DE1646862C3 - Asbestpappe - Google Patents

Asbestpappe

Info

Publication number
DE1646862C3
DE1646862C3 DE1646862A DE1646862A DE1646862C3 DE 1646862 C3 DE1646862 C3 DE 1646862C3 DE 1646862 A DE1646862 A DE 1646862A DE 1646862 A DE1646862 A DE 1646862A DE 1646862 C3 DE1646862 C3 DE 1646862C3
Authority
DE
Germany
Prior art keywords
asbestos
fibers
cardboard
weight
percent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
DE1646862A
Other languages
English (en)
Other versions
DE1646862A1 (de
DE1646862B2 (de
Inventor
William Albert Elizabeth N.J. Moore (V.St.A.)
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panacon Corp Cincinnati Ohio (vsta)
Original Assignee
Panacon Corp Cincinnati Ohio (vsta)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panacon Corp Cincinnati Ohio (vsta) filed Critical Panacon Corp Cincinnati Ohio (vsta)
Publication of DE1646862A1 publication Critical patent/DE1646862A1/de
Publication of DE1646862B2 publication Critical patent/DE1646862B2/de
Application granted granted Critical
Publication of DE1646862C3 publication Critical patent/DE1646862C3/de
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D99/00Subject matter not provided for in other groups of this subclass
    • B29D99/0032Producing rolling bodies, e.g. rollers, wheels, pulleys or pinions
    • B29D99/0035Producing rolling bodies, e.g. rollers, wheels, pulleys or pinions rollers or cylinders having an axial length of several times the diameter, e.g. for embossing, pressing, or printing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/32Wheels, pinions, pulleys, castors or rollers, Rims
    • B29L2031/324Rollers or cylinders having an axial length of several times the diameter, e.g. embossing, pressing or printing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Paper (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Producing Shaped Articles From Materials (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

öfen. Asbestpappe dient auch als Hitzeschild und zur Wärmeisolierung im Haushalt, z. B. bei K'eidungstrocknern, elektrischen Grilleinrichtungen, öfen,
Toastern, Bratöfen u. dgl.
Ein wichtiges Spezialgebiet für die Verwendung von Asbestpappe ist die Herstellung von Asbestziehwalzen für die Erzeugung von Tafelglas, die weiter unten näher beschrieben wird. Aus Asbestpappe hergestellte Spezialwalzen können auch zufriedenstellend bei der Handhabung von Platten aus rostfreiem Stahl in einem Anlaßverfahren, bei dem Temperaturen von 1100° C erreicht werden, eingesetzt werden.
Nachteilig an den bisher bekannten Asbestpappearten ist jedoch, daß ihre Lebensdauer und damit auch die Lebensdauer der daraus hergestellten Walzen verhältnismäßig kurz ist und oftmals nur wenige Wochen oder Monate beträgt. Dies ist insbesondere dort von Nachteil, wo zum Auswechseln der Ziehwalzen für die Tafelglasherstellung die gesamte Anlage stillgelegt werden muß, was mit großen wirtschaftlichen Nachteilen verbunden ist. Außerdem haben die bisher bekannten Asbestpappearten Wärmeschnimpfungs- und Rückprallelastizitätseigenschaften, die den heute an sie gestellten Anforderungen nicht mehr genügen.
Aufgabe der Erfindung ist es daher, eine Asbestpappe mit einer verbesserten Wärmeschrumpfung und Rückprallelastizität anzugeben, die zu einer Ziehwalze für die Tafelglasherstellung mit einer höheren Lebensdauer verarbeitet werden kann.
Diese Aufgabe wird gelöst durch eine Asbestpappe mit geringer Wärmeschrumpfung und merklicher Rückprallelastizität nach dem Erhitzen und Verpressen, die aus Asbestfasern und einer Mischung aus einem selbsthärtenden hydraulischen Zement und einem plastischen montmorillonitischen Ton als wärmebeständigem anorganischem Bindemittel besteht und dadurch gekennzeichnet ist, daß sie zu etwa 67 bis etwa 86 Gewichtsprozent aus Asbestfasern, von denen mindestens 30 Gewichtsprozent Amphibol-Asbestfasern sind, zu etwa 10 bis etwa 25 Gewichtsprozent aus dem hydraulischen Zement und zu etwa 4 bis etwa 8 Gewichtsprozent aus dem montmorillonitischen Ton besteht.
Gegenstand der Erfindung ist ferner die Verwendung der vorstehend angegebenen Asbestpappe zur Herstellung von Ziehwalzen für die Tafelglasherstellung.
Die Asbestpappe der Erfindung hat gegenüber den bekannten Asbestpappetypen den Vorteil, daß sie bessere Härte-, Druckfestigkeits-, Biegefestigkeits-, mechanische Stabilitäts- und Schrumpf beständigkeitseigenschaften bei Einwirkung von Hitze und somit eine hohe Dimensionsbeständigkeit bei lang andauernder starker Hitzeeinwirkung aufweist. Außerdem weist sie eine hohe RückpraHelastizität auf, d. h., sie nimmt weitgehend ihre ursprüngliche Gestalt wieder an, wenn sie nach dem Zusammenpressen wieder entspannt wird. Außerdem lassen sich daraus ganz hervorragende Ziehwalzen für die Tafelglasherstellung mit einer verbesserten Lebensdauer herstellen, die auch über längere Zeiträume hinweg Temperaturen von 760°C ausgesetzt werden können, ohne daß ein Schrumpfen oder eine Beeinträchtigung der Oberflächeneigenschaften auftritt.
Gemäß einer bevorzugten Ausgestaltung besteht der Asbestfasergehalt der Asbestpappe der Erfindung zu mindestens 50 Gewichtsprozent aus Crocidolit-Asbestfasern und zum Rest aus Chrysotil-Asbestfasern.
Gemäß einer weiteren Ausgestaltung besteht die Asbestpappe der Erfindung zu etwa 60 Gewichtsprozent aus Crocidolit-Asbestfasern, zu etwa 20 Gewichtsprozent aus Chrysotil-Asbestfasern, zu etwa
4 Gewichtsprozent aus einem stark quellenden Bentonitton und zu etwa 15 Gewichtsprozent aus Portlandzement.
ίο Gemäß einer weiteren Ausgestaltung besteht die Asbestpappe der Erfindung zu etwa 38 Gewichtsprozent aus Crocidolit-Asbestfasern, zu etwa 38 Gewichtsprozent aus Chrysotii-Asbestfasern, zu etwa
5 Gewichtsprozent aus einem stark quellenden Bentonitton und zu etwa 19 Gewichtsprozent aus Portlandzement.
Gemäß einer weiteren Ausgestaltung besteht die Asbestpappe der Erfindung zu etwa 81 Gewichtsprozent aus Crocidolit-Asbestfasern, zu etwa 4 Gewichtsprozent aus einem stark quellenden Bentonitton und iiu etwa 15 Gewichtsprozent aus Portlandzement.
Eine wichtige Verwendungsart der Asbestpappe ist der Einsatz als Ziehwalzen für dieTafelgiasherstellung.
Wie nachstehend noch eingehend gezeigt wird, haben Versuche mit Rollen, die aus erfindungsgemäßem Asbest-Karton hergestellt wurden, ergeben, daß diese eine Betriebslebensdauer aufweisen, die mehr als 5mal so groß ist als die von Rollen, die aus bisher bekannten Asbest-Kartons hergestellt wurden. Mineralogisch zerfallen die Asbestfasern in zwei Klassen, und zwar Chrysotil (Serpentingruppe) und Amphibol (einschließlich Crocidolit der Hornblendereihen und Amosit der Gruneritreihe). Etwa 4/5 der gesamten Weltproduktion an Asbest besteht aus Chrysotil, und faktisch der gesamte in den USA und in Kanada erzeugte Asbest gehört zum Chrysotiltyp. Chrysotilasbeste und Amphibolasbeste unterscheiden sich in der chemischen Zusammensetzung und dem physikalischen Aufbau stark, und obwohl jeder davon manchmal zur Herstellung ähnlicher Produkte verwendet wird, können sie in bestimmten wichtigen Fällen nicht als austauschbar oder voll äquivalent betrachtet werden.
B e i s ρ i e 1 1
Folgende Zusammensetzungen stellen eine bevorzugte Ausführungsform der Erfindung dar:
50 Chrysotilasbest
kanadisch 4 K
Gewichts
prozent
Gewichts
prozent
des Asbest
fasergehaltes
55 Crocidolit südafrikanisch
blau
38,0 50
Bentonitton
(montmorillonitisch)
38,0 50
60 Portlandzement, A.S.T.M.
Typ I
5,0
19,0
65 100,0
Die Charge kann auch eine kleine Menge zerfaserte Asbest-Kartonabfälle enthalten, welche die gleiche
Zusammensetzung wie das ursprüngliche Grundmaterial aufweisen und die in den obigen Prozentzahlen nicht enthalten kt.
Die obige Mischung wurde zu einem Asbest-Karton von 6,35 mm Stärke in einem regulären Naßmaschinenbetrieb verarbeitet, die erzeugten nassen Bahnen wurden etwa 48 Stunden härten gelassen, und dann wurden die gehärteten Bahnen auf weniger als 5% Feuchtigkeitsgehalt im Ofen getrocknet und untersucht.
Dieser Karton lieferte folgende Untersuchungswerte:
Dichte, nicht erhitzt, g/cm3 0,89
Biegefestigkeit (Reißmodul) kg/cm2 78,4
Biegefestigkeit nach 24stündigem
Erhitzen auf 650° C, kg/cm2 39,4
Wänneschrumpfung (Dickeverlust) rieh
24stündigem Erhitzen auf 6500C, %
Rückfederung (Elastizität) nach
Erhitzen auf 650° C und Zusammenpressen unter 84,4 kg/cm2, % 40,9
2,82
Eine kleine Menge zerfaserte Asbest-Kartonabfälle der gleichen Zusammensetzung wie das ursprüngliche Material kann ebenfalls im Ansatz enthalten sein.
Wenn man die obige Zusammensetzung in einen Asbest-Karton von 6,35 mm Dicke im regulären Naßmaschinenproduktionsbetrieb überführte, etwa48Stunden härtete, trocknete und untersuchte, wurden folgende Ergebnisse erhalten:
Dichte, nicht erhitzt, g/cm3 1,123
Biegefestigkeit (Bruchmodul)
nicht erhitzt, kg/cm2 105,3
Biegefestigkeit,
nach 24stündigem Erhitzen auf 65O0C
Hitzeschrumpfung (Dickeverlust) nach
24stündigem Erhitzen auf 65O0C, %
Rückfederung (Elastizität) nach Er- .
hitzen auf 6500C und Komprimieren
unter 84,4 kg/cm2, % 44,7
Aus dem wie oben beschrieben hergestellten Asbest-Karton wurden Scheiben ausgestanzt und zu Asbestrollen zur Verwendung im Zieh- und Kühlofen einer kontinuierlichen Tafelglasmaschine verarbeitet.
Es wurde gefunden, daß die verbesserten Asbest-Kartonrollen eine mehr als 5mal so große Betriebslebensdauer aufwiesen als die Rollen, die aus Chrysolitasbest-Karton hergestellt wurden; während der gesamten Betriebszeit traten bei den Rollen keine Fehler durch Rißbildung, Schrumpfen oder Oberflächenauflösung und kein Lockerwerden der Scheiben auf ihren Wellen auf, und sie verursachten auch keine Oberflächendefekte oder Fehler beim erzeugten Tafelglas. Die Rollen waren mit dem Tafelglas bei Temperaturen in einer Höhe von 6500C ständig in Berührung, und die unteren Rollen, die dem geschmolzenen Glasvorrat am nächsten waren, aus dem die Platte gezogen wurde, standen vorübergehend an der Oberfläche in Benihrung mit dem Glas bei Temperaturen von Bi 5° C.
Beispiel 2
Nachstehende Zusammensetzung stellt eine andere bevorzugte Ausführungsform der Erfindung dar, bei der ein noch höherer Anteil an Crocidolitblauasbest verwendet wird:
Gewichts
prozent
Gewichts
prozent
des Asbest-
faser-
Gesamt-
gehalts
Chrysotilasbest,
canadisch 4 K
Crocidolit,
südafrikanisch blau
Bentonitton
(montmorillonitisch)
Portlandzement, A.S.T.M.
Typ I
20,2
60,8
4,0
15,0 ,
25
75
100.0
53,0
1,97
ao Es ist ersichtlich, daß die obige Zusammensetzung, die 75% des Gesamtfasergehaltes in Form von Crocidolit enthält und die eine höhere Dichte aufweist, einen Karton liefert, der sehr hohe Festigkeit, sehr niedrige Hitzeschrumpfung und noch höhere Elastizi-
»5 tat (Rückfederung nach Erhitzen und Komprimieren) als die Zusammensetzung vom Beispiel 1 aufweist.
Beispiel 3
In dieser Ausführungsform der Erfindung stammt der gesamte Asbestfasergehalt des Kartons aus Crocidolit vom Blautyp.
35 Gewichts
prozent
Prozentsatz
des
Asbestfaser-
Gesamt
gehaltes
Crocidolit,
südafrikanisch, blau
40 Bentonitton,
(montmorillonitisch)
Portlandzement, A.S.T.M.
Typ I
81,0
4,0
15,0
100
45 100,0
Wenn die obige Mischung, die keine zerfaserten
Asbest-Kartonabfälle enthielt, zu dem 6,35 mm dicken Karton verarbeitet, etwa 48 Stunden gehärtet, getrocknet und untersucht wurde, erhielt man folgende Ergebnisse:
Dichte, nicht erhitzt, g/cm3 0,783
Biegefestigkeit (Bruchmodul)
nicht erhitzt, kg/cm2 74,5
Biegefestigkeit nach
24stündigem Erhitzen auf 65O0C 33,7
Hitzeschrumpfung (Dickeverlust) nach
24stündigem Erhitzen auf 65O°C, % 0
Rückfederung (Elastizität) nach
Erhitzen auf 6500C und
Komprimieren unter 84,4 kg/cm2, % 26,1
Die obigen Versuchsergebnisse zeigen die erstaunliche Tatsache, daß die Verwendung der reinen Crocidolitfaser in dem Asbest-Karton nicht nur die Hitzeschrumpfung bei 6500C verringert, sondern auf 0 herabgesetzt hat, so daß auch nach dieser schweren Hitzeeinwirkung der Karton keinen Dickeverlust
zeigt. Obwohl dieser Karton mit ziemlich niedriger als Prozentsatz der ursprünglichen (nicht erhitzten) Dichte hergestellt worden war, zeigte er nach dem Er- Dicke gemessen und berechnet,
hitzen auf 6500C und dem Komprimieren unter
84,4 kg/cma Belastung noch eine beträchtliche Elastizi- Rückfederungsversuch (Elastizität)
tat. Auch besaß der Karton eine ausreichende Festig- 5
keit, um den Beanspruchungen bei der Handhabung, Für die Zwecke dieser Erfindung wird dieser Ver-
beim Ausstanzen und in der Fabrikation zu wider- such an Probestücken durchgeführt, die 24 Stunden stehen. Bei einer gegebenen Zusammensetzung für lang einer Temperatur von 6500C ausgesetzt worden einen Karton erhöhen sich sowohl die Biegefestigkeit waren, als Verfahren zur Messung der Wärmefestigkeit als auch die Elastizität, wenn die Dichte erhöht wird, xo von Asbest-Karton. Die Testmethode ist eine Modifi-Der erfindungsgemäße verbesserte Asbest-Karton kation der A.S.T.M. F 36-61 T (Kompressibilität und läßt sich durch folgende Eigenschaften beschreiben: Rückfederung von Dichtungsmaterialjen) und be-Sehr geringe Hitzeschrumpfung (Dickeverlust bei steht darin, daß eine Last von 84,4 kg/cm2 mit einem 24stündigem Erhitzen auf 6500C) und beträchtliche geeigneten Eindringstempel, der einen Durchmesser Elastizität nach 24stündigem Erhitzen auf 6500C und 15 von 6,40 mm aufweist, aufgebracht wird, die Dicke-Komprimieren unter einer Belastung von 84,4 kg/cm2. verminderung unter Last nach 60 Sekunden gemessen Die Hitzeschrumpfung sollte 4,0% der Ursprung- wird, die Last weggenommen und erneut die Dicke liehen Abmessungen in unerhitztem Zustand nicht nach 60 Sekunden zur Bestimmung der Rückfederung überschreiten und sollte vorzugsweise weniger als gemessen wird, die in Prozent der Dickeverminderung 3,0% der ursprünglichen Dicke ausmachen. Die ao unter Last ausgedrückt wird.
Elastizität (Rückfederung) nach dem Erhitzen und Üblicher Asbest-Karton, der mit Chrysotilfaser her-
Zusammenpressen sollte nicht weniger als 20% der gestellt wurde, wird in einem ziemlich weiten Dichte-Dickenverminderung beim Zusammenpressen sein, bereich zwischen etwa 0,64 und etwa 1,20 g/cm3 pro- und vorzugsweise sollte die Rückfederung mehr als duziert in Abhängigkeit von dem Verwendungszweck, 25 % betragen. »5 dem der Karton zugeführt werden soll. Der erfindungs-
Um eine ausreichende Festigkeit für die Hand- gemäße verbesserte Karton kann in dem gleichen habung, das Ausstanzen und die Beanspruchung bei Dichtebereich produziert werden und weist einige der Installierung des Kartons zu haben, sollte die seiner besonderen Vorteile auch bei niedriger Dichte Biegefestigkeit (nicht erhitzt) nicht weniger als auf. Um jedoch die optimale Kombination der Eigen-56,2 kg/cm2 ausmachen, und um den Beanstandungen 30 schäften — hohe Biegefestigkeit, minimale Hitzeim Hochtemperaturbetrieb zu widerstehen, sollte die schrumpfung, erhebliche Rückfederung, gute Biegefestigkeit nicht weniger als 28,1 kg/cm2 nach Maschinenbearbeitbarkeit, saubere Stanzbarkeit und 24stündiger Hitzeeinwirkung bei 6500C liegen. hohe Abriebfestigkeit — zu erhalten, liegt der bevor
zugte Dichtebereich gemäß der Erfindung zwischen , 35 etwa 0,80 und 1,28 g/cm3.
Biegefestigkeitsversuch Hinsichtlich der Bindemittelzusammensetzung ist
folgendes zu sagen: Wenn der hydraulische Zement
Der Biegefestigkeitsversuch wird an Proben durch- weggelassen wird oder eine unzureichende Menge in geführt, die in einem Ofen bei 1000C 4 Stunden kon- der Kartonmasse verwendet wird, hat das Produkt zu ditioniert wurden. Probestücke von 7,6 · 15,2 cm, die 40 wenig Härte und eine ungenügende Festigkeit. Wenn sowohl parallel 7u: Maschinenrichtung als auch quer der montmorillonitische Ton weggelassen wird oder zur Maschinenrichtung geschnitten waren, wurden in eine unzureichende Menge in der Zusammensetzung einer Spannweite von 12,7 cm getestet mit Belastung verwendet wird, sind die Wirkungen auf den Karton in der Mitte. Die Versuchsergebnisse wurden unter verminderte Festigkeit, verminderte Hitzebeständigkeit Anwendung der Standardbruchmodulformel berech- 45 und schlechte Elastizität nach Hitzeeinwirkung bei net: 6500C und Kompression.
Der als Bindemittelkomponente verwendete hydrau-
3 WL lische Zement kann irgendeine der Standardportland-
2B-D2 zementsorten sein, einschließlich der verschiedenen im
50 A.S.T.M. Standard aufgeführten Arten.
Der montmorillonitische Ton, der gewöhnlich als
worin W die Bruchlast, L die Spannweite, B die Breite am geeignetsten für die Bindemittelzusammensetzung der TeststOcke und D die Dicke der Teststücke dar- befunden wurde, ist ein stark quellender natürlicher stellt. Der Mittelwert der berechneten Ergebnisse in Bentonitton. Es können jedoch verschiedene Ben- den beiden Richtungen wird als Biegefestigkeit in 55 tonite verwendet werden, einschließlich solche, die kg/cm* angegeben. durch Hitzebehandlung, Behandlung mit Säuren,
Salzen oder Alkalien oder durch Ionenaustausch ern te. . verfahren modifiziert wurden. Der Bentonit muß nicht Hitzeschrampfungsversucb ^ quellfähig ^ obwohl dieser Typ ^ he9m.
60 zugten Ergebnisse liefert. Teilweise kann der Ben-
Dieser Versuch besteht einfach darin, daß aus- tonitton durch andere feinteilige plastische Tone ergeschnittene Teststücke des Asbest-Kartons einer setzt werden.
Temperatur von 6500C 24 Stunden lang in einem Der für den erfindungsgemäßen Asbest-Karton
thermostatisch geregelten Ofen ausgesetzt werden. verwendete Chrysotilasbest wird aus den »Papier-
Die knochentrockene Dicke jeder Kartonprobe wird 65 herstellungsqualitäten« der Faser in den Gruppen 3
vor dem Erhitzen und wiederum nach dem Erhitzen bis 6 des Faserklassifizierungssystems der Quebec
gemessen, und dann wird auf Zimmertemperatur ab- Asbestos Manufacturers' Association ausgewählt
gekühlt Die Dickeverminderung (Schrumpfung) wird Dieses System klassifiziert die Faser nach der Länge
durch einen Siebtest und ist von der kanadischen Regierung als Qualitätskontrollmaß geprüft. In den USA und in Kanada hergestellter Chrysotilasbest wird nach diesem System klassifiziert, so daß eine gegebene Qualitäts- oder Klassifizierungsbezeichnung eine verhältnismäßig gleichmäßige Faser darstellt.
Crocidolit und Amositasbest werden nicht nach einem Standardklassifizierungssystem hergestellt. Diese Fasern können jedoch genauso wie Chrysotil unter Verwendung der Q.A.M.A.-Testvorrichtung im Siebtest untersucht werden, und die Qualität kann so bestimmt werden. Wenn Crocidolit- oder Amositasbest in der verbesserten Asbest-Kartonmasse verwendet wird, so wählt man eine Faser aus, die bei dem obigen Test hinsichtlich der Länge eine »Papierherstellungsqualität« darstellt.
Abschließend werden die durch den erfindungsgemäßen verbesserten Asbest-Karton erzielten praktischen Vorteile bei Verwendung für die Herstellung von Glasofenrollen zusammengefaßt:
ίο
1. Da die Hitzeschrumpfung im Betrieb viel geringer und die Rückfederung nach dem Zusammenpressen größer ist, kann der zum Befestigen der Scheiben beim Zusammensetzen der Rolle angewendete Druck ver-
S mindert werden. Der verminderte »Einsperr«-Druck übt eine geringere radiale Beanspruchung auf die Scheiben aus, woraus sich ein geringeres Zerreißen und Brechen der Rolle im Betrieb ergibt.
2. Da weniger Schrumpfung in der Dicke der Scheiben bei ständiger Einwirkung von Temperaturen von 6500C auftritt, verbleiben die Scheiben in dichter Berührung miteinander und mit der Welle, auf der sie angeordnet sind. Da das Wellenmaterial sich in der Hitze ausdehnt, macht es die höhere Rückfederung nach Zusammendrücken des verbesserten Kartons möglich, daß die Scheiben ihre dichte Passung beibehalten. Hierdurch wird die Neigung der Scheiben zum Brechen oder zur Zerstörung der Oberfläche, was Oberflächenfehler beim Tafelglas verursachen würde,
»ο minimal gehalten.

Claims (6)

1 2 mittel enthaltende Asbestpappe schrumpft und ihr Patentansprüche: Festigkeit verliert, wenn sie auf eine Temperatur ober halb dieses Wertes erhitzt wird. Hydratisierter, ge
1. Asbestpappe mit geringer Wärmeschrumpfung härteter Portlandzement andererseits ist zwar ein wirk und merklicher Rückprallelastizität nach dem Er- 5 sames Bindemittel für Asbestfasern bei niedrigei hitzen und Verpressen, bestehend aus Asbest- Temperaturen, er beginnt sich jedoch bei Tempera fasern und einer Mischung aus einem selbst- türen von etwa 370° C zu zersetzen und sein Hydra härtenden hydraulischen Zement und einem tationswasser zu verlieren und ist dah.- wenige; plastischen montmorillonitischen Ton als wärme- wärmebeständig als der Chrysotilasbest, aus dem di< beständigem anorganischem Bindemittel, d a- io Asbestpappe in der Regel hergestellt wird,
durch gekennzeichnet, daß sie zu etwa An dieser Stelle sei darauf hingewiesen, daß Asbest 67 bis etwa 86 Gewichtsprozent aus Asbestfasern, pappe zum größeren Anteil aus Asbestfasern und zurr von denen mindestens 30 Gewichtsprozent Am- kleineren Anteil aus dem Bindemittel besteht, das die phibol-Asbestfasem sind, zu etwa 10 bis etwa Fasern miteinander verbindet, um der Asbestpappe die 25 Gewichtsprozent aus dem hydraulischen Zement 15 gewünschten Festigkeits- und sonstigen Eigenschaften und zu etwa 4 bis etwa 8 Gewichtsprozent aus dem zu verleihen. Sie ist nicht zu verwechseln mit Zementmontmorillonitischen Ton besteht. asbestplatten, die zum kleineren Anteil aus Asbest-
2. Asbestpappe nach Anspruch 1. dadurch ge- fasern und zum größeren Anteil aus gehärtetem Portkennzeichnet, daß ihr Asbestfasergehalt zu min- landzement bestehen. Abgesehen von ihrer größeren destens 50 Gewichtsprozent aus Crocidolit-Asbest- ao Dicke ähnelt die Asbestpappe in bezug auf Zusammenfasern und zum Rest aus Chrysotil-Asbestfasern Setzung und Eigenschaften mehr dem Asbestpapier als besteht. den Asbestzementplatten. Auch das Verfahren zur Her-
3. Asbestpappe nach Anspruch 1 und/oder 2, stellung von Asbestpappe ähnelt weitgehend dem dadurch gekennzeichnet, daß sie zu etwa 60 Ge- Papierherstellungsverfahren.
wichtsprozent aus Crocidolit-Asbestfasern, zu etwa 25 Es sind auch bereits Asbestpappearten bekannt, die 20 Gewichtsprozent aus Chrysotil-Asbestfasern, neben Asbestfasern andere Bindemittelgemische und zu etwa 4 Gewichtsprozent aus einem stark gegebenenfalls weitere Zusätze enthalten. So ist beiquellenden Bentonitton und zu etwa 15 Gewichts- spielsweise aus der britischen Patentschrift 497 136 prozent aus Portlandzement besteht. eine Asbestpappe mit guten Wärmeisolationseigen-
4. Asbestpappe nach Anspruch 1, dadurch ge- 30 schäften bekannt, die zu 50 bis 65% aus Asbestkennzeichnet, daß sie zu etwa 38 Gewichtsprozent fasern (vorzugsweise Chrysotilfasern), zu 25 bis 40% aus Crocidolit-Asbestfasern, zu etwa 38 Gewichts- aus Portlandzement, zu 4 bis 10% aus Bentonit und prozent aus Chrysotil-Asbestfasern, zu etwa 5 Ge- zu 2 bis 10% aus calciniertem Magnesit bes:dit. Aus wichtsprozent aus einem stark quellenden Bento- der USA.-Patentschrift 2 421 721 ist eine wärmenitton und zu etwa 19 Gewichtsprozent aus Port- 35 isolierende Hartpappe bekannt, die zu 27% aus Asbestlandzement besteht, fasern, zu 11% aus Portlandzement, zu 22% aus
5. Asbestpappe nach Anspruch 1 und/oder 2, Diatomit, zu 22% aus hydratisiertem Kalk und zu 7% dadurch gekennzeichnet, daß sie zu etwa 81 Ge- aus Bentonit besteht. Ferner ist in der USA.-Patentwichtsprozent aus Crocidolit-Asbestfasern, zu etwa schrift 3 058 872 eine Asbestpappe beschrieben, die 4 Gewichtsprozent aus einem stark quellenden 40 durch Einwirkenlassen von Wasser oder Wasser-Bentonitton und zu etwa 15 Gewichtsprozent aus dampf gehärtet werden kann und zu 5 bis 50% aus Portlandzement besteht. Asbestfasern, zu 25 bis 95 % aus hydraulischem
6. Verwendung der Asbestpappe nach min- Zement und zum Rest gegebenenfalls aus Siliciumdestens einem der Ansprüche 1 bis 5 zur Her- dioxyd und Kautschuklatex besteht. In »Zement«, stellung von Ziehwalzen für die Tafelglasherstel- 45 1936, S. 292 bis 295, wird darauf hingewiesen, daß lung. zur Herstellung von Asbestpappe Amosit oder blauer
Asbest verwendet werden kann, wobei das Verhältnis von Asbest zu Zement zweckmäßig 1 : 8,75 beträgt.
Asbestpappe wird auf den verschiedensten tech-
50 nischen Gebieten angewendet. Auf Grund ihrer Nichtbrennbarkeit, Hitzebeständigkeit, Korrosionsbeständigkeit, chemischen Beständigkeit, ihrer guten Wärme-
Die Erfindung betrifft eine Asbestpappe mit ge» isoiatioriseigenschaften und ihrer Beständigkeit gegen tinger Wärmeschrumpfung und merklicher Rück- Angriff durch Mikroorganismen (Bakterien oder frallelastizität nach dem Erhitzen und Verpressen, die 55 Pilze) ist es möglich, Asbestpappen unter vielen harten »us Asbestfasern und einer Mischung aus einem selbst- und ungewöhnlichen Bedingungen einzusetzen. So kartenden hydraulischen Zement und einem plastischen wird beispielsweise Asbestpappe häufig als Wärmemontmorillonitischen Ton als wärmebeständigem an- und Feuerschild verwendet, der zum Auskleiden von organischem Bindemittel besteht. Wänden und Türen von feuerfesten Gewölben und
Asbestpappen, die aus Asbestfasern und einem or- 60 Sicherheitsräumen sowie Feuertüren in Gebäuden einganischen oder anorganischen (mineralischen) Binde- gebaut wird. Auf Grund ihrer Hitze- und Korrosionsmittel bestehen, sind bereits bekannt. Das am häufig- beständigkeit kann sie auch in großem Maßsüab zur sten verwendete organische Bindemittel ist Stärke, Herstellung von Dichtungen für Verbrennungsmotoren während als mineralisches Bindemittel in der Regel sowie für Dichtungen für viele andere Vorrichiungen, Portlandzement verwendet wird. Stärke ist zwar ein 65 in denen hohe Betriebstemperaturen auftreten, verwirksames Bindemittel für Asbest, sie hat jedoch den wendet werden. Eine weitere Art der Verwendung Nachteil, daß sie sich bei Temperaturen oberhalb ist die der Verwendung als hitzefeste Auskleidung und 35O°C zersetzt und verkohlt, so daß eine sie als Binde- Wärmeisolierung in Laboratoriums- und technischen
DE1646862A 1964-09-11 1965-09-09 Asbestpappe Expired DE1646862C3 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US395816A US3334010A (en) 1964-09-11 1964-09-11 Heat-resistant fibrous amphibole asbestos board containing an inorganic binder

Publications (3)

Publication Number Publication Date
DE1646862A1 DE1646862A1 (de) 1971-08-05
DE1646862B2 DE1646862B2 (de) 1974-11-07
DE1646862C3 true DE1646862C3 (de) 1975-07-03

Family

ID=23564656

Family Applications (1)

Application Number Title Priority Date Filing Date
DE1646862A Expired DE1646862C3 (de) 1964-09-11 1965-09-09 Asbestpappe

Country Status (6)

Country Link
US (1) US3334010A (de)
AT (1) AT261470B (de)
BE (1) BE669440A (de)
DE (1) DE1646862C3 (de)
GB (1) GB1113963A (de)
NL (1) NL156667B (de)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3650886A (en) * 1970-02-26 1972-03-21 Yara Engineering Corp Formation of colloidal suspensions of chrysotile asbestos by treatment with hydrogen smectites
ZA75666B (en) * 1974-02-04 1976-01-28 Johns Manville Packaging asbestos fibers
US3954556A (en) * 1974-06-10 1976-05-04 Johns-Manville Corporation Inorganic composition for high temperature use and method of forming a millboard therefrom
DE3212261A1 (de) * 1982-04-02 1983-11-10 Degussa Ag, 6000 Frankfurt Waessrige suspension von bentonit und deren verwendung zur beschichtung von waermedaemmplatten
US4487631A (en) * 1983-08-11 1984-12-11 The Babcock & Wilcox Company Shot-free millboard
US5205398A (en) * 1990-07-27 1993-04-27 Eltech Systems Corporation Insulating roll cover
DK44393D0 (da) * 1993-04-20 1993-04-20 Rockwool Int Fremgangsmaade til omdannelse af et asbestcementprodukt til et sundhedsmaessigt ufarligt produkt
JP2005520774A (ja) * 2002-03-22 2005-07-14 コーニング インコーポレイテッド 板ガラスの製造に用いられる牽引ロール
US7507194B2 (en) 2006-11-29 2009-03-24 Corning Incorporated Pulling roll material for manufacture of sheet glass
US7624646B2 (en) * 2007-02-27 2009-12-01 Corning Incorporated Systems and methods for evaluating material for pulling rolls
US20090272151A1 (en) * 2008-04-30 2009-11-05 Maurice Lacasse Pulling roll material for manufacture of sheet glass
US8549753B2 (en) 2009-05-14 2013-10-08 Corning Incorporated Methods of manufacturing a modular pulling roll
US20120004084A1 (en) 2010-07-02 2012-01-05 Dean Veral Neubauer Pulling Rolls for Making Sheet Glass and Methods of Making and Using

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2421721A (en) * 1944-06-13 1947-06-03 Carey Philip Mfg Co Molded fiber-cement composition product
US3219467A (en) * 1960-09-09 1965-11-23 Johns Manville Manufacture of asbestos-cement products
US3058872A (en) * 1960-11-16 1962-10-16 Armstrong Cork Co Flexible asbestos-cement products
NL287249A (de) * 1961-12-29
US3169878A (en) * 1962-05-16 1965-02-16 Johns Manville Asbestos-cement products

Also Published As

Publication number Publication date
US3334010A (en) 1967-08-01
NL156667B (nl) 1978-05-16
AT261470B (de) 1968-04-25
DE1646862A1 (de) 1971-08-05
GB1113963A (en) 1968-05-15
DE1646862B2 (de) 1974-11-07
BE669440A (de) 1965-12-31
NL6511852A (de) 1966-03-14

Similar Documents

Publication Publication Date Title
DE1646862C3 (de) Asbestpappe
DE69016116T2 (de) Intumeszierendes Bahnmaterial.
DE2829759A1 (de) Masse auf mineralfaserbasis
DE1928337A1 (de) Kalziumsilikat-Giessmaterial
DE2740707A1 (de) Hochdichte tobermorit-waermeisolierung mit wollastonit
EP0741003A1 (de) Brandschutzelement mit Schichtstruktur, insbesondere als Einlage für Feuerschutztüren, sowie Halbzeug hierfür
DE3025341T1 (de) Sheet material containing exfoliated vermiculite
DE3625254A1 (de) Nichtentflammbares papier
DE3105593C2 (de) Verfahren zur Herstellung von plastischen Massen zur Weiterverarbeitung zu feuerbeständigen oder feuerfesten Materialien, nach dem Verfahren hergestellte Massen und ihre Verwendung
DE3245647A1 (de) Feuerfeste baustoffe
DE3105531A1 (de) &#34;verfahren zur herstellung von keramische fasern enthaltenden, feuerbestaendigen oder feuerfesten massen, nach dem verfahren hergestellte massen und ihre verwendung&#34;
EP0000402B1 (de) Verfahren zur Herstellung von Isolierbauplatten
DE69838406T2 (de) Hitzebeständiges Material
DE3105596C2 (de) Verfahren zur Herstellung eines Formteils und seine Verwendung
EP1680372B2 (de) Feuerschutztüre und feuerschutzeinlage hierfür
EP1277527A1 (de) Verfahren zur Umwandlung von Asbestzementprodukten in Temperzementprodukte
DE2854967A1 (de) Asbestfreie, auf zementbasis nach dem aufwickelverfahren herzustellende bauplatten-rohplatte
DE2617601A1 (de) Waermedaemmstoff
DE2453552C3 (de) Geblähtes Material aus Rhyolithgläsern und Verfahren zu seiner Herstellung
DE3413679A1 (de) Waermespeicherungsbloecke und deren herstellung sowie eine diese bloecke enthaltende elektrische waermespeicherungseinheit
DE3346120C2 (de) Geblähter Perlit
DE861527C (de) Herstellung von Mineralwollfilzen
AT305129B (de) Verfahren zur Verbesserung der Eigenschaften von aus hydraulischem Bindemittel, Sand und Wasser hergestelltem Beton
DE2205119C3 (de) Asbestfaserplatte
DE3804883C1 (en) Process for producing a clay- and fibre-containing material

Legal Events

Date Code Title Description
C3 Grant after two publication steps (3rd publication)
E77 Valid patent as to the heymanns-index 1977
8339 Ceased/non-payment of the annual fee