ingredients, as well as a process for their production
DE59409568T DE59409568D1 (de) 1993-09-09 1994-08-25 Wirkstoffe und gas enthaltende mikropartikel
ES94926878T ES2152990T3 (es) 1993-09-09 1994-08-25 Principios activos y microparticulas que contienen gases.
AT94926878T ATE197124T1 (de) 1993-09-09 1994-08-25 Wirkstoffe und gas enthaltende mikropartikel
HU9600599A HUT74509A (en) 1993-09-09 1994-08-25 Active principles and gas containing microparticles, their use for realising active principles in ultrasonically controlled manner, and process for preparing them
JP7508417A JPH09502191A (ja) 1993-09-09 1994-08-25 作用物質およびガスを含有する微粒子
NO19960973A NO312007B1 (no) 1993-09-09 1996-03-08 Anvendelse av mikropartikkelsystemer, fremgangsmåter for fremstilling av mikropartikler inneholdende aktive ingredienser,samt mikropartikler og fryse- og forstövningstörkede preparater
AU77299/98A AU7729998A (en) 1993-09-09 1998-07-17 Active principles and gas containing microparticles
US09/459,578 US6284280B1 (en) 1993-09-09 1999-12-13 Microparticles containing active ingredients, agents containing these microparticles, their use for ultrasound-controlled release of active ingredients, as well as a process for their production
GR20010400035T GR3035219T3 (en) 1993-09-09 2001-01-11 New active principle-containing microparticles, agents containing the same, their use for the ultrasonically controlled release of active principles, and process for preparing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19934330958 DE4330958A1 (de) 1993-09-09 1993-09-09 Neue wirkstoffhaltige Mikropartikel, diese enthaltende Mittel, deren Verwendung zur ultraschallgesteuerten Freisetzung von Wirkstoffen sowie Verfahren zu deren Herstellung

Publications (1)

Publication Number Publication Date
DE4330958A1 true DE4330958A1 (de) 1995-03-16

Family

ID=6497540

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19934330958 Ceased DE4330958A1 (de) 1993-09-09 1993-09-09 Neue wirkstoffhaltige Mikropartikel, diese enthaltende Mittel, deren Verwendung zur ultraschallgesteuerten Freisetzung von Wirkstoffen sowie Verfahren zu deren Herstellung

Country Status (1)

Country Link
DE (1) DE4330958A1 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19545257A1 (de) * 1995-11-24 1997-06-19 Schering Ag Verfahren zur Herstellung von morphologisch einheitlichen Mikrokapseln sowie nach diesem Verfahren hergestellte Mikrokapseln
WO2000038579A3 (en) * 1998-12-24 2000-12-21 Vivant Medical Inc Device and method for safe location and marking of a cavity and sentinel lymph nodes
US6356782B1 (en) 1998-12-24 2002-03-12 Vivant Medical, Inc. Subcutaneous cavity marking device and method
US8277391B2 (en) 1994-09-16 2012-10-02 Devicor Medical Products, Inc. Methods and devices for defining and marking tissue
US8292822B2 (en) 1998-06-22 2012-10-23 Devicor Medical Products, Inc. Biopsy localization method and device
US9669113B1 (en) 1998-12-24 2017-06-06 Devicor Medical Products, Inc. Device and method for safe location and marking of a biopsy cavity

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1444402B (de) * Agfa Gevaert AG, 5090 Leverkusen Verfahren zum Einhüllen von Wasser, wäßrigen Losungen oder Dispersionen in Mikrokapseln
US3516943A (en) * 1966-12-06 1970-06-23 Ncr Co Replacement of capsule contents by diffusion
DE2720477A1 (de) * 1976-05-12 1977-12-01 Polak Frutal Works Verfahren zum einkapseln wasserloeslichen materials
US4276885A (en) * 1979-05-04 1981-07-07 Rasor Associates, Inc Ultrasonic image enhancement
DE3738069A1 (de) * 1987-11-09 1989-05-18 Hohenfellner Markus Mikroformkoerper bzw. mikrokapseln sowie deren verwendung und vorrichtung fuer die verwendung fuer eine regionale medizinische applikation von substanzen
EP0504881A2 (de) * 1991-03-22 1992-09-23 Katsuro Tachibana Verstärker zur Ultraschalltherapie von Erkrankungen sowie diesen enthaltende flüssige Arzneimittelzusammensetzungen
US5215680A (en) * 1990-07-10 1993-06-01 Cavitation-Control Technology, Inc. Method for the production of medical-grade lipid-coated microbubbles, paramagnetic labeling of such microbubbles and therapeutic uses of microbubbles

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1444402B (de) * Agfa Gevaert AG, 5090 Leverkusen Verfahren zum Einhüllen von Wasser, wäßrigen Losungen oder Dispersionen in Mikrokapseln
US3516943A (en) * 1966-12-06 1970-06-23 Ncr Co Replacement of capsule contents by diffusion
DE2720477A1 (de) * 1976-05-12 1977-12-01 Polak Frutal Works Verfahren zum einkapseln wasserloeslichen materials
US4276885A (en) * 1979-05-04 1981-07-07 Rasor Associates, Inc Ultrasonic image enhancement
DE3738069A1 (de) * 1987-11-09 1989-05-18 Hohenfellner Markus Mikroformkoerper bzw. mikrokapseln sowie deren verwendung und vorrichtung fuer die verwendung fuer eine regionale medizinische applikation von substanzen
US5215680A (en) * 1990-07-10 1993-06-01 Cavitation-Control Technology, Inc. Method for the production of medical-grade lipid-coated microbubbles, paramagnetic labeling of such microbubbles and therapeutic uses of microbubbles
EP0504881A2 (de) * 1991-03-22 1992-09-23 Katsuro Tachibana Verstärker zur Ultraschalltherapie von Erkrankungen sowie diesen enthaltende flüssige Arzneimittelzusammensetzungen

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8277391B2 (en) 1994-09-16 2012-10-02 Devicor Medical Products, Inc. Methods and devices for defining and marking tissue
DE19545257A1 (de) * 1995-11-24 1997-06-19 Schering Ag Verfahren zur Herstellung von morphologisch einheitlichen Mikrokapseln sowie nach diesem Verfahren hergestellte Mikrokapseln
US10010380B2 (en) 1998-06-22 2018-07-03 Devicor Medical Products, Inc. Biopsy localization method and device
US8292822B2 (en) 1998-06-22 2012-10-23 Devicor Medical Products, Inc. Biopsy localization method and device
US8320994B2 (en) 1998-12-24 2012-11-27 Devicor Medical Products, Inc. Biopsy cavity marking device and method
US7668582B2 (en) 1998-12-24 2010-02-23 Ethicon Endo-Surgery, Inc. Biopsy site marker
US6371904B1 (en) 1998-12-24 2002-04-16 Vivant Medical, Inc. Subcutaneous cavity marking device and method
US8306602B2 (en) 1998-12-24 2012-11-06 Devicor Medical Products, Inc. Biopsy cavity marking device
US6356782B1 (en) 1998-12-24 2002-03-12 Vivant Medical, Inc. Subcutaneous cavity marking device and method
US8320993B2 (en) 1998-12-24 2012-11-27 Devicor Medical Products, Inc. Subcutaneous cavity marking device
US8600481B2 (en) 1998-12-24 2013-12-03 Devicor Medical Products, Inc. Subcutaneous cavity marking device
US9380998B2 (en) 1998-12-24 2016-07-05 Devicor Medical Products, Inc. Subcutaneous cavity marking device and method
US9492570B2 (en) 1998-12-24 2016-11-15 Devicor Medical Products, Inc. Device and method for safe location and marking of a biopsy cavity
US9669113B1 (en) 1998-12-24 2017-06-06 Devicor Medical Products, Inc. Device and method for safe location and marking of a biopsy cavity
US9986974B2 (en) 1998-12-24 2018-06-05 Devicor Medical Products, Inc. Biopsy cavity marking device
WO2000038579A3 (en) * 1998-12-24 2000-12-21 Vivant Medical Inc Device and method for safe location and marking of a cavity and sentinel lymph nodes

Similar Documents

Publication Publication Date Title
EP0717617B1 (de) Wirkstoffe und gas enthaltende mikropartikel
DE69838669T2 (de) Mikropartikel, geeignet als kontrastmittel im ultraschall und zur wirkstoffgabe in den blutkreislauf
EP0662005B1 (de) Mikropartikelpräparationen aus biologisch abbaubaren mischpolymeren
DE69925461T2 (de) Zielgerichtete abgabe von biologische-aktive medien
DE69632907T2 (de) Neue zusammensetzungen von lipiden und stabilisierenden materialen
EP0644777B2 (de) Mikropartikel, verfahren zu deren herstellung, sowie die verwendung dieser in der diagnostik
DE69526491T3 (de) Verfahren zur herstellung hohler mikrosphaeren
EP0822836B1 (de) Verfahren zur herstellung von polymeren mikropartikeln, nach diesem verfahren hergestellte mikropartikel sowie deren verwendung in der medizinischen diagnostik
DE69233119T2 (de) Neue liposomale arzneimittelfreisetzungssysteme
JPH07145045A (ja) 経口投与用薬物の微細カプセル化方法
DE69729088T2 (de) Mikroverkapselte fluorierte gase zur anwendung als bilderzeugende mittel
US20170007546A1 (en) Microparticles with efficient bioactive molecule incorporation
EP0644776B1 (de) Verwendung von mikrokapseln als kontrastmittel für die farbdoppler-sonographie
US20100221190A1 (en) Method for producing a particle comprising a gas core and a shell and particles thus obtained
DE60222888T3 (de) Echogene polymermikrokapseln und nanokapseln und verfahren zu ihrer herstellung und verwendung
DE4330958A1 (de) Neue wirkstoffhaltige Mikropartikel, diese enthaltende Mittel, deren Verwendung zur ultraschallgesteuerten Freisetzung von Wirkstoffen sowie Verfahren zu deren Herstellung
DE19611769A1 (de) Mikropartikel, Verfahren zu deren Herstellung, sowie deren Verwendung in der Ultraschall Diagnostik
DE3341001A1 (de) Nanopartikel aus bioabbaubarem, synthetischem material, verfahren zu deren herstellung und ihre anwendung
DE19648664A1 (de) Wirkstoffhaltige Mikropartikel, diese enthaltende Mittel, deren Verwendung zur ultraschallgesteuerten Freisetzung von Wirkstoffen sowie Verfahren zu deren Herstellung
DE19813174A1 (de) Mikropartikel aus Polymeren und mindestens einer gerüstbildenden Komponente und ihre Herstellung und Verwendung in der Ultraschalldiagnostik und zur ultraschallinduzierten Wirkstofffreisetzung
DE4416818A1 (de) Neue wirkstoffhaltige Mikropartikel, diese enthaltende Mittel, deren Verwendung zur ultraschallgesteuerten Freisetzung von Wirkstoffen sowie Verfahren zu deren Herstellung
WO2002049752A2 (de) Mehrstufen-verfahren zur herstellung von gasgefüllten mikrokapseln

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
8131 Rejection