DE202006016616U1 - Kontinuierliche elastische Schienenlagerung - Google Patents

Kontinuierliche elastische Schienenlagerung Download PDF

Info

Publication number
DE202006016616U1
DE202006016616U1 DE202006016616U DE202006016616U DE202006016616U1 DE 202006016616 U1 DE202006016616 U1 DE 202006016616U1 DE 202006016616 U DE202006016616 U DE 202006016616U DE 202006016616 U DE202006016616 U DE 202006016616U DE 202006016616 U1 DE202006016616 U1 DE 202006016616U1
Authority
DE
Germany
Prior art keywords
rail
damping
mounting according
damping element
track
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
DE202006016616U
Other languages
English (en)
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEDRA GmbH
Original Assignee
SEDRA GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEDRA GmbH filed Critical SEDRA GmbH
Priority to DE202006016616U priority Critical patent/DE202006016616U1/de
Priority claimed from DE200610028740 external-priority patent/DE102006028740B4/de
Publication of DE202006016616U1 publication Critical patent/DE202006016616U1/de
Priority to PCT/EP2007/005427 priority patent/WO2007147581A2/de
Priority to EP07764749A priority patent/EP2109699A2/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B19/00Protection of permanent way against development of dust or against the effect of wind, sun, frost, or corrosion; Means to reduce development of noise
    • E01B19/003Means for reducing the development or propagation of noise

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Railway Tracks (AREA)

Abstract

Schienenlagerung für eine Schiene eines Bahngleises,
– auf einem im Wesentlichen kontinuierlich gestalteten Unterbau
– mit zwischen dem Schienenfuß und dem Unterbau durchgehend angeordneten Dämpfungselementen,
dadurch gekennzeichnet, dass bei geschlossenen Gleisen mit einer Vergussmasse (7, 7') zwischen Schienenkopf (2, 2') und umgebendem Wegebaumaterial (P, E) die Dämpfungselemente (10, 20, 30, 40, 50) mindestens eine elastische Schicht (13, 23, 33, 43) und in sich eine vertikale Vorspannung (V) aufweisen, wobei die Vorspannung (V) so gewählt ist, dass die Einsenkung (T) der Schiene (1) bei gegebener Last (L) durch das überrollende Fahrzeug geringer ist als die dauerelastische Dehnbarkeit der Vergussmasse (7, 7').

Description

  • Die Erfindung betrifft eine Schienenlagerung für eine Schiene eines Bahngleises auf einem im Wesentlichen kontinuierlich gestalteten Unterbau mit zwischen dem Schienenfuß und dem Unterbau durchgehend angeordneten Dämpfungselementen und die Verwendung eines vorgespannten Dämpfungselementes.
  • Schienenlagerungen, bei denen eine Abstützung der Schiene entlang ihrer Längserstreckung erfolgt, werden als kontinuierliche Schienenlagerungen bezeichnet. Der Gegensatz sind Stützpunktlager, bei denen die Schiene nur punktuell abgestützt wird, meist unter Verwendung von quer zu den Schienen verlaufenden Schwellen.
  • Die Vorteile der Straßenbahn im städtischen Nahverkehr wie Wirtschaftlichkeit und Umweltfreundlichkeit werden seit jeher geschätzt. Nachteilig werden dagegen u. a. die oft erheblichen Erschütterungen und die Lärmentwicklung von Schienenfahrzeugen empfunden. In einer Zeit erhöhten Umweltbewusstseins kommt daher einer entsprechenden schwingungsdämpfenden Gleislagerung, sowie einer optimierten Abstimmung zwischen der Oberbaukonstruktion und den eingesetzten Fahrzeugen große Bedeutung zu.
  • Isolationsproblemen wie Körperschall, Luftschall, Korrosion, Streustrom am Straßenbahngleis sollen stets gleichzeitig gelöst und optimiert werden. Schwingungsdämpfende Maßnahmen direkt an der Schiene können zwar ein hohes Maß an Schwingungsdämpfung verbunden mit Wirtschaftlichkeit bieten, sind aber hinsichtlich des zu dämpfenden Frequenzspektrums für höhenfrequente Körperschallimmission erst ab ca. 30 Hertz effektiv.
  • Die gesetzliche Regelung zum vorbeugenden Umweltschutz stellt an Planer die Forderung, verkehrsbedingte Geräusche und Erschütterungen richtig einzuschätzen und gegebenenfalls Minderungsmaßnahmen im Planungskonzept vorzusehen.
  • Grundlage für sämtliche diesbezügliche Verordnungen und Normen ist in Deutschland §§ 41ff, 43 Abs. 1, Satz 1, Nr. 1 des Bundesimmissionsschutzgesetzes vom 15.3.1974, die im Rahmen der Lärmvorsorge bei neu zu bauenden oder erheblich umzubauenden Verkehrswege zu berücksichtigen sind.
  • Hinsichtlich der Normen muss man zwischen Luftschall, Körperschall (Schall, der sich in festen Körpern ausbreitet) und Erschütterungen (Schwingungen von festen Körpern) unterscheiden.
  • Folgende Verordnungen, Normen und Richtlinien gelten als maßgeblich:
    • – Die 16. BlmSch V (Verkehrsschutzverordnung) vom 12. Juni 1990 – Begrenzung des Luftschallpegels.
    • – DIN 18005 (Schallschutz im Städtebau) – Schalltechnische Orientierungswerte um lärmarmes Wohnen zu gewährleisten.
    • – DIN 4150 (Erschütterungen im Bauwesen) – Grundsätze nach denen Erschütterungen in baulichen Anlagen vorausermittelt oder gemessen werden können, explizite Angaben über die Höhe von zulässigen Körperschallpegeln gibt es nicht.
  • Das Problem der tieffrequenten Schwingungsdämpfung löst das SEDRA@ CX-Lager, dargestellt in der Firmenschrift Technische Mitteilung Nr. 7.02/09.04 der SEDRA GMBH, Wiesbaden, DE. Dieses bietet die Möglichkeit Systemfrequenzen an der Schiene direkt an der Schiene zu dämpfen und somit an die Dämpfungsmöglichkeiten konventioneller Masse-Feder-Systeme heranzukommen. Das diskrete Lager, typischerweise im Standard-Schwellenabstand hat eine sehr niedrige dynamische Steifigkeit zur effizienten Schwingungsdämpfung, ohne dass eine hohe Einfederung der Schiene notwendig wäre. Das Lager besitzt ein spezifisches Elastomer mit einer linearen Federkennlinie. Das Elastomer hat ein niedriges Verhältnis von statischer und dynamischer Steifigkeit und ausgezeichnete elektrische Widerstandswerte. Das System wird mit einer Feder vorgespannt. Diese wird bei der Belastung durch das Fahrzeug vollkommen entlastet, so dass keine Schwingungsübertragung über die Feder an das Umfeld stattfindet. Obwohl das Lager eine niedrige dynamische Steifigkeit besitzt, ergibt sich durch die Vorspannung eine scheinbare hohe statische Steifigkeit. Diese scheinbare hohe statische Steifigkeit des Systems erlaubt eine vertikale und laterale Kontrolle der Schienenauslenkung. Eine weiche Feder innerhalb der steifen Vorspannungsfeder gewährleistet die Stabilität des Systems.
  • Details derartiger Lager sind in den EP-Schriften 0 837 969 B1, 1 068 396 B1, 1 118 711 B1 dargestellt. Die dortigen Erkenntnisse werden als Offenbarungen in diese Erfindungsbeschreibung durch Zitat einbezogen.
  • Das Lager wurde von mehreren Verkehrsbetrieben erfolgreich eingesetzt. Messungen haben Schwingungsdämpfungswerte von bis zu 26 dB (A) ergeben und kommen somit an Werte konventioneller Masse-Feder-Systeme heran. Das Lager lässt sich einfach montieren. Je nach Anwendungsfall und Kundenspezifikation können die Vorspannung bzw. die Polyurethanzwischenlagen eingestellt werden. Das Lager kann für alle gängigen Befestigungen adaptiert und somit komplett den Kundenwünschen angepasst werden. Es eignet sich für den Einsatz bei U-Bahnen, Stadt- und Straßenbahnen und kann sowohl beim Schottergleis wie auch beim schotterlosen Gleis eingebaut werden. Für Straßenbahnen mit Schienenköpfen im Pflaster- oder Asphalt-Niveau ist diese Bauart der Stützpunkte nicht optimal geeignet, da die Schienenbefestigungen zu überdecken sind, was eine Reparatur erschwert.
  • Eine gattungsgemäße Längsunterstützung ist aus der DE 38 34 329 A1 bekannt. Hier sind die unterhalb und auf beiden Seiten längs der Schiene angeordnete Dämpfungselemente kontinuierlich ausgebildet, d. h. sie erstrecken sich über die gesamte Längsausdehnung der Schiene. Die Schiene wird zusammen mit den Dämmelementen von einem ebenfalls kontinuierlich ausgebildeten Schienenlager aufgenommen, das eine Schienenunterlage und mit der Schienenunterlage verschraubte gewinkelte Klemmplatten aufweist. Die gewinkelten Klemmplatten beaufschlagen die auf beiden Seiten längs der Schiene angeordneten Dämpfungselemente in horizontaler Richtung und dienen dabei als Abstützelemente für diese Dämmelemente. Zwischen dem Fuß der Schiene und der Schienenunterlage sind die unterhalb der Schiene angeordneten Dämpfungselemente vorgesehen. Diese Dämpfungselemente weisen eine geringere Shore-Härte als die auf beiden Seiten längs der Schiene verlaufenden Dämpfungselemente auf. Bei der bekannten Schienenlagerung ist ein vergleichsweise starkes Einfedern der Schiene in vertikaler Richtung möglich. Auf diese Weise soll eine gute Körperschall- und Luftschalldämmung bzw. -dämpfung erreicht werden. Gleichzeitig soll durch die horizontale Abstützung der Schiene eine ausreichende Stabilisierung der Schiene gewährleistet sein. Insbesondere sollen keine seitlichen Auslenkungen des Kopfes der Schiene auftreten, durch die die ausreichende Führung der Schienenräder eines über die Schiene fahrenden Zuges in Frage gestellt wäre. Tatsächlich wird jedoch die gewünschte fahrdynamisch sichere Führung der Schienenräder eines über die Schiene fahrenden Zuges mit der bekannten kontinuierlichen Schienenlagerung nicht erreicht. Vielmehr tritt bei relativ hoher Einfederung ein "Schwimmen" des Zuges relativ zu dem Unterbau der Schienenlagerung auf. Dabei ist die fahrdynamisch sichere Führung der Schienenräder des Zuges durch die Schiene nicht gewährleistet. Weiterhin wird beim Einfedern der Schiene bei dieser Bauform ein Anteil der kinetischen Energie des Zugs durch die Schienenlagerung vernichtet und in Wärme umgewandelt.
  • Aus der DE 198 45 849 A1 ist eine Schienenanordnung für Straßenbahngleise im Straßenraum, bestehend aus einer Schiene mit Schienenkopf, Schienensteg und Schienenfuß, wobei die beiden Schienen eines Gleises durch Spurstangen auf Spurweite gehalten werden, bekannt. In einer Straßen-Fahrbahn aus Beton oder dergleichen mit integrierter Fuge ist die Schiene angeordnet. Mehrere Profile aus elastomerem Werkstoff, nämlich ein Basisprofil, das unterhalb des Schienenfußes angeordnet ist und beidseitig mit Flanschen versehen ist, die den Schienenfuß ganz oder teilweise umgreifen, wobei ferner das Basisprofil mehrere in Schienenlängsrichtung verlaufende Kanäle aufweist, die zumeist in einer parallel zur Schienenfußunterseite verlaufenden Ebene angeordnet sind; zwei Seitenprofilen, die beidseitig an der Schiene anliegen, wobei bei Verwendung einer Vignolesschiene das Seitenprofil auf der Radkranzseite vorzugsweise eine Spurrille aufweist; sowie aus einer Spurstangenummantelung. Das Basisprofil ruht auf einem kontinuierlichem Unterguss bzw. einer Längsschwelle. Damit sollen die Schienen im Rahmen des kommunalen Verkehrs eine geringe Einfederung bis etwa 1,5 mm zulassen, das Kippen der Schiene reduzieren sowie die Beweglichkeit der Spurstange sicherstellen. In der Praxis ist das System meist noch zu weich, um zuverlässig eine unerwünschte Relativbewegung zum umgebenden Straßenniveau zu vermeiden, damit dort keine Risse auftreten oder Oberflächenwasser eindringen und Korrosionsschäden oder Streustromverluste begünstigt.
  • Mit der DE 195 160 97 A1 wurde eine kontinuierliche Schienenlagerung mit körper- und luftschalldämpfenden Eigenschaften vorgeschlagen. Bei der kontinuierlichen Lagerung sollen in Abständen von 0,9 bis 2,0 Meter, also im 1,5 bis 3fachen üblichen Schwellenabstand, längs der Schiene Verspannungs- oder Vorspannungspunkte nach Art üblicher Niederhalter für die Schienenfußbefestigung am Unterbau vorgesehen werden. Damit wird die Überrollfrequenz am Verspannungspunkt unter Last entsprechend gesenkt. Dort wird die Schiene vertikal – und horizontal – auf ein unterhalb der Schiene angeordnetes Dämpfungselement gespannt werden. Trotz der stützpunktartigen Vorspannungspunkte soll bei der neuen Schienenlagerung keine Membranwirkung der Schiene zwischen den Vorspannungspunkten auftreten. Durch die seitliche Stabilisierung der Schiene, die eine vergleichsweise große Einfederung der Schiene auch in den Vorspannungspunkten erlaubt, soll es nicht zu einem Stabilitätsverlust kommen. Die erforderliche Härte der Dämpfungselemente bzw. ihre zulässige Weichheit hängt von dem Abstand der Vorspannungspunkte untereinander, von der Ausdehnung der längs der Schiene angeordneten und unter horizontaler Vorspannung stehenden Dämpfungselemente und auch der zu erwartenden Belastung der Schienenlagerung ab. Insgesamt könnten die Dämpfungselemente jedoch überraschend weich ausgebildet werden, ohne dass ein "Schwimmen" der Schienenräder eines Zuges relativ zum Unterbau der Schienenlagerung beobachtet wird. Um das Dämpfungselement in den Vorspannungspunkten unter eine größere vertikale Vorspannung achslastabhängig zu setzen als zwischen den Vorspannungspunkten, kann das Dämpfungselement in den Vorspannungspunkten eine größere Shore-Härte aufweisen als zwischen den Vorspannpunkten. Für Straßenbahnen ist diese Methode wegen der Bauart der Stützpunkte und Einsenktiefe offensichtlich ungeeignet. Zudem müssen die Vorspannungs- oder Schienenbefestigungspunkte von Zeit zu Zeit kontrolliert werden; das System eignet sich also nicht für „geschlossene" im Kreuzungsbereich eines Straßenraumes. Eine Vorspannung unter dem Schienenfuß abseits der Befestigungspunkte ist nur durch die geringe Flächenlast aufgrund des Gewichtes der Schiene gegeben.
  • Letztlich ist aus der DE-Zeitschrift EI – Eisenbahningenieur (56) 12/2005, S. 14-16, Tetzlaff-Verlag, Hamburg, ein Aufsatz von Udo Lenz „Lärmminderung durch kontinuierliche Schienenlagerung" bekannt. Es wurde eine Minderung der Schallabstrahlung bewirkt an Schienen, die mittels W-Befestigungen unter Verwendung von Zwischenlagen der Steifigkeit Cstat = 50 – 60 kN/mm auf einem Stahlbetonträgerrost montiert waren. Hier wurde eine kontinuierliche Schienenlagerung getestet, bei der zwischen den Schienenstützpunkten eine als Streifenlager ausgebildete Elastomermatte unter den Schienenfuß gelegt wurde. Zum Einbau der Lagerstreifen wurde die Schiene leicht angehoben. Dadurch war es möglich, die Elastomerstreifen in einer Stärke einzubauen, die über der Höhe des vorhandenen Luftspalts liegt. Hierdurch wurde erreicht, dass der Schienenfuß in den Lagerstreifen einfedert und das Material eine Bedämpfung der Schiene bewirkt. Als Flächenlast oder Vorspannung dient also nur das Gewicht der Schiene in einer Größe von etwa 0,5 N/mm2. Der Versuchsabschnitt zur kontinuierlichen Lagerung war ca. 50 m lang. Im benachbarten Gleis befand sich der bisherige Oberbau in seiner ursprünglichen Form. Daher erfolgten vergleichende Schallmessungen unter Linienbetrieb. Bei den erfassten Vorbeifahrten wurde ein gemessener und gemittelter Abewerteter Summenschallpegel registriert. Bei der kontinuierlichen Lagerung erzielte man eine Pegelabnahme um 6 dB(A), das heißt eine Reduktion des Luftschalls vom Schienenfuß und/oder Steg.
  • Ausgehend von der DE 19516097 A1 liegt der Erfindung das Problem zugrunde, eine verbesserte Schienenlagerung, geeignet für Straßenbahnen im Straßenraum, vorzuschlagen und damit insbesondere den Körperschall zu reduzieren.
  • Das Problem wird erfindungsgemäß gelöst durch die Merkmale der Ansprüche 1 und 9. Weiterbildungen der Erfindung sind in den abhängigen Ansprüchen beschrieben.
  • Beim Rollen der Räder auf der Schiene von spurgeführten Schienenverkehrsfahrzeugen wird eine Körperschallanregung von Rad und Schiene bewirkt. Solche Schallimmissionen gelten bei Anwohnern generell als Störungen und Belästigungen, da der Körperschall in den angrenzenden Gebäuden sog. Erschütterungen aktiviert. Gegenwärtig tritt man auch mit Minderungsmaßnahmen dieser Problematik entgegen, in dem das innerstädtische Gleis elastisch und – luftschallmindernd – kontinuierlich gelagert wird. Dadurch wird eine Schall-Pegelminderung erzeugt.
  • Der relevante Frequenzbereich beim Körperschall beträgt etwa 10 Hz bis 200 Hz. Inwieweit die durch den Abrollprozess der Räder auf der Schiene erzeugten Schallimmissionen am Gebäude die störenden Erschütterungen erzeugt – hängt auch immer von der Bauwerksart selbst ab.
  • Bekannte Körperschall minimierende Systeme sind in ihrer Leistungsfähigkeit eingeschränkt, da die Einstellung der Elastizität von Dämpfern unter der Schiene und damit die maximal mögliche Schieneneinsenkung limitiert ist. Gerade bei innerstädtischen Strecken, bei welchen das Gleis an der Oberfläche im Straßenniveau liegt und daher geschlossen ist, um beispielsweise auch die gleichzeitige Nutzung des Verkehrsraumes durch den Individualverkehr zu ermöglichen, kann eine Einsenkung der Schiene von nur max. 1 mm zugelassen werden. Selten lässt der Stand der gegenwärtigen Fugentechnologie eine größere Einsenktiefe zu, ohne den Verguss zwischen Schiene und Umgebung zu zerreißen und damit den Anfang der Zerstörung des baulichen Verbund-Systems Schiene/Straße durch Wasser und Verkehrslasten einzuleiten.
  • Wegen der aber noch weiter gewünschten Pegelminderung und der nachgewiesenen Korrelation von Einsenkung der Schiene und damit einer erhöhten Elastizität und der Körperschallminimierung ist eine Verbesserung der konventionellen Systeme gerade für tiefere Frequenzen erforderlich. Der Versuch, diese mit sog. „Leichten Masse-Feder Systemen" oder „Schweren Masse-Feder Systemen" zu minimieren hat Grenzen. Der Stand der Technik bezeugt, dass die Einstellung von größeren Elastizitäten zwar den Körperschall minimiert, aber im Gegenzuge auch eine Erhöhung des Luftschalls fördern kann oder umgekehrt.
  • Der Stand der Technik sieht zur Erzielung der Elastizität vor, auch bei kontinuierlichen Schienenlagerungssystemen zur Luftschallreduktion, den Schienenfuß elastisch zu lagern. Dabei kommen vorgefertigte Profile aus Gummi oder Polyurethan zum Einsatz oder der Schienenfuß wird mit flüssigen Polyurethanen untergossen, welche durch Polymerisation vernetzen.
  • Die erfindungsgemäße Lösung sieht vor, dass bei einer Schienenlagerung für eine Schiene eines Bahngleises auf einem im Wesentlichen kontinuierlich gestalteten Unterbau mit zwischen dem Schienenfuß und dem Unterbau durchgehend angeordneten Dämpfungselementen bei geschlossenen Gleisen eine Vergussmasse zwischen Schienenkopf und umgebendem Wegebaumaterial die Dämpfungselemente mindestens eine elastische Schicht und in sich eine vertikale Vorspannung aufweisen, wobei die Vorspannung so gewählt ist, dass die Einsenkung der Schiene bei gegebener Last durch das überrollende Fahrzeug geringer ist als die dauerelastische Dehnbarkeit der Vergussmasse.
  • Die elastische Schicht der Dämpfungselemente soll im Wesentlichen aus metallischen und organischen federnden Materialien bestehen, vorzugsweise aus für sich bekannten Elastomeren und deren Mischungen, die sich auf eine bestimmte – dynamische und statische – Federsteifigkeit, definiert durch eine Federziffer einstellen lassen. Bevorzugt wird beispielsweise Polyurethan und Mischung damit. Es ist jedoch auch die Verwendung mechanischer Federn aus Metall oder Metallverbund möglich.
  • Die erforderliche Vorspannung der Dämpfungselemente, die vorzugsweise separat vorgefertigt werden, wird durch ein Zugglied oder Zuganker, beispielsweise einem reißfesten Faden, eine Schraube bzw. Bolzen-Schrauben-Verbindung, eine Nietverbindung, eine Feder oder ein Draht realisiert. Alternativ können je nach verwendeter Materialzusammensetzung vom Fachmann auch andere Zuganker angewendet werden.
  • Die Schicht soll bei der ersten Version kontinuierlich oder in geringen horizontalen Abständen von wenigen cm durch vertikal wirkende, die Sohlplatte und Schienenfuß miteinander verbindende Verspannelemente unter Vorspannung gehalten werden.
  • Eine zweite Variante umfasst ein Dämpfungselement, das neben der Sohlplatte zusätzlich eine dem Schienenfuß zugewandte Deckplatte aufweist und die Elastomer-Schicht zwischen den beiden Platten eingespannt ist.
  • Das Dämpfungselemente kann ein durchgängiges, längs der Schiene verlaufendes zusammengesetztes Dämpfungsprofil aus mehreren Komponenten aufweisen, darunter zwei Metallplatten als Sohlplatte und Deckplatte die durch Zuganker verbunden sind, mit denen die Elastomerschicht unter vertikale Vorspannung setzbar ist.
  • Das Dämpfungselement kann auch nur aus einer oder mehreren Elastomerschichten bestehen, die möglichst gleichmäßig durch Zuganker unter vertikaler Vorspannung stehen.
  • Als weitere erfindungsgemäße Lösung ist ein Verfahren herauszustellen, nämlich die Verwendung eines vorgespannten Dämpfungselementes mit einer unter Last um maximal 0,3 bis 0,8 mm stauchbaren Schicht aus metallischen oder organischen Federmaterialien, welches separat vorgefertigt wird, zur kontinuierlichen Schienenlagerung eines Gleises, indem es auf einem in Schienenlängsrichtung verlaufenden Unterbau unter dem Schienenfuß platziert wird.
  • Dabei können die dynamischen und statischen Federziffer für das gewählte Elastomer die Einsenkung der Schiene errechnet und für den Lastfall durch Vorspannung auf eine maximale Einsenktiefe der Schiene von weniger als 1 mm eingestellt werden.
  • Ein besondere Anwendung der Erfindung umfasst die Anordnung von Rillenschienen eines Gleises im Bereich einer niveaugleichen Wegkreuzung oder im Straßenverlauf auf einem vorgespannten Dämpfungselement gelagert, seitlich mit Kammerfüllkörpern bestückt und rundum bis etwa in Höhe Oberkante Schiene mit Wegebaumaterial umhüllt werden unter Freilassung einer Nut neben dem Schienenkopf und diese Nut mit elastischem Vergussmaterial vergossen wird, wobei die Einsenktiefe der Schiene unter Last geringer eingestellt wird als die dauerelastische Dehnbarkeit des Vergussmaterials.
  • Sehr vorteilhaft kann das Dämpfungselement unter den Schienenfuß geklebt oder mechanisch geklemmt werden.
  • Bei Bedarf und unabhängig von der Erfindung können wie übliche Kammerfüllkörper also weitere Dämm- oder Dämpfelemente zur Schalldämpfung oder -dämmung eingesetzt werden.
  • Die Erfindung beschäftigt sich vorwiegend mit Körperschall, wobei jedoch nicht zu übersehen ist, dass eine Reduktion von Körperschall an der Schiene zwangsläufig Sekundär-Luftschall reduziert und die Membranwirkung von Schienensteg und Schienenfuß und damit deren Luftschallemission in der Regel ebenfalls behindert.
  • Bei der Erfindung werden vorzugsweise separat vorgefertigte Dämpfungselemente verwendet. Um eine größere Wirkung zu erzielen und gleichzeitig die messbare Schieneneinsenkung zu minimieren und so der Fugentechnologie Rechnung zu tragen, wird das erfindungsgemäße Dämpfungselement mit Elastomermaterial vorgespannt und dann unter dem Schienenfuß vorgespannt montiert. Das Material ist so berechnet bzw. mit seiner statischen und dynamischen Steifigkeiten derart formuliert, dass es ohne die Vorspannung bei einer definierten Last von einem Straßenbahnzug eine Schieneneinsenkung erfahren würde, beispielsweise von ca. 3 mm. Diese Einsenkung wäre aber für ein geschlossenes Gleis zu hoch.
  • Durch eine Vorspannung, die einem Äquivalent von beispielsweise ca. 2,5 mm
  • Einsenkung im Lastfall entspräche, ist quasi eine derartige Einsenkung vorweggenommen und es würde lediglich eine konstruktionsbedingte Schieneneinsenkung unter Last von 0,5 mm stattfinden. Nicht nur die Vorwegnahme der Schieneneinsenkung, sondern auch die Elimination etwaiger Leerwege würde die physikalische Federwirkung und damit die Dämpfungsleistung auf ein hohes Niveau bringen.
  • Dieses Prinzip der „Vorspannung" ist für sich schon aus dem zitierten Stand der Technik für diskrete Schienenlagerung auf Schwellen oder dergleichen bekannt und erfolgreich erprobt.
  • Anhand eines Ausführungsbeispiels und einer Zeichnung soll die Erfindung im Folgenden näher erläutert werden; dabei werden die weiteren Vorteile der Erfindung für den Fachmann offenbar. Es zeigen:
  • 1a-c ein erstes Ausführungsbeispiel eines Dämpfungselementes mit einer Rillenschiene in Gebrauchslage im Teilschnitt;
  • 2a-b ein zweites Ausführungsbeispiel der Erfindung mit einer Rillenschiene analog 1;
  • 3a-d eine dritte Ausführungsform des Dämpfungselementes;
  • 3e-f eine vierte Ausführungsform des Dämpfungselementes;
  • 4 ein fünftes Ausführungsbeispiel der Erfindung als Schnitt durch eine Schienenlagerung in einer Straße.
  • In den Figuren sind identische Teile oder funktionsgleiche Teile mit denselben Bezugszeichen versehen.
  • 1 zeigt eine Rillenschiene 1 mit dem Schienenkopf 2 bzw. 2', dem Schienensteg 3 und dem Schienenfuß 4. In den Laschenkammern oder Schienenkammern seitlich des Schienensteges 3 sind Kammerfüllelemente 6 bzw. 6' angeordnet, die einerseits bis zum Schienenkopf 2, 2' und andererseits bis zum Schienenfuß 4 reichen und den Schienenfuß 4 überdecken. Anstelle der Rillenschiene könnte hier auch eine Vignolesschiene eingesetzt sein, jedoch wäre dann der hier dargestellte Verguss 7' seitlich an der Schienenkopfpartie 2' etwas niedriger angesetzt, da die Vignolesschiene keine ausgeprägte Rille aufweist und der Spurkranz eines Rades dann oberhalb des Schienenvergusses 7' neben dem Schienenkopf 2 abrollen muss.
  • 1b zeigt als Schienenabschnitt noch den Schienenfuß 4 und darunter angeordnet ein separat vorgefertigtes erfindungsgemäßes Dämpfungselement 20, bestehend aus zwei Metallplatten, der Sohlplatte 22 und der Deckplatte 21, mit der zwischengefügten Elastomer 23. Die Sohlplatte 22 und die Deckplatte 21 werden durch Zuganker mittels der Muttern 24 zusammengepresst und erzeugen so eine Vorspannung im Elastomer, wie dies die Pfeile mit dem Bezugszeichen V andeuten. In dieser Seitenansicht sieht man, dass dieses Dämpfungselement 20 etwas breiter ist als der Schienenfuß 4, der auf der Deckplatte 21 zur Anlage kommen soll.
  • Diese Situation ist in der Draufsicht gemäß 1c deutlich zu sehen; darin sind die Vergussmassen und Kammerfüllelemente nicht dargestellt. Das Dämpfungselement 20 ist breiter und ragt beidseits des Schienenfußes 4 unter diesem hervor, wie man an der Deckplatte 21 und den Muttern 24 erkennt. Ein derart ausgebildetes Dämpfungselement kann unter den Schienenfuß geklebt sein oder anderweitig am Schienenfuß befestigt sein, wobei keine Reibung zwischen der metallenen Deckplatte 21 und der Unterseite des Schienenfußes 4 vorkommen soll; Kleber verhindert eine derartige Reibung bzw. Korrosion. Alternativ kann auch eine dünne Schaumstoffschicht oder ähnliches dazwischen angeordnet werden.
  • Anstelle von metallenen Platten für die Sohlplatte und die Deckplatte 22, 21 können auch harte Kunststoffplatten Verwendung finden, die es ermöglichen, mit Hilfe der Muttern 24 auf einen Zuganker Vorspannung aufzubringen, hier dargestellt durch das Bezugszeichen V.
  • 2a zeigt eine ähnliche Konstellation an einer Rillenschiene, jedoch mit einem modifizierten Dämpfungselement 10. Dieses Dämpfungselement besteht hier zunächst aus einer Sohlplatte 12, einem Elastomer 13 und an der Sohlplatte befestigten Zugankern 15, die seitlich am Schienenfuß 4 vorbei greifen. Über diese Zuganker 15 sind Laschen oder Pratzen 16 gestülpt, die mit Hilfe der Muttern 14 in der durch einen Pfeil dargestellten Weise im Uhrzeigersinn niedergeschraubt werden können, so dass, wie das die Vertikalpfeile V zeigen, eine Vorspannung zwischen dem Schienenfuß 4 und der Sohlplatte auf das Elastomer 13 aufgebracht wird. Bei dieser Anordnung sind die Kammerfüllkörper K bzw. K' mit einer Ausnehmung K1 versehen, um hier ein Werkzeug für das Vorspannen des Dämpfungselements ansetzen zu können.
  • 2b zeigt eine Draufsicht auf diese Konstellation, wobei die Kammerfüllelemente K, K' und die Vergussmassen 7, 7' der Übersichtlichkeit halber weggelassen wurden. Deutlich kann man sehen, dass die Pratzen 16 mittels der Muttern 14 so niedergeschraubt werden können, dass sie auf dem Schienenfuß 4 aufliegen und bei weiterem Niederschrauben das Elastomer stauchen. Der Abstand der Zuganker oder Muttern bzw. Ratzen 16 in Schienenlängsrichtung hängt von der aufzubringenden gleichmäßigen Vorspannung V und dem Elastomer ab bzw. dessen dynamischer Federziffer und statischer Federziffer.
  • In 1 und 2 wurde ein Schnittbild bzw. eine Draufsicht dargestellt auf eine Schienenanordnung als solches und mit eingebauten Kammerfüllelementen sowie und einer zur Straßenoberfläche die Schienenanordnung abschließende Vergussmasse.
  • 3 zeigt in den Teilfiguren 3a bis 3d ein Dämpfungselement 30, welches sich wesentlich von den Dämpfungselementen 10 und 20 unterscheidet. Das Dämpfungselement 30 kann in definierter Breite, die etwa der Schienenfußbreite entspricht, endlos lang hergestellt werden, da es kontinuierlich unter dem Schienenfuß 4 ausgelegt werden soll. In diesem Fall besteht das Dämpfungselement 30 gemäß 3a aus einer relativ homogenen Elastomermischung 34, deren dynamische und statische Federziffer durch entsprechende Materialauswahl so eingestellt wurde, dass in der Konstellation gemäß 3a, im Detail A noch einmal vergrößert gezeigt als 3c, das Dämpfungselement um etwa 1,5 bis 3 mm bei vorgegebener Last von z.B. 100 kN eines Radsatzes einer Straßenbahn zusammengepresst wird, die Schiene 1 also so tief einsinken würde. Auf der Deckseite des Dämpfungselements 30 sind kleine rechteckförmige Platten 31 und in gleicher Weise an der Unterseite/Sohlenseite kleine rechteckförmige Platten 32 aus Metall oder hartem Kunststoff angeordnet, die zentrisch durch einen Zuganker, hier einem dünnen Draht 33, verbunden sind. Gemäß 3b und im Detail B vergrößert in 3d gezeigt, ist dieselbe Konstellation noch einmal dargestellt, jedoch ist in diesem Fall der Zuganker 33 massiv verkürzt worden, so dass die Deckplatten 31 und die Sohlplatten 32 Druck auf das Elastomerteil 34 ausüben und so eine Vorspannung V erzeugen, die beim Überrollen des Radsatzes dazu führt, dass je nach Vorspannung die Kompression/die Einsenkung der Schiene des Dämpfungselementes 30 nur noch 0,3 bis 1,9 mm beträgt.
  • In 3e ist eine Draufsicht und in 3f eine Seitenansicht eines ähnlich wie in den 3a bis 3d konfigurierten Dämpfungselementes 40 zu erkennen, wobei hier das Dämpfungselement 40 jedoch mit kreisförmigen Deckplättchen 41 und kreisförmigen Sohlplättchen 42 versehen ist, zwischen die ein Zuganker 43 gespannt ist. Der Zuganker 43 kann, wie zuvor geschildert, ebenfalls verkürzt und verspannt werden, so dass auf dem Elastomerteil 44 mit Hilfe der Druckplättchen 41 bzw. 42 eine vorbestimmbare Vorspannung aufgebracht werden kann.
  • 4 zeigt einen konkreten Einsatzfall einer Rillenschiene, die im Straßenbereich eingebaut ist. Die parallel laufende zweite Rillenschiene des Straßenbahngleises ist nicht dargestellt; beide Rillenschienen sind durch ebenfalls nicht dargestellte Spurstangen, für sich aus dem Stand der Technik bekannt, miteinander verbunden, um so die Spurweite des Gleises zu halten. Auf einer Längsschwelle 9 ist eine Schiene 1 mit Schienenkopf 2 bzw. 2', Schienensteg 3 und Schienenfuß 4 angeordnet. Die Laschenkammern oder Schienenkammern sind mit Kammerfüllelementen 6 bzw. 6' ausgefüllt, nach außen durch Deckbleche B, die die gesamte Höhe der Außenseite der Kammerfüllkörper 6 bzw. 6' überdecken sowie über den Schienenfuß hinunterreichen, gekapselt. Diese Deckbleche B sind auf die Kammerfüllelemente 6, 6' aufgenagelt. Unter dem Schienenfuß ist ein Dämpfungselement 50, unter Vorspannung stehend und separat vorgefertigt, angeordnet und mit dem Schienenfuß verklebt worden. Sofern zwischen der Längsschwelle 9 und dem Dämpfungselement 50 eine Lücke vorhanden war, ist diese durch Vergussmörtel 8 auszufüllen, so dass die Oberfläche des Vergussmörtels 8 eine kontinuierliche Auflagerung des Dämpfungselementes 50 ermöglicht. Bei Bedarf kann aber dieser Vergussmörtel 8 auch weg bleiben, sofern die Längsschwelle 9 entsprechend geradlinig verläuft und keine horizontalen Senken und Höhen aufweist, damit das Dämpfungselement 50 bzw. die Schiene 1 satt aufliegen können. Die Längsschwelle, hier kann auch ein ganz gewöhnlicher Betonunterbau oder ähnliches Verwendung finden, und die Kammerfüllkörper 6, 6' sind mit entsprechendem Erdreich E oder anderem geeigneten Material rund um die Schiene aufgefüllt. Es kann sich ebenso hier um eine Betonmischung oder um einen Estrich handeln, der bis an die Blechabdeckungen B reicht. Die obere Abdeckung des Verkehrsraumes, hier eine Straße, kann durch ein Pflaster P geschehen, damit die vorher festgelegte Oberfläche O in etwa mit dem Schienenkopf 2, 2' abschließt. Die Lücke zwischen der Pflasterung P und dem Schienenkopf 2, 2' wird mit einer Vergussmasse 7 bzw. 7' verfüllt. Diese Masse 7, 7' ist vom Prinzip her dauerelastisch, da sie ein Eindringen von Wasser in den Schienenunterbau bzw. in den Bereich der Schienenlagerung verhindern soll. Anstelle einer Steinpflasters P kann natürlich auch ein Asphaltschicht aufgebracht sein. Wasser zerstört bekanntlich durch Eissprengung im Laufe der Zeit jeden Baukörper und kann die elektrische Leitfähigkeit der Materialien erhöhen oder auch Kriechströme begünstigen, was auf jeden Fall vermieden werden sollte, um eine langlebige Schienenlagerung zu erhalten.
  • Wenn eine überrollende Verkehrslast L, beispielsweise ein Radsatz einer Straßenbahn mit beispielsweise 100 kN Belastung, über den Schienenkopf 2 rollt, ist es unvermeidlich, dass neben einer minimalen elastischen Pressung der Schiene 1 in sich auch die Belastung über den Schienenfuß 4 in den Unterbau 9 übertragen wird. Der Lasteintrag erfolgt mit einer vorher bestimmbaren niedrigen Frequenz und wirkt sich als Körperschall aus, der über die Längsschwelle oder den Betonunterbau 9 sich fortpflanzt. Gebäude haben in der Regel eine Eigenfrequenz von etwa 10 Hz, so dass vermieden werden muss, dass eine entsprechende Körperschallanregung durch die überrollende Last L über die Schiene auf den Unterbau 9 weitergegeben wird, der sich dann fortpflanzt.
  • Durch ein vorgespanntes Dämpfungselement 50 wird die durch die Last L bewirkte Schieneneinsenkung das elastische Bauteil 50 in deren Einsenktiefe T erheblich reduziert, da die Vorspannung natürlich einen entsprechenden Widerstand gegen Kompression bildet. Die Reduzierung der Einsenkung auf Wünschenswerterweise etwa 0,3 bis 0,8 mm hat dann zur Folge, dass auch die Vergussmasse 7, T an ihrem Übergang zwischen den Schienenkopf 2, 2' zu dem Pflaster P ebenfalls nur in dieser Größenordnung gedehnt wird. Die Einsenkung ist mit dem Bezugszeichen T so dargestellt wie sie sich an der Vergussmasse 7, 7' und an dem Dämpfungselement 50 auswirkt. Ist nun die Dauerelastizität der Vergussmasse 7, 7' so eingestellt, dass deren dauerelastische Dehnbarkeit unter dem Betrag von 0,3 bis 0,8 mm liegt, wird es zu keinen Abreißungen der Vergussmasse weder zum Schienenkopf 2, 2' noch zu der Pflasterung P kommen. Damit ist auf Dauer eine wasserdichte Verbindung am Schienenkopf hergestellt. Neben dieser Eigenschaft ist dann auch noch die Minimierung des Körperschalls der Vorteil dieser vorgespannten Dämpfungselemente 50. Von dem im Prinzip durch die Auflast L ins Schwingen gezwungene Schienensteg 3 selbst kann auch nur minimal Körperschallschwingung ausgehen, da die Kammerfüllelemente 6, 6' eine entsprechende Dämpfung bewirken und eine Übertragung auf das umgebende Erdreich bzw. die Pflasterung P minimal ist.

Claims (12)

  1. Schienenlagerung für eine Schiene eines Bahngleises, – auf einem im Wesentlichen kontinuierlich gestalteten Unterbau – mit zwischen dem Schienenfuß und dem Unterbau durchgehend angeordneten Dämpfungselementen, dadurch gekennzeichnet, dass bei geschlossenen Gleisen mit einer Vergussmasse (7, 7') zwischen Schienenkopf (2, 2') und umgebendem Wegebaumaterial (P, E) die Dämpfungselemente (10, 20, 30, 40, 50) mindestens eine elastische Schicht (13, 23, 33, 43) und in sich eine vertikale Vorspannung (V) aufweisen, wobei die Vorspannung (V) so gewählt ist, dass die Einsenkung (T) der Schiene (1) bei gegebener Last (L) durch das überrollende Fahrzeug geringer ist als die dauerelastische Dehnbarkeit der Vergussmasse (7, 7').
  2. Schienenlagerung nach Anspruch 1, dadurch gekennzeichnet, dass die Dämpfungselemente (10, 20, 30, 40, 50) eine Sohlplatte (12) und eine zwischen der Sohlplatte (12) und dem Schienenfuß (4) angeordnete Elastomer-Schicht (13) aufweisen, wobei die Schicht (13) kontinuierlich oder in geringen horizontalen Abständen von wenigen cm durch vertikal wirkende, die Sohlplatte (12) und Schienenfuß (4) miteinander verbindende Verspannelemente (14-16) unter Vorspannung (V) gehalten wird.
  3. Schienenlagerung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Dämpfungselement (10, 20, 30, 40, 50) neben der Sohlplatte (22, 32, 42) zusätzlich eine dem Schienenfuß (4) zugewandte Deckplatte (21, 31, 41) aufweist und die Elastomer-Schicht (23, 33, 43) zwischen den beiden Platten (21, 31, 41; 22, 32, 42) eingespannt ist.
  4. Schienenlagerung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Dämpfungselemente (10, 20, 30, 40, 50) ein durchgängiges, längs der Schiene (1) verlaufendes zusammengesetztes Dämpfungsprofil aus mehreren Komponenten aufweisen, darunter zwei Metallplatten als Sohlplatte (22, 32, 42) und Deckplatte (21, 31, 41) die durch Zuganker (24, 34, 44) verbunden sind, mit denen die Elastomerschicht (23, 33, 43) unter vertikale Vorspannung setzbar ist.
  5. Schienenlagerung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Dämpfungselement (10, 20, 30, 40, 50) aus einer oder mehreren Elastomerschichten (13, 23, 33, 43) besteht, die möglichst gleichmäßig durch Zuganker (14-16, 24, 34, 44) unter vertikaler Vorspannung (V) stehen.
  6. Schienenlagerung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die elastische Schicht (13, 23, 33, 43) der Dämpfungselemente (10, 20, 30, 40, 50) im Wesentlichen aus organischen und/oder metallischen federnden Materialien bestehen.
  7. Schienenlagerung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Zugglied (14-16, 24, 34, 44) ein Faden, eine Schraubverbindung, eine Nietverbindung, eine Feder oder ein Draht ist.
  8. Schienenlagerung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass Rillenschienen (1) eines Gleises im Bereich einer niveaugleichen Wegkreuzung oder im Straßenverlauf auf einem vorgespannten Dämpfungselement (10, 20, 30, 40, 50) gelagert, seitlich mit Kammerfüllkörpern (6, 6', K, K') bestückt und rundum bis etwa in Höhe Oberkante (O) Schiene (1) mit Wegebaumaterial (P, E) umhüllt sind unter Freilassung einer Nut neben dem Schienenkopf (2, 2') und diese Nut mit elastischem Vergussmaterial (7, 7') vergossen ist, wobei die Einsenktiefe (T) der Schiene (1) unter Last (L) geringer eingestellt ist als die dauerelastische Dehnbarkeit des Vergussmaterials (7, 7').
  9. Schienenlagerung für eine Schiene eines Bahngleises, – auf einem im Wesentlichen kontinuierlich gestalteten Unterbau – mit zwischen dem Schienenfuß und dem Unterbau durchgehend angeordneten Dämpfungselementen, dadurch gekennzeichnet das, das Dämpfungselement (10, 20, 30, 40, 50) vorgespannt ist, eine unter Last um maximal 0,3 bis 1,9 mm stauchbare Schicht aus metallischen oder organischen Federmaterialien aufweist und separat vorgefertigt ist.
  10. Schienenlagerung nach Anspruch 9, dadurch gekennzeichnet, dass aus der dynamischen und statischen Federziffer für das gewählte Federmaterial die Einsenkung der Schiene in die stauchbare Schicht errechnet und für den Lastfall durch Vorspannung auf eine maximale Einsenktiefe der Schiene von weniger als 1 mm eingestellt wird.
  11. Schienenlagerung nach einem der Ansprüche 8 bis 10, dadurch gekennzeichnet, dass das Dämpfungselement (10, 20, 30, 40, 50) unter den Schienenfuß (4) klebbar ist.
  12. Schienenlagerung nach einem der Ansprüche 8 bis 10, dadurch gekennzeichnet, dass das Dämpfungselement (10, 20, 30, 40, 50) mechanisch unter den Schienenfuß (4) klemmbar ist.
DE202006016616U 2006-06-20 2006-06-20 Kontinuierliche elastische Schienenlagerung Expired - Lifetime DE202006016616U1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE202006016616U DE202006016616U1 (de) 2006-06-20 2006-06-20 Kontinuierliche elastische Schienenlagerung
PCT/EP2007/005427 WO2007147581A2 (de) 2006-06-20 2007-06-20 Kontinuierliche elastische schienenlagerung
EP07764749A EP2109699A2 (de) 2006-06-20 2007-06-20 Kontinuierliche elastische schienenlagerung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE202006016616U DE202006016616U1 (de) 2006-06-20 2006-06-20 Kontinuierliche elastische Schienenlagerung
DE200610028740 DE102006028740B4 (de) 2006-06-20 2006-06-20 Kontinuierliche elastische Schienenlagerung

Publications (1)

Publication Number Publication Date
DE202006016616U1 true DE202006016616U1 (de) 2007-01-04

Family

ID=37670570

Family Applications (1)

Application Number Title Priority Date Filing Date
DE202006016616U Expired - Lifetime DE202006016616U1 (de) 2006-06-20 2006-06-20 Kontinuierliche elastische Schienenlagerung

Country Status (3)

Country Link
EP (1) EP2109699A2 (de)
DE (1) DE202006016616U1 (de)
WO (1) WO2007147581A2 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2570809B1 (es) * 2014-11-19 2017-02-28 Gestión Medioambiental De Neumáticos S.L. Soporte amortiguador de vibraciones para vías férreas
CN105200870B (zh) * 2015-09-18 2017-01-11 成都明日星辰科技有限公司 一种降音减震轨道

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3834329C2 (de) 1987-10-10 1999-12-09 Phoenix Ag Schienenlager
DE8915837U1 (de) * 1989-11-07 1991-08-29 Clouth Gummiwerke AG, 5000 Köln Einrichtung zum Lagern von Schienen für Schienenfahrzeuge
DE4328347C2 (de) * 1993-08-24 1997-06-26 Heinz Fischer Schienenlager
DE19516097C2 (de) 1995-05-03 1999-01-28 Draebing Kg Wegu Schienenlagerung für eine Schiene
DE19605791C2 (de) * 1996-02-16 2001-04-26 Butzbacher Weichenbau Gmbh Anordnung zum Lagern einer Schiene
BE1010283A5 (fr) 1996-05-03 1998-05-05 Vanhonacker Patrick Procede de fixation de rails de voie ferree.
WO1999020841A1 (de) 1997-10-21 1999-04-29 Phoenix Aktiengesellschaft Schienenanordnung
DE19753328A1 (de) * 1997-12-02 1999-07-01 Sedra Asphalt Technik Biebrich Federnde Matte für Eisenbahnoberbau
BE1012466A5 (fr) 1999-02-05 2000-11-07 Vanhonacker Patrick Dispositif de support pour rails de voie ferree.
BE1013240A6 (fr) 2000-01-19 2001-11-06 Vanhonacker Patrick Dispositif de support pour rail de voie ferree.
JP2001355201A (ja) * 2000-06-12 2001-12-26 Railway Technical Res Inst 軌道用防振タイパッド
HRP20010072A2 (en) * 2001-01-29 2002-02-28 Mladenović Radomir Process of manufacturing synthetic supports for tram gauges
US7152807B2 (en) * 2004-08-24 2006-12-26 Nevins James H Pre-fastened rail pad assembly and method

Also Published As

Publication number Publication date
WO2007147581A3 (de) 2008-01-24
WO2007147581A2 (de) 2007-12-27
EP2109699A2 (de) 2009-10-21

Similar Documents

Publication Publication Date Title
EP0787233B1 (de) Unterbau für ein gleis für schienenfahrzeuge
DE102006028740B4 (de) Kontinuierliche elastische Schienenlagerung
EP0726359A2 (de) Schienengleis, insbesondere für Rasen
AT404037B (de) Schotterloser oberbau mit schienen
DE102008016953A1 (de) Feste Fahrbahn für Schienenfahrzeuge
DE19919255B4 (de) Tunnelfahrweg
EP0432357A1 (de) Einrichtung zum Lagern von Schienen für Schienenfahrzeuge
EP0922808A2 (de) Federnde Matte für Eisenbahnoberbau
DD284066A5 (de) Anordnung zur ausbildung von eisenbahnoberbauten
DE202006016616U1 (de) Kontinuierliche elastische Schienenlagerung
EP1039030A1 (de) Schotterloser Oberbau
DE102004061165A1 (de) Betonfahrbahn für Schienenfahrzeuge
EP1331310B1 (de) Einrichtung zur elastischen Lagerung einer Rillenschiene
DE102011015210A1 (de) Fahrbahnweg für schienengebundene Fahrzeuge sowie Schienenunterstützung für einen solchen Fahrbahnweg
DE19849266A1 (de) Feste Fahrbahn für eine Straßenbahn
DE29515935U1 (de) Schallabsorber für einen schotterlosen Eisenbahnoberbau
DE20110665U1 (de) Schienenisolierung für Überwege
DE19628529A1 (de) Erschütterungsarmes Gleis
AT512523B1 (de) Fundamentlose Lärmschutzvorrichtung
DE102008044675B4 (de) Erschütterungsschutz für einen Gleisoberbau und Herstellungsverfahren dafür
DE10224286B4 (de) Gleis für Schienenfahrzeuge sowie Verfahren zum Herstellen eines Gleises
EP0814197B1 (de) Lagestabiles Gleis aus Betonfertigteilen
WO2010022958A1 (de) Schalldämmvorrichtung
EP0773322B1 (de) Feste Fahrbahn für schienengebundenen Verkehr
DE102009044841B4 (de) Schienenfuge

Legal Events

Date Code Title Description
R207 Utility model specification

Effective date: 20070208

R150 Utility model maintained after payment of first maintenance fee after three years

Effective date: 20090903

R151 Utility model maintained after payment of second maintenance fee after six years

Effective date: 20120502

R152 Utility model maintained after payment of third maintenance fee after eight years

Effective date: 20140312

R071 Expiry of right