DE19853105A1 - Flammwidrige Polycarbonat-ABS-Formmassen - Google Patents

Flammwidrige Polycarbonat-ABS-Formmassen

Info

Publication number
DE19853105A1
DE19853105A1 DE19853105A DE19853105A DE19853105A1 DE 19853105 A1 DE19853105 A1 DE 19853105A1 DE 19853105 A DE19853105 A DE 19853105A DE 19853105 A DE19853105 A DE 19853105A DE 19853105 A1 DE19853105 A1 DE 19853105A1
Authority
DE
Germany
Prior art keywords
molding compositions
weight
compositions according
parts
phosphate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE19853105A
Other languages
English (en)
Inventor
Thomas Eckel
Michael Zobel
Bernd Keller
Dieter Wittmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer AG
Original Assignee
Bayer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7888159&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=DE19853105(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Bayer AG filed Critical Bayer AG
Priority to DE19853105A priority Critical patent/DE19853105A1/de
Priority to TW088119099A priority patent/TW536548B/zh
Priority to AT99969966T priority patent/ATE369398T1/de
Priority to AU32754/00A priority patent/AU3275400A/en
Priority to EP99969966A priority patent/EP1144511B1/de
Priority to KR1020017006243A priority patent/KR100580989B1/ko
Priority to BRPI9915457-9A priority patent/BR9915457B1/pt
Priority to DE59914447T priority patent/DE59914447D1/de
Priority to JP2000583995A priority patent/JP4823418B2/ja
Priority to PCT/EP1999/008411 priority patent/WO2000031173A2/de
Priority to CA2351598A priority patent/CA2351598C/en
Priority to ES99969966T priority patent/ES2288043T3/es
Priority to US09/856,006 priority patent/US6596794B1/en
Priority to CNB998134473A priority patent/CN1146641C/zh
Priority to ARP990105738A priority patent/AR024229A1/es
Priority to MYPI99004973A priority patent/MY130891A/en
Publication of DE19853105A1 publication Critical patent/DE19853105A1/de
Priority to HK02104013.3A priority patent/HK1042314A1/zh
Priority to JP2011090384A priority patent/JP2011157560A/ja
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/521Esters of phosphoric acids, e.g. of H3PO4
    • C08K5/523Esters of phosphoric acids, e.g. of H3PO4 with hydroxyaryl compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/26Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment
    • C08L23/28Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment by reaction with halogens or compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • C08L67/03Polyesters derived from dicarboxylic acids and dihydroxy compounds the dicarboxylic acids and dihydroxy compounds having the carboxyl- and the hydroxy groups directly linked to aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • C08L69/005Polyester-carbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/22Thermoplastic resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2666/00Composition of polymers characterized by a further compound in the blend, being organic macromolecular compounds, natural resins, waxes or and bituminous materials, non-macromolecular organic substances, inorganic substances or characterized by their function in the composition
    • C08L2666/02Organic macromolecular compounds, natural resins, waxes or and bituminous materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/04Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

Thermoplatische Formmassen auf Basis Polycarbonat und/oder Polyestercarbonat enthaltend mittels Masse-, Lösungs- oder Masse-Suspension-Polymerisationsverfahren hergestelltes Pfropfpolymerisat und Phosphorverbindungen der allgemeinen Formel (I) DOLLAR F1

Description

Die vorliegende Erfindung betrifft mit Phosphorverbindungen flammwidrig ausge­ rüstete Polycarbonat-ABS-Formmassen, die ein ausgezeichnetes mechanisches Ei­ genschaftsniveau, insbesondere eine deutlich verbesserte Reißdehnung, einen heraus­ ragenden Zug-E-Modul sowie ein ausgezeichnetes Verarbeitungsverhalten auf­ weisen.
In EP-A-0 363 608 werden Polymermischungen aus aromatischem Polycarbonat, styrolhaltigem Copolymer oder Pfropfcopolymer sowie oligomeren Phosphaten als Flammschutzadditive beschrieben. Für bestimmte Einsatzzwecke ist das mechani­ sche Eigenschaftsniveau und das Verarbeitungsverhalten dieser Mischungen oft nicht ausreichend.
In der EP-A-0 704 488 werden Formmassen aus aromatischem Polycarbonat, styrol­ haltigen Copolymerisaten und Pfropfpolymerisaten mit einer speziellen Pfropfbasis in bestimmten Mengenverhältnissen beschrieben. Diese Formmassen weisen eine sehr gute Kerbschlagzähigkeit auf und können gegebenenfalls mit Phosphor­ verbindungen flammwidrig ausgerüstet werden. Für die Herstellung von Formkör­ pern mit erhöhter Elastizitätsbeanspruchung und dem geforderten Verarbeitungs­ verhalten ist das Eigenschaftsniveau nicht ausreichend.
US-P 5 061 745 beschreibt Formmassen aus aromatischem Polycarbonat, Pfropfpoly­ merisat und Monophosphaten. Die Flüchtigkeit der Monophosphate kann zu starken Beeinträchtigungen des Verarbeitungsverhaltens führen.
EP-A 755 977 beschreibt Formmassen aus aromatischem Polycarbonat, ABS- Pfropfpolymeren mit einem Kautschukgehalt <25% und oligomeren Phosphaten. Um ein gutes Spannungsrißverhalten zu erhalten, dürfen die Phosphat-Gehalte 8 Gew.-% nicht überschreiten. Ferner wird ausgeführt, daß Masse-ABS und Mischungen aus hochkautschukhaltigen Pfropfpolymer und SAN-Harz ähnliche mechanische und rheologische Eigenschaften haben. Zum Erreichen eines ausrei­ chenden Flammschutzes kann die eingesetzte Flammschutzmittelmenge zu max. 8 Gew.-% zu gering sein.
Aufgabe der vorliegenden Erfindung ist es, flammwidrige Polycarbonat-ABS-Form­ massen bereitzustellen, die ausgezeichnete mechanische Eigenschaften wie Kerb­ schlagzähigkeit und Reißdehnung Spannungsrißbeständigkeit mit einem ausge­ zeichneten Verarbeitungsverhalten (wenig Oberflächenstörungen, Fließfähigkeit, geringe Anteile flüchtiger Komponenten) verbunden. Dieses Eigenschaftsniveau ent­ spricht dem Trend nach immer dünneren und damit leichteren Gehäuseteilen. Es wurde nun gefunden, daß PC/ABS-Formmassen, die Phosphorverbindungen ge­ mäß Komponente D (s.u.) und Pfropfpolymerisat, welches über Massepolymerisation erhältlich ist, enthalten, zu Formkörper mit einem sehr guten mechanischen Eigen­ schaftsniveau verarbeitet werden können.
Gegenstand der vorliegenden Erfindung sind daher flammwidrige thermoplastische Formmassen auf Basis Polycarbonat und/oder Polyestercarbonat enthaltend mittels Masse-, Lösungs- oder Masse-Suspensions-Polymerisationsverfahren hergestelltes Pfropfpolymerisat und Phosphor enthaltende Verbindungen als Flammschutzmittel. Als Phosphor enthaltende Verbindungen werden die unten als Komponente D ge­ nannten Phosphorverbindungen der allgemeinen Formel (I) eingesetzt.
Gegenstand der vorliegenden Erfindung sind vorzugsweise flammwidrige thermo­ plastische Formmassen enthaltend
  • A) 40 bis 99, vorzugsweise 60 bis 98,5 Gew.-Teile aromatisches Polycarbonat und/oder Polyestercarbonat,
  • B) 0,5 bis 60, vorzugsweise 1 bis 40, insbesondere 2 bis 25 Gew.-Teile mittels Masse-, Lösungs- oder Masse-Suspensions-Polymerisationsverfahren herge­ stelltes Pfropfpolymerisat von
    • 1. B.1 50 bis 99, vorzugsweise 65 bis 98 Gew.-% eines oder mehrerer Vinylmono­ meren auf
    • 2. B.2 50 bis 1, vorzugsweise 35 bis 2 Gew.-% einer oder mehrerer Pfropfgrundla­ gen mit einer Glasumwandlungstemperatur <10°C, vorzugsweise <0°C, besonders bevorzugt <-10°C,
  • C) 0 bis 45, vorzugsweise 0 bis 30, besonders bevorzugt 2 bis 25 Gew.-Teile thermoplastisches Vinyl(co)polymerisat und/oder Polyalkylenterephthalat
  • D) 0,5 bis 20 Gew.-Teile, vorzugsweise 1 bis 18 Gew.-Teile, besonders be­ vorzugt 2 bis 17 Gew.-Teile, Phosphorverbindung der allgemeinen Formel (I)
    worin
    R1, R2, R3 und R4, unabhängig voneinander jeweils gegebenenfalls halogeniertes C1- bis C8-Alkyl, jeweils gegebenenfalls durch Alkyl, vorzugsweise C1-C4-Alkyl, und/oder Halogen, vorzugsweise Chlor, Brom, substituiertes C5- bis C6- Cycloalkyl, C6- bis C20-Aryl oder C7- bis C12-Aralkyl,
    n unabhängig voneinander, 0 oder 1
    N 0 bis 30 und
    X einen ein- oder mehrkernigen aromatischen Rest mit 6 bis 30 C-Atomen bedeuten,
  • E) 0,05 bis 5 Gew.-Teile, vorzugsweise 0,1 bis 1 Gew.-Teile, besonders bevorzugt 0,1 bis 0,5 Gew.-Teile fluoriertes Polyolefin.
Komponente A
Erfindungsgemäß geeignete aromatische Polycarbonate und/oder aromatische Poly­ estercarbonate gemäß Komponente A sind literaturbekannt oder nach literaturbe­ kannten Verfahren herstellbar (zur Herstellung aromatischer Polycarbonate siehe beispielsweise Schnell, "Chemistry and Physics of Polycarbonates", Interscience Publishers, 1964 sowie die DE-AS 14 95 626, DE-OS 22 32 877, DE-OS 27 03 376, DE-OS 27 14 544, DE-OS 30 00 610, DE-OS 38 32 396; zur Herstellung aromati­ scher Polyestercarbonate z. B. DE-OS 30 77 934).
Die Herstellung aromatischer Polycarbonate erfolgt z. B. durch Umsetzung von Diphenolen mit Kohlensäurehalogeniden, vorzugsweise Phosgen und/oder mit aro­ matischen Dicarbonsäuredihalogeniden, vorzugsweise Benzoldicarbonsäuredihalo­ geniden, nach dem Phasengrenzflächenverfahren, gegebenenfalls unter Verwendung von Kettenabbrechern, beispielsweise Monophenolen und gegebenenfalls unter Ver­ wendung von trifunktionellen oder mehr als trifunnktionellen Verzweigern, beispiels­ weise Triphenolen oder Tetraphenolen.
Diphenole zur Herstellung der aromatischen Polycarbonate und/oder aromatischen Polyestercarbonate sind vorzugsweise solche der Formel (II)
wobei
A eine Einfachbindung, C1-C5-Alkylen, C2-C5-Alkyliden, C5-C6-Cycloalkyli­ den, -O-, -SO-, -CO-, -S-, -SO2-, C6-C 12-Arylen, an das weitere aromatische gegebenenfalls Heteroatome enthaltende Ringe kondensiert sein können, oder ein Rest der Formel (III) oder (IV)
B jeweils Wasserstoff, C1-C12-Alkyl, vorzugsweise Methyl, Halogen, vorzugs­ weise Chlor und/oder Brom,
x jeweils unabhängig voneinander 0, 1 oder 2,
p 1 oder 0 sind, und
R5 und R6 für jedes X1 individuell wählbar, unabhängig voneinander Wasserstoff oder C1-C6-Alkyl, vorzugsweise Wasserstoff, Methyl oder Ethyl,
X1 Kohlenstoff und
m eine ganze Zahl von 4 bis 7, bevorzugt 4 oder 5 bedeuten, mit der Maßgabe, daß an mindestens einen Atom X1, R5 und R6 gleichzeitig Alkyl sind.
Bevorzugte Diphenole sind Hydrochinon, Resocin, Dihydroxydiphenole, Bis-(hy­ droxyphenyl)-C1-C5-alkane, Bis-(hydroxyphenyl)-C5-C6-cycloalkane, Bis-(hydroxy­ phenyl)-ether, Bis-(hydroxylphenyl)-sulfoxide, Bis-(hydroxyphenyl)-ketone, Bis- (hydroxyphenyl)-sulfone und α,α-Bis-(hydroxyphenyl)-diisopropyl-benzole sowie deren kernbromierte und/oder kernchlorierte Derivate.
Besonders bevorzugte Diphenole sind 4,4'-Dihydroxydiphenyl, Bisphenol-A, 2,4- Bis(4-hydroxyphenyl)-2-methylbutan, 1,1-Bis-(4-hydroxyphenyl)-cyclohexan, 1,1- Bis(4-hydroxyphenyl)-3.3.5-trimethylcyclohexan, 4,4'-Dihydroxydiphenylsulfid, 4,4'-Dihydroxydiphenyl-sulfon sowie deren di- und tetrabromierten oder chlorierten Derviate wie beispielsweise 2,2-Bis(3-Chlor-4-hydroxyphenyl)-propan, 2,2-Bis-(3,5- dichlor-4-hydroxyphenyl)-propan oder 2,2-Bis-(3,5-dibrom-4-hydroxyphenyl)-pro­ pan.
Insbesondere bevorzugt ist 2,2-Bis-(4-hydroxyphenyl)-propan (Bisphenol-A).
Es können die Diphenole einzeln oder als beliebige Mischungen eingesetzt werden.
Die Diphenole sind literaturbekannt oder nach literaturbekannten Verfahren erhält­ lich.
Für die Herstellung der thermoplastischen, aromatischen Polycarbonate sind geeig­ nete Kettenabbrecher beispielsweise Phenol, p-Chlorphenol, p-tert.-Butylphenol oder 2,4,6-Tribromphenol, aber auch langkettige Alkylphenole, wie 4-(1,3-Tetramethyl­ butyl)-phenol gemäß DE-OS 28 42 005 oder Monoalkylphenol bzw. Dialkylphenole mit insgesamt 8 bis 20 C-Atomen in den Alkylsubstituenten, wie 3,5-di-tert.-Butyl­ phenol, p-iso-Octylphenol, p-tert.-Octylphenol, p-Dodecylpheno1 und 2-(3,5- Dimethylheptyl)-phenol und 4-(3,5-Dimethylheptyl)-phenol. Die Menge an einzuset­ zenden Kettenabbrechern beträgt im allgemeinen zwischen 0,5 Mol%, und 10 Mol-%, bezogen auf die Molsumme der jeweils eingesetzten Diphenole.
Die thermoplastischen, aromatischen Polycarbonate haben mittlere Gewichtsmittel­ molekulargewichte (Mw, gemessen z. B. durch Ultrazentrifuge oder Streulichtmes­ sung) von 10 000 bis 200 000, vorzugsweise 20 000 bis 80 000.
Die thermoplastischen, aromatischen Polycarbonate können in bekannter Weise verzweigt sein, und zwar vorzugsweise durch den Einbau von 0,05 bis 2,0 Mol-%, bezogen auf die Summe der eingesetzten Diphenole, an dreifunktionellen oder mehr als dreifunktionellen Verbindungen, beispielsweise solchen mit drei und mehr pheno­ lischen Gruppen.
Geeignet sind sowohl Homopolycarbonate als auch Copolycarbonate. Zur Herstel­ lung erfindungsgemäßer Copolycarbonate gemäß Komponente A können auch 1 bis 25 Gew.-%, vorzugsweise 2,5 bis 25 Gew.-% (bezogen auf die Gesamtmenge an einzusetzenden Diphenolen) Polydiorganosiloxane mit Hydroxy-aryloxy-Endgrup­ pen eingesetzt werden. Diese sind bekannt (s. beispielseise US-Patent 3 419 634) bzw. nach literaturbekannten Verfahren herstellbar. Die Herstellung Polydiorgano­ siloxan-haltiger Copolycarbonate wird z. B. in DE-OS 33 34 782 beschrieben.
Bevorzugte Polycarbonate sind neben den Bisphenol-A-Homopolycarbonaten die Copolycarbonate von Bisphenol-A mit bis zu 15 Mol-%, bezogen auf die Molsum­ men an Diphenolen, anderen als bevorzugt bzw. besonders bevorzugt genannten Diphenole, insbesondere 2,2-Bis(3,5-dibrom-4-hydroxyphenyl)-propan.
Aromatische Dicarbonsäuredihalogenide zur Herstellung von aromatischen Poly­ estercarbonate sind vorzugsweise die Disäuredichloride der Isophthalsäure, Tere­ phthalsäure, Diphenylether-4,4'-dicarbonsäure und der Naphthalin-2,6-dicarbonsäure.
Besonders bevorzugt sind Gemische der Disäuredichloride der Isophthalsäure und der Terephthalsäure im Verhältnis zwischen 1 : 20 und 20 : 1.
Bei der Herstellung von Polyestercarbongen wird zusätzlich ein Kohlensäurehalo­ genid, vorzugsweise Phosgen als bifunktionelles Säurederivat mitverwendet.
Als Kettenabbrecher für die Herstellung der aromatischen Polyestercarbonate kom­ men außer den bereits genannten Monophenolen noch deren Chlorkohlensäureester sowie die Säurechloride von aromatischen Monocarbonsäuren, die gegebenenfalls durch C1-C22-Alkylgruppen oder durch Halogenatome substituiert sein können, so­ wie aliphatische C2-C22 Monocarbonsäurechloride in Betracht.
Die Menge an Kettenabbrechern beträgt jeweils 0,1 bis 10 Mol-%, bezogen im Falle der phenolischen Kettenabbrecher auf Mole Diphenole und Falle von Monocarbon­ säurechlorid-Kettenabbrecher auf Mole Dicarbonsäuredichloride.
Die aromatischen Polyestercarbonate können auch aromatische Hydroxycarbonsäu­ ren eingebaut enthalten.
Die aromatischen Polyestercarbonate können sowohl linear als auch in bekannter Weise verzweigt sein (siehe dazu ebenfalls DE-OS 29 40 024 und DE-OS 30 07 ­ 934).
Als Verzweigungsmittel können beispielsweise 3- oder mehrfunktionelle Carbonsäu­ rechloride, wie Trimesinsäuretrichlorid, Cyanursäuretrichlorid, 3,3'-,4,4'-Benzophe­ non-tetracarbonsäuretetrachlorid, 1,4,5,8-Napthalintetracarbonsäuretetrachlorid oder Pyromellithsäuretetrachlorid, in Mengen von 0,01 bis 1,0 Mol-% (bezogen auf einge­ setzte Dicarbonsäuredichloride) oder 3- oder mehrfunktionelle Phenole, wie Phloro­ glucin, 4,6-Dimethyl-2,4,6-tri-(4-hydroxyphenyl)-hepten-2,4,4-Dimethyl-2,4-6-tri- (4-hydroxyphenyl)-heptan, 1,3,5-Tri-(4-hydroxyphenyl)-benzol, 1,1,1-Tri-(4-hy­ droxyphenyl)-ethan, Tri-(4-hydroxyphenyl)-phenylmethan, 2,2-Bis[4,4-bis(4-hy­ droxyphenyl)-cyclohexyl]-propan, 2,4-Bis(4-hydroxyphenyl-isopropyl)-phenol, Te­ tra-(4-hydroxyphenyl)-methan, 2,6-Bis(2-hydroxy-5-methyl-benzyl)-4-methyl-phe­ nol, 2-(4-Hydroxyphenyl)-2-(2,4-dihydroxyphenyl)-propan, Tetra-(4-[4-hydroxyphe­ nyl-isopropyl]-phenoxy)-methan, 1,4-Bis[4,4'-dihydroxytri-phenyl)-methyl]-benzol, in Mengen von 0,01 bis 1,0 Mol%, bezogen auf eingesetzte Diphenole, verwendet werden. Phenolische Verzweigungsmittel können mit den Diphenolen vorgelegt, Säurechlorid-Verzweigungsmittel können zusammen mit den Säuredichloriden ein­ getragen werden.
In den thermoplastischen, aromatischen Polyestercarbonaten kann der Anteil an Carbonatstruktureinheiten beliebig variieren. Vorzugsweise beträgt der Anteil an Carbonatgruppen bis zu 100 Mol-%, insbesondere bis zu 80 Mol%, besonders be­ vorzugt bis zu 50 Mol-%, bezogen auf die Summe an Estergruppen und Carbo­ natgruppen. Sowohl der Ester- als auch der Carbonatanteil der aromatischen Poly­ estercarbonate kann in Form von Blöcken oder statistisch verteilt im Polykondensat vorliegen.
Die relative Lösungsviskosität {ηrel) der aromatischen Polyestercarbonate liegt im Bereich 1,18 bis 1,4, vorzugsweise 1,22 bis 1,3 (gemessen an Lösungen von 0,5 g Polyestercarbonat in 100 ml Methylenchlorid-Lösung bei 25°C).
Die thermoplastischen, aromatischen Polycarbonate und Polyestercarbonate können allein oder im beliebigen Gemisch untereinander eingesetzt werden.
Komponente B
Das kautschukmodifizierte Pfropfrolymerisat B umfaßt ein statistisches (Co)poly­ merisat aus Monomeren gemäß B.1.1 und/oder B.1.2, sowie einem mit dem statistischen (Co)polymerisat aus B.1.1 und/oder B.1.2 gepfropften Kautschuk B.2, wobei die Herstellung von B in bekannter Weise nach einem Masse- oder Lösungs- oder Masse-Suspensions-Polymerisationsverfahren erfolgt, wie z. B. in den US- 3 243 481, US-3 509 237, US-3 660 535, US-4 221 833 und US-4 239 863 beschrieben.
Beispiele für Monomere B.1.1 sind Styrol, α-Methylstyrol, halogen- oder alkylkern­ substituierte Styrole wie p-Methylstyrol, p-Chlorstyrol, (Meth)acrylsäure-C1-C8- alkylester wie Methylmethacrylat, n-Butylacrylat und t-Butylacrylat. Beispiele für Monomere B.1.2 sind ungesättigte Nitrile wie Acrylnitril, Methacrylnitril, (Meth)- Acrylsäure-C1-C8-alkylester wie Methylmethacrylat, n-Butylacrylat, t-Butylacrylat, Derivate (wie Anhydride und Imide) ungesättigter Carbonsäuren wie Malein­ säureanhydrid und N-Phenyl-maleinimid oder Mischungen davon.
Bevorzugte Monomere B.1.1 sind Styrol, α-Methylstyrol und/oder Methylmeth­ acrylat, bevorzugte Monomere B.1.2 sind Acrylnitril, Maleinsäureanhydrid und/oder Methylmethacrylat.
Besonders bevorzugte Monomere sind B.1.1 Styrol und B.1.2 Acrylnitril.
Für die kautschukmodifizierten Pfropfpolymerisate B geeignete Kautschuke B.2 sind beispielsweise Dienkautschuke, EP(D)M-Kautschuke, also solche auf Basis Ethy­ len/Propylen und gegebenenfalls Dien, Acrylat-, Polyurethan-, Silikon-, Chloropren- und Ethylen/Vinylacetat-Kautschuke.
Bevorzugte Kautschuke B.2 sind Dienkautschuke (z. B. auf Basis Butadien, Isopren etc.) oder Gemische von Dienkautschuken oder Copolymerisate von Dienkautschu­ ken oder deren Gemischen mit weiteren copolymerisierbaren Monomeren (z. B. gemäß B.1.1 und B.1.2), mit der Maßgabe, daß die Glasübergangstemperatur der Komponente B.2 unterhalb 10°C, vorzugsweise unterhalb -10°C liegt. Besonders be­ vorzugt wird reiner Polybutadienkautschuk.
Die Komponente B kann, falls erforderlich und wenn dadurch die Kautschukeigen­ schaften der Komponente B.2 nicht beeinträchtigt werden, zusätzlich noch geringe Mengen, üblicherweise weniger als S Gew.-%, vorzugsweise weniger als 2 Gew.-%, bezogen auf B.2, vernetzend wirkender ethylenisch ungesättigter Monomeren enthalten. Beispiele für solche vernetzend wirkenden Monomere sind Alkylendiol-di- (meth)-acrylate, Polyester-di-(meth)-acrylate, Divinylbenzol, Trivinylbenzol, Tri­ allylcyanurat, Allyl-(meth)-acrylat, Diallylmaleat und Diallylfumarat.
Das kautschukmodifizierte Pfropfpolymerisat B wird erhalten durch Pfropfpoly­ merisation von S0 bis 99, bevorzugt 65 bis 98, besonders bevorzugt 75 bis 95 Gew.- Teilen eines Gemischs aus 50 bis 99, bevorzugt 60 bis 95 Gew.-Teilen Monomeren gemäß B.1.1 und 1 bis 50, bevorzugt 5 bis 40 Gew.-Teilen Monomeren gemäß B.1.2 in Gegenwart von 1 bis 50, vorzugsweise 2 bis 35, besonders bevorzugt 5 bis 25 Gew.-Teilen der Kautschukkomponente 8.2, wobei die Pfropfpolymerisation nach einem Masse- oder Lösungs- oder Masse-Suspensions-Polymerisationsverfahren durchgeführt wird.
Wesentlich bei der Herstellung der kautschukmodifizierten Pfropfpolymerisate B ist, daß die Kautschukkomponente B.2 vor der Pfropfpolymerisation im Gemisch der Monomeren B.1.1 und/oder B.1.2 in gelöster Form vorliegt. Die Kautschukkompo­ nente B.2 darf also weder so stark vernetzt sein, daß eine Lösung in B.1.1 und/oder B.1.2 unmöglich wird, noch darf B.2 zu Beginn der Pfropfpolymerisation bereits in Form diskreter Teilchen vorliegen. Die für die Produkteigenschaften von B wichtige Teilchenmorphologie und zunehmende Vernetzung von B.2 bildet sich erst im Ver­ lauf der Pfropfpolymerisation aus (siehe hierzu beispielsweise Ullmann, Encyclopä­ die der technischen Chemie, Band 19, S. 284 ff., 4. Auflage 1980).
Das statistische Copolymerisat aus B.1.1 und B.1.2 liegt üblicherweise im Poly­ merisat B zu einem Teil auf dem Kautschuk B.2 auf oder eingetropft vor, wobei dieses Pfropfinischpolymerisat diskrete Teilchen im Polymerisat B ausbildet. Der Anteil des auf oder eingepfropften Copolymerisats aus B.1.1 und B.1.2 am ge­ samten Copolymerisat aus B.1.1 und B.1.2 - also die Pfropfausbeute (= Gewichtsver­ hältnis der tatsächlich gepfropften Pfropfmonomeren zu den insgesamt verwendeten Pfropfmonomeren × 100, angegeben in %) - sollte dabei 2 bis 40%, vorzugsweise 3 bis 30%, besonders bevorzugt 4 bis 20% betragen.
Der mittlere Teilchendurchmesser der resultierenden gepfropften Kautschukteilchen (ermittelt durch Auszählung an elektronenmikroskopischen Aufnahmen) liegt im Bereich von 0,5 bis 5 µm, vorzugsweise von 0,8 bis 2,5 µm.
Neben der über Masse-Polymerisation hergestellten Pfropfpolymerisate können die erfindungsgemäßen Formmassen auch über Emulsionspolymerisation hergestelltes Pfropfpolymerisat enthalten. Die Beschreibung der Pfropfpolymerisate entspricht vorzugsweise derjenigen der über Massepolymerisation hergestellten, sind jedoch mittels Emulsionspolymerisation hergestellt.
Der mittlere Teilchendurchmesser (d50-Wert) der Pfropfgrundlage im Emulsions­ pfropfpolymerisat beträgt im allgemeinen 0,05 bis 5 µm, vorzugsweise 0,10 bis 0,5 µm, besonders bevorzugt 0,20 bis 0,40 µm. Der Gelanteil der Pfropfgrundlage beträgt mindestens 30 Gew.-%, vorzugsweise mindestens 40 Gew.-%.
Das ABS-Pfropfpolymer ist besonders bevorzugtes "Emulsions-Pfropfpolymer".
Das Gewichtsverhältnis von mittels Massepolymerisation hergestelltes Pfropfroly­ mer gemäß Komponente B der vorliegenden Erfindung zu dem mittels Emulsions­ polymerisation hergestellten Pfropfrolymer beträgt 100 : 0 bis 50 : 50, vorzugsweise 80 : 20 bis 60 : 40.
Komponente C
Die Komponente C umfaßt ein oder mehrere thermoplastische Vinyl (co)polymeri­ sate C.1 und/oder Polyalkylenterephthalate C.2.
Geeignet sind als Vinyl(co)Polymerisate C.1 Polymerisate von mindestens einem Monomeren aus der Gruppe der Vinylaromaten, Vinylcyanide (ungesättigte Nitrile), (Meth)Acrylsäure-(C1-C8)-Alkylester, ungesättigte Carbonsäuren sowie Derivate (wie Anhydride und Imide) ungesättigter Carbonsäuren. Insbesondere geeignet sind (Co)Polymerisate aus
  • 1. C.1.1 50 bis 99, vorzugsweise 60 bis 80 Gew.-Teilen Vinylaromaten und/oder kern­ substituierten Vinylaromaten wie beispielsweise Styrol, α-Methylstyrol, p- Methylstyrol, p-Chlorstyrol) und/oder Methacrylsäure-(C1-C8)-Alkylester wie z. B. Methylmethacrylat, Ethylmethacrylat), und
  • 2. C.1.2 1 bis 50, vorzugsweise 20 bis 40 Gew.-Teilen Vinylcyanide (ungesättigte Nitrile) wie Acrylnitril und Methacrylnitril und/oder (Meth)Acrylsäure-(C1- C8)-Alkylester (wie z. B. Methylmethacrylat, n-Butylacrylat, t-Butylacrylat) und/oder ungesättigte Carbonsäuren (wie Maleinsäure) und/oder Derivate (wie Anhydride und Imide) ungesättigter Carbonsäuren (beispielsweise Maleinsäureanhydrid und N-Phenyl-Maleinimid).
Die (Co)Polymerisate C.1 sind harzartig, thermoplastisch und kautschukfrei.
Besonders bevorzugt ist das Copolymerisat aus C.1.1 Styrol und C.1.2 Acrylnitril.
Die (Co)Polymerisate gemäß C.1 sind bekannt und lassen sich durch radikalische Polymerisation, insbesondere durch Emulsions-, Suspensions-, Lösungs- oder Mas­ sepolymerisation herstellen. Die (Co)Polymerisate besitzen vorzugsweise Molekular­ gewichte Mw (Gewichtsmittel, ermittelt durch Lichtstreuung oder Sedimentation) zwischen 15 000 und 200 000.
Die Polyalkylenterephthalate der Komponente C.2) sind Reaktionsprodukte aus aro­ matischen Dicarbonsäuren oder ihren reaktionsfähigen Derivaten, wie Dimethyl­ estern oder Anhydriden, und aliphatischen, cycloaliphatischen oder araliphatischen Diolen sowie Mischungen dieser Reaktionsprodukte.
Bevorzugte Polyalkylenterephthalate enthalten mindestens 80 Gew.-%, vorzugsweise mindestens 90 Gew.-%, bezogen auf die Dicarbonsäurekomponente Terephthalsäure­ reste und mindestens 80 Gew.-%, vorzugsweise mindestens 90 Mol%, bezogen auf die Diolkomponente Ethylenglykol- und/oder Butandiol-1,4-Reste.
Die bevorzugten Polyalkylenterephthalate können neben Terephthalsäureresten bis zu 20 Mol-%, vorzugsweise bis zu 10 Mol%, Reste anderer aromatischer oder cycloaliphatischer Dicarbonsäuren mit 8 bis 14 C-Atomen oder aliphatischer Dicar­ bonsäuren mit 4 bis 12 C-Atomen enthalten, wie z. B. Reste von Phthalsäure, Isophthalsäure, Naphthalin-2,6-dicarbonsäure, 4,4'-Diphenyldicarbonsäure, Bern­ steinsäure, Adipinsäure, Sebacinsäure, Azelainsäure, Cyclohexan-diessigsäure.
Die bevorzugten Polyalkylenterephthalate können neben Ethylenglykol- bzw. Butan­ diol-1,4-Resten bis zu 20 Mol-%, vorzugsweise bis zu 10 Mol%, andere aliphatische Diole mit 3 bis 12 C-Atomen oder cycloalipahtische Diole mit 6 bis 21 C-Atomen enthalten, z. B. Reste von Propandiol-1,3, 2-Ethylpropandiol-1,3, Neopentylglykol, Pentandiol-1,5, Hexandiol-1,6, Cyclohexan-dimethanol-1,4, 3-Ethylpentandiol-2,4, 2-Methylpentandiol-2,4, 2,2,4-Trimethylpentandiol-1,3, 2-Ethylhexandiol-1,3, 2,2- Diethylpropandiol-1,3, Hexandiol-2,5, 1,4-Di-(β-hydroxyethoxy)-benzol, 2,2-Bis-(4- hydroxycyclohexyl)-propan, 2,4-Dihydroxy-1,1,3,3-tetramethyl-cyclobutan, 2,2-Bis- (4-β-hydroxyethoxy-phenyl)-propan und 2,2-Bis-(4-hydroxypropoxyphenyl)-propan (DE-OS 24 07 674, 24 07 776, 27 15 932).
Die Polyalkylenterephthalate können durch Einbau relativ kleiner Mengen 3- oder 4- wertiger Alkohole oder 3- oder 4-basischer Carbonsäuren, z. B. gemäß DE-OS 19 00 270 und US-PS 36 92 744, verzweigt werden. Beispiele bevorzugter Verzwei­ gungsmittel sind Trimesinsäure, Trimellithsäure, Trimethylolethan und -propan und Pentaerythrit.
Besonders bevorzugt sind Polyalkylenterephthalate, die allein aus Terephthalsäure und deren reaktionsfähigen Derivaten (z. B. deren Dialkylestern) und Ethylenglykol und/oder Butandiol-1,4 hergestellt worden sind, und Mischungen dieser Polyalkylen­ terephthalate.
Mischungen von Polyalkylenterephthalaten enthalten 1 bis 50 Gew.-%, vorzugsweise 1 bis 30 Gew.-%, Polyethylenterephthalat und 50 bis 99 Gew.-%, vorzugsweise 70 bis 99 Gew.-%, Polybutylenterephthalat.
Die vorzugsweise verwendeten Polyalkylenterephthalate besitzen im allgemeinen eine Grenzviskosität von 0,4 bis 1,5 dl/g, vorzugsweise 0,5 bis 1, 2 dl/g, gemessen in Phenol/o-Dichlorbenzol (1 : 1 Gewichtsteile) bei 25°C im Ubbelohde-Viskosimeter.
Die Polyalkylenterephthalate lassen sich nach bekannten Methoden herstellen (s. z. B. Kunststoff-Handbuch, Band VIII, S. 695 ff., Carl-Hanser-Verlag, München 1973).
Komponente D
Die Komponente D ist eine Phosphorverbindung der Formel (I)
In der Formel haben R1, R2, R3 und R4 die oben angegebenen Bedeutungen. Bevor­ zugt stehen R1, R2, R3 und R4 unabhängig voneinander für C1-C4-Alkyl, Phenyl, Naphthyl oder Phenyl-C1-C4-alkyl. Die aromatischen Gruppen R1, R2, R3 und R4 können ihrerseits mit Halogen- und/oder Alkylgruppen, vorzugsweise Chlor, Brom und/oder C1-C4-Alkyl substituiert sein. Besonders bevorzugte Aryl-Reste sind Kresyl, Phenyl, Xylenyl, Propylphenyl oder Butylphenyl sowie die entsprechenden bromierten und chlorierten Derivate davon.
X in der Formel (I) bedeutet einen ein- oder mehrkernigen aromatischen Rest mit 6 bis 30 C-Atomen. Dieser leitet sich von Diphenolen der Formel (II) ab. Bevorzugte Diphenole sind z. B. Diphenylphenol, Bisphenol A, Resorcin oder Hydrochinon oder deren chlorierten oder bromierten Derivaten.
n in der Formel (I) kann, unabhängig voneinander, 0 oder 1 sein, vorzugsweise ist n gleich 1.
N steht für Werte von 0 bis 30, vorzugsweise für einen durchschnittlichen Wert von 0,3 bis 20, besonders bevorzugt 0,5 bis 10, insbesondere 0,5 bis 6.
Als erfindungsgemäße Komponente D können Monophosphate (N = O), Oligophos­ phate (N = 1-30) oder Mischungen aus Mono- und Oligophosphaten eingesetzt werden.
In den erfindungsgemäßen Formmassen liegt die Komponente D vorzugsweise als eine Mischung von 10 bis 90 Gew.-%, vorzugsweise 12 bis 40 Gew.-%, wenigstens ei­ ner Monophosphorverbindung der Formel (I) und 10 bis 90 Gew.-%, vorzugsweise 60 bis 88 Gew.-%, jeweils bezogen auf die Gesamtmenge der Phosphorverbindungen, wenigstens einer Oligophosphorverbindung der Formel (I) vor, wobei die Mischung ein durchschnittliches N von 0,3 bis 20, vorzugsweise 0,5 bis 10, besonders be­ vorzugt 0,5 bis 6, aufweist.
Monophosphorverbindungen der Formel (I) sind insbesondere Tributylphosphat, Tris-(2-chlorethyl)-phosphat, Tris-(2,3-dibromprobyl)-phosphat, Triphenylphosphat, Trikresylphosphat, Diphenylkresylphosphat, Diphenyloctylphosphat, Diphenyl-2-et­ hylkresylphosphat, Tri-(isopropylphenyl)-phosphat, halogensubstituierte Arylphos­ phate, Methylphosphonsäuredimethylester, Methylphosphensäurediphenylester, Phe­ nylphosphonsäurediethylester, Triphenylphosphinoxid oder Trikresylphosphinoxid. Für bestimmte Anwendungen, besonders dann wenn erhöhte Anforderungen an die Flammfestigkeit gestellt werden, sind Gehalte an Phosphorverbindungen D von mehr als 8 Gew.-%, vorzugsweise von 8,5 bis 17 Gew.-Teile erforderlich.
Die Phosphorverbindungen gemäß Komponente D sind bekannt (vgl. z. B. EP-A 363 608, EP-A 640 655) oder lassen sich nach bekannten Methoden in analoger Weise herstellen (z. B. Ullmanns Encyklopädie der technischen Chemie, Bd. 18, S. 301 ff. 1979; Houben-Weyl, Methoden der organischen Chemie, Bd. 12/1, S. 43; Beilstein Bd. 6, S. 177).
Komponente E
Die fluorierten Polyolefine E sind hochmolekular und besitzen Glasübergangstempe­ raturen von über -30°C, in der Regel von über 100°C, Fluorgehalte, vorzugsweise von 65 bis 76, insbesondere von 70 bis 76 Gew.-%, mittlere Teilchendurchmesser d50 von 0,05 bis 1000, vorzugsweise 0,08 bis 20 µm. Im allgemeinen haben die fluorierten Polyolefine E eine Dichte von 1, 2 bis 2,3 g/cm3. Bevorzugte fluorierte Polyolefine E sind Polytetrafluorethylen, Polyvinylidenfluorid, Tetrafluorethy­ len/Hexafluorpropylen- und Ethylen/Tetrafluorethylen-Copolymerisate. Die fluorier­ ten Polyolefin sind bekannt (vgl. "Vinyl and Related Polymers" von Schildknecht, John Wiley & Sons, Inc., New York, 1962, Seite 484-494; "Fluorpolymers" von Wall, Wiley-Interscience, John Wiley & Sons, Inc., New York, Band 13, 1970, Seite 623-654; "Modern Plastics Encyclopedia", 1970-1971, Band 47, Nr. 10 A, Oktober 1970, Mc Graw-Hill, Inc., New York, Seite 134 und 774; "Modern Plastica Encyclo­ pedia", 1975-1976, Oktober 1975, Band 52, Nr. 10 A, Mc Graw-Hill, Inc., New York, Seite 27, 28 und 472 und US-PS 3 671 487, 3 723 373 und 3 838 092).
Sie können nach bekannten Verfahren hergestellt werden, so beispielsweise durch Polymerisation von Tetrafluorethylen in wäßrigem Medium mit einem freie Radikale bildenden Katalysator, beispielseise Natrium-, Kalium- oder Ammoniumperoxidisul­ fat bei Drucken von 7 bis 71 kg/cm2 und bei Temperaturen von 0 bis 200°C, vorzugs­ weise bei Temperaturen von 20 bis 100°C. (Nähere Einzelheiten s. z. B. US-Patent 2 393 967). Je nach Einsatzform kann die Dichte dieser Materialien zwischen 1, 2 und 2,3 g/cm3, die mittlere Teilchengröße zwischen 0,5 und 1 000 µm liegen.
Erfindungsgemäß bevorzugte fluorierte Polyolefine E sind Tetrafluorethylenpolyme­ risate mit mittleren Teilchendurchmesser von 0,05 bis 20 µm, vorzugsweise 0,08 bis 10 µm, und eine Dichte von 1, 2 bis 1,9 g/cm3 und werden vorzugsweise in Form einer koagulierten Mischung von Emulsionen der Tetrafluorethylenpolymerisate E mit Emulsionen der Pfropfpolymerisate B eingesetzt.
Geeignete, in Pulverform einsetzbare fluorierte Polyolefine E sind Tetrafluorethy­ lenpolymerisate mit mittleren Teilchendurchmesser von 100 bis 1000 µm und Dich­ ten von 2,0 g/cm3 bis 2,3 g/cm3.
Zur Herstellung einer koagulierten Mischung aus B und E wird zuerst eine wäßrige Emulsion (Latex) eines Pfropfpolymerisates B mit einer feinteiligen Emulsion eines Tetraethylenpolymerisates E vermischt; geeignete Tetrafluorethylenpolymerisat- Emulsionen besitzen üblicherweise Feststoffgehalte von 30 bis 70 Gew-.%, insbe­ sondere von 50 bis 60 Gew.-%, vorzugsweise von 30 bis 35 Gew.-%.
Die Mengenangabe bei der Beschreibung der Komponente B kann den Anteil des Pfropfpolymerisats für die koagulierte Mischung aus Pfropfpolymerisat und fluorier­ tem Polyolefinen einschließen.
In der Emulsionsmischung liegt das Gleichgewichtsverhältnis Pfropfpolymerisat B zum Tetrafluorethylenpolymerisat E bei 95 : 5 bis 60 : 40. Anschließend wird die Emulsionsmischung in bekannter Wiese koaguliert, beispielsweise durch Sprühtrock­ nen, Gefriertrocknung oder Koagulation mittels Zusatz von anorganischen oder organischen Salzen, Säuren, Basen oder organischen, mit Wasser mischbaren Löse­ mitteln, wie Alkoholen, Ketonen, vorzugsweise bei Temperaturen von 20 bis 150°C, insbesondere von 50 bis 100°C. Falls erforderlich, kann bei 50 bis 200°C, bevorzugt 70 bis 100°C, getrocknet werden.
Geeignete Tetrafluorethylenpolymerisat-Emulsionen sind handlsübliche Produkte und werden beispielsweise von der Firma DuPont als Teflon® 30 N angeboten.
Die erfindungsgemäßen Formmassen können wenigstens eines der üblichen Addi­ tive, wie Gleit- und Entformungsmittel, Nukleiermittel, Anmtistatika, Stabilisatoren sowie Farbstoffe und Pigmente enthalten.
Die erfindungsgemäßen Formmassen können darüberhinaus noch feinstteilige, an­ organische Pulver in einer Menge bis zu 50 Gew.-Teilen, vorzugsweise bis zu 20, insbesondere 0,5 bis 10 Gew.-Teilen, enthalten.
Feinstteilige anorganische Verbindungen bestehen aus Verbindungen eines oder mehrerer Metalle der 1. bis 5. Hauptgruppe oder 1. bis 8. Nebengruppe des Perioden­ systems, bevorzugt 2. bis 5. Hauptgruppe oder 4. bis 8. Nebengruppe, besonders be­ vorzugt 3. bis 5. Hauptgruppe oder 4. bis 8. Nebengruppe mit mindestens einem Element ausgewählt aus der Gruppe Sauerstoff, Schwefel, Bor, Phosphor, Kohlen­ stoff, Stickstoff, Wasserstoff und Silicium.
Bevorzugte Verbindungen sind beispielsweise Oxide, Hydroxide, wasserhaltige Oxide, Sulfate, Sulfite, Sulfide, Carbonate, Carbide, Nitrate, Nitrite, Nitride, Borate, Silikate, Phosphate, Hydride, Phosphite oder Phosphonate.
Bevorzugte feinstteilige anorganischen Verbindungen sind beispielsweise TiN, TiO2, SnO2, WC, ZnO, Al2O3, AlO(OH), ZrO2, Sb2O3, SiO2, Eisenoxide, Na2SO4 BaSO4, Vanadianoxide, Zinkborat, Silicate wie Al-Silikate, Mg-Silikate, ein, zwei, drei­ dimensionale Silikate, Mischungen und dotierte Verbindungen sind ebenfalls ver­ wendbar. Desweiteren können diese nanoskaligen Partikel mit organischen Mole­ külen oberflächenmodifiziert sein, um eine bessere Verträglichkeit mit den Polyme­ ren zu erzielen. Auf diese Weise lassen sich hydrophobe oder hydrophile Ober­ flächen erzeugen.
Die durchschnittlichen Teilchendurchmesser sind kleiner gleich 200 nm, bevorzugt kleiner gleich 150 nm, insbesondere 1 bis 100 nm.
Teilchengröße und Teilchendurchmesser bedeutet immer den mittleren Teilchen­ durchmesser d50, ermittelt durch Ultrazentrifugenmessungen nach W. Scholtan et al. Kolloid-Z. und Z. Polymere 250 (1972), S. 782 bis 796.
Die anorganischen Verbindungen können als Pulver, Pasten, Sole, Dispersionen oder Suspensionen vorliegen. Durch Ausfällen können aus Dispersionen, Sole oder Sus­ pensionen Pulver erhalten werden.
Die Pulver können nach üblichen Verfahren in die thermoplastischen Kunststoffe eingearbeitet werden, beispielsweise durch direktes Kneten oder Extrudieren der Bestandteile der Formmasse und den feinstteiligen anorganischen Pulvern. Bevor­ zugte Verfahren stellen die Herstellung eines Masterbatch, z. B. in Flammschutz­ additiven, anderen Additiven, Monomeren, Lösungsmitteln, in Komponente A oder die Cofällung von Dispersionen der Pfropfkautschuke mit Dispersionen, Suspensio­ nen, Pasten oder Solen der feinstteiligen anorganischen Materialien dar.
Die erfindungsgemäßen Formmassen können bis zu 35 Gew.-%, bezogen auf die Gesamt-Formmasse, eines weiteren, gegebenenfalls synergistisch wirkenden Flamm­ schutzmittels enthalten. Beispielhaft werden als weitere Flammschutzmittel organi­ sche Halogenverbindugen wie Decabrombisphenylether, Tetrabrombisphenol, anor­ ganische Halogenverbindungen wie Ammoniumbromid, Stickstoffverbindungen, wie Melamin, Melaminformaldehyd-Harze, anorganische Hydroxidverbindungen wie Mg-, Al-Hydroxid, anorganische Verbindungen wie Antimonoxide, Bariummetabo­ rat, Hydroxoantimonat, Zirkonoxid, Zirkonhydroxid, Molybdenoxid, Ammonium­ molybdat, Zinkborat, Ammoniumborat und Zinnoxid sowie Siloxanverbindungen genannt.
Die erfindungsgemäßen Formmassen enthaltend die Komponenten A bis E und gegebenenfalls weiteren bekannten Zusätzen wie Stabilisatoren, Farbstoffen, Pig­ menten, Gleit- und Entformungsmitteln, Nukleiermittel sowie Antistatika, werden hergestellt, indem man die jeweiligen Bestandteile in bekannter Weise vermischt und bei Temperatuern von 200°C bis 300°C in üblichen Aggregaten wie Innenknetern, Extrudern und Doppelwellenschnecken schmelzcompoundiert und schmelzextrudiert, wobei die Komponente E vorzugsweise in Form der bereits erwähnten koagulierten Mischung eingesetzt wird.
Die Vermischung der einzelnen Bestandteile kann in bekannter Weise sowohl suk­ zessive als auch simultan erfolgen, und zwar sowohl bei etwa 20°C (Raumtempe­ ratur) als auch bei höherer Temperatur.
Die erfindungsgemäßen thermoplastischen Formmassen eignen sich aufgrund ihrer ausgezeichneten Flammfestigkeit, ihrer sehr guten Verarbeitungseigenschaft und ihrer sehr guten mechanischen Eigenschaften, insbesondere ihrer herausragenden Steifigkeit, zur Herstellung von Formkörpern jeglicher Art, insbesondere solchen mit erhöhten Anforderungen an Bruchbeständigkeit.
Die Formmassen der vorliegenden Erfindung können zur Herstellung von Formkör­ pern jeder Art verwendet werden. Insbesondere können Formkörper durch Spritzguß hergestellt werden. Beispiele für herstellbare Formkörper sind: Gehäuseteile jeder Art, z. B. für Haushaltsgeräte wie Saftpressen, Kaffeemaschinen, Mixer, für Büro­ maschinen, wie Monitore, Drucker, Kopierer oder Abdeckplatten für den Bausektor und Teile für den Kfz-Sektor. Sie sind außerdem auf dem Gebiet der Elektrotechnik einsetzbar, weil sie sehr gute elektrische Eigenschaften haben.
Weiterhin können die erfindungsgemäßen Formmassen beispielsweise zur Herstellung von folgenden Formkörpern bzw. Formteilen verwendet werden:
  • 1. Innenausbauteile für Schienenfahrzeuge
  • 2. Radkappen
  • 3. Gehäuse von Kleintransformatoren enthaltenden Elektrogeräten
  • 4. Gehäuse für Geräte zur Informationsverbreitung und -Übermittlung
  • 5. Gehäuse und Verkleidung für medizinische Zwecke
  • 6. Massagegeräte und Gehäuse dafür
  • 7. Spielfahrzeuge für Kinder
  • 8. Flächige Wandelemente
  • 9. Gehäuse für Sicherheitseinrichtungen
  • 10. Heckspoiler
  • 11. Wärmeisolierte Transportbehältnisse
  • 12. Vorrichtung zur Haltung oder Versorgung von Kleintieren
  • 13. Formteile für Sanitär- und Badeausrüstungen
  • 14. Abdeckgitter für Lüfteröffnungen
  • 15. Formteile für Garten- und Gerätehäuser
  • 16. Gehäuse für Gartengeräte.
Eine weitere Form der Verarbeitung ist die Herstellung von Formkörpern durch Tief­ ziehen aus vorher hergestellten Platten oder Folien.
Ein weiterer Gegenstand der vorliegenden Erfindung ist daher auch die Verwendung der erfindungsgemäßen Formmassen zur Herstellung von Formkörpern jeglicher Art, vorzugsweise der oben genannten, sowie die Formkörper aus den erfindungsgemäßen Formmassen.
Beispiele Komponente A A. 1
Lineares Polycarbonat auf Basis Bisphenol A mit einer relativen Lösungsviskosität von 1,272, gemessen in CH2Cl2 als Lösungsmittel bei 25°C und einer Konzentration von 0,5 g/100 ml.
A.2
Lineares Polycarbonat auf Basis Bisphenol A mit einer relativen Lösungsviskosität von 1,202, gemessen in CH2Cl2 als Lösungsmittel bei 25°C und einer Konzentration von 0,5 g/100 ml.
Komponente B B.1
Pfropfpolymerisat von 84 Gew.-Teilen eines Copolymerisats aus Styrol und Acryl­ nitril im Verhältnis von 73 : 27 auf 16 Gew.-Teile vernetzten Polybutadienkautschuk, hergestellt durch Massepolymerisation.
B.2 (Vergleich)
Pfropfpolymerisat von 40 Gew.-Teilen eines Copolymerisats aus Styrol und Acryl­ nitril im Verhältnis von 73 : 27 auf 60 Gew.-Teile teilchenförmigen vernetzten Poly­ butadienkautschuk (mittlerer Teilchendurchmesser d50 = 0,28 µm), hergestellt durch Emulsionspolymerisation.
Komponente C
Styrol/Acrylnitril-Copolymerisat mit einem Styrol/Acrylnitril-Gewichtsverhältnis von 72 : 28 und einer Grenzviskosität von 0,55 dl/g (Messung in Dimethylformamid bei 20°C).
Komponente D
  • 1. D.1 Triphenylphosphat (TPP) als Vergleich.
  • 2. D.2 Mischung aus m-Phenylen-bis(di-phenyl-phosphat) (Fyrolflex® RDP der Firma Akzo) und Triphenylphosphat (TPP) im Gewichtsverhältnis 3 : 1.
  • 3. D.3 m-Phenylen-bis(di-phenyl-phosphat), Fyrolflex© RDP der Firma Akzo.
Komponente E
Tetrafluorethylenpolymerisat als koagulierte Mischung aus einer SAN-Pfropfpoly­ merisat-Emulsion gemäß o. g. Komponente B in Wasser und einer Tetrafluorethylen­ polymerisat-Emulsion in Wasser. Das Gewichtsverhältnis Pfropfpolymerisat B zum Tetrafluorethylenpolymerisat E in der Mischung ist 90 Gew.-% zu 10 Gew.-%. Die Tetrafluorethylenpolyermisat-Emulsion besitzt einen Feststoffgehalt von 60 Gew.-%, der mittlere Teilchendurchmesser liegt zwischen 0,05 und 0,5 µm. Die SAN-Pfropf­ polymerisat-Emulsion besitzt einen Feststoffgehalt von 34 Gew.-% und einen mitt­ leren Latexteilchendurchmesser von d50 = 0,28 µm.
Herstellung von E
Die Emulsion des Tetrafluorethylenpolymerisats (Teflon 30 N der Fa. DuPont) wird mit der Emulsion des SAN-Pfropfpolymerisats B vermischt und mit 1,8 Gew.-%, bezogen auf Polymerfeststoff, phenolischer Antioxidantien stabilisiert. Bei 85 bis 9S°C wird die Mischung mit einer wäßrigen Lösung von MgSO4 (Bittersalz) und Essigsäure bei pH 4 bis 5 koaguliert, filtriert und bis zur praktischen Elektrolyt­ freiheit gewaschen, anschließend durch Zentrifugation von der Hauptmenge Wasser befreit und danach bei 100°C zu einem Pulver getrocknet. Dieses Pulver kann dann mit den weiteren Komponenten in den beschriebenen Aggregaten compoundiert werden.
Herstellung und Prüfung der erfindungsgemäßen Formmassen
Das Mischen der Komponenten erfolgt auf einem 3-l-Innenkneter. Die Formkörper werden auf einer Spritzgießmaschine Typ Arburg 270 E bei 260°C hergestellt.
Die Bestimmung der Wärmeformbeständigkeit nach Vicat B erfolgt gemäß DIN 53 460 (ISO 306) an Stäben der Abmessung 80 × 10 × 4 mm3.
Die Bestimmung des Zug E-Moduls erfolgt nach DIN 53 457/ISO 527.
Die Bestimmung der Reißdehnung erfolgt nach ISO S27 Zur Ermittlung der Bindenahtfestigkeit wird die Schlagzähigkeit nach DIN 53 453 an der Bindenaht von beidseitig ausgespritzten Prüfkörpern (Verarbeitungstemperatur 260°C) der Dimension 170 × 10 × 4 mm gemessen.
Der Gewichtsverlust wird durch thermogravimetrische Analyse (TGA) am Granulat bestimmt. Meßbedingungen: dynamisch, Heizrate 10 K/min. N2 als Inertgas. Der Wert bei 280°C wird als Maß für den Anteil flüchtiger Komponenten und die Verarbeitungsstabilität herangezogen.
Zur Bestimmung der Verarbeitungsstabilität werden Prüfkörper der Abmessung 80 × 10 × 4 mm3 bei 260°C, 280°C und 300°C hergestellt. Die Verarbeitungsstabilität wird anhand der Oberflächenqualität beurteilt.
Tabelle
Zusammensetzung und Eigenschaften der Polycarbonat-ABS-Formmassen
Die erfindungsgemäßen Beispiele 1, 3 und 5 zeigen deutliche Eigenschaftsverbes­ serungen bei mechanischen Eigenschaften wie Reißdehnung und Bindenahtfestigkeit, höhere E-Moduli und eine signifikant höhere Verarbeitungsstabilität, die sich in einem reduzierten Masse-Verlust bei 280°C (TGA) und weniger Oberflächenstörung auf den Probekörper zeigt. Besonders ausgewogene Eigenschaftskombinationen zeigen dabei die Polycarbonat-ABS-Formmassen, die sowohl Masse-ABS (Kompo­ nente B) als auch Emulsion-ABS (eingebracht über Komponente E) enthalten.

Claims (20)

1. Thermoplatische Formmassen auf Basis Polycarbonat und/oder Polyester­ carbonat enthaltend mittels Masse-, Lösungs- oder Masse-Suspension-Poly­ merisationsverfahren hergestelltes Pfropfpolymerisat und Phosphorverbin­ dungen der allgemeinen Formel (I)
worin
R1, R2, R3 und R4, unabhängig voneinander jeweils gegebenenfalls haloge­ niertes C1- bis C8-Alkyl, jeweils gegebenenfalls durch Halogen und/oder Alkyl substituiertes C5- bis C6-Cycloalkyl, C6- bis C20-Aryl oder C7- bis C12-Aralkyl,
n unabhängig voneinander, 0 oder 1
N 0 bis 30 und
X einen ein- oder mehrkernigen aromatischen Rest mit 6 bis 30 C-Ato­ men bedeuten, und
0,05 bis 5 Gew.-Teile fluoriertes Polyolefin.
2. Thermoplastische Formmassen enthaltend
  • A) 40 bis 99 Gew.-Teile thermoplastisches Polycarbonat und/oder Poly­ estercarbonat
  • B) 0,5 bis 60 Gew.-Teile mittels Masse-, Lösungs- oder Masse-Suspen­ sions-Polymerisationsverfahren hergestelltes Pfropfpolymerisat von
    • 1. B.1 0 bis 99 Gew.-% einem oder mehreren Vinylmonomeren auf
    • 2. B.2 0 bis 1 Gew.-% einer oder mehrerer Pfropfgrundlagen mit einer Glas­ umwandlungstemperatur <10°C,
  • C) 0 bis 45 Gew.-Teile thermoplastisches Vinylcopolymerisat, und/oder Polyalkylenterephthalat,
  • D) 0,5 bis 20 Gew.-Teile einer Phosphorverbindung der Formel (I)
    worin
    R1, R2, R3 und R4, unabhängig voneinander jeweils gegebenenfalls haloge­ niertes C1- bis C8-Alkyl, jeweils gegebenenfalls durch Halogen und/oder Alkyl substituiertes C5- bis C6-Cycloalkyl, C6- bis C20-Aryl oder C7- bis C12-Aralkyl,
    n unabhängig voneinander, 0 oder 1
    N 0 bis 30 und
    X einen ein- oder mehrkernigen aromatischen Rest mit 6 bis 30 C-Ato­ men bedeuten, und
  • E) 0,05 bis 5 Gew.-Teile fluoriertes Polyolefin.
3. Formmassen nach Anspruch 1 und 2, welche 60 bis 98,5 Gew.-Teile aroma­ tisches Polycarbonat und/oder Polyestercarbonat enthalten.
4. Formmassen nach Anspruch 1-3, welche 1 bis 40 Gew.-Teile der Kompo­ nente B und 0 bis 30 Gew.-Teile der Komponente C enthalten.
5. Formmassen nach Anspruch 1 bis 4, welche 1 bis 18 Gew.-Teile Phosphor­ verbindung gemäß Formel (I) enthalten.
6. Formmassen nach Anspruch 5. welche 8, 5 bis 17 Gew.-Teile Phosphorver­ bindung gemäß Formel (I) enthalten.
7. Formmassen nach einem der Ansprüche 1 und 2, wobei der Kautschukgehalt der Komponente B 5 Gew.-% bis 25 Gew.-% beträgt.
8. Formmassen gemäß der vorhergehenden Ansprüche, wobei Vinylmonomere B.1 Gemische aus
  • 1. B.1.1 Styrol, α-Methylstyrol, halogen- oder alkylkernsubstituierte Styrole und/oder (Meth)Acrylsäure-C1-C8-alkylester und
  • 2. B.1.2 ungesättigte Nitrile, (Meth)Acrylsäure-C1-C8-alkylester und/oder De­ rivate ungesättigter Carbonsäuren darstellen.
9. Formmassen gemäß der vorhergehenden Ansprüche, wobei die Pfropfgrund­ lage B.2 ausgewählt ist aus mindestens einem Kautschuk aus der Gruppe der Dienkautschuke, EP(D)M-Kautschuke, Acrylat-, Polyurethan-, Silikon-, Chloropren- und EthylenlVinylacetat-Kautschuk.
10. Formmassen gemäß einem der vorhergehenden Ansprüche, welche als Komponente B Masse-Pfropfpolymerisate und Emulsions-Pfropfpolymerisate enthalten.
11. Formmassen nach einem der vorhergehenden Ansprüche, welche als Kompo­ nente D 10 bis 90 Gew.-%, wenigstens einer Monophosphatverbindung der Formel (I) und 90 bis 10 Gew.-%, (jeweils bezogen auf die Gesamtmenge der Phosphorverbindungen) wenigstens einer Oligophosphorverbindung der Formel (I) enthalten.
12. Formmassen nach einem der vorhergehenden Ansprüche, wobei in Formel (I) N einen durchschnittlichen Wert von 0,3 bis 20 aufweist.
13. Formmassen nach einem der vorhergehenden Ansprüche welche als Mono­ phosphorverbindung der Formel (I) Tributylphosphat, Tris-(2-chlorethyl)- phosphat, Tris-(2,3-dibrompropyl)-phosphat, Triphenylphosphat, Trikresyl­ phosphat, Diphenylkresylphosphat, Diphenyloctylphosphat, Diphenyl-2- ethylkresylphosphat, Tri-(isopropylphenyl)-phosphat, halogensubstituierte Arylphosphate, Methylphosphonsäuredimethylester, Methylphosphonsäure­ diphenylester, Phenylphosphonsäurediethylester, Triphenylphosphinoxid und/oder Trikresylphosphinoxid enthalten.
14. Formmassen gemäß einer der vorhergehenden Ansprüche, welche als Kompo­ nente D m-Phenylen-bis(diphenyl-phosphat) enthalten.
15. Formmassen gemäß eine der vorhergehenden Ansprüche, welche als Kompo­ nente D Diphenylisopropyliden-bis(dihenyl-phosphonat) enthalten.
16. Formmassen nach einem der vorhergehenden Ansprüchen welche bis zu 35 Gew.-%, bezogen auf die Gesamtformmasse, wenigstens eines Flamm­ schutzmittels verschieden von Komponente D enthalten.
17. Formmassen gemäß einem der vorhergehenden Ansprüche, enthaltend eine feinstteilige Verbindung der 1. bis 5. Hauptgruppe oder der 1. bis 8. Neben­ gruppe des Periodensystems mit mindestens einem Element ausgewählt aus der Gruppe bestehend aus Sauerstoff, Schwefel, Bor, Kohlenstoff, Phosphor, Stickstoff, Wasserstoff und Silicium.
18. Formmassen nach einem der vorhergehenden Ansprüche welche mindestens einen Zusatz aus der Gruppe der Stabilisatoren, Pigmente, Entformungsmittel, Fließhilfsmittel und/oder Antistatika enthalten.
19. Verwendung der Formmassen nach einem der vorhergehenden Ansprüche zur Herstellung von Formkörpern.
20. Formkörper, herstellbar aus Formmassen nach einem der Ansprüche 1 bis 18.
DE19853105A 1998-11-18 1998-11-18 Flammwidrige Polycarbonat-ABS-Formmassen Withdrawn DE19853105A1 (de)

Priority Applications (18)

Application Number Priority Date Filing Date Title
DE19853105A DE19853105A1 (de) 1998-11-18 1998-11-18 Flammwidrige Polycarbonat-ABS-Formmassen
TW088119099A TW536548B (en) 1998-11-18 1999-11-03 Flame-resistant polycarbonate-ABS moulding compositions having excellent mechanical and processing properties
CNB998134473A CN1146641C (zh) 1998-11-18 1999-11-04 耐燃聚碳酸酯-abs模塑组合物
JP2000583995A JP4823418B2 (ja) 1998-11-18 1999-11-04 耐燃性ポリカーボネートabs成形用材料
ES99969966T ES2288043T3 (es) 1998-11-18 1999-11-04 Masas de moldeo de policarbonato-abs ignifugas.
EP99969966A EP1144511B1 (de) 1998-11-18 1999-11-04 Flammwidrige polycarbonat-abs-formmassen
KR1020017006243A KR100580989B1 (ko) 1998-11-18 1999-11-04 내화성 폴리카르보네이트 abs 성형재
BRPI9915457-9A BR9915457B1 (pt) 1998-11-18 1999-11-04 composições de moldagem, uso e artigo.
DE59914447T DE59914447D1 (de) 1998-11-18 1999-11-04 Flammwidrige polycarbonat-abs-formmassen
AT99969966T ATE369398T1 (de) 1998-11-18 1999-11-04 Flammwidrige polycarbonat-abs-formmassen
PCT/EP1999/008411 WO2000031173A2 (de) 1998-11-18 1999-11-04 Flammwidrige polycarbonat-abs-formmassen
CA2351598A CA2351598C (en) 1998-11-18 1999-11-04 Flame resistant polycarbonate abs moulding material
AU32754/00A AU3275400A (en) 1998-11-18 1999-11-04 Flame-resistant polycarbonate abs moulding material
US09/856,006 US6596794B1 (en) 1998-11-18 1999-11-04 Flame-resistant polycarbonate ABS moulding material
ARP990105738A AR024229A1 (es) 1998-11-18 1999-11-11 Masas de moldeo termoplasticas a base de policarbonato y/o de poliestercarbonato, el empleo de las mismas en la fabricacion de cuerpos moldeados, y cuerposmoldeados
MYPI99004973A MY130891A (en) 1998-11-18 1999-11-16 Flame-resistant polycarbonate-abs moulding compositions
HK02104013.3A HK1042314A1 (zh) 1998-11-18 2002-05-29 耐燃聚碳酸酯-abs模塑組合物
JP2011090384A JP2011157560A (ja) 1998-11-18 2011-04-14 耐燃性ポリカーボネートabs成形用材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19853105A DE19853105A1 (de) 1998-11-18 1998-11-18 Flammwidrige Polycarbonat-ABS-Formmassen

Publications (1)

Publication Number Publication Date
DE19853105A1 true DE19853105A1 (de) 2000-05-25

Family

ID=7888159

Family Applications (2)

Application Number Title Priority Date Filing Date
DE19853105A Withdrawn DE19853105A1 (de) 1998-11-18 1998-11-18 Flammwidrige Polycarbonat-ABS-Formmassen
DE59914447T Expired - Lifetime DE59914447D1 (de) 1998-11-18 1999-11-04 Flammwidrige polycarbonat-abs-formmassen

Family Applications After (1)

Application Number Title Priority Date Filing Date
DE59914447T Expired - Lifetime DE59914447D1 (de) 1998-11-18 1999-11-04 Flammwidrige polycarbonat-abs-formmassen

Country Status (16)

Country Link
US (1) US6596794B1 (de)
EP (1) EP1144511B1 (de)
JP (2) JP4823418B2 (de)
KR (1) KR100580989B1 (de)
CN (1) CN1146641C (de)
AR (1) AR024229A1 (de)
AT (1) ATE369398T1 (de)
AU (1) AU3275400A (de)
BR (1) BR9915457B1 (de)
CA (1) CA2351598C (de)
DE (2) DE19853105A1 (de)
ES (1) ES2288043T3 (de)
HK (1) HK1042314A1 (de)
MY (1) MY130891A (de)
TW (1) TW536548B (de)
WO (1) WO2000031173A2 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002068533A1 (de) * 2001-02-26 2002-09-06 Bayer Aktiengesellschaft Flammwidrige polycarbonat-zusammensetzungen mit erhöhter chemikalienbeständigkeit
CN104072934A (zh) * 2014-06-13 2014-10-01 安徽皖东化工有限公司 一种耐热阻燃耐冲击改性abs树脂

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10100591A1 (de) * 2001-01-09 2002-07-11 Bayer Ag Phosphorhaltiges Flammschutzmittel und Flammwidrige thermoplastische Formmassen
JP2002363423A (ja) * 2001-06-11 2002-12-18 Asahi Denka Kogyo Kk 難燃性合成樹脂組成物
US7799855B2 (en) * 2001-11-12 2010-09-21 Sabic Innovative Plastics Ip B.V. Flame retardant thermoplastic polycarbonate compositions, use and method thereof
DE10234419A1 (de) * 2002-07-29 2004-02-12 Bayer Ag Flammwidrige Formmassen
MXPA05001111A (es) * 2002-07-29 2005-04-28 Bayer Materialscience Ag Composiciones de moldeado de policarbonato resistente a la flama.
US7223804B2 (en) * 2003-12-30 2007-05-29 General Electric Company Polycarbonate composition
US20060030647A1 (en) * 2004-08-05 2006-02-09 Thomas Ebeling Flame retardant thermoplastic polycarbonate compositions, use, and method of manufacture thereof
KR100650910B1 (ko) * 2004-10-13 2006-11-27 제일모직주식회사 난연성 열가소성 수지 조성물
US20060142486A1 (en) * 2004-12-23 2006-06-29 Derudder James L Thermoplastic polycarbonate compositions, articles made therefrom and method of manufacture
US7498401B2 (en) * 2005-03-03 2009-03-03 Sabic Innovative Plastics Ip B.V. Thermoplastic polycarbonate compositions, articles made therefrom and method of manufacture
DE102006012990A1 (de) * 2006-03-22 2007-09-27 Bayer Materialscience Ag Flammgeschützte schlagzähmodifizierte Polycarbonat-Zusammensetzungen
US7863400B2 (en) * 2006-08-01 2011-01-04 University Of Massachusetts Deoxybenzoin-based anti-flammable polyphosphonate and poly(arylate-phosphonate) copolymer compounds, compositions and related methods of use
KR100885819B1 (ko) * 2007-12-18 2009-02-26 제일모직주식회사 굴절률이 우수한 분지형 아크릴계 공중합체 및 그 제조방법
KR101004040B1 (ko) * 2007-12-18 2010-12-31 제일모직주식회사 상용성이 향상된 난연 내스크래치 열가소성 수지 조성물
DE102007061760A1 (de) 2007-12-20 2009-06-25 Bayer Materialscience Ag Flammgeschützte schlagzähmodifizierte Polyalkylenterephthalat/Polycarbonat-Zusammensetzungen
DE102007061758A1 (de) 2007-12-20 2009-06-25 Bayer Materialscience Ag Flammgeschützte schlagzähmodifizierte Polycarbonat-Zusammensetzungen
DE102007061759A1 (de) 2007-12-20 2009-06-25 Bayer Materialscience Ag Flammgeschützte schlagzähmodifizierte Polycarbonat-Zusammensetzungen
DE102007061761A1 (de) * 2007-12-20 2009-06-25 Bayer Materialscience Ag Flammgeschützte schlagzähmodifizierte Polycarbonat-Zusammensetzungen
DE102007061762A1 (de) 2007-12-20 2009-06-25 Bayer Materialscience Ag Flammgeschützte schlagzähmodifizierte Polycarbonat-Zusammensetzungen
KR100902352B1 (ko) * 2008-03-13 2009-06-12 제일모직주식회사 상용성이 향상된 열가소성 수지 조성물
KR100886348B1 (ko) * 2008-04-14 2009-03-03 제일모직주식회사 상용성이 개선된 난연 내스크래치 열가소성 수지 조성물
CN102171290A (zh) * 2008-08-06 2011-08-31 思迪隆欧洲有限公司 抗点燃碳酸酯聚合物组合物
KR101188349B1 (ko) * 2008-12-17 2012-10-05 제일모직주식회사 투명성 및 내스크래치성이 향상된 폴리카보네이트계 수지 조성물
US8552096B2 (en) * 2009-07-31 2013-10-08 Sabic Innovative Plastics Ip B.V. Flame-retardant reinforced polycarbonate compositions
US8735490B2 (en) * 2009-12-30 2014-05-27 Cheil Industries Inc. Thermoplastic resin composition having improved impact strength and melt flow properties
TW201137033A (en) 2010-03-02 2011-11-01 Styron Europe Gmbh Improved flow ignition resistant carbonate polymer composition
TWI521051B (zh) 2010-03-11 2016-02-11 盛禧奧歐洲有限責任公司 經衝擊改質之抗引燃性碳酸酯聚合物組成物
CN101993586B (zh) * 2010-11-30 2012-10-10 金发科技股份有限公司 一种阻燃的聚碳酸酯/abs材料
CN102268182A (zh) * 2011-06-01 2011-12-07 金发科技股份有限公司 聚碳酸酯-abs阻燃组合物及其制备方法
EP2881408B1 (de) 2013-12-04 2017-09-20 Lotte Advanced Materials Co., Ltd. Styrolbasierte Copolymere und thermoplastische Harzzusammensetzung damit
US9902850B2 (en) 2014-06-26 2018-02-27 Lotte Advanced Materials Co., Ltd. Thermoplastic resin composition
US9850333B2 (en) 2014-06-27 2017-12-26 Lotte Advanced Materials Co., Ltd. Copolymers and thermoplastic resin composition including the same
US9856371B2 (en) 2014-06-27 2018-01-02 Lotte Advanced Materials Co., Ltd. Thermoplastic resin composition and low-gloss molded article made therefrom
US9790362B2 (en) 2014-06-27 2017-10-17 Lotte Advanced Materials Co., Ltd. Thermoplastic resin composition and molded article made using the same
KR101822697B1 (ko) 2014-11-18 2018-01-30 롯데첨단소재(주) 외관 특성이 우수한 열가소성 수지 조성물 및 이를 이용한 성형품
CN110105738B (zh) * 2019-04-17 2020-07-21 广东聚石化学股份有限公司 一种阻燃pc/abs材料及其制备方法和应用
CN111635625A (zh) * 2020-06-10 2020-09-08 上海嘉柏利通科技股份有限公司 具有耐清洗耐高温湿热灭菌组合物的防护眼罩

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3704486A1 (de) 1987-02-13 1988-08-25 Bayer Ag Antistatische, thermoplastische formmassen auf basis von vinylaromatpolymerisaten ii
US4883835A (en) * 1987-04-17 1989-11-28 Bayer Aktiengesellschaft Flame resistant antistatic polycarbonate moulding compounds
US5204394A (en) 1988-09-22 1993-04-20 General Electric Company Polymer mixture having aromatic polycarbonate, styrene I containing copolymer and/or graft polymer and a flame-retardant, articles formed therefrom
USRE36188E (en) 1989-09-20 1999-04-06 General Electric Company Polymer mixture having aromatic polycarbonate styrene I containing copolymer and/or graft polymer and a flame-retardant, articles formed therefrom
JPH07207136A (ja) * 1994-01-18 1995-08-08 Japan Synthetic Rubber Co Ltd 熱可塑性樹脂組成物
TW287181B (de) * 1994-05-10 1996-10-01 Taishl Kagaku Kogyo Kk
DE4434965A1 (de) 1994-09-30 1996-04-04 Bayer Ag Polycarbonat-Formmassen mit verbesserter Zähigkeit
JPH08319387A (ja) * 1995-05-25 1996-12-03 Denki Kagaku Kogyo Kk 難燃性樹脂組成物
TW386099B (en) 1995-07-26 2000-04-01 Gen Electric Flame resistant compositions of polycarbonate and monovinylidene aromatic compounds
JPH0959464A (ja) * 1995-08-28 1997-03-04 Toray Ind Inc 耐薬品性熱可塑性樹脂組成物およびその製造方法
JP3611227B2 (ja) * 1996-09-30 2005-01-19 日本ジーイープラスチックス株式会社 ポリカ−ボネ−ト系樹脂組成物
JP3611228B2 (ja) * 1996-09-30 2005-01-19 日本ジーイープラスチックス株式会社 ポリカ−ボネ−ト系樹脂組成物
JPH10158497A (ja) * 1996-11-29 1998-06-16 Jiyuuka A B S Latex Kk ブロー成形用樹脂組成物
DE19734667A1 (de) * 1997-08-11 1999-02-18 Bayer Ag Flammwidrige, verstärkte Polycarbonat-ABS-Formmassen
DE19734666A1 (de) * 1997-08-11 1999-02-18 Bayer Ag Flammwidrige Polycarbonat-ABS-Formmassen
JP3286586B2 (ja) * 1997-12-03 2002-05-27 奇美実業股▲分▼有限公司 成形材料用難燃性スチレン系樹脂組成物
SG72917A1 (en) * 1998-01-28 2000-05-23 Gen Electric Flame retardant polycarbonate resin/abs graft copolymer blends
JPH11302523A (ja) * 1998-04-14 1999-11-02 Qimei Ind Co Ltd 成形材料用熱可塑性樹脂組成物
JP3976411B2 (ja) * 1998-08-28 2007-09-19 帝人化成株式会社 ポリカーボネート樹脂組成物およびそれからなる成形品
US20010009946A1 (en) * 1998-09-29 2001-07-26 General Electric Company Polycarbonate resin/graft copolymer blends

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002068533A1 (de) * 2001-02-26 2002-09-06 Bayer Aktiengesellschaft Flammwidrige polycarbonat-zusammensetzungen mit erhöhter chemikalienbeständigkeit
US6767944B2 (en) 2001-02-26 2004-07-27 Bayer Aktiengesellschaft Flame-resistant polycarbonate compositions having increased chemical resistance
CN1325561C (zh) * 2001-02-26 2007-07-11 拜尔公司 化学稳定性增强的耐火聚碳酸酯组合物
KR100837051B1 (ko) * 2001-02-26 2008-06-11 바이엘 악티엔게젤샤프트 화학약품 안정성이 증가된 방염성 폴리카르보네이트 조성물
CN104072934A (zh) * 2014-06-13 2014-10-01 安徽皖东化工有限公司 一种耐热阻燃耐冲击改性abs树脂

Also Published As

Publication number Publication date
EP1144511A2 (de) 2001-10-17
KR100580989B1 (ko) 2006-05-17
KR20010086447A (ko) 2001-09-12
ES2288043T3 (es) 2007-12-16
AU3275400A (en) 2000-06-13
CA2351598C (en) 2010-10-05
TW536548B (en) 2003-06-11
WO2000031173A8 (de) 2001-03-08
ATE369398T1 (de) 2007-08-15
JP4823418B2 (ja) 2011-11-24
JP2002530499A (ja) 2002-09-17
CA2351598A1 (en) 2000-06-02
US6596794B1 (en) 2003-07-22
CN1146641C (zh) 2004-04-21
EP1144511B1 (de) 2007-08-08
BR9915457A (pt) 2001-07-17
HK1042314A1 (zh) 2002-08-09
CN1326488A (zh) 2001-12-12
JP2011157560A (ja) 2011-08-18
WO2000031173A3 (de) 2000-10-05
BR9915457B1 (pt) 2010-09-08
WO2000031173A2 (de) 2000-06-02
MY130891A (en) 2007-07-31
AR024229A1 (es) 2002-09-25
DE59914447D1 (de) 2007-09-20

Similar Documents

Publication Publication Date Title
EP1144511B1 (de) Flammwidrige polycarbonat-abs-formmassen
EP1003809B1 (de) Flammwidrige polycarbonat-abs-formmassen
EP1228136B1 (de) Flammwidrige polycarbonat-abs-blends
EP1003808B1 (de) Flammwidrige wärmeformbeständige polycarbonat-abs-formmassen
EP1095099B1 (de) Flammwidrige polycarbonat-abs-formmassen
EP1355987B1 (de) Flammwidrige; mineralverstärkte polycarbonatzusammensetzungen mit hoher bindenahtfestigkeit
DE19801198A1 (de) Flammwidrige Polycarbonat-ABS-Formmassen
WO1999007782A1 (de) Flammwidrige, spannungsrissbeständige polycarbonat abs-formmassen
DE19828541A1 (de) Flammwidrige Polycarbonat-ABS-Formmassen
WO2000058394A1 (de) Flammwidrige, schlagzähmodifizierte polycarbonat-formmassen
EP1047724B1 (de) Polycarbonat-abs-formmassen
EP1341848A1 (de) Polycarbonat-zusammensetzungen
EP1530612B1 (de) Flammwidrige mit pfropfpolymerisat modifizierte polycarbonat-formmassen
EP1151035B1 (de) Flammwidrige wärmeformbeständige polycarbonat-abs-formmassen
WO2000058395A1 (de) Flammwidrige mit pfropfpolymerisat modifizierte polycarbonat-formmassen
EP1133529B1 (de) Thermoplastische harze mit niedrigem grobkorn-anteil
WO2001018106A1 (de) Flammwidrige polycarbonat-formmassen
DE10027341A1 (de) Flammwidrige transluzente Polycarbonat-Formmassen
WO2001018118A2 (de) Flammwidrige polycarbonat-blends

Legal Events

Date Code Title Description
8139 Disposal/non-payment of the annual fee