DE1616505B2 - - Google Patents

Info

Publication number
DE1616505B2
DE1616505B2 DE19671616505 DE1616505A DE1616505B2 DE 1616505 B2 DE1616505 B2 DE 1616505B2 DE 19671616505 DE19671616505 DE 19671616505 DE 1616505 A DE1616505 A DE 1616505A DE 1616505 B2 DE1616505 B2 DE 1616505B2
Authority
DE
Germany
Prior art keywords
electrode
electrodes
resonance
transmitter element
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE19671616505
Other languages
English (en)
Other versions
DE1616505A1 (de
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Publication of DE1616505A1 publication Critical patent/DE1616505A1/de
Publication of DE1616505B2 publication Critical patent/DE1616505B2/de
Application granted granted Critical
Publication of DE1616505C publication Critical patent/DE1616505C/de
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/54Filters comprising resonators of piezoelectric or electrostrictive material
    • H03H9/56Monolithic crystal filters
    • H03H9/562Monolithic crystal filters comprising a ceramic piezoelectric layer
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/54Filters comprising resonators of piezoelectric or electrostrictive material
    • H03H9/542Filters comprising resonators of piezoelectric or electrostrictive material including passive elements

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Description

3 4
auf seinen beiden Seiten einander gegenüberliegenden dahingehend definieren, daß entsprechend der UmElektroden zu polarisieren. Die Ringelektrode kann fangsform des Resonanzkörpers alle lateralen Schwinauch am Rande des scheibenförmigen Resonanz- gungsmoden zu einer einzigen Umfangsdehnungskörpers angeordnet sein, um die vollständige radiale schwingung verschmelzen, deren Resonanzfrequenz Vorpolarisation zu erleichtern, und mit über die 5 durch die planaren Abmessungen des Resonanz-Scheibe greifenden Teilen versehen sein, um einen körpers gegeben ist. : . :
Löscheffekt zu verhindern. Die radiale Schwingungsrichtung, die für Resonator-
Schließlich ist es durch Hinzufügung je einer körper gemäß der Erfindung wesentlich ist, existiert
weiteren konzentrisch zu der kreisförmigen Elektrode als isolierte Schwingungsform weder in Quarz noch
und außerhalb von ihr angeordneten Ringelektrode io selbst in Einzelkristallen eines ferroelektrischen Ma-
auf jeder Seite des in radialer Richtung polarisierten terials. _, _
Resonanzkörpers möglich, eine Impedanzwandlung Ein Kennzeichen der vorpolarisierten ferroelek-
und Spannungserhöhung zu erreichen. trischen Keramiken ist das »Altern« der elektro-
Im folgenden wird die Erfindung an Hand der mechanischen Kopplung und die langsame Verände-
Figuren beschrieben. 15 rung anderer Eigenschaften, z. B. der Dielektrizitäts-
F i g. 1 ist eine Draufsicht auf ein piezoelektrisches konstante und der Frequenzkonstante mit der Zeit
Übertragerelement gemäß der Erfindung; und/oder der Temperatur. Da die Empfänglichkeit
- F i g. 2 ist ein Schnitt entlang der Linie 2-2 der für das Altern und die Temperaturabhängigkeit der
Fig. 1; ;. Eigenschaften unterschiedlich ist, werden stabilere
F i g. 3 ist eine das Resonatorelement der F i g. 1 20 Materialien wie die Bleititan-Zirkonate vorgezogen,
und 2 enthaltende Prüfschaltung; Die Scheibe 12 sowie alle anderen in den
F i g. 4 ist ein der F i g. 2 ähnlicher Schnitt durch Figuren dargestellten Resonanzkörper sind stark
*}■■' ein anderes Ausführungsbeispiel; vergrößert gegenüber ihrer wahren Größe abgebildet.
F i g. 5, 6 und 7 sind den F i g. 1, 2 und 3 ent- Ihre Größe hängt von der gewünschten Arbeitssprechende Darstellungen eines anderen Ausführungs- 25 frequenz ab, d. h., die Scheibe wird so dimensioniert, beispiels; daß die Resonanz der radialen Schwingungsform bei , %F i g. 8 zeigt die Verteilung der radialen und tangen- einer vorgewählten Frequenz liegt. Wenn die Scheibe tiälen Spannung in einem in radialer Richtung mit beispielsweise als Filter für Zwischenfrequenzen (etwa der Grund- und der ersten Oberfrequenz schwingenden 455 bis 465 kHz) ausgelegt ist und bei ihrer Grund-Ubertragerelement; 3° resonanz betrieben werden soll, dann ist sie sehr klein
F i g. 9 zeigt die Durchlaßcharakteristik eines und hat einen Durchmesser von etwa 4,7 mm. Wenn
Filters gemäß der Erfindung. man die Scheibe dabei dünn im Vergleich zu ihrem
Die F i g. 1 und 2 zeigen ein piezoelektrisches Durchmesser macht, dann kann die Resonanzfre-
Übertragerelement 10 gemäß der Erfindung mit quenz wie im Fall einer unendlich dünnen Scheibe
einem scheibenförmigen oder plattenförmigen Reso- 35 als Funktion des Durchmessers allein betrachtet
nanzkörper 12 (der im folgenden als Scheibe be- werden. Ist jedoch eine geringe Ausdehnung nicht
zeichnet wird) aus einem ferroelektrischen poly- der einzige Gesichtspunkt, dann ist es günstiger, die
kristallinen keramischen Material, der mit Elektroden Scheibe für einen Betrieb in der ersten oder zweiten
versehen ist, welche hier von je einer zentralen Elek- Querschwingung zu dimensionieren, so daß größere
trode 14, 16 kleinen Durchmessers und je einer 4° Scheiben möglich sind. Besitzt eine dünne Scheibe
konzentrischen Ringelektrode 18, 20 auf jeder Seite mit einer Grundfrequenz von etwa 180 kHz eine erste
der Scheibe gebildet werden. Oberschwingung im Zwischenfrequenzbereich (etwa
Das Material, aus dem die Scheibe 12 oder die 455 kHz), dann erhält sie einen Durchmesser von 'il, anderen, weiter unten dargestellten Resonanzkörper annähernd 12,5 mm. Eine Scheibe, die bei einer Oberbestehen, kann eine ferroelektrische poly kristalline 45 schwingung von niedriger Ordnung (1. oder 2.) bekeramische Zusammensetzung sein. Beispiele für , trieben wird, hat zusätzlich zu der bequemen Größe geeignete Stoffe sind Bariumtitanat, Bleizirkonat- im Zwischenfrequenzbereich weitere Vorteile, die titanat oder ihre Modifikationen. Allgemein umfassen noch erläutert werden.
die hier betrachteten ferroelektrischen Keramiken Der Resonanzkörper kann mit Hilfe irgendeines
bis zur Sinterung gebrannte polykristalline keramische 5° bekannten Verfahrens hergestellt werden, indem sie
Stoffe, welche sich durch elektrostatische Felder z. B. durch Pressen, Strangpressen oder Streckgießen
polarisieren lassen und dadurch piezoelektrische zunächst auf eine Übergröße gebracht und dann nach
Eigenschaften erhalten, die nach der Entfernung des dem Brennen durch Schleifen und Polieren fertig-
Feldes erhalten bleiben. Solche Keramiken weisen gestellt wird. Die rohe Scheibe kann aber auch von
gewöhnlich eine Perovskit-Kristallstruktur auf und 55 einem zylindrischen Stück aus gebrannter Keramik
sind piezoelektrisch wirksamer als die meisten natür- abgeschnitten werden. ,„: ;._. _ _
liehen piezoelektrischen Kristalle. Bei geeigneter Vor- Bei dem in den Fig. 1 und 2 dargestellten Auspolarisation sind insbesondere bei den Bleititanzirko- führungsbeispiel ist die Scheibe 12 in den Bereichen naten remanente elektromechanische Kopplungen von zwischen den entgegengesetzten Elektroden 14, 16 5O°/o oder mehr in der ebenen oder radialen Schwin- 60 und 18, 20 in axialer Richtung vorpolarisiert, was gungsrichtung nicht ungewöhnlich. Weiterhin sind im durch die doppelköpfigen Pfeile 30 angedeutet ist. Gegensatz zu den meisten piezoelektrischen Kristallen Das kann z. B. auf die folgende Art erreicht werden: alle ferroelektrischen keramischen Stoffe in einer zur Zunächst werden die Elektroden 14, 16 und 18, 20, Polarisationsachse oder -richtung senkrechten Ebene die aus aufgebranntem oder luftgetrocknetem Silber isotrop. Resonanzkörper aus einem solchen kera- 65 od. dgl. bestehen können, aufgebracht. Danach wermischen Stoff weisen daher axiale oder Dicken- und den Zuführungen 22, 24, 26 und 28 angelötet oder radiale oder Umfangsdehnungsschwingungsformen irgendwie anders an je einer Elektrode befestigt, und auf. Die Umfangsdehnungsschwingung läßt sich dabei anschließend werden die Zuführungen auf der einen
5 6
Seite der Scheibe 12 mit dem einen Pol einer hohen der Schaltung nach der F i g. 3 mit Hilfe der folgenden
Gleichspannungsquelle (nicht dargestellt) und die Widerstandswerte ermittelt. Zuführungen auf der anderen Seite der Scheibe mit
dem anderen Pol dieser Quelle verbunden. Die Feld- Widerstand 33 1000 Ohm
stärke, die Dauer und die anderen Bedingungen wer- 5 Widerstand 35 1000 Ohm
den dabei in bekannter Weise dem besonderen kera- Widerstand 37 5000 Ohm.
mischen Material angepaßt.
In den F i g. 1 und 2 stimmen die mittlere Elek- Die Wirkungsweise des Übertragerelements 10 ist trode 14 und die konzentrische Ringelektrode 18 auf wie folgt: Wenn die Scheibe 12 für Grund- und Oberder einen Seite der Scheibe 12 in ihrer Stellung und in ίο resonanz in einer radialen Schwingungsform bei der ihrem Flächeninhalt mit den entsprechenden Elek- Mittelfrequenz des Durchlaßbereichs oder bei einer troden 16 und 20 auf der anderen Seite überein und in der Nähe derselben liegenden Frequenz dimenstehen ihnen direkt gegenüber. Die Fläche und die sioniert ist, dann rufen Wechselspannungssignale Stellung der Elektroden ist wichtig. Weil sich derartige außerhalb des Durchlaßbereiches keine oder nur eine Zusammenhänge für verschiedene Ausführungsbei- 15 geringe Wirkung in der Scheibe 12 hervor und werden spiele jedoch allgemein zusammenfassen lassen und daher geschwächt. Frequenzen innerhalb des Durcheng mit der Wirkungsweise der Resonatorkörper ver- laßbereiches jedoch versetzen die Scheibe 12 in starke knüpft sind, werden weitere Einzelheiten erst weiter radiale Schwingungen bei ihrer Eigenfrequenz (Grundunten angegeben. oder Oberfrequenz). Bei Anwendungen im Zwischen-Es sei an dieser Stelle noch bemerkt, daß der Aus- 20 frequenzbereich sorgt die breite Trennung der Sumdruck »konzentrische Ringelektrode« auf die allge- men- und Differenzfrequenzen dafür, daß das Übermeine Lage der Elektrode 18 hinweisen soll. Diese tragerelement nur bei den gewünschten Oberschwin- r>-Elektrode muß dagegen nicht kontinuierlich sein und gungen erregt wird. · UJ* die mittlere Elektrode 14 völlig umgeben, sondern Die radiale Schwingung der Scheibe 12 erzeugt eine es genügt, wenn die Elektrode 18 etwa die Form eines 25 piezoelektrische Wechselspannung bei der Mitten-C aufweist. Dadurch wird die Durchführbarkeit der frequenz oder einer in der Nähe derselben liegenden Erfindung nicht beeinträchtigt. Frequenzen. Diese Wechselspannung erscheint an Res*oTiatorkörper gemäß der Erfindung können den mittleren Elektroden 14, 16. Durch geeignete einzeln oder in Gruppen und allein oder in Ver- Anordnung und Dimensionierung der Elektroden bindung mit den üblichen elektrischen Schaltelementen 30 kann man eine günstige Impedanzwandlung und in den bekannten Schaltungen verwendet werden. Da damit eine Spannungserhöhung der durchgehenden die besondere Schalttechnik nicht zur Erfindung ge- Frequenzen erreichen.
hört, wird eine spezielle Schaltung und ihr Betrieb Die Scheibe 12 hat übereinstimmende Elektrodenan Hand einer Prüfschaltung beschrieben, die man paare 14, 16 und 18, 20 und ist nur zwischen den zur Messung der Charakteristiken der Resonatoren 35 Elektrodenpaaren polarisiert. Ähnliche Ergebnisse verwenden kann (F i g. 3). kann man aber auch mit einer abgewandelten Elek-In der F i g. 3 führt ein Generator 32 dem Reso- trodenanordnung erreichen, wie sie an Hand des nator 10 ein Eingangssignal von beliebiger Frequenz Übertragerelements 10 a der F i g. 4 dargestellt ist. zu. Bei einer wirklichen Anwendung könnte dieses Das Übertrager element 10 a enthält eine Scheibe 12 a Eingangssignal z. B. in einer Mischstufe oder in einer 40 aus ferroelektrischer Keramik, welche über ihren Zwischenfrequenzverstärkerstufe eines Zwischenfre- ganzen Querschnitt in axialer Richtung polarisiert quenzempfängers entstehen. ist. Es besitzt nur drei Elektroden: eine mittlere Wie die Fi g. 3 zeigt, dient ein Voltmeter Vi zur Elektrode 14 und eine konzentrische Ringelektrode 18 Anzeige der an einem Widerstand 33 liegenden Ein- auf der einen Seite der Scheibe, die den entsprechend , ., gangsspannung und ein Voltmeter F0 zur Anzeige 45 bezifferten Elektroden des zuerst beschriebenen Aus- v* der an einem Widerstand 35 liegenden Ausgangs- führungsbeispiels gleich sind, und eine Elektrode 16 a, spannung. Ein Endpunkt des Generators 32 und beide welche die ganze andere Seite der Scheibe oder Elektroden (z.B. 16 und 20) auf der einen Seite der wenigstens den größten Teil davon bedeckt. Die Scheibe sind geerdet. Der andere Endpunkt des Polarisation kann man erreichen, indem man beide Generators 32 ist über den Widerstand 37 mit der 50 Seiten der Scheibe 12 a vollständig mit Elektroden konzentrischen Elektrode 18 auf der anderen Seite bedeckt. Danach werden entweder die Polarisationsder Scheibe und über die in Serie liegenden Wider- elektroden entfernt und neue Elektroden aufgesetzt, stände 37 und 33 mit der Erde verbunden. Die Elek- oder die Polarisationselektroden werden in betrode 14 liegt über den Widerstand 35 an Erde. stimmten Gebieten entfernt, um die gewünschte Aus der F i g. 3 ist ersichtlich, daß die Eingangs- 55 Form der Betriebselektroden zu erhalten. Die Fläche spannung zwischen den konzentrischen Elektroden 18 der Elektrode 16 a sollte mindestens gleich der Summe und 20 des Resonanzkörpers 10 anliegt, während das der Flächen der Elektroden 14 und 18 sein und den Ausgangssignal von den mittleren Elektroden 14 Elektroden 14 und 18 direkt gegenüberliegen. Die und 16 abgenommen wird. Durch Veränderung der Form der Elektroden des Resonators 10 a kann die Frequenz des vom Generator 32 erzeugten Signals 60 Streukapazität erhöhen, doch sonst sind die Betriebsüber einen Bereich, der die Durchlaßfrequenz des eigenschaften im wesentlichen dieselben wie für den Resonators 10 einschließt, kann die Durchlaßcharakte- Resonator 10.
ristik des Resonators aus dem Verhältnis VJVi er- Ein weiteres Ausführungsbeispiel der Erfindung ist mittelt werden. Eine graphische Darstellung von VjVi das Übertragerelement 10 c nach der F i g. 6 und 7. über die Frequenz des Eingangssignals für Ausfüh- 65 Es besitzt eine am Rande der Scheibe angeordnete rungsbeispiele gemäß der Erfindung ist in F i g. 9 Ring- oder Umfangselektrode 34, zwei mittlere dargestellt und wird im folgenden erläutert. Elektroden 14 und 16 und zwei konzentrische Ring-Die in F i g. 9 aufgezeichneten Werte werden mit elektroden 18 und 20, die den entsprechend bezifferten
Elektroden der oben beschriebenen Ausführungsbeispiele entsprechen. Wie durch die Pfeile 3Q angedeutet ist, syird die'Schejbe. 12c den'Fig. f> vollständig in radialer Richtung yorpolarisiert, indem man die Zuführungen 22 und. 24 der mittleren Elektroden 14 und beide mit dem einen Pol der Polarisations-Spannungsquelle und d,ie Zuführungen 26 und 28 der beiden kP^enirischen Ringeipktroden 18 und 2Ö mit dem anderen Pol verbindet. Das führt zu einer radialen Polarisation zwischen den mittleren pnd den konzentrischen" Ringelektroderi. Danach werden die Ringeiektrpden 18 uncj 20 gemeinsam an denjenigen Pol pier Sjpanruingsquelie angeschlossen, der Ursprung-■lieh mit den mittleren Elektrqdeq verbunden war, •Während die Zuführung 38 der ain |tande der Scheibe ■angeordneten Ringelektrode 34 mit jiem anderen Pol vertmnde,n wirpl, um die radiale Polarisation in dem Bereich zwischen cjen Ringeiektrqden und dem Umzeigen, daß die radiale Spannung Tr am Rand der Scheibe 0 ist und daß sie in der Mitte, \vc\Tr == Tq
gilt, am größten ist. Die Tangentjalspannung Tp hat am Rande der Scheibe einen kleinsten W/ert
größer als Q. Die Spannungen jg und Tr,'die ppsitjy
angenommen werden, sind in Pijase und in dpr Ehase entgegengesetzt zur Spannung "Fz, Welche daher
negativ ist. . ' :
Im folgenden wird ein rechnerisches Be.isp.iej für
*o den Fall gegeben,- daß pine. Scheibe, dip bei ihrer Qrundfreguenz Jn radialer jUchtung schwingt, nur in ihrer axialen Richtung vorpojarisiert js't. Dieses Ausführungsbeispiel ist in den F j g. 1 bis. 4 darger stellt, pip mechanischen Spannungskuryen ■ sind die
gleichen wie die ausgezogenen Kuryen m'der Fj g. 8, dpcl} wird in diesem FaUe das axiale Feld wje.dex-
gegebpn dutch: ■ \
T.
Pqjarität des Poiarisatiqnsfeldes wird also aufrechterhalten.
Die Prüfschaltung des Übertragerelements 10 c ist in der F i g. 5 dargestellt. Ίνα. Hand der F i g. i bis 7 sind Ausführungsbeispiele der Erfindung beschr.ie|)en, Welche Beispiele fiir zw:ei Hauptmerkmale enthalten, nämlich i. für die Richtung oder. Richtungen der ¥pr- , polarisation der keramischen Scheibe' und 2. für die %lektroden, ihre Anzahl und ihre Gestalt. Es ist gezeigt, daß die Scheibe über ihren ganzen Querschnitt oder nur zwischen den Elektroden axial vorpolarisiert sein kann oder daß sie vollständig radial vorpolarisiert sein kann. Außerdem können drei, vier oder fünf Elektroden verwendet werden. Drei Elektroden, die wenigstens eine mittlere Elektrode und eine konzenirische Elektrode einschließen, sind zumindest erforderlich.
Die Faktoren, welche die Anzahl, die Fläche und die Stellung der Elektroden beeinflussen, werden aus der folgenden rechnerischen Behandlung der Wirkungsweise der Resonatoren gemäß der Erfindung ersiehtlieh.
Die Ausdrücke, die in der rechnerischen Betrachtung angewandt werden, sind wie folgt definiert:
T9 = tangentiale oder Umfangsspannung,
Tr = radiale Spannung,
Tz = axiale Spannung,
Er = radiales Feld, .
Ez = axiales Feld,
g31 = Koeffizient der piezoelektrischen Ausgangsspannung bei mechanischer Beanspruchung senkrecht zur Polarisationsrichtung,
g33 = Koeffizient der piezoelektrischen Ausgangsspannung bei mechanischer Beanspruchung parallel zur Polarisationsrichtung,
für Bariumtitanat g31 = -^- ^33,
r = Scheibenradius.
In der F i g. 8 sind die Funktionen der radialen und tangentialen Spannungen einer dünnen keramischen Scheibe, die bei der Grundfrequenz und erster Oberfrequenz in radialer Richtung schwingt, näherungsweise durch die Kurven Tr und ΤΘ dargestellt. Die axiale Spannung Tz, welche durch den Poissoneffekt hervorgerufen wird, ist für dünne Scheiben sehr klein und daher in der F i g. 8 weggelassen. Die ausgezogenen Kurven gelten für Grundresonanz. Sie $? Τ>ά g33 und Tz μηα 180° gegen g31, T& und Tr phasenverschoben sind, tritt kein Löscheffekt auf, der dann entstehen kann, wenn die Elektrode 34 keine überstehenden Ränder au'fweist. . Durch geeignete Auswahl der Fläche .und der
Stellung der Eiektrpden wird, die beseitigung des Löscheffekts und eine Impedanzw,andlung. mit Spannungserhöhung erreicht. Die hier beschriebenen Übertragerelemente dienen daher als Impedanzwandler und als elektrische Wellenfilter.
Das gleiche gilt für Übertragerelemente, die bei einer Oberschwingung arbeiten. Die F i g. 8 zeigt gestrichelt eine Spannungskurve für ein derartiges Übertragerelement. Dieses besteht aus einer Scheibe, die in radialer Richtung in ihrer ersten Oberschwingung mit etwa der 2,5fachen Frequenz der Grundresonanzfrequenz schwingt. Nach der Figur herrschen die folgenden Spannungszustände:
L Im Mittelpunkt der Scheibe mit dem Radius r:
(a) ΤΘ = Tr,
(b) TQ Tr sind positive Maxima,
(c) Tz ist negativ.
2. Fur den mittleren Bereich (πα2) der Scheibe, wobei
_
a ~ υ'4 Κ'
(a) Σ T@ und Σ Tr sind positiv,
(b) ΣΤ& >ΣΤΚ,
(c) Tz ist negativ.
3. Am Umfang (2π«) des Mittelteils der Scheibe:
(a) T& ist positiv,
(b) Tr ist 0,
(c) Tz ist negativ.
4 Fr dasußere Gebiet π(/.2_β2) der Scheibe:
(a) Σ T& ist negatiVj
(b) Σ Tr ist negativ,
(c) Σ Tr ist negativer als Σ T0
.
Wenn a so die Scheibe m den Fig. 1 oder 4 eine
^«f Elektrode 14 mit einem Radius α vom etwa 0 fachen des Scheibenradius r besitzt, die Ringelektrode 20 abgesehen von einem engen Spalt die
p restliche Flache der Scheibe bedeckt, und die Scheibe
^dialer Richtung in ihrer ersten Oberschwmgung schvangt, wird das axiale Feld wiedergegeben durch
Ez = g31(T@ + Tr) + g33Tz . (5)
209 546/363
9 10
Da alle Glieder für den Mittelteil der Scheibe Zusammenfassend kann gesagt werden, daß die positiv sind, tritt kein Löscheffekt auf, und man kann beschriebenen Übertragerelemente eine Spannungsvereine sehr günstige Impedanzwandlung erreichen. Stärkung liefern, die durch eine Impedanzwandlung
Die obige Rechnung gründete auf der Annahme, erhalten wird. Die Impedanzwandlung hängt vom daß die Scheiben dünn sind (z. B. Scheiben mit einem 5 Flächen- und daher vom Kapazitätsverhältnis der Durchmesser vom etwa 5- bis lOfachen der Dicke). Primär- und Sekundärelektroden und von der Stel-In solchen Scheiben sind die axialen Spannungen lung der Elektroden ab, die zur Beseitigung des klein und daher meistens vernachlässigbar. Weiter- Löscheffektes entgegengesetzt gerichteter Felder hin ist die Resonanzfrequenz dünner Scheiben fast führt. ... ; -...■ ,·,...--,^
ausschließlich eine Funktion des Durchmessers. Man io Die Durchlaßcharakteristik eines typischen Überkann natürlich auch Scheiben größerer Dicke ver- tragerelementes gemäß der Erfindung ist in F i g. 9 wenden; in diesem Fall beeinflußt jedoch die Dicke gezeigt. Die Fig. 9 ist mit einem Übertragerelement die Resonanzfrequenz, und die axialen Spannungen nach der F i g. 4 ermittelt worden, das bei seiner sind nicht klein. Wenn insbesondere die Dicke der Grundfrequenz F0 (ausgezogene Kurve) und der Scheibe mit ihrem Durchmesser in einer solchen Be- 15 ersten Oberschwingung .F1 (gestrichelte Linie) in der ziehung steht, daß die radiale und die axiale Resonanz Schaltung nach der F i g. 3 arbeitet. Der Radius der zusammenfallen, dann treten auch axiale Spannungen Mittelelektrode ist 0,4 mal dem Radius der Scheibe 12a, auf, die von der gleichen Größenordnung wie die und die Ringelelektrode 18 bedeckt den Rest der radialen und tangentialen Spannungen sind. Scheibenfläche bis auf einen engen Spalt zwischen
In allen axial vorpolarisierten Scheiben wird das 20 ihr und der Elektrode 14. Aus den Kurven ersieht
axiale Feld wiedergegeben durch man, daß Übertragerelemente gemäß der Erfindung,
ν—ρ(τ±ΤΛνΤ ^s Filter verwendet, scharfe Durchlaßbänder, hohen
z Sai ^eT-1VSM zSpannungsgewinn und ein hohes Signal-Rausch-Ver-
Eine ziemlich dicke Resonatorscheibe zeigt wesent- hältnis besitzen. Nach der Vierpoltheorie können liehe axiale Spannungen Tz und nutzt daher den 25 schließlich mehrere Ubertragerelemente zu Filterhohen £33-Koeffizienten aus. netzen vereinigt werden.
Hierzu 1 Blatt Zeichnungen

Claims (8)

1 2 Patentansprüche: ,.Die Erfindung bezieht sich auf piezoelektrische i Ubertragerelemente. j
1. Piezoelektrisches Übertragerelement, dessen Es ist bekannt, piezoelektrische Übertragerelemente j Resonanzkörper aus einem vorpolarisierten kera- mit einem Resonanzkörper in Form einer flachen ! mischen Material, wie Bariumtitanat oder Blei- 5 Scheibe zu verwenden, der mit Elektroden zur Zu- ■ titanzirkonat in Form einer flachen Scheibe be- führung der Eingangsspannung und zur Abnahme i steht, der mit Elektroden zur Zuführung der Ein- der Ausgangsspannung belegt ist. Dabei bestehen die j gangsspannung und zur Abnahme der Ausgangs- Resonanzkörper aus Platten, die aus einem Quarzspannung belegt ist, dadurch gekenn- kristall unter einem bestimmten Winkel zu der
ζ e ichnet, daß der keramische Körper (12,12α, ίο Kristallachse herausgeschnitten sind.
12 c) für eine radiale Schwingungsform vorpolari- Es ist ferner bekannt, piezoelektrische Resonanzsiert und bemessen ist, daß er ferner in an sich körper aus einer piezoelektrischen Keramik, d. h. bekannter Weise entweder zwei der Zuführung aus einem vorpolarisierten keramischen Material, aus bzw. der Abnahme elektrischer Schwingungen Bariumtitanat und Bleititanzirkonat herzustellen,
dienende Elektrodenpaare (14, 16; 18, 20; 26, 28) 15 Die bekannten Resonanzkörper können Längs-, oder drei Elektroden (14, 16a, 18; 14, 16, 34) auf- Biege-, Scherungs- oder Torsionsschwingungen ausweist, von denen eine oder mehrere Bestandteil führen. Bei den anisotropen Quarzkristallen läßt sich sowohl des Eingangs- als auch des Ausgangs- jedoch ein radialer oder Umfangsdehnungsschwinkreises sind, und daß schließlich diese Elektroden gungsmodus nicht anregen oder ausnutzen. Hierzu so angeordnet sind, daß sich auf der einen Seite 20 sind jedoch die isotropen keramischen Resonanzdes scheibenförmigen Resonanzkörpers eine den körper befähigt (vgl. hierzu Annalen der Physik, mittleren Bereich bedeckende kreisförmige Elek- 5. Folge, Bd. 15, H. 8, S. 881 bis 902). Es geht ferner trode (14) kleinen Durchmessers befindet und aus der französischen Patentschrift 1117 325 hervor, konzentrisch hierzu eine äußere Ringelektrode piezoelektrische Übertrager aus Bariumtitanat anzu-(18, 34), während die andere Seite des Körpers 25 fertigen, deren Schwingkörper als kreisringförmige entweder mit Elektroden (16, 20) gleicher Aus- Platte ausgebildet ist, jedoch ist bei diesem bekannten bildung belegt ist oder nur mit einer solchen Gerät nur an eine Schwingung in Querrichtung ge-Elekfrode (16a). - dacht. Die Erfindung geht von der Erkenntnis aus,
2. Übertragerelement nach Anspruch 1, dadurch daß sich bei Verwendung des vorpolarisierten keragekennzeichnet, daß der keramische Resonanz- 30 mischen isotropen Materials radiale oder Umfangskörper (12, 12 a) in axialer Richtung vorpolarisiert dehnungsschwingungen erzeugen und ausnutzen lassen, ist. . Der Erfindung liegt die Aufgabe zugrunde, ein
3. Übertragerelement nach Anspruch 1 oder-2, piezoelektrisches Übertragerelement der beschriebenen dadurch gekennzeichnet, daß der keramische Art mit einem Resonanzkörper aus keramischem Resonanzkörper (12 c) in radialer Richtung vor- 35 Material anzugeben, der bei kleinen handlichen Abpolarisiert ist. messungen und einfachem Aufbau im radialen
4. Ubertragerelement nach Anspruch 2, dadurch Schwingungsmodus oder als Umfangsdehnungsschwingekennzeichnet, daß der Resonanzkörper nur ger arbeitet und einen scharf definierten Frequenzzwischen den auf seinen beiden Seiten einander Durchlaßbereich, hohen Spannungsgewinn und ein gegenüberliegenden Elektroden (14, 16; 18, 20) 40 hohes Signal-Rausch-Verhältnis aufweist,
polarisiert ist. . Gemäß der Erfindung ist das Übertragerelement
5. Übertragerelement nach Anspruch 1, dadurch derart ausgebildet, daß der keramische Körper für gekennzeichnet, daß die Ringelektrode (34 in eine radiale Schwingungsform vorpolarisiert und be-F i g. 5 und 6) sich am Rande, des scheiben- messen ist, daß er ferner in an sich bekannter Weise föimigen Resonanzkörpers (12 c) befindet. 45 entweder zwei der Zuführung bzw. der Abnahme
6. Ubertragerelement nach Anspruch 1, gekenn- elektrischer Schwingungen dienende Elektrodenpaare zeichnet durch die Hinzufügung je einer weiteren oder drei Elektroden aufweist, von denen eine oder konzentrisch zu der kreisförmigen Elektrode (14 mehrere Bestandteile sowohl des Eingangs- als auch bzw. 16) und außerhalb von ihr angeordneten des Ausgangskreises sind, und daß schließlich diese Ringelektrode (18, 20 in F i g. 6) auf jeder Seite 50 Elektroden so angeordnet sind, daß sich auf der einen des in radialer Richtung polarisierten Resonanz- Seite des scheibenförmigen Resonanzkörpers eine den körpers. mittleren Bereich bedeckende kreisförmige Elektrode
7. Übertragerelement nach Anspruch 1 und 4, kleinen Durchmessers befindet und konzentrisch dadurch gekennzeichnet, daß die Fläche der kreis- hierzu eine äußere Ringelektrode, während die andere förmigen Elektrode (14) und die Fläche und 55 Seite des Körpers entweder mit Elektroden gleicher Stellung der Ringelektrode (18 oder 34) im Ver- Ausbildung belegt ist oder nur mit einer solchen hältnis zu der Verteilung und Phase der ebenen Elektrode.
Schwingungsspannungen in dem Resonanzkörper Ein solches Übertragerelement ist als elektrisches
derart gewählt ist, daß die Kompensation entgegen- Wellenfilter oder als Impedanzwandler verwendbar
gesetzter Felder minimal gehalten wird. 60 und kann als Bandpaßfilter im Zwischenfrequenz-
8. Übertragerelement nach Anspruch 1, dadurch bereich ausgebildet sein; es läßt sich für verschiedenste gekennzeichnet, daß die kreisförmige Elektrode Betriebsbedingungen ausbilden und zeichnet sich (14) einen Radius von etwa dem 0,4fachen Radius durch geringe Übertragungsverluste und relativ hohe des Resonanzkörpers hat und daß die Ring- Selektivität aus.
elektrode (18) im wesentlichen die gesamte restliche 65 Der keramische Resonanzkörper kann dabei in
Fläche derselben Seite der Scheibe bedeckt. axialer Richtung oder auch in radialer Richtung vor-
polarisien sein. Eine weitere Ausführungsmöglichkeit besteht darin, den Resonanzkörper nur zwischen den
DE19571616505 1956-09-17 1957-09-16 Piezoelektrisches Ubei tragungs element Expired DE1616505C (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US61010356 1956-09-17
DEC0015482 1957-09-16
US61010366A 1966-09-17 1966-09-17

Publications (3)

Publication Number Publication Date
DE1616505A1 DE1616505A1 (de) 1969-10-30
DE1616505B2 true DE1616505B2 (de) 1972-11-09
DE1616505C DE1616505C (de) 1973-05-30

Family

ID=

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0038496A1 (de) * 1980-04-21 1981-10-28 Siemens Aktiengesellschaft Zündeinrichtung und Piezo-Zündkoppler mit galvanischer Entkopplung
DE3035503A1 (de) * 1980-09-19 1982-04-08 Siemens AG, 1000 Berlin und 8000 München Zuendeinrichtung und piezo-zuendkoppler fuer thyristoren und triacs
DE3040530A1 (de) * 1980-10-28 1982-05-13 Siemens AG, 1000 Berlin und 8000 München Vorrichtung zur galvanisch getrennten ansteuerung eines mos-leistungsschalters
DE3040916A1 (de) * 1980-10-30 1982-05-13 Siemens AG, 1000 Berlin und 8000 München Piezo-ansteuerungseinrichtung fuer thyristoren, triacs und mos-leistungsschalter

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0038496A1 (de) * 1980-04-21 1981-10-28 Siemens Aktiengesellschaft Zündeinrichtung und Piezo-Zündkoppler mit galvanischer Entkopplung
DE3035503A1 (de) * 1980-09-19 1982-04-08 Siemens AG, 1000 Berlin und 8000 München Zuendeinrichtung und piezo-zuendkoppler fuer thyristoren und triacs
DE3040530A1 (de) * 1980-10-28 1982-05-13 Siemens AG, 1000 Berlin und 8000 München Vorrichtung zur galvanisch getrennten ansteuerung eines mos-leistungsschalters
DE3040916A1 (de) * 1980-10-30 1982-05-13 Siemens AG, 1000 Berlin und 8000 München Piezo-ansteuerungseinrichtung fuer thyristoren, triacs und mos-leistungsschalter

Also Published As

Publication number Publication date
DE1616505A1 (de) 1969-10-30

Similar Documents

Publication Publication Date Title
DE2131170C3 (de) Piezoelektrischer Energieeinfang-Resonator für Filteranwendungen
DE2600393A1 (de) Elektrische filter mit gekoppelten resonatoren
DE1566035A1 (de) Akustische Vorrichtung
DE1591330A1 (de) Keramischer Resonator
DE19916885B4 (de) Piezoelektrisches Bauteil
DE69832571T2 (de) Piezoelektrischer Resonator und elektronisches Bauelement damit
DE2010196A1 (de) Schwingungswandler für Biegeschwinger
DE1441095A1 (de) Piezoelektrischer Schwinger mit hohem Kopplungsfaktor
DE1541956B2 (de) Elektromechanische schwingungsanordnung
DE2363701A1 (de) Akustisches oberflaechenwellenfilter
DE1616505C (de) Piezoelektrisches Ubei tragungs element
DE1616505B2 (de)
EP1402583A2 (de) Piezoelektrischer biegewandler
DE2731558A1 (de) Piezoelektrische vorrichtung
DE1797138C3 (de) Mechanischer Biegeschwinger
DE1951282C (de) Elektromechanischer Wandler
DE3012117A1 (de) Abstimmbarer keramik-kondensator
DE2426375A1 (de) Akustische oberflaechenwellenanordnung
DE2257743C3 (de) Elektrostatischer Oszillator
DE1416034C (de) Piezoelektrisches Schaltelement
DE2143103C3 (de)
DE3040916C2 (de) Piezo-Zündeinrichtung für Thyristoren und Triacs
DE1441630C (de) Piezoelektrischer Resonator
DE1541956C3 (de) Elektromechanische Schwingungsanordnung
DE2346978C3 (de) Elektromechanischer Wandler für Torsionsschwingungen und Verfahren zu seiner Herstellung

Legal Events

Date Code Title Description
C3 Grant after two publication steps (3rd publication)