DE19823861A1 - Oxiranyl-triazolinthione - Google Patents

Oxiranyl-triazolinthione

Info

Publication number
DE19823861A1
DE19823861A1 DE19823861A DE19823861A DE19823861A1 DE 19823861 A1 DE19823861 A1 DE 19823861A1 DE 19823861 A DE19823861 A DE 19823861A DE 19823861 A DE19823861 A DE 19823861A DE 19823861 A1 DE19823861 A1 DE 19823861A1
Authority
DE
Germany
Prior art keywords
carbon atoms
formula
oxiranyl
butyl
methyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE19823861A
Other languages
English (en)
Inventor
Stefan Dr Hillebrand
Manfred Dr Jautelat
Astrid Mauler-Machnik
Klaus Dr Stenzel
Martin Dr Kugler
Otto Dr Exner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer AG
Original Assignee
Bayer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer AG filed Critical Bayer AG
Priority to DE19823861A priority Critical patent/DE19823861A1/de
Priority to EP98955432A priority patent/EP1060176B1/de
Priority to IL13531698A priority patent/IL135316A/xx
Priority to PCT/EP1998/006449 priority patent/WO1999021853A1/de
Priority to US09/529,678 priority patent/US6245793B1/en
Priority to KR1020007003903A priority patent/KR20010031064A/ko
Priority to JP2000517963A priority patent/JP2001521031A/ja
Priority to DE59811437T priority patent/DE59811437D1/de
Priority to AU12276/99A priority patent/AU1227699A/en
Priority to HU0003811A priority patent/HUP0003811A3/hu
Priority to AT98955432T priority patent/ATE267195T1/de
Priority to BR9813261-0A priority patent/BR9813261A/pt
Priority to CNB988105209A priority patent/CN1152875C/zh
Publication of DE19823861A1 publication Critical patent/DE19823861A1/de
Priority to MXPA00003538 priority patent/MX210235B/es
Priority to US09/827,058 priority patent/US6414007B2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/06Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/64Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with three nitrogen atoms as the only ring hetero atoms
    • A01N43/647Triazoles; Hydrogenated triazoles
    • A01N43/6531,2,4-Triazoles; Hydrogenated 1,2,4-triazoles
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N47/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom not being member of a ring and having no bond to a carbon or hydrogen atom, e.g. derivatives of carbonic acid
    • A01N47/08Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom not being member of a ring and having no bond to a carbon or hydrogen atom, e.g. derivatives of carbonic acid the carbon atom having one or more single bonds to nitrogen atoms
    • A01N47/28Ureas or thioureas containing the groups >N—CO—N< or >N—CS—N<
    • A01N47/38Ureas or thioureas containing the groups >N—CO—N< or >N—CS—N< containing the group >N—CO—N< where at least one nitrogen atom is part of a heterocyclic ring; Thio analogues thereof

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Dentistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Plant Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Agronomy & Crop Science (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Description

Die vorliegende Erfindung betrifft neue Oxiranyl-triazolinthione, ein Verfahren zu deren Herstellung und deren Verwendung als Mikrobizide.
Es ist bereits bekannt geworden, daß zahlreiche Azolylmethyl-oxiran-Derivate fungi­ zide Eigenschaften besitzen (vgl. EP-A 0 094 564, EP-A 0 196 038 und WO-A 96 38 440). So läßt sich z. B. 3-(2-Chlor-phenyl)-2-(4-fluor-phenyl)-2-[(4,5-dihydro-5- thiono-1,2,4-triazol-1-yl)-methyl]-oxiran zur Bekämpfung von Pilzen verwenden.
Die Wirksamkeit dieses Stoffes ist gut, läßt aber bei niedrigen Aufwandmengen in man­ chen Fällen zu wünschen übrig.
Es wurden nun neue Oxiranyl-triazolinthione der Formel
worin
R1 für Alkyl mit 1 bis 4 Kohlenstoffatomen, Halogenalkyl mit 1 bis 4 Kohlen­ stoffatomen und 1 bis 5 Halogenatomen, gegebenenfalls durch Halogen sub­ stituiertes Cycloalkyl mit 3 bis 7 Kohlenstoffatomen, Naphthyl oder gege­ benenfalls einfach bis dreifach, gleichartig oder verschieden durch Halogen, Nitro, Phenyl, Phenoxy, Alkyl mit 1 bis 4 Kohlenstoffatomen, Alkoxy mit 1 bis 4 Kohlenstoffatomen, Halogenalkyl mit 1 bis 4 Kohlenstoffatomen und 1 bis 5 Halogenatomen, Halogenalkoxy mit 1 bis 4 Kohlenstoffatomen und 1 bis 5 Halogenatomen und/oder Halogenalkylthio mit 1 bis 4 Kohlenstoff­ atomen und 1 bis 5 Halogenatomen substituiertes Phenyl steht,
R2 für gegebenenfalls einfach bis dreifach, gleichartig oder verschieden durch Halogen, Alkyl mit 1 bis 4 Kohlenstoffatomen, Alkoxy mit 1 bis 4 Kohlen­ stoffatomen, Halogenalkyl mit 1 bis 4 Kohlenstoffatomen und 1 bis 5 Halo­ genatomen, Halogenalkoxy mit 1 bis 4 Kohlenstoffatomen und 1 bis 5 Halogenatomen und/oder Halogenalkylthio mit 1 bis 4 Kohlenstoffatomen und 1 bis 5 Halogenatomen substituiertes Phenyl steht und
R3 für Alkoxyalkyl, Isopropyl oder n-Dodecyl steht, gefunden.
Die erfindungsgemäßen Stoffe enthalten zwei asymmetrisch substituierte Kohlen­ stoffatome und können deshalb in Form von Diastereomeren oder Enantiomeren anfallen. Die vorliegende Erfindung betrifft sowohl die einzelnen Isomeren als auch deren Gemische.
Weiterhin wurde gefunden, daß man Oxiranyl-triazolinthione der Formel (I) bzw. (Ia) erhalt, wenn man Oxiran-Derivate der Formel
worin
R1 und R2 die oben angegebenen Bedeutungen haben,
mit Isocyanaten der Formel
R3-NCO (III),
in welcher
R3 die oben angegebene Bedeutung hat,
gegebenenfalls in Gegenwart eines Katalysators und gegebenenfalls in Gegenwart eines Verdünnungsmittels umsetzt.
Schließlich wurde gefunden, daß die neuen Oxiranyl-triazolinthione der Formel (I) bzw. (Ia) sehr gute mikrobizide Eigenschaften aufweisen und sich sowohl im Pflanzenschutz als auch im Materialschutz zur Bekämpfung unerwünschter Mikroorganismen verwenden lassen.
Überraschenderweise besitzen die erfindungsgemäßen Oxiranyl-triazolinthione der Formel (I) bzw. (Ia) eine bessere mikrobizide Wirksamkeit, insbesondere fungizide Wirksamkeit als die konstitutionell ähnlichsten, vorbekannten Verbindungen gleicher Wirkungsrichtung. So übertreffen die erfindungsgemäßen Stoffe das 3-(2-Chlor­ phenyl)-2-(4-fluor-phenyl)-2-[(4,5-dihydro-5-thiono-1,2,4-triazol-1-yl)-methyl]­ oxiran bezüglich der fungiziden Eigenschaften.
Die erfindungsgemäßen Oxiranyl-triazolinthione sind durch die Formel (I) bzw. (Ia) allgemein definiert.
R1 steht vorzugsweise für Methyl, Ethyl, n-Propyl, Isopropyl, n-Butyl, sek.-Butyl, iso-Butyl, tert.-Butyl, Fluor-tert.-butyl, Difluor-tert.-butyl, gegebenenfalls einfach bis dreifach, gleichartig oder verschieden durch Fluor, Chlor und/oder Brom substituiertes Cycloalkyl mit 3 bis 6 Kohlen­ stoffatomen, für Naphthyl oder für Phenyl, das einfach bis dreifach, gleich­ artig oder verschieden substituiert sein kann durch Fluor, Chlor, Brom, Nitro, Phenyl, Phenoxy, Methyl, Ethyl, tert.-Butyl, Methoxy, Ethoxy, Trifluormethyl, Trichlormethyl, Difluormethyl, Difluorchlormethyl, Tri­ fluormethoxy, Difluormethoxy und/oder Trifluormethylthio.
R2 steht vorzugsweise für Phenyl, das einfach bis dreifach, gleichartig oder verschieden substituiert sein kann durch Fluor, Chlor, Brom, Methyl, Ethyl, Isopropyl, tert.-Butyl, Methoxy, Ethoxy, Trifluormethyl, Trichlor­ methyl, Difluormethyl, Difluorchlormethyl, Trifluormethoxy, Difluorme­ thoxy und/oder Trifluormethylthio.
R3 steht vorzugsweise für Alkoxyalkyl mit 1 bis 6 Kohlenstoffatomen im Alkoxyteil und 1 bis 6 Kohlenstoffatomen im Alkylteil sowie für Isopropyl oder für n-Dodecyl.
Besonders bevorzugt sind Oxiranyl-triazolinthione der Formel (I) bzw. (Ia), worin
R1 für Phenyl steht, das einfach bis dreifach, gleichartig oder verschieden substi­ tuiert sein kann durch Fluor, Chlor, Brom, Nitro, Phenyl, Phenoxy, Methyl, Ethyl, tert.-Butyl, Methoxy, Ethoxy, Trifluormethyl, Trichlorme­ thyl, Difluormethyl, Difluorchlormethyl, Trifluormethoxy, Difluormethoxy und/oder Trifluormethylthio,
R2 für Phenyl steht, das einfach bis dreifach, gleichartig oder verschieden substi­ tuiert sein kann durch Fluor, Chlor, Brom, Methyl, Ethyl, Isopropyl, tert.- Butyl, Methoxy, Ethoxy, Trifluormethyl, Trichlormethyl, Difluormethyl, Difluorchlormethyl, Trifluormethoxy, Difluormethoxy und/oder Trifluor­ methylthio, und
R3 für Alkoxyalkyl mit 1 bis 4 Kohlenstoffatomen im Alkoxyteil und 1 bis 4 Kohlenstoffatomen im Alkylteil steht sowie für Isopropyl oder n-Dodecyl steht.
Die genannten Substituenten-Bedeutungen können in beliebiger Weise untereinander kombiniert werden. Außerdem können auch einzelne Definitionen entfallen.
Die bei der Herstellung der erfindungsgemäßen Stoffe als Ausgangssubstanzen benö­ tigten Oxiran-Derivate können in der "Thiono"-Form der Formel
oder in der tautomeren "Mercapto"-Form der Formel
vorliegen. Es ist deshalb möglich, daß sich die erfindungsgemäßen Stoffe sowohl von der "Thiono"-Form der Formel (II) als auch von der "Mercapto"-Form der Formel (IIa) ableiten. Das bedeutet, daß die erfindungsgemäßen Stoffe entweder als Substan­ zen der Formel
oder der Formel
oder als Gemische der Formeln (I) und (Ia) vorliegen.
Als Beispiele für erfindungsgemäße Stoffe seien die in der folgenden Tabelle aufge­ führten Oxiranyl-triazolinthione genannt.
Tabelle 1
Verwendet man 3-(2-Chlor-phenyl)-2-(4-fluor-phenyl)-2-[(4,5-dihydro-5-thiono- 1,2,4-triazol-1-yl)-methyl]-oxiran als Ausgangsstoff und 3-Ethoxy-propyl-isocyanat als Reaktionskomponente, so kann der Verlauf des erfindungsgemäßen Verfahrens durch das folgende Formelschema veranschaulicht werden.
Die bei der Durchführung des erfindungsgemäßen Verfahrens als Ausgangsstoffe be­ nötigten Oxiran-Derivate sind durch die Formel (II) bzw. (IIa) allgemein definiert. In dieser Formel haben R1 und R2 vorzugsweise diejenigen Bedeutungen, die bereits im Zusammenhang mit der Beschreibung der erfindungsgemäßen Stoffe der Formel (I) bzw. (Ia) vorzugsweise für diese Reste genannt wurden.
Die Oxiran-Derivate der Formel (II) bzw. (IIa) sind bereits bekannt (vgl. WO-A 96 38 440).
Die bei der Durchführung des erfindungsgemäßen Verfahrens als Reaktionskompo­ nenten benötigten Isocyanate sind durch die Formel (III) allgemein definiert. In dieser Formel hat R3 vorzugsweise diejenigen Bedeutungen, die bereits im Zusammenhang mit der Beschreibung der erfindungsgemäßen Stoffe der Formel (I) für diesen Rest genannt wurden.
Die Isocyanate der Formel (III) sind bekannt oder lassen sich nach bekannten Metho­ den herstellen.
Als Katalysatoren kommen bei der Durchführung des erfindungsgemäßen Verfahrens alle für derartige Umsetzungen üblichen Reaktionsbeschleuniger in Frage. Vorzugs­ weise verwendbar sind Amine, wie Triethylamin, Pyridin, Dimethylaminopyridin und Diazabicyclo-undecen (DBU).
Als Verdünnungsmittel kommen bei der Durchführung des erfindungsgemäßen Ver­ fahrens alle für derartige Umsetzungen üblichen, inerten organischen Solventien in Frage. Vorzugsweise verwendbar sind aromatische Kohlenwasserstoffe, wie Toluol, Xylol oder Decalin, ferner halogenierte Kohlenwasserstoffe, wie Dichlormethan, Chloroform, Tetrachlormethan, Dichlorethan oder Trichlorethan, außerdem Ether, wie Diethylether, Diisopropylether, Methyl-tert.-butylether, Methyl-tert.-amylether, Dioxan oder Tetrahydrofuran, und weiterhin Nitrile, wie Acetonitril, Propionitril, n- oder iso-Butyronitril.
Die Reaktionstemperaturen können bei der Durchführung des erfindungsgemäßen Verfahrens innerhalb eines bestimmten Bereiches variiert werden. Im allgemeinen ar­ beitet man bei Temperaturen zwischen -20°C und +100°C, vorzugsweise zwischen 0°C und +80°C.
Bei der Durchführung des erfindungsgemäßen Verfahrens arbeitet man im allgemeinen unter Atmosphärendruck. Es ist aber auch möglich, unter erhöhtem Druck oder, so­ fern keine leicht flüchtigen Komponenten an der Umsetzung beteiligt sind, auch unter vermindertem Druck zu arbeiten.
Bei der Durchführung des erfindungsgemäßen Verfahrens setzt man auf 1 mol an Oxi­ ran-Derivat der Formel (II) bzw. (IIa) im allgemeinen 1 bis 1,5 mol an Isocyanat der Formel (III) sowie eine geringe Menge an Katalysator ein. Die Aufarbeitung erfolgt nach üblichen Methoden. Im allgemeinen geht man so vor, daß man das Reaktionsgemisch unter vermindertem Druck einengt und das verbleibende Produkt nach üblichen Methoden, z. B. durch Umkristallisation oder Chromatographie, von noch vorhandenen Verunreinigungen befreit.
Die erfindungsgemäßen Stoffe weisen eine starke mikrobizide Wirkung auf und kön­ nen zur Bekämpfung von unerwünschten Mikroorganismen, wie Fungi und Bakterien, im Pflanzenschutz und im Materialschutz eingesetzt werden.
Fungizide lassen sich im Pflanzenschutz zur Bekämpfung von Plasmodiophoromy­ cetes, Oomycetes, Chytridiomycetes, Zygomycetes, Ascomycetes, Basidiomycetes und Deuteromycetes einsetzen.
Bakterizide lassen sich im Pflanzenschutz zur Bekämpfung von Pseudomonadaceae, Rhizobiaceae, Enterobacteriaceae, Corynebacteriaceae und Streptomycetaceae ein­ setzen.
Beispielhaft aber nicht begrenzend seien einige Erreger von pilzlichen und bakteriellen Erkrankungen, die unter die oben aufgezählten Oberbegriffe fallen, genannt:
Xanthomonas-Arten, wie beispielsweise Xanthomonas campestris pv. oryzae;
Pseudomonas-Arten, wie beispielsweise Pseudomonas syringae pv. lachrymans;
Erwinia-Arten, wie beispielsweise Erwinia amylovora;
Pythium-Arten, wie beispielsweise Pythium ultimum;
Phytophthora-Arten, wie beispielsweise Phytophthora infestans;
Pseudoperonospora-Arten, wie beispielsweise Pseudoperonospora humuli oder Pseudoperonospora cubensis;
Plasmopara-Arten, wie beispielsweise Plasmopara viticola;
Bremia-Arten, wie beispielsweise Bremia lactucae;
Peronospora-Arten, wie beispielsweise Peronospora pisi oder P. brassicae;
Erysiphe-Arten, wie beispielsweise Erysiphe graminis;
Sphaerotheca-Arten, wie beispielsweise Sphaerotheca fuliginea;
Podosphaera-Arten, wie beispielsweise Podosphaera leucotricha;
Venturia-Arten, wie beispielsweise Venturia inaequalis;
Pyrenophora-Arten, wie beispielsweise Pyrenophora teres oder P. graminea (Konidienform: Drechslera, Syn: Helminthosporium);
Cochliobolus-Arten, wie beispielsweise Cochliobolus sativus (Konidienform: Drechslera, Syn: Helminthosporium);
Uromyces-Arten, wie beispielsweise Uromyces appendiculatus;
Puccinia-Arten, wie beispielsweise Puccinia recondita;
Sclerotinia-Arten, wie beispielsweise Sclerotinia sclerotiorum;
Tilletia-Arten, wie beispielsweise Tilletia caries;
Ustilago-Arten, wie beispielsweise Ustilago nuda oder Ustilago avenae;
Pellicularia-Arten, wie beispielsweise Pellicularia sasakii;
Pyricularia-Arten, wie beispielsweise Pyricularia oryzae;
Fusarium-Arten, wie beispielsweise Fusarium culmorum;
Botrytis-Arten, wie beispielsweise Botrytis cinerea;
Septoria-Arten, wie beispielsweise Septoria nodorum;
Leptosphaeria-Arten, wie beispielsweise Leptosphaeria nodorum;
Cercospora-Arten, wie beispielsweise Cercospora canescens;
Alternaria-Arten, wie beispielsweise Alternaria brassicae;
Pseudocercosporella-Arten, wie beispielsweise Pseudocercosporella herpotrichoides.
Die gute Pflanzenverträglichkeit der Wirkstoffe in den zur Bekämpfung von Pflanzen­ krankheiten notwendigen Konzentrationen erlaubt eine Behandlung von oberirdischen Pflanzenteilen, von Pflanz- und Saatgut, und des Bodens.
Die erfindungsgemäßen Wirkstoffe eignen sich insbesondere zur Bekämpfung von Pyricularia oryzae an Reis sowie zur Bekämpfung von Getreidekrankheiten, wie Puccinia-, Erysiphe- und Fusarium-Arten. Außerdem lassen sich die erfindungsgemä­ ßen Stoffe sehr gut gegen Venturia, Podosphaera und Sphaerotheca einsetzen. Sie besitzen darüber hinaus auch eine sehr gute in-vitro Wirkung.
Die erfindungsgemäßen Wirkstoffe eignen sich auch zur Steigerung des Ernteertrages. Sie sind außerdem mindertoxisch und weisen eine gute Pflanzenverträglichkeit auf.
Im Materialschutz lassen sich die erfindungsgemäßen Stoffe zum Schutz von tech­ nischen Materialien gegen Befall und Zerstörung durch unerwünschte Mikroorganis­ men einsetzen.
Unter technischen Materialien sind im vorliegenden Zusammenhang nichtlebende Materialien zu verstehen, die für die Verwendung in der Technik zubereitet worden sind. Beispielsweise können technische Materialien, die durch erfindungsgemäße Wirkstoffe vor mikrobieller Veränderung oder Zerstörung geschützt werden sollen, Klebstoffe, Leime, Papier und Karton, Textilien, Leder, Holz, Anstrichmittel und Kunststoffartikel, Kühlschmierstoffe und andere Materialien sein, die von Mikroor­ ganismen befallen oder zersetzt werden können. Im Rahmen der zu schützenden Materialien seien auch Teile von Produktionsanlagen, beispielsweise Kühlwasser­ kreisläufe, genannt, die durch Vermehrung von Mikroorganismen beeinträchtigt wer­ den können. Im Rahmen der vorliegenden Erfindung seien als technische Materialien vorzugsweise Klebstoffe, Leime, Papiere und Kartone, Leder, Holz, Anstrichmittel, Kühlschmiermittel und Wärmeübertragungsflüssigkeiten genannt, besonders bevor­ zugt Holz.
Als Mikroorganismen, die einen Abbau oder eine Veränderung der technischen Mate­ rialien bewirken können, seien beispielsweise Bakterien, Pilze, Hefen, Algen und Schleimorganismen genannt. Vorzugsweise wirken die erfindungsgemäßen Wirkstoffe gegen Pilze, insbesondere Schimmelpilze, holzverfärbende und holzzerstörende Pilze (Basidiomyceten) sowie gegen Schleimorganismen und Algen.
Es seien beispielsweise Mikroorganismen der folgenden Gattungen genannt:
Alternaria, wie Alternaria tenuis,
Aspergillus, wie Aspergillus niger,
Chaetomium, wie Chaetomium globosum,
Coniophora, wie Coniophora puetana,
Lentinus, wie Lentinus tigrinus,
Penicillium, wie Penicillium glaucum,
Polyporus, wie Polyporus versicolor,
Aureobasidium, wie Aureobasidium pullulans,
Sclerophoma, wie Sclerophoma pityophila,
Trichoderma, wie Trichoderma viride,
Escherichia, wie Escherichia coli,
Pseudomonas, wie Pseudomonas aeruginosa,
Staphylococcus, wie Staphylococcus aureus.
Die Wirkstoffe können in Abhängigkeit von ihren jeweiligen physikalischen und/oder chemischen Eigenschaften in die üblichen Formulierungen überführt werden, wie Lö­ sungen, Emulsionen, Suspensionen, Pulver, Schäume, Pasten, Granulate, Aerosole, Feinstverkapselungen in polymeren Stoffen und in Hüllmassen für Saatgut, sowie ULV-Kalt- und Warmnebel-Formulierungen.
Diese Formulierungen werden in bekannter Weise hergestellt, z. B. durch Vermischen der Wirkstoffe mit Streckmitteln, also flüssigen Lösungsmitteln, unter Druck stehen­ den verflüssigten Gasen und/oder festen Trägerstoffen, gegebenenfalls unter Verwen­ dung von oberflächenaktiven Mitteln, also Emulgiermitteln und/oder Dispergiermit­ teln und/oder schaumerzeugenden Mitteln. Im Falle der Benutzung von Wasser als Streckmittel können z. B. auch organische Lösungsmittel als Hilfslösungsmittel ver­ wendet werden. Als flüssige Lösungsmittel kommen im wesentlichen in Frage: Aro­ maten, wie Xylol, Toluol oder Alkylnaphthaline, chlorierte Aromaten oder chlorierte aliphatische Kohlenwasserstoffe, wie Chlorbenzole, Chlorethylene oder Methylenchlo­ rid, aliphatische Kohlenwasserstoffe, wie Cyclohexan oder Paraffine, z. B. Erdölfrak­ tionen, Alkohole, wie Butanol oder Glycol sowie deren Ether und Ester, Ketone, wie Aceton, Methylethylketon, Methylisobutylketon oder Cyclohexanon, stark polare Lö­ sungsmittel, wie Dimethylformamid und Dimethylsulfoxid, sowie Wasser. Mit verflüs­ sigten gasförmigen Streckmitteln oder Trägerstoffen sind solche Flüssigkeiten ge­ meint, welche bei normaler Temperatur und unter Normaldruck gasförmig sind, z. B. Aerosol-Treibgase, wie Halogenkohlenwasserstoffe sowie Butan, Propan, Stickstoff und Kohlendioxid. Als feste Trägerstoffe kommen in Frage: z. B. natürliche Gesteins­ mehle, wie Kaoline, Tonerden, Talkum, Kreide, Quarz, Attapulgit, Montmorillonit oder Diatomeenerde und synthetische Gesteinsmehle, wie hochdisperse Kieselsäure, Aluminiumoxid und Silikate. Als feste Trägerstoffe für Granulate kommen in Frage: z. B. gebrochene und fraktionierte natürliche Gesteine wie Calcit, Marmor, Bims, Se­ piolith, Dolomit sowie synthetische Granulate aus anorganischen und organischen Mehlen sowie Granulate aus organischem Material wie Sägemehl, Kokosnußschalen, Maiskolben und Tabakstengel. Als Emulgier und/oder schaumerzeugende Mittel kom­ men in Frage: z. B. nichtionogene und anionische Emulgatoren, wie Polyoxyethylen- Fettsäureester, Polyoxyethylen-Fettalkoholether, z. B. Alkylarylpolyglycolether, Alkyl­ sulfonate, Alkylsulfate, Arylsulfonate sowie Eiweißhydrolysate. Als Dispergiermittel kommen in Frage: z. B. Lignin-Sulfitablaugen und Methylcellulose.
Es können in den Formulierungen Haftmittel wie Carboxymethylcellulose, natürliche und synthetische pulverige, körnige oder latexförmige Polymere verwendet werden, wie Gummiarabicum, Polyvinylalkohol, Polyvinylacetat, sowie natürliche Phospholi­ pide, wie Kephaline und Lecithine, und synthetische Phospholipide. Weitere Additive können mineralische und vegetabile Öle sein.
Es können Farbstoffe wie anorganische Pigmente, z. B. Eisenoxid, Titanoxid, Ferro­ cyanblau und organische Farbstoffe, wie Alizarin-, Azo- und Metallphthalocyaninfarb­ stoffe und Spurennährstoffe, wie Salze von Eisen, Mangan, Bor, Kupfer, Kobalt, Mo­ lybdän und Zink verwendet werden.
Die Formulierungen enthalten im allgemeinen zwischen 0,1 und 95 Gewichtsprozent Wirkstoff, vorzugsweise zwischen 0,5 und 90%.
Die erfindungsgemäßen Wirkstoffe können als solche oder in ihren Formulierungen auch in Mischung mit bekannten Fungiziden, Bakteriziden, Akariziden, Nematiziden oder Insektiziden verwendet werden, um so z. B. das Wirkungsspektrum zu verbrei­ tern oder Resistenzentwicklungen vorzubeugen. In vielen Fällen erhält man dabei syn­ ergistische Effekte, d. h. die Wirksamkeit der Mischung ist größer als die Wirksamkeit der Einzelkomponenten.
Als Mischpartner kommen zum Beispiel folgende Verbindungen in Frage:
Fungizide
Aldimorph, Ampropylfos, Ampropylfos-Kalium, Andoprim, Anilazin, Azaconazol, Azoxystrobin,
Benalaxyl, Benodanil, Benomyl, Benzamacril, Benzamacryl-isobutyl, Bialaphos, Binapacryl, Biphenyl, Bitertanol, Blasticidin-S, Bromuconazol, Bupirimat, Buthiobat,
Calciumpolysulfid, Capsimycin, Captafol, Captan, Carbendazim, Carboxin, Carvon, Chinomethionat (Quinomethionat), Chlobenthiazon, Chlorfenazol, Chloroneb, Chlo­ ropicrin, Chlorothalonil, Chlozolinat, Clozylacon, Cufraneb, Cymoxanil, Cyprocona­ zol, Cyprodinil, Cyprofuram,
Debacarb, Dichlorophen, Diclobutrazol, Diclofluanid, Diclomezin, Dicloran, Dietho­ fencarb, Difenoconazol, Dimethirimol, Dimethomorph, Diniconazol, Diniconazol-M, Dinocap, Diphenylamin, Dipyrithione, Ditalimfos, Dithianon, Dodemorph, Dodine, Drazoxolon,
Ediphenphos, Epoxiconazol, Etaconazol, Ethirimol, Etridiazol,
Famoxadon, Fenapanil, Fenarimol, Fenbuconazol, Fenfuram, Fenitropan, Fenpiclonil, Fenpropidin, Fenpropimorph, Fentinacetat, Fentinhydroxyd, Ferbam, Ferimzon, Flua­ zinam, Flumetover, Fluoromid, Fluquinconazol, Flurprimidol, Flusilazol, Flusulfamid, Flutolanil, Flutriafol, Folpet, Fosetyl-Alminium, Fosetyl-Natrium, Fthalid, Fuberi­ dazol, Furalaxyl, Furametpyr, Furcarbonil, Furconazol, Furconazol-cis, Furmecyclox,
Guazatin,
Hexachlorobenzol, Hexaconazol, Hymexazol,
Imazalil, Imibenconazol, Iminoctadin, Iminoctadinealbesilat, Iminoctadinetriacetat, Iodocarb, Ipconazol, Iprobenfos (IBP), Iprodione, Irumamycin, Isoprothiolan, Iso­ valedione,
Kasugamycin, Kresoxim-methyl, Kupfer-Zubereitungen, wie: Kupferhydroxid, Kupfernaphthenat, Kupferoxychlorid, Kupfersulfat, Kupferoxid, Oxin-Kupfer und Bordeaux-Mischung,
Mancopper, Mancozeb, Maneb, Meferimzone, Mepanipyrim, Mepronil, Metalaxyl, Metconazol, Methasulfocarb, Methfuroxam, Metiram, Metomeclam, Metsulfovax, Mildiomycin, Myclobutanil, Myclozolin,
Nickel-dimethyldithiocarbamat, Nitrothal-isopropyl, Nuarimol,
Ofurace, Oxadixyl, Oxamocarb, Oxolinicacid, Oxycarboxim, Oxyfenthiin,
Paclobutrazol, Pefurazoat, Penconazol, Pencycuron, Phosdiphen, Pimaricin, Piperalin, Polyoxin, Polyoxorim, Probenazole, Prochloraz, Procymidon, Propamocarb, Propa­ nosine-Natrium, Propiconazol, Propineb, Pyrazophos, Pyrifenox, Pyrimethanil, Pyro­ quilon, Pyroxyfur,
Quinconazol, Quintozen (PCNB),
Schwefel und Schwefel-Zubereitungen,
Tebuconazol, Tecloftalam, Tecnazen, Tetcyclacis, Tetraconazol, Thiabendazol, Thicyofen, Thifluzamide, Thiophanate-methyl, Thiram, Tioxymid, Tolclofos-methyl, Tolylfluanid, Triadimefon, Triadimenol, Triazbutil, Triazoxid, Trichlamid, Tricyclazol, Tridemorph, Triflumizol, Triforin, Triticonazol,
Uniconazol,
Validamycin A, Vinclozolin, Viniconazol,
Zarilamid, Zineb, Ziram sowie
Dagger G,
OK-8705,
OK-8801,
α-(1,1-Dimethylethyl)-β-(2-phenoxyethyl)-1H-1,2,4-triazol-1-ethanol,
α-(2,4-Dichlorphenyl)-β-fluor-b-propyl-1H-1,2,4-triazol-1-ethanol,
α-(2,4-Dichlorphenyl)-β-methoxy-a-methyl-1H-1,2,4-triazol-1-ethanol,
α-(5-Methyl-1,3-dioxan-5-yl)-β-[[4-(trifluormethyl)-phenyl]-methylen]- 1H-1,2,4-tria­ zol-1-ethanol,
(5RS,6RS)-6-Hydroxy-2,2,7,7-tetramethyl-5-(1H-1,2,4-triazol-1-yl)-3-octanon,
(E)-a-(Methoxyimino)-N-methyl-2-phenoxy-phenylacetamid,
{2-Methyl-1-[[[1-(4-methylphenyl)-ethyl]-amino]-carbonyl]-propyl}-carbaminsäure- 1-isopropylester,
1-(2,4-Dichlorphenyl)-2-(1H-1,2,4-triazol-1-yl)-ethanon-O-(phenylmethyl)-oxim,
1-(2-Methyl-1-naphthalenyl)-1H-pyrrol-2,5-dion,
1-(3,5-Dichlorphenyl)-3-(2-propenyl)-2,5-pyrrolidindion,
1-[(Diiodmethyl)-sulfonyl]-4-methyl-benzol,
1-[[2-(2,4-Dichlorphenyl)-1,3-dioxolan-2-yl]-methyl]-1H-imidazol,
1-[[2-(4-Chlorphenyl)-3-phenyloxiranyl]-methyl]-1H-1,2,4-triazol,
1-[1-[2-[(2,4-Dichlorphenyl)-methoxy]-phenyl]-ethenyl]-1H-imidazol,
1-Methyl-5-nonyl-2-(phenylmethyl)-3-pyrrolidinol,
2',6'-Dibrom-2-methyl-4'-trifluormethoxy-4'-trifluor-methyl-1,3-thiazol-5- carboxanilid,
2,2-Dichlor-N-[1-(4-chlorphenyl)-ethyl]-1-ethyl-3-methyl-cyclopropancarboxamid,
2,6-Dichlor-5-(methylthio)-4-pyrimidinyl-thiocyanat,
2,6-Dichlor-N-(4-trifluormethylbenzyl)-benzamid,
2,6-Dichlor-N-[[4-(trifluormethyl)-phenyl]-methyl]-benzamid,
2-(2,3,3-Triiod-2-propenyl)-2H-tetrazol,
2-[(1-Methylethyl)-sulfonyl]-5-(trichlormethyl)-1,3,4-thiadiazol,
2-[[6-Deoxy-4-O-(4-O-methyl-β-D-glycopyranosyl)-a-D-glucopyranosyl]-amino]-4- methoxy-1H-pyrrolo[2,3-d]pyrimidin-5-carbonitril,
2-Aminobutan,
2-Brom-2-(brommethyl)-pentandinitril,
2-Chlor-N-(2,3-dihydro-1,1,3-trimethyl-1H-inden-4-yl)-3-pyridincarboxamid,
2-Chlor-N-(2,6-dimethylphenyl)-N-(isothiocyanatomethyl)-acetamid,
2-Phenylphenol(OPP),
3,4-Dichlor-1-[4-(difluormethoxy)-phenyl]-1H-pyrrol-2,5-dion,
3,5-Dichlor-N-[cyan[(1-methyl-2-propynyl)-oxy]-methyl]-benzamid,
3-(1,1-Dimethylpropyl-1-oxo-1H-inden-2-carbonitril,
3-[2-(4-Chlorphenyl)-5-ethoxy-3-isoxazolidinyl]-pyridin,
4-Chlor-2-cyan-N,N-dimethyl-5-(4-methylphenyl)-1H-imidazol-1-sulfonamid,
4-Methyl-tetrazolo[1,5-a]quinazolin-5(4H)-on,
8-(1,1-Dimethylethyl)-N-ethyl-N-propyl-1,4-dioxaspiro[4.5]decan-2-methanamin,
8-Hydroxychinolinsulfat,
9H-Xanthen-9-carbonsäure-2-[(phenylamino)-carbonyl]-hydrazid,
bis-(1-Methylethyl)-3-methyl-4-[(3-methylbenzoyl)-oxy]-2,5-thiophendicarboxylat,
cis-1-(4-Chlorphenyl)-2-(1H-1,2,4-triazol-1-yl)-cycloheptanol,
cis-4-[3-[4-(1,1-Dimethylpropyl)-phenyl-2-methylpropyl]-2,6-dimethyl-morpholin­ hydrochlorid,
Ethyl-[(4-chlorphenyl)-azo]-cyanoacetat,
Kaliumhydrogencarbonat,
Methantetrathiol-Natriumsalz,
Methyl-1-(2,3-dihydro-2,2-dimethyl-1H-inden-1-yl)-1H-imidazol-5-carboxylat,
Methyl-N-(2,6-dimethylphenyl)-N-(5-isoxazolylcarbonyl)-DL-alaninat,
Methyl-N-(chloracetyl)-N-(2,6-dimethylphenyl)-DL-alaninat,
N-(2,3-Dichlor-4-hydroxyphenyl)-1-methyl-cyclohexancarboxamid,
N-(2,6-Dimethylphenyl)-2-methoxy-N-(tetrahydro-2-oxo-3-furanyl)-acetamid,
N-(2,6-Dimethylphenyl)-2-methoxy-N-(tetrahydro-2-oxo-3-thienyl)-acetamid,
N-(2-Chlor-4-nitrophenyl)-4-methyl-3-nitro-benzolsulfonamid,
N-(4-Cyclohexylphenyl)-1,4,5,6-tetrahydro-2-pyrimidinanun,
N-(4-Hexylphenyl)-1,4,5,6-tetrahydro-2-pyrimidinamin,
N-(5-Chlor-2-methylphenyl)-2-methoxy-N-(2-oxo-3-oxazolidinyl)-acetamid,
N-(6-Methoxy)-3-pyridinyl)-cyclopropancarboxamid,
N-[2,2,2-Trichlor-1-[(chloracetyl)-amino]-ethyl]-benzamid,
N-[3-Chlor-4,5-bis-(2-propinyloxy)-phenyl]-N'-methoxy-methanimidamid,
N-Formyl-N-hydroxy-DL-alanin-Natriumsalz,
O,O-Diethyl-[2-(dipropylamino)-2-oxoethyl]-ethylphosphoramidothioat,
O-Methyl-S-phenyl-phenylpropylphosphoramidothioat,
S-Methyl-1,2,3-benzothiadiazol-7-carbothioat,
spiro[2H]-1-Benzopyran-2,1'(3'H)-isobenzofuran]-3'-on.
Bakterizide
Bromopol, Dichlorophen, Nitrapyrin, Nickel-dimethyldithiocarbamat, Kasugamycin, Octhilinon, Furancarbonsäure, Oxytetracyclin, Probenazol, Streptomycin, Teclofta­ lam, Kupfersulfat und andere Kupfer-Zubereitungen.
Insektizide/Akarizide/Nematizide
Abamectin, Acephat, Acrinathrin, Alanycarb, Aldicarb, Alphamethrin, Amitraz, Avermectin, AZ 60541, Azadirachtin, Azinphos A, Azinphos M, Azocyclotin,
Bacillus thuringiensis, 4-Bromo-2-(4-chlorphenyl)-1-(ethoxymethyl)-5-(trifluorome­ thyl)-1H-pyrrole-3-carbonitrile, Bendiocarb, Benfuracarb, Bensultap, Betacyfluthrin, Bifenthrin, BPMC, Brofenprox, Bromophos A, Bufencarb, Buprofezin, Butocar­ boxim, Butylpyridaben,
Cadusafos, Carbaryl, Carbofuran, Carbophenothion, Carbosulfan, Cartap, Chloetho­ carb, Chlorethoxyfos, Chlorfenapyr, Chlorfenvinphos, Chlorfluazuron, Chlormephos, N-[(6-Chloro-3-pyridinyl)-methyl]-N'-cyano-N-methyl-ethanimidamide, Chlorpyrifos, Chlorpyrifos M, Cis-Resmethrin, Clocythrin, Clofentezin, Cyanophos, Cycloprothrin, Cyfluthrin, Cyhalothrin, Cyhexatin, Cypermethrin, Cyromazin,
Deltamethrin, Demeton M, Demeton S, Demeton-S-methyl, Diafenthiuron, Diazinon, Dichlofenthion, Dichlorvos, Dicliphos, Dicrotophos, Diethion, Diflubenzuron, Dime­ thoat, Dimethylvinphos, Dioxathion, Disulfoton,
Edifenphos, Emamectin, Esfenvalerat, Ethiofencarb, Ethion, Ethofenprox, Ethopro­ phos, Etrimphos,
Fenamiphos, Fenazaquin, Fenbutatinoxid, Fenitrothion, Fenobucarb, Fenothiocarb, Fenoxycarb, Fenpropathrin, Fenpyrad, Fenpyroximat, Fenthion, Fenvalerate, Fipronil, Fluazinam, Fluazuron, Flucycloxuron, Flucythrinat, Flufenoxuron, Flufenprox, Flu­ valinate, Fonophos, Formothion, Fosthiazat, Fubfenprox, Furathiocarb,
HCH, Heptenophos, Hexaflumuron, Hexythiazox,
Imidacloprid, Iprobenfos, Isazophos, Isofenphos, Isoprocarb, Isoxathion, Ivermectin,
Lambda-cyhalothrin, Lufenuron,
Malathion, Mecarbam, Mevinphos, Mesulfenphos, Metaldehyd, Methacrifos, Metha­ midophos, Methidathion, Methiocarb, Methomyl, Metolcarb, Milbemectin, Mono­ crotophos, Moxidectin,
Naled, NC 184, Nitenpyram,
Omethoat, Oxamyl, Oxydemethon M, Oxydeprofos,
Parathion A, Parathion M, Permethrin, Phenthoat, Phorat, Phosalon, Phosmet, Phos­ phamidon, Phoxim, Pirimicarb, Pirimiphos M, Pirimiphos A, Profenophos, Prome­ carb, Propaphos, Propoxur, Prothiophos, Prothoat, Pymetrozin, Pyrachlophos, Pyri­ daphenthion, Pyresmethrin, Pyrethrum, Pyridaben, Pyrimidifen, Pyriproxifen,
Quinalphos,
Salithion, Sebufos, Silafluofen, Sulfotep, Sulprofos,
Tebufenozide, Tebufenpyrad, Tebupirimiphos, Teflubenzuron, Tefluthrin, Temephos, Terbam, Terbufos, Tetrachlorvinphos, Thiafenox, Thiodicarb, Thiofanox, Thiome­ thon, Thionazin, Thuringiensin, Tralomethrin, Triarathen, Triazophos, Triazuron, Tri­ chlorfon, Triflumuron, Trimethacarb,
Vamidothion, XMC, Xylylcarb, Zetamethrin.
Auch eine Mischung mit anderen bekannten Wirkstoffen, wie Herbiziden oder mit Düngemitteln und Wachstumsregulatoren ist möglich.
Die Wirkstoffe können als solche, in Form ihrer Formulierungen oder den daraus be­ reiteten Anwendungsformen, wie gebrauchsfertige Lösungen, Suspensionen, Spritz­ pulver, Pasten, lösliche Pulver, Stäubemittel und Granulate angewendet werden. Die Anwendung geschieht in üblicher Weise, z. B. durch Gießen, Verspritzen, Versprühen, Verstreuen, Verstäuben, Verschäumen, Bestreichen usw. Es ist ferner möglich, die Wirkstoffe nach dem Ultra-Low-Volume-Verfahren auszubringen oder die Wirkstoff­ zubereitung oder den Wirkstoff selbst in den Boden zu injizieren. Es kann auch das Saatgut der Pflanzen behandelt werden.
Beim Einsatz der erfindungsgemäßen Wirkstoffe als Fungizide können die Aufwand­ mengen je nach Applikationsart innerhalb eines größeren Bereiches variiert werden. Bei der Behandlung von Pflanzenteilen liegen die Aufwandmengen an Wirkstoff im allgemeinen zwischen 0,1 und 10 000 g/ha, vorzugsweise zwischen 10 und 1000 g/ha. Bei der Saatgutbehandlung liegen die Aufwandmengen an Wirkstoff im allgemeinen zwischen 0,001 und 50 g pro Kilogramm Saatgut, vorzugsweise zwischen 0,01 und 10 g pro Kilogramm Saatgut. Bei der Behandlung des Bodens liegen die Aufwandmengen an Wirkstoff im allgemeinen zwischen 0,1 und 10 000 g/ha, vor­ zugsweise zwischen 1 und 5000 g/ha.
Die zum Schutz technischer Materialien verwendeten Mittel enthalten die Wirkstoffe im allgemeinen in einer Menge von 1 bis 95 Gewichts-%, bevorzugt von 10 bis 75 Gewichts-%.
Die Anwendungskonzentrationen der erfindungsgemäßen Wirkstoffe richten sich nach der Art und dem Vorkommen der zu bekämpfenden Mikroorganismen sowie nach der Zusammensetzung des zu schützenden Materials. Die optimale Einsatzmenge kann durch Testreihen ermittelt werden. Im allgemeinen liegen die Anwendungskonzentra­ tionen im Bereich von 0,001 bis 5 Gewichts-%, vorzugsweise von 0,05 bis 1,0 Ge­ wichts-% bezogen auf das zu schützende Material.
Die Wirksamkeit und das Wirkungsspektrum der erfindungsgemäß im Materialschutz zu verwendenden Wirkstoffe bzw. der daraus herstellbaren Mittel, Konzentrate oder ganz allgemein Formulierungen kann erhöht werden, wenn gegebenenfalls weitere antimikrobiell wirksame Verbindungen, Fungizide, Bakterizide, Herbizide, Insektizide oder andere Wirkstoffe zur Vergrößerung des Wirkungsspektrums oder Erzielung besonderer Effekte wie z. B. dem zusätzlichen Schutz vor Insekten zugesetzt werden. Diese Mischungen können ein breiteres Wirkungsspektrum besitzen als die erfin­ dungsgemäßen Verbindungen.
Die Herstellung und die Verwendung von erfindungsgemäßen Wirkstoffen werden durch die folgenden Beispiele veranschaulicht.
Herstellungsbeispiele
Beispiel 1
In ein Gemisch aus 350 mg (0,97 mmol) 3-(2-Chlor-phenyl)-2-(4-fluor-phenyl)-2- [(4,5-dihydro-5-thiono-1,2,4-triazol-1-yl)-methyl]-oxiran, 0,1 ml Triethylamin und 5 ml absolutem Tetrahydrofuran wird bei Raumtemperatur unter Rühren eine Lösung von 1 10 mg (0,97 mmol) 3-Ethoxy-propyl-isocyanat in 5 ml absolutem Tetrahydrofu­ ran eingetropft. Nach beendeter Zugabe wird das Reaktionsgemisch 1 Stunde auf 60°C erhitzt und dann unter vermindertem Druck eingeengt. Das verbleibende Pro­ dukt wird mit einem Gemisch von Cyclohexan Ethylacetat = 4 : 1 an Kieselgel chro­ matographiert. Nach dem Einengen des Eluates erhält man 390 mg (82% der Theorie) an der Substanz der oben angegebenen Formel.
1H-NMR-Spektrum (300 MHz, CDCl3, TMS):
δ = 10,0 (s, 1H); 8,4 (s, 1H); 7,6-7,3 (m, 6H); 7,0 (t, 2H, J = 8,7 Hz); 5,1 (d, 1H, J = 14,9 Hz); 4,1 (s, 1H); 3,7 (d, 1H, J = 14,9 Hz); 3,5-3,4 (m, 6H); 1,9-1,8 (m, 2H); 1,2 (t, 3H, J = 7,0 Hz) ppm.
Nach der im Beispiel 1 angegebenen Methode werden auch die in der folgenden Ta­ belle aufgeführten Verbindungen hergestellt:
Tabelle 2
Beispiel 7
1H-NMR-Spektrum (400 MHz, CDCl3, TMS):
δ = 7,8 (s, 1H); 7,3-7,1 (m, 4H); 7,0-6,9 (m, 4H); 6,7 (s, 1H); 5,0 (d, 1H); 4,7 (d, 1H); 4,5 (s, 1H); 3,7 (m, 1H); 1,0 (d, 6H, J = 6,6 Hz) ppm.
Verwendungsbeispiele Beispiel A Erysiphe-Test (Gerste)/protektiv
Lösungsmittel: 25 Gew.-Teile N,N-Dimethylacetamid
Emulgator: 0,6 Gew.-Teile Alkylarylpolyglykolether
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Ge­ wichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.
Zur Prüfung auf protektive Wirksamkeit besprüht man junge Pflanzen mit der Wirk­ stoffzubereitung in der angegebenen Aufwandmenge.
Nach Antrocknen des Spritzbelages werden die Pflanzen mit Sporen von Erysiphe graminis f.sp. hordei bestäubt.
Die Pflanzen werden in einem Gewächshaus bei einer Temperatur von ca. 20°C und einer relativen Luftfeuchtigkeit von ca. 80% aufgestellt, um die Entwicklung von Mehltaupusteln zu begünstigen.
7 Tage nach der Inokulation erfolgt die Auswertung. Dabei bedeutet 0% ein Wir­ kungsgrad, der demjenigen der Kontrolle entspricht, während ein Wirkungsgrad von 100% bedeutet, daß kein Befall beobachtet wird.
Wirkstoffe, Aufwandmengen und Versuchsergebnisse gehen aus der folgenden Tabelle hervor.
Tabelle A
Erysiphe-Test (Gerste)/protektiv
Beispiel B Erysiphe-Test (Gerste)/kurativ
Lösungsmittel: 25 Gew.-Teile N,N-Dimethylacetamid
Emulgator: 0,6 Gew.-Teile Alkylarylpolyglykolether
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Ge­ wichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.
Zur Prüfung auf kurative Wirksamkeit werden junge Pflanzen mit Sporen von Erysiphe graminis f.sp. hordei bestäubt. 48 Stunden nach der Inokulation werden die Pflanzen mit der Wirkstoffzubereitung in der angegebenen Aufwandmenge besprüht.
Die Pflanzen werden in einem Gewächshaus bei einer Temperatur von ca. 20°C und einer relativen Luftfeuchtigkeit von ca. 80% aufgestellt, um die Entwicklung von Mehltaupusteln zu begünstigen.
7 Tage nach der Inokulation erfolgt die Auswertung. Dabei bedeutet 0% ein Wir­ kungsgrad, der demjenigen der Kontrolle entspricht, während ein Wirkungsgrad von 100% bedeutet, daß kein Befall beobachtet wird.
Wirkstoffe, Aufwandmengen und Versuchsergebnisse gehen aus der folgenden Tabelle hervor.
Tabelle B
Erysiphe-Test (Gerste)/kurativ
Beispiel C Erysiphe-Test (Weizen)/protektiv
Lösungsmittel: 25 Gew.-Teile N,N-Dimethylacetamid
Emulgator: 0,6 Gew.-Teile Alkylarylpolyglykolether
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Ge­ wichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.
Zur Prüfung auf protektive Wirksamkeit besprüht man junge Pflanzen mit der Wirk­ stoffzubereitung in der angegebenen Aufwandmenge.
Nach Antrocknen des Spritzbelages werden die Pflanzen mit Sporen von Erysiphe graminis f.sp. tritici bestäubt.
Die Pflanzen werden in einem Gewächshaus bei einer Temperatur von ca. 20°C und einer relativen Luftfeuchtigkeit von ca. 80% aufgestellt, um die Entwicklung von Mehltaupusteln zu begünstigen.
7 Tage nach der Inokulation erfolgt die Auswertung. Dabei bedeutet 0% ein Wirkungsgrad, der demjenigen der Kontrolle entspricht, während ein Wirkungsgrad von 100% bedeutet, daß kein Befall beobachtet wird.
Wirkstoffe, Aufwandmengen und Versuchsergebnisse gehen aus der folgenden Tabelle hervor.
Tabelle C
Erysiphe-Test (Weizen)/protektiv
Beispiel D Leptosphaeria nodorum-Test (Weizen)/protektiv
Lösungsmittel: 25 Gewichtsteile N,N-Dimethylacetamid
Emulgator: 0,6 Gewichtsteile Alkylarylpolyglykolether
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Ge­ wichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.
Zur Prüfung auf protektive Wirksamkeit werden junge Pflanzen mit der Wirk­ stoffzubereitung in der angegebenen Aufwandmenge besprüht. Nach Antrocknen des Spritzbelages werden die Pflanzen mit einer Sporensuspension von Leptosphaeria no­ dorum besprüht. Die Pflanzen verbleiben 48 Stunden bei 20°C und 100% relativer Luftfeuchtigkeit in einer Inkubationskabine.
Die Pflanzen werden in einem Gewächshaus bei einer Temperatur von ca. 15°C und einer relativen Luftfeuchtigkeit von 80% aufgestellt.
10 Tage nach der Inokulation erfolgt die Auswertung. Dabei bedeutet 0% ein Wir­ kungsgrad, der demjenigen der Kontrolle entspricht, während ein Wirkungsgrad von 100% bedeutet, daß kein Befall beobachtet wird.
Wirkstoffe, Aufwandmengen und Versuchsergebnisse gehen aus der folgenden Tabelle hervor.
Tabelle D
Leptosphaeria nodorum-Test (Weizen)/protektiv
Beispiel E Puccinia-Test (Weizen)/kurativ
Lösungsmittel: 25 Gewichtsteile N,N-Dimethylacetamid
Emulgator: 0,6 Gewichtsteile Alkylarylpolyglykolether
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Ge­ wichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.
Zur Prüfung auf kurative Wirksamkeit werden junge Pflanzen mit einer Kondiensuspension von Puccinia recondita besprüht. Die Pflanzen verbleiben 48 Stunden bei 20°C und 100% relativer Luftfeuchte in einer Inkubationskabine. An­ schließend werden die Pflanzen mit der Wirkstoffzubereitung in der angegebenen Auf­ wandmenge besprüht.
Die Pflanzen werden in einem Gewächshaus bei einer Temperatur von ca. 20°C und einer relativen Luftfeuchtigkeit von ca. 80% aufgestellt, um die Entwicklung von Rostpusteln zu begünstigen.
10 Tage nach der Inokulation erfolgt die Auswertung. Dabei bedeutet 0% ein Wir­ kungsgrad, der demjenigen der Kontrolle entspricht, während ein Wirkungsgrad von 100% bedeutet, daß kein Befall beobachtet wird.
Wirkstoffe, Aufwandmengen und Versuchsergebnisse gehen aus der folgenden Tabelle hervor.
Tabelle E
Puccinia-Test (Weizen)/kurativ
Beispiel F Puccinia-Test (Weizen)/protektiv
Lösungsmittel: 25 Gewichtsteile N,N-Dimethylacetamid
Emulgator: 0,6 Gewichtsteile Alkylarylpolyglykolether
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Ge­ wichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.
Zur Prüfung auf protektive Wirksamkeit werden junge Pflanzen mit der Wirkstoffzu­ bereitung in der angegebenen Aufwandmenge besprüht. Nach Antrocknen des Spritz­ belages werden die Pflanzen mit einer Konidiensuspension von Puccinia recondita be­ sprüht. Die Pflanzen verbleiben 48 Stunden bei 20°C und 100% relativer Luft­ feuchtigkeit in einer Inkubationskabine.
Die Pflanzen werden dann in einem Gewächshaus bei einer Temperatur von ca. 20°C und einer relativen Luftfeuchtigkeit von 80% aufgestellt, um die Entwicklung von Rostpusteln zu begünstigen.
10 Tage nach der Inokulation erfolgt die Auswertung. Dabei bedeutet 0% ein Wir­ kungsgrad, der demjenigen der Kontrolle entspricht, während ein Wirkungsgrad von 100% bedeutet, daß kein Befall beobachtet wird.
Wirkstoffe, Aufwandmengen und Versuchsergebnisse gehen aus der folgenden Tabelle hervor.
Tabelle F
Puccinia-Test (Weizen)/protektiv
Beispiel G Podosphaera-Test (Apfel)/protektiv
Lösungsmittel: 47 Gewichtsteile Aceton
Emulgator: 3 Gewichtsteile Alkylarylpolyglykolether
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Ge­ wichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.
Zur Prüfung auf protektive Wirksamkeit werden junge Pflanzen mit der Wirkstoff­ zubereitung in der angegebenen Aufwandmenge besprüht. Nach Antrocknen des Spritzbelages werden die Pflanzen mit einer wäßrigen Sporensuspension des Apfel­ mehltauerregers Podosphaera leucotricha inokuliert. Die Pflanzen werden dann im Gewächshaus bei ca. 23°C und einer relativen Luftfeuchtigkeit von ca. 70% auf­ gestellt.
10 Tage nach der Inokulation erfolgt die Auswertung. Dabei bedeutet 0% ein Wirkungsgrad, der demjenigen der Kontrolle entspricht, während ein Wirkungsgrad von 100% bedeutet, daß kein Befall beobachtet wird.
Wirkstoffe, Aufwandmengen und Versuchsergebnisse gehen aus der folgenden Tabelle hervor.
Tabelle G
Podosphaera-Test (Apfel)/protektiv
Beispiel H Hemmtest an Riesenkolonien von Basidiomyceten
Lösungsmittel: Dimethylsulfoxid
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung werden 0,2 Gewichtsteile Wirkstoff mit 99,8 Gewichtsteilen des oben angegebenen Lösungsmittels versetzt.
Ein unter Verwendung von Malzextrakt-Pepton hergestellter Agar wird in flüssigem Zustand mit der Wirkstoffzubereitung in der jeweils gewünschten Aufwandmenge ver­ mischt. Nach dem Aushärten wird der so hergestellte Nährstoffboden bei 26°C mit Mycelstücken inkubiert, die aus Kolonien von Coriolus versicolor ausgestochen wurden.
Nach 3- bzw. 7-tägiger Lagerung bei 26°C erfolgt die Auswertung, indem das Hyphenwachstum gemessen und die im Vergleich zur unbehandelten Kontrolle aufge­ tretene Hemmung in Prozent bonitiert wird. Dabei bedeutet 0% eine Wuchs­ hemmung, die derjenigen der unbehandelten Kontrolle entspricht, während eine Wuchshemmung von 100% bedeutet, daß kein Hyphenwachstum beobachtet wird.
Wirkstoffe, Wirkstoffkonzentrationen und Versuchsergebnisse gehen aus der folgenden Tabelle hervor.
Tabelle H
Hemmtest an Riesenkolonien von Basidiomyceten

Claims (10)

1. Oxiranyl-triazolinthione der Formel
worin
R1 für Alkyl mit 1 bis 4 Kohlenstoffatomen, Halogenalkyl mit 1 bis 4 Kohlenstoffatomen und 1 bis 5 Halogenatomen, gegebenenfalls durch Halogen substituiertes Cycloalkyl mit 3 bis 7 Kohlenstoffato­ men, Naphthyl oder gegebenenfalls einfach bis dreifach, gleichartig oder verschieden durch Halogen, Nitro, Phenyl, Phenoxy, Alkyl mit 1 bis 4 Kohlenstoffatomen, Alkoxy mit 1 bis 4 Kohlenstoffatomen, Halogenalkyl mit 1 bis 4 Kohlenstoffatomen und I bis 5 Halogen­ atomen, Halogenalkoxy mit 1 bis 4 Kohlenstoffatomen und 1 bis 5 Halogenatomen und/oder Halogenalkylthio mit 1 bis 4 Kohlenstoff­ atomen und 1 bis 5 Halogenatomen substituiertes Phenyl steht,
R2 für gegebenenfalls einfach bis dreifach, gleichartig oder verschieden durch Halogen, Alkyl mit 1 bis 4 Kohlenstoffatomen, Alkoxy mit 1 bis 4 Kohlenstoffatomen, Halogenalkyl mit 1 bis 4 Kohlenstoffato­ men und 1 bis 5 Halogenatomen, Halogenalkoxy mit 1 bis 4 Kohlen­ stoffatomen und 1 bis 5 Halogenatomen und/oder Halogenalkylthio mit 1 bis 4 Kohlenstoffatomen und 1 bis 5 Halogenatomen substitu­ iertes Phenyl steht und
R3 für Alkoxyalkyl, Isopropyl oder n-Dodecyl steht.
2. Oxiranyl-triazolinthione der Formel (I) bzw. (Ia) gemäß Anspruch 1, in welcher
R1 für Methyl, Ethyl, n-Propyl, Isopropyl, n-Butyl, sek.-Butyl, iso-Butyl, tert.-Butyl, Fluor-tert.-butyl, Difluor-tert.-butyl, gegebe­ nenfalls einfach bis dreifach, gleichartig oder verschieden durch Fluor, Chlor und/oder Brom substituiertes Cycloalkyl mit 3 bis 6 Kohlenstoffatomen, für Naphthyl oder für Phenyl steht, das einfach bis dreifach, gleichartig oder verschieden substituiert sein kann durch Fluor, Chlor, Brom, Nitro, Phenyl, Phenoxy, Methyl, Ethyl, tert.-Butyl, Methoxy, Ethoxy, Trifluormethyl, Trichlormethyl, Di­ fluormethyl, Difluorchlormethyl, Trifluormethoxy, Difluormethoxy und/oder Trifluormethylthio,
R2 für Phenyl steht, das einfach bis dreifach, gleichartig oder verschie­ den substituiert sein kann durch Fluor, Chlor, Brom, Methyl, Ethyl, Isopropyl, tert.-Butyl, Methoxy, Ethoxy, Trifluormethyl, Trichlor­ methyl, Difluormethyl, Difluorchlormethyl, Trifluormethoxy, Di­ fluormethoxy und/oder Trifluormethylthio, und
R3 für Alkoxyalkyl mit 1 bis 6 Kohlenstoffatomen im Alkoxyteil und 1 bis 6 Kohlenstoffatomen im Alkylteil sowie für Isopropyl oder für n-Do­ decyl steht.
3. Verfahren zur Herstellung von Oxiranyl-triazolinthionen der Formel (I) bzw. (Ia) gemäß Anspruch 1, dadurch gekennzeichnet, daß man Oxiran-Derivate der Formel
in welcher
R1 und R2 die oben angegebenen Bedeutungen haben,
mit Isocyanaten der Formel
R3-NCO (III),
in welcher
R3 die oben angegebene Bedeutung hat,
gegebenenfalls in Gegenwart eines Katalysators und gegebenenfalls in Gegen­ wart eines Verdünnungsmittels umsetzt.
4. Mikrobizide Mittel, gekennzeichnet durch einen Gehalt an mindestens einem Oxiranyl-triazolinthion der Formel (I) bzw. (Ia) gemäß Anspruch 1 neben Streckmitteln und/oder oberflächenaktiven Stoffen.
5. Verwendung von Oxiranyl-triazolinthionen der Formel (I) bzw. (Ia) gemäß Anspruch 1 als Mikrobizide im Pflanzenschutz und im Materialschutz.
6. Verfahren zur Bekämpfung von unerwünschten Mikroorganismen im Pflan­ zenschutz und im Materialschutz, dadurch gekennzeichnet, daß man Oxiranyl­ triazolinthione der Formel (I) bzw. (Ia) gemäß Anspruch 1 auf die Mikro­ organismen und/oder deren Lebensraum ausbringt.
7. Verfahren zur Herstellung von mikrobiziden Mitteln, dadurch gekennzeichnet, daß man Oxiranyl-triazolinthione der Formel (I) bzw. (Ia) gemäß Anspruch 1 mit Streckmitteln und/oder oberflächenaktiven Stoffen vermischt.
8. Oxiranyl-triazolinthion gemäß Anspruch 1, gekennzeichnet durch die Formel
9. Oxiranyl-triazolinthion gemäß Anspruch 1, gekennzeichnet durch die Formel
10. Oxiranyl-triazolinthion gemäß Anspruch 1, gekennzeichnet durch die Formel
DE19823861A 1997-10-24 1998-05-28 Oxiranyl-triazolinthione Withdrawn DE19823861A1 (de)

Priority Applications (15)

Application Number Priority Date Filing Date Title
DE19823861A DE19823861A1 (de) 1997-10-24 1998-05-28 Oxiranyl-triazolinthione
DE59811437T DE59811437D1 (de) 1997-10-24 1998-10-12 Oxiranyl-triazolinthione und ihre verwendung als mikrobizide
AU12276/99A AU1227699A (en) 1997-10-24 1998-10-12 Oxyranyle-triazoline thiones and their use as microbicides
PCT/EP1998/006449 WO1999021853A1 (de) 1997-10-24 1998-10-12 Oxiranyl-triazolinthione und ihre verwendung als mikrobizide
US09/529,678 US6245793B1 (en) 1997-10-24 1998-10-12 Oxyranyle-triazoline thiones and their use as microbicides
KR1020007003903A KR20010031064A (ko) 1997-10-24 1998-10-12 옥시라닐-트리아졸린 티온 및 살미생물제로서의 그의 용도
JP2000517963A JP2001521031A (ja) 1997-10-24 1998-10-12 オキシラニル−トリアゾリンチオン類並びに殺微生物剤としてのそれらの使用
EP98955432A EP1060176B1 (de) 1997-10-24 1998-10-12 Oxiranyl-triazolinthione und ihre verwendung als mikrobizide
IL13531698A IL135316A (en) 1997-10-24 1998-10-12 Oxiranyl-triazoline thiones, their preparation and microbicidal compositions comprising them
HU0003811A HUP0003811A3 (en) 1997-10-24 1998-10-12 Oxyranyle-triazoline thiones, their preparation and their use as microbicides
AT98955432T ATE267195T1 (de) 1997-10-24 1998-10-12 Oxiranyl-triazolinthione und ihre verwendung als mikrobizide
BR9813261-0A BR9813261A (pt) 1997-10-24 1998-10-12 Oxiranil-triazolinotionas e seu emprego como microbicidas
CNB988105209A CN1152875C (zh) 1997-10-24 1998-10-12 环氧乙烷基三唑啉硫酮及其作为杀微生物剂的用途
MXPA00003538 MX210235B (es) 1997-10-24 2000-04-11 Oxiranil-triazolintionas y su empleo como microbicidas
US09/827,058 US6414007B2 (en) 1997-10-24 2001-04-05 Oxiranyl-triazoline thiones and their use as microbicides

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19746993 1997-10-24
DE19823861A DE19823861A1 (de) 1997-10-24 1998-05-28 Oxiranyl-triazolinthione

Publications (1)

Publication Number Publication Date
DE19823861A1 true DE19823861A1 (de) 1999-04-29

Family

ID=7846486

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19823861A Withdrawn DE19823861A1 (de) 1997-10-24 1998-05-28 Oxiranyl-triazolinthione

Country Status (1)

Country Link
DE (1) DE19823861A1 (de)

Similar Documents

Publication Publication Date Title
EP0998479B1 (de) Triazolinthion-phosphorsäure-derivate
EP0915863B1 (de) Dihydrofuran-carboxamide
EP1060176B1 (de) Oxiranyl-triazolinthione und ihre verwendung als mikrobizide
EP0915852B1 (de) 1,3-dimethyl-5-fluor-pyrazol-4-carboxamide derivative, deren herstellung und deren verwendung als mikrobizide
EP0975220B1 (de) Verwendung von sulfonyloxadiazolonen als mikrobizide
DE19838708A1 (de) Verwendung von 5-Amino-pyrazol-Derivaten zur Bekämpfung von Mikroorganismen
EP0986542A1 (de) Fluormethoximinoverbindungen
WO1998023605A1 (de) Mikrobizide mittel auf basis von thiophen-2-carbonsäure-derivaten
DE19716260A1 (de) Sulfonyloxadiazolone
EP0975630B1 (de) Sulfonyloxadiazolone und ihre verwendung als mikrobizide
DE19818313A1 (de) Azine
DE19713762A1 (de) Methoximinomethyldioxazine
DE19823861A1 (de) Oxiranyl-triazolinthione
DE19819828A1 (de) Methoximinomethyloxathiazine
DE19810018A1 (de) Benzoheterocyclyloxime
DE19734185A1 (de) Triazolinthion-Derivat
DE19745376A1 (de) Thiomide
DE19917784A1 (de) Verwendung von 2,4-Diamino-pyrimidin-Derivaten zur Bekämpfung von Mikroorganismen
DE19830695A1 (de) Imide
DE19713764A1 (de) Benzothiophen-S-oxid-Derivate
DE19731322A1 (de) Pyrimidyloxyphenylessigsäurederivate
DE19805611A1 (de) Azine

Legal Events

Date Code Title Description
8139 Disposal/non-payment of the annual fee