DE1548604B2 - - Google Patents

Info

Publication number
DE1548604B2
DE1548604B2 DE1548604A DE1548604A DE1548604B2 DE 1548604 B2 DE1548604 B2 DE 1548604B2 DE 1548604 A DE1548604 A DE 1548604A DE 1548604 A DE1548604 A DE 1548604A DE 1548604 B2 DE1548604 B2 DE 1548604B2
Authority
DE
Germany
Prior art keywords
xll
stator
flip
rotor
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE1548604A
Other languages
English (en)
Other versions
DE1548604A1 (de
DE1548604C3 (de
Inventor
William E. Anaheim Calif. Smith (V.St.A.)
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
California Computer Products Inc
Original Assignee
California Computer Products Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by California Computer Products Inc filed Critical California Computer Products Inc
Publication of DE1548604A1 publication Critical patent/DE1548604A1/de
Publication of DE1548604B2 publication Critical patent/DE1548604B2/de
Application granted granted Critical
Publication of DE1548604C3 publication Critical patent/DE1548604C3/de
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P8/00Arrangements for controlling dynamo-electric motors of the kind having motors rotating step by step
    • H02P8/22Control of step size; Intermediate stepping, e.g. microstepping
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K37/00Motors with rotor rotating step by step and without interrupter or commutator driven by the rotor, e.g. stepping motors
    • H02K37/02Motors with rotor rotating step by step and without interrupter or commutator driven by the rotor, e.g. stepping motors of variable reluctance type
    • H02K37/04Motors with rotor rotating step by step and without interrupter or commutator driven by the rotor, e.g. stepping motors of variable reluctance type with rotors situated within the stators

Description

Die Erfindung bezieht sich auf eine Steuerschaltungsanordnung zur Steuerung eines Schrittmotors, insbesondere für ein schrittweise anzutreibendes Schreibgerät, wobei der Schrittmotor einen Stator mit einer ungeraden Anzahl von Statorpolpaaren, deren Statorpole jeweils eine Statorwicklung tragen, und einen Rotor mit einer geraden Anzahl von Rotorpolpaaren aufweist, die jeweils keine Wicklung tragen. Es ist bereits ein Schrittmotor bekannt (USA.-Patentschrift 1 306 410), bei dem drei Statorpolpaare vorgesehen sind, wobei jeder Statorpol eine gesonderte Statorwicklung trägt und wobei die Wicklungen der zu jeweils einem Statorpolpaar gehörenden Statorpole elektrisch in Reihe geschaltet sind. Der Rotor des bekannten Schrittmotors weist zwei Rotorpolpaare auf, deren Rotorpole jeweils keine Wicklung tragen. Mit dem Rotor ist eine Bürstenanordnung verbunden, über die den einzelnen Statorwicklungen in unterschiedlicher Kombination Erregungsströme zugeführt werden. Die Anordnung ist dabei so getroffen, daß abwechselnd jeweils die Wicklungen zweier Statorpolpaare und die Wicklungen aller drei Statorpolpaare gleichzeitig erregt werden. Hierdurch werden jedoch unterschiedlich hohe Induktivitäten bei den jeweils erregten Statorspulen erzielt, und zwar werden insbesondere relativ hohe Spuleninduktivitäten erzielt, wodurch die Steuerimpulsfrequenz des betrachteten bekannten Schrittmotors relativ gering ist.
Es ist ferner ein elektromagnetischer Antrieb mit einem als Geber dienenden, mit Abtastung eingerichteten Kontaktsystem und einem Empfänger, der aus einer Vielzahl mittels des Kontaktsystems in bestimmter Folge erregbarer Pole und einem längs den Polen beweglichen, den Antrieb vermittelnden Anker besteht, bekannt (deutsche Patentschrift 971 566), wobei der Geber eine in Segmente, unterteilte Kontaktbahn und zwei über mehrere Segmente reichende Bürsten aufweist, über die die entsprechenden Polgruppen des Empfängers an die Stromquelle angeschlossen sind. Bei diesem bekannten elektromagnetischen Antrieb sind die Bürsten so bemessen und angeordnet, daß während der Bewegung des Gebers um eine Segmentteilung die resultierende Kraft des am Empfänger erzeugten Feldes eine mehrfache schrittweise Verlagerung im Sinne der gewünschten Bewegungsrichtung erfährt. Der Empfänger des betreffenden elektromagnetischen Antriebs weist einen Motor mit einer geraden Anzahl von Statorpolpaaren und einen Rotor mit einer geraden Anzahl von Rotorpolpaaren auf. Die Statorpole tragen dabei jeweils eine Wicklung; die Rotorpole tragen keine Wicklung. Auch bei diesem bekannten Antrieb besitzen die Statorwicklungen jeweils eine relativ hohe Induktivität, weshalb die Drehzahl des betreffenden Antriebs auf einem relativ niedrigen Wert begrenzt ist.
Es ist ferner ein elektromagnetischer Antrieb mit einem als Geber dienenden, mit Abtastung eingerichteten Kontaktsystem und einem Empfänger, der aus einer Vielzahl mittels des Kontaktsystems in bestimmter Folge erregbarer Pole und einem längs den Polen beweglichen, den Antrieb vermittelnden Anker besteht, bekannt (deutsche Patentschrift 971 567). Bei diesem bekannten Antrieb ist das Abtastorgan des Gebers über einen Widerstand an die Stromquelle angeschlossen und mit einem lose gekuppelten Betätigungsorgan ausgestattet, welches mit der Stromquelle unmittelbare Verbindung hat und so ausgebildet ist, daß es bei seiner Verstellung den dem Abtastorgan vorgeschalteten Widerstand kurzschließt. Der Empfänger bei diesem bekannten Antrieb besteht aus einem Motor mit einer ungeraden Anzahl von Statorpolpaaren und einem Rotor mit einer ungeraden Anzahl von Rotorpolpaaren. Jeder Statorpol trägt zwei Erregerspulen, während die Rotorpole keine Wicklungen tragen. Auch bei diesem bekannten Antrieb treten die im Zusammenhang mit den vorstehend betrachteten bekannten Antrieb aufgezeigten Nachteile auf.
Es ist ferner eine Schaltungsanordnung für elektromechanische Steueranlagen, und zwar insbesondere elektromechanische Servoanlagen, bekannt (deutsche Auslegeschrift 1 102 877), welche ein Schrittschaltwerk bzw. -motor mit einem Ständer und einem Läufer aufweisen, von denen der Ständer oder Läufer drei diametral gegenüberliegende Polpaare hat, welche je dadurch in entgegengesetzte Magnetisierungszustände versetzt werden, daß eine erste Erregerspannung nach seinen Erregerwicklungen übermittelt wird oder daß die Magnetisierung eines jeden Polpaares durch eine zweite Erregerspannung umgekehrt wird, während der Läufer oder Ständer ein Polpaar aufweist, dessen Pole zusammen in entgegengesetzte Magnetisierung zu bringen und derart angeordnet sind, daß die Polstücke des Läufers oder Ständers durch eine Relativbewegung von Läufer zu Ständer abwechselnd in die Nähe eines jeden Paares der diametral gegenüberliegenden Pole des einen Bauteiles gebracht werden. Auch bei dieser bekannten Schaltungsanordnung treten mit Rücksicht darauf, daß die Polstücke des Läufers jeweils von diametral gegenüberliegenden Polen des Ständers angezogen werden, relativ hohe Induktivitäten bei den den Ständerpolen jeweils zugehörigen Wicklungen auf, weshalb auch hierbei nur eine relativ geringe Steuerfrequenz bzw. Drehzahl des Läufers möglich ist.
Es ist ferner eine Schaltungsanordnung zur Ausführung einer periodischen Bewegung oder Drehung bekannt (französische Patentschrift 1 332 160), bei der ein Motor mit einer geraden Anzahl von Statorpolpaaren und einem Rotor vorgesehen ist, der entweder eine ungerade oder eine gerade Anzahl von Polpaaren aufweist. Die Statorpole tragen jeweils eine Wicklung, und die Rotorpole tragen gegebenenfalls auch jeweils eine Wicklung. Die Anordnung ist im übrigen so getroffen, daß den jeweils eine erregte Wicklung tragenden Statorpolen jeweils ein Rotorpol gegenübersteht. Damit haften aber auch dieser bekannten Schaltungsanordnung die im Zusammenhang mit den oben betrachteten bekannten Anordnungen aufgezeigten Nachteile an.
Es ist ferner ein digital betriebener Motor bekannt (Zeitschrift »Electronics engineering issue«, November 1958, S. 110 bis 112), der ein Stator mit zwei Statorpolpaaren und einen zwei Pole besitzenden Rotor aufweist. Die Statorpole tragen jeweils eine Wicklung, wobei die Wicklungen der zu jeweils einem Statorpolpaar gehörenden Statorpole elektrisch miteinander in Reih geschaltet sind. Die Rotorpole tragen keine Wicklungen. Mit dem Rotor und dem Stator wirkt ferner noch eine relativ komplizierte Klinkensteueranordnung zusammen, durch die der Rotor in eine die Anzahl der vorgesehenen Statorpolpaare übersteigende Anzahl von Stellungen einstellbar ist. Auch bei diesem bekannten Motor besitzen die Statorwicklungen unterschiedlich hohe Induktivitäten, und zwar je nach Stellung des Rotors, weshalb eine gleichmäßige Steuerung dieses Motors, und zwar insbesondere mit relativ hoher Steuerfrequenz, nicht möglich ist. Außerdem ist der konstruktive Aufwand dieses bekannten Motors relativ hoch.
Es ist ferner eine Fortschalteinrichtung für mit Hilfe von Impulsen arbeitende Fernmeß- und Fernzähleinrichtungen bekannt (deutsche Patentschrift 716 753), bei welchen die Impulse abwechselnd zwei magnetisch
ao voneinander unabhängige Magnetsysteme erregen, die eine gemeinsame Welle haben und deren Anker und Polsysteme um eine halbe Polteilung gegeneinander versetzt sind. Bei dieser bekannten Einrichtung weisen die einen Stator bildenden Magnetsysteme jeweils zwei Statorpolpaare auf, wobei jeder Statorpol eine Wicklung trägt, und der Anker weist zwei Polpaare auf, deren Pole keine Wicklunten tragen. Die Anordnung ist dabei so getroffen, daß jweeils zwei Ankerpole jeweils einer entsprechenden Anzahl von erregten Statorpolen gegenüberstehen. Damit haften aber auch dieser bekannten Fortschalteinrichtung die Nachteile an, die im Zusammenhang mit den oben betrachteten bekannten Anordnungen aufgezeigt worden sind.
Es ist schließlich auch schon bekannt (A. Palm, »Registrierinstrumente«, 2. Auflage, Springer-Verlag, Berlin-Göttingen—Heidelberg, 1959, S. 40), zum Papierantrieb ein elektromagnetisches Klinkwerk zu verwenden, welches aus einem kleinen Elektromagneten mit Drehanker besteht, der von einer Zentraluhr Stromimpulse erhält und das Papierantriebswerk über ein Zahngetriebe um einen bestimmten Betrag weiterdreht. In welcher Weise der Elektromagnet mit Drehanker auszubilden ist, ist in dem betrachteten Zusammenhang nicht näher angegeben.
Der Erfindung liegt die Aufgabe zu Grunde, einen Weg zu zeigen, wie eine Steuerschaltung der eingangs genannten Art auszubilden ist, damit die Induktivität der jeweils erregten Statorwicklungen des Schrittmotors herabgesetzt und die Steuerimpulsfrequenz dieses Schrittmotors erhöht werden kann.
Gelöst wird die vorstehend aufgezeigte Aufgabe bei einer Steuerschaltung der eingangs genannten Art erfindungsgemäß dadurch, daß Steuereinrichtungen vorhanden sind, die jeweils nur die zwei benachbarten Statorpolpaaren zugehörigen Statorwicklungen gleichzeitig erregen. Hierdurch ergibt sich der Vorteil, daß auf relativ einfache Weise die Induktivität der jeweils erregten Statorwicklungen herabgesetzt wird, so daß ein schnellerer Zusammenbruch des Magnetfeldes der jeweils gerade außer Strom gesetzten Statorwicklungen und damit ein schnellerer Aufbau des Magnetfeldes der jeweils nachfolgend zu erregenden Statorwicklungen ermöglicht ist. Dadurch ist der Schrittmotor insgesamt mit einer höheren Steuerimpulsfrequenz betreibbar.
An Hand von Zeichnungen wird die Erfindung nachstehend beispielsweise näher erläutert.
Es zeigt
Fig. 1 eine schematische Skizze eines Schrittmotors zur Verwendung in einem digitalen, schrittweise arbeitenden Schreiber, in der eine in bisher bekannten Einrichtungen dieser Art gewöhnlich verwendete Arbeitsweise gezeigt ist,
Fig. 2 eine schematische Skizze der Anordnung von Fig. 1 in einer Stellung, die bei der bisherigen Arbeitsweise auf die Stellung der Fig. 1 folgt,
Fig. 3 eine schematische Skizze eines Schrittmotors der beschriebenen Art, der in einer besonderen erfindungsgemäßen Betriebsweise angetrieben wird,
Fig. 4 eine schematische Skizze der in Fig. 3 dargestellten Anordnung in einer auf die Stellung der Fig. 3 folgenden Stellung bei der erfindungsgemäßen Betriebsweise,
Fig. 5 eine bildmäßige Darstellung einer speziellen Konstruktion, die als Schrittmotor gemäß der Erfindung betrieben werden kann,
Fig. 6 eine Ansicht des Rotors des in Fig. 5 dargestellten Schrittmotors,
Fig. 7 ein Diagramm, das den Operationsmodus des Motors der Fig. 5 gemäß der Erfindung verdeutlicht,
Fi g. 8 ein Schaltsche ma einer besonderen Anordnung d er Steuerschaltung, die in einem erfindungsgemäßen Steuersystem eines Schrittmotors verwendet ist,
Fig. 9 ein Diagramm, das einen anderen Operationsmodus des Motors der Fig. 5 versinnbildlicht,
Fig. 10 ein Blockschema einer zweiten Ausführungsform der Steuerschaltung für ein erfindungsgemäßes Steuersystem eines Schrittmotors.
Die schematische Skizze der Fig. 1 stellt einen Schrittmotor dar, wie er bisher zur Betätigung eines digitalen, schrittweise arbeitenden Schreibers gebräuchlich war. Wie ersichtlich, weist der Motor der Fig. 1 einen mit vier Polen versehenen Weicheisen-Rotor 20 auf, der von einem Stator mit sechs Spulen (15 bis 65) umgeben ist. Die Spulen sind symmetrisch rund um den Rotor 20 angeordnet. Die Spulen 15 bis 6 5 werden von je einer Drahtwicklung gebildet, die um einen Iamellierten Weicheisenkern gewickelt ist. Die Spulen können, wie in Fig. 2 gezeigt, elektrisch verbunden sein, d. h., gegenüberliegende Spulen liegen paarweise in Reihe in einem Stromkreis, der außerdem einen Schalter und eine Stromquelle aufweist. So ist beispielsweise das Spulenpaar 15-45 über einen Schalter 24 an eine Stromquelle 22 angeschlossen. Weitere Schalter 32 und 34 legen die restlichen Spulenpaare an die zugehörigen Stromquellen.
Bei den bisher bekannten Anordnungen, die die Schaltung der Fig. 1 und 2 verwenden, wird der Rotor 20 um vorgegebene Beträge (in diesem Fall um V12 Umdrehung oder 30°) dadurch schrittweise weitergeschaltet, daß nacheinander einzelne Spulenpaare 35-65 oder 25-55 erregt werden. Wenn beispielsweise durch Schließen des Schalters 24 das Paar 15-45 erregt ist, wird der Rotor 20 die gefluchtete Stellung der Fig. 1 annehmen, in der die zwei gegenüberliegenden Pole 1 und 3 mit dem erregten Stator-Spulenpaar ausgerichtet sind. Wird nun der Schalter 24 geöffnet und der Schalter 32 geschlossen, um statt des Spulenpaares 15-45 das Spulenpaar 35-65 unter Strom zu setzen (was eine Verdrehung des Magnetfeldvektors entgegen dem Uhrzeigersinn bedeutet), so erfolgt eine schrittweise Weiterschaltung des Rotors 20 im Uhrzeigersinn zu der in Fig. 2 dargestellten Lage, in der das andere Rotor-Polpaar 2 und 4 mit dem erregten Spulenpaar 35-65 gefluchtet ist. Dieser Rotationsschritt entspricht einem Drehwinkel von 30°. Wenn statt der Spulen 35-65 das verbleibende Stator-Spulenpaar 25-55 erregt wird, dreht sich der Rotor um weitere 30° im Uhrzeigersinn, und so fort. In ähnlicher Weise wird eine schrittweise Rotation des Rotors 20 entgegen dem Uhrzeigersinn durch Erregung der Stator-Spulenpaare in der Weise erzeugt, daß der Magnetfeldvektor sich im Uhrzeigersinn dreht.
ίο Einem derartigen System haftet der Mangel an, daß die kinetische Energie des Systems zu dem Zeitpunkt ein Maximum hat, wo der Rotor momentan zum Halten gebracht werden soll. Wenn beispielsweise der Rotor 20 von der Stellung der Fig. 1 in die Stellung der Fig. 2.schrittweise weitergeschaltet wird, erreicht der Rotor 20 seine maximale Geschwindigkeit und das System seine maximale kinetische Energie gerade dann, wenn die Rotorpole 2 bis 4 mit den Statorpolen 35-65 zur Deckung kommen. Dies ist aber der Zeitpunkt und die genaue Stellung, an der der Rotor augenblicklich gestoppt werden muß. Um mit einer solchen Anordnung hohe Schrittgeschwindigkeiten erzielen zu können, muß die gesamte Trägheit des Systems so niedrig als möglich gehalten werden, und dies bedeutet eine unerwünschte Beschränkung für den Aufbau solcher Vorrichtungen. Ein weiterer Mangel eines derartigen Systems liegt in der Wirkung der Induktanz des Systems auf das Ansprechvermögen des Schrittmotors auf die steilen Vorderflanken und Rückflanken der gewöhnlieh angelegten Steuerimpulse. Immer wenn ein Stator-Spulenpaar aberregt oder erregt werden soll, hat die Induktanz ein Maximum, da ein Rotor-Polpaar direkt mit dem entsprechenden Stator-Polpaar gefluchtet ist. Die Arretierungswirkung, die mit dieser bisherigen Betriebsweise der Fig. 1 und 2 erzielt wird, ist zwar erstrebenswert, sie läßt sich aber auch gemäß der Erfindung mit einer anderen Betriebsweise eines Schrittmotors erreichen ohne den oben geschilderten unerwünschten Effekt bezüglich der kinetischen Energie und der Induktanz des Systems. Die Fig. 3 und 4 veranschaulichen besondere Ausführungsformen der Erfindung zum Betrieb eines Schrittmotors. Es ist zu beachten, daß in beiden Figuren für jede entsprechende Schrittstellung des Rotors 20 nicht nur ein einziges Stator-Spulenpaar, wie im Fall der Fig. 1 und 2, sondern jeweils zwei Stator-Spulenpaare unter Strom gesetzt sind. In Fig. 3 sind die Spulenpaare 25-55 und 35-65 durch die geschlossenen Schalter 32 und 34 erregt, während der Schalter 24 geöffnet ist. Der Rotor wird dadurch in der in Fig. 3 gezeigten Lage festgehalten, in der jeder seine Pole von dem Magnetpol der ihm benachbarten erregten Statorspule angezogen wird, wobei aber die Kräfte an den Rotorpolen in entgegengesetzter Richtung angreifen und ausbalanciert sind, so daß die besondere dargestellte Lage des Rotors 20 zustande kommt. Diese Stellung entspricht einer Verdrehung des Rotors 20 um 15° aus einer direkt mit einem Statorpol gefluchteten Lage. Eine schrittweise Weiterschaltung dse Rotors 20 um 30° wird dadurch erzielt, daß die Stellung der Schalter in die in Fig. 4 gezeigte umgeändert wird. Das bedeutet, daß der Schalter 32 geöffnet und der Schalter 24 geschlossen wird. Dies bewirkt eine Rotation des zusammengesetzten Magnetfeldvektors um eine Polstellung entgegen dem Uhrzeigersinn und bewirkt eine Drehung des Rotors 20 um 30° im Uhrzeigersinn. Diese erfindungsgemäße Betriebsweise des Schrittmotors bietet den Vorteil eines rascheren Zusammen-
bruchs des Magnetfeldes des gerade außer Strom gesetzten Spulenpaares und eines rascheren Aufbaus des Magnetfeldes, das zu dem neu erregten Spulenpaar gehört. Auf diese Weise dient dasjenige Rotorpolpaar, das zu dem durchgehend erregten Spulenpaar gehört (in dem gezeigten Beispiel die Rotorpole 1 bis 3) dazu, den Rotor 20 auf maximale Geschwindigkeit zu beschleunigen, wenn das Polpaar das erregte Spulenpaar passiert. Das kombinierte Magnetfeld der zwei erregten Spulenpaare verzögert den Rotor 20 wirksam, während dieser sich der Arretierungsstellung nähert. Folglich kann der Rotor in relativ kurzer Zeit an der richtigen Stelle zum Stillstand gebracht werden, ohne daß er über diese Stelle hinausschießt und ohne daß zusätzliche Hilfsarretierungen erforderlich sind. Außerdem bietet diese besondere Anordnung längere Wege des Kraftflusses in der Arretierungsstellung, so daß die Induktanz der erregten Spulenpaare herabgesetzt wird, mit dem Resultat, daß höhere Steuerimpulsfrequenzen angewandt werden können.
Eine weitere Verbesserung bezüglich der Geschwindigkeit und Steuerung des Antriebssystems eines Schrittmotors bietet gemäß einer besonderen Ausbildung der Erfindung eine Anordnung, die in gleicher Weise wie die eben beschriebene Anordnung durch gruppenweise Erregung der Stator-Spulenpaare für eine schrittweise Weiterschaltung des Motors sorgt, bei der aber ein Übergang von einer Spulenpaargruppe zu einer anderen Spulenpaargruppe vorgesehen ist über einen Zwischenschritt, bei dem für eine begrenzte Zeitspanne nur das beiden Gruppen gemeinsame Spulenpaar erregt ist. Bei einer solchen Anordnung, wie sie im Zusammenhang mit dem Schaltungsbeispiel der Fig. 4 und 5 erklärt werden kann, wird der Rotor 20 von der Stellung der Fig. 3 zur Stellung der Fig. 4 weitergeschaltet, indem zuerst der Schalter 32 geöffnet wird, wodurch das Spulenpaar 3S-6S außer Strom gesetzt wird, und dieser Schaltzustand eine bestimmte Zeitspanne lang aufrechterhalten wird; in einem bevorzugten Ausführungsbeispiel beträgt diese Zeitspanne eine halbe Periode der Pulssignalfrequenz. Während dieser Zeitspanne läuft der Rotor 20 zu einer Mittelstellung zwischen den in Fig. 3 und 4 gezeigten Stellungen. Nach dieser vorgegebenen Zeitspanne und in einem Augenblick, wo der Rotor 20 annähernd seine maximale Rotationsgeschwindigkeit hat, wird der Schalter 24 eingelegt, so daß der Stromkreis für die Erregung des nächsten Spulenpaares IS-4S geschlossen wird und dadurch der Schaltungszustand und die Rotorstellung, die in Fig. 4 gezeigt sind, zustande kommen.
In den Fig. 5 und 6 ist eine spezielle konstruktive Anordnung eines Schrittmotors gezeigt, der gemäß der Erfindung betrieben werden kann.
Fig. 5 ist eine Vorderansicht eines Schrittmotors 40 mit weggelassenem Gehäuse. Der Schrittmotor 40 enthält eine Mehrzahl von Spulen 15 bis 6S; jede Spule ist um einen eigenen Statorpol, etwa 42, gewickelt, der von einem ringförmigen Rahmen 44 nach innen ragt. Ein Rotor 20 ist zentral in dem Schrittmotor 40 angeordnet. In Fig. 6 ist der Rotor 20 genauer dargestellt, und zwar in einer perspektivischen Ansicht von der der Fig. 5 entgegengesetzten Seite aus. Der Rotor 20 hat, wie ersichtlich, vier Pole 1 bis 4, eine axiale öffnung 5 zur Befestigung auf einer Welle und ein zugehöriges Antriebszahnrad 6. Die in den Fig. 5 und 6 dargestellte Konstruktion stimmt schematisch mit der Skizze der Fig. 3 und 4 überein.
Fig. 7 ist ein Veitch-Diagramm, das die Art und Weise veranschaulicht, in der die Steuerschaltung, für den Betrieb des Schrittmotors der Fig. 5 gemäß der Erfindung betätigt wird. Das Diagramm der Fig. 7 entspricht der Steuerung eines Schrittmotors 40 für eine der beiden Koordinatenachsen, beispielsweise für den X-Achsenmotor. Selbstverständlich kann der Schrittmotor für die andere Koordinatenachse in gleicher Weise gesteuert werden. Die Steuerschaltung für den Schrittmotor enthält vorzugsweise mehrere Flip-Flop-Stufen, die später noch eingehender beschrieben werden. Die Flip-Flop-Stufen können in der zu beschreibenden Weise gesetzt oder eingestellt werden; zum Beispiel kann jedes Spulenpaar des Schrittmotors, etwa das Spulenpaar 15-45, durch eine eigene Flip-Flop-Stufe gesteuert werden, die an die Stelle des Schalters 24 der Fig. 3 tritt, wobei der eine Ausgang des Flip-Flop den Erregungszustand der Spulen 15-45 herstellt und der andere Ausgang desselben Flip-Flop den stromlosen Zustand des zugeordneten Spulenpaares bewirkt.
Das Veitch-Diagramm der Fig. 7 stellt die verschiedenen Zustände dar, die von einer Anzahl von Steuer-Flipflops gemäß der Erfindung hergestellt werden können. Fig. 8 zeigt ein Schema der Schaltanordnung, die dazu dient, die Wechsel zwischen den in Fig. 7 gezeigten Zuständen zu bewirken. In Fig. 7 repräsentieren die mit XLl, XLl und XLZ bezeichneten Kästen die Erregungszustände für die Flipflops, die die entsprechenden Spulenpaare steuern. Zum Beispiel möge XLl dem Erregungszustand des ersten Spulensatzes 1S-4S entsprechen; XL2 möge dem Erregungszustand des zweiten Spulensatzes 35-65 entsprechen und XL3 dem Erregungszustand des dritten Spulensatzes 2S-5S; diese Zuordnung ist so hergestellt, daß eine aufeinanderfolgende Betätigung der verschiedenen Erregungszustände in der Reihenfolge XL1-XL2-XL3 eine Drehung des Rotors 20 im Uhrzeigersinn bewirkt. Entsprechend bedeutet der Kasten XLl plus XL2 einen Erregungszustand des ersten und des zweiten Spulensatzes 15-4 5 und 35-65. Der Kasten XL2 plus XL3 entspricht der Erregung des zweiten und des dritten Spulensatzes, und der Kasten XLl plus XL3 einer Erregung des ersten und des dritten Spulensatzes. Zur Vervollständigung des Diagramms sind auch noch die weiteren Zustände XLl plus XL2 plus XL3, die die Erregung aller drei Spulensätze versinnbildlichen, und NONE, das den Fall darstellt, wenn keiner der Spulensätze erregt ist, beigefügt, obwohl diese zusätzlichen Zustände beim normalen Betrieb gemäß der Erfindung nicht verwendet werden. Wie aus Fig. 7 ersichtlich, sind die Kästen XLl puls XLl, XLl puls XL3 und XLl plus XL3 durch dicke Linien miteinander verbunden, die nach beiden Richtungen weisende Pfeile haben. Dadurch wird angezeigt, daß zwischen den genannten Kästen ein schrittweiser Übergang nach beiden Richtungen erfolgen kann. In dem speziellen Ausführungsbeispiel, das von dem Veitch-Diagramm der Fig. 7 versinnbildlicht wird, gehören die Kästen XLl, XL2 und XL3 zu Zuständen, die nicht verwendet werden, außer wenn die Schaltung aus Versehen in einen solchen Zustand versetzt wird. Dies kann beispielsweise geschehen, wenn die Einrichtung anfänglich in Gang gesetzt wird. In diesem Fall erzeugt der allernächste Steuerimpuls, der an das System angelegt wird, einen Übergang, wie er durch die gestrichelten Linien der Fig. 7 angedeutet ist. Wenn die Schaltanordnung zum Beispiel entspre-
409 523/119
chend dem Kasten XL3 erregt ist, verursacht der nächste Steuerimpuls einen Übergang zu dem Zustand XLl plus XL2, in dem eine Gruppe von zwei Spulenpaaren erregt ist; danach erfolgen Übergänge zu der einen oder der anderen Spulenpaargruppe, je nachdem, ob der nächste Steuerimpuls eine Schrittdrehung im Uhrzeigersinn oder entgegen dem Uhrzeigersinn verlangt.
In einer Weiterbildung der Erfindung ist eine besondere Schaltung vorgesehen, die die Möglichkeit berücksichtigt, daß das System in einem Zustand sein kann, wo entweder alle Flip-Flops (XLl plus XL2 plus XL3) oder gar keines erregt ist, wie dies beim Einschalten der Vorrichtung geschehen kann. Die Übergangsschritte sind mit dünneh ausgezogenen Linien gekennzeichnet, die nur einen Richtungspfeil haben. Durch die nächstfolgenden Steuerimpulse erfolgt ein Übergang von dem ΝΟΝΕ-Zustand zu dem XLl plus XL2 plus AZ3-Zustand und von dort zu dem XLl plus XL3 Zustand, worauf der Betrieb wie beschrieben weitergeht.
Das Veitch-Diagramm der Fig. 7 ist so konstruiert, daß es drei Dimensionen darstellt entsprechend den drei Spulenpaaren, die in dem hier beschriebenen Rotor des Schrittmotors erregt werden; selbstverständlich können jedoch auch Schrittmotorformen mit einer anderen Anzahl von Stator-Spulenpaaren verwendet werden und in diesem Fall wird das Veitch-Diagramm andere Dimensionen haben je nach der Anzahl der vorgesehenen Stator-Spulenpaare. Anders ausgedrückt, das Veitch-Diagramm der Fig. 7 wird n-dimensional sein, wobei η der Anzahl der Stator-Spulenpaare entspricht.
Eine beispielsweise Schaltanordnung zur Steuerung eines Schrittmotors, wie etwa des Schrittmotors 40 der Fig. 5, auf die in dem Veitch-Diagramm der Fig. 7 dargestellte Weise ist in dem Blockschaltschema der Fig. 8 gezeigt. In diesem Schema sind Flip-Flop-Stufen XLl, XLl und XL3 dargestellt, die jeweils binäre Ausgänge (0 und 1) sowie eine Setz- und eine Rückstell-Leitung (5" bzw. R) haben. Die Flip-Flops sind in Stufen mit einer Mehrzahl von »Und«- und »Oder«-Gattern zusammengeschaltet, um die gewünschte Weiterleitung der angelegten Eingangsimpulse zur Steuerung des Systems zu bewirken. So sind in der ersten Stufe, in der XLl liegt, drei »Und«- Gatter 101, 102 und 103 mit einem »Oder«-Gatter 105 und dem Flip-Flop XLl zusammengeschaltet. In gleicher Weise enthält die zweite Stufe die »Und«- Gatter 201, 202 und 203 mit dem »Oder«-Gatter 205 und dem Flip-Flop XLl und die dritte Stufe enthält die »Und«-Gatter 301, 302 und 303 und das »Oder«- Gatter 305 mit dem Flip-Flop XL3. Die drei Stufen sind in gleicher Weise geschaltet. Weiter ist eine Impulsquelle vorgesehen, die CJF-Impulse (im Uhrzeigersinn) und CC W-Impulse (entgegen dem Uhrzeigersinn) an die Eingangsleitungen 91 bzw. 92 der Schaltanordnung anlegt, die von dort in ein »Oder«-Gatter 94 gelangen, dessen Ausgang zu einander entsprechenden Stellen in den drei Stufen geleitet wird. Die Impulse aus dem »Oder«-Gatter 94 werden abwechselnd in die entsprechenden Stufen eingegeben, je nach den Zuständen, in denen sich die Flip-Flops XLl bis XL3 gerade befinden.
•Die erste Stufe sei als Beispiel genommen: Der Eingangsimpuls aus dem »Oder«-Gatter 94 (der entweder einem CW- oder einem CC ^-Impuls entspricht), wird in die Stufe eingegeben, um das Flip-Flop XLl zu setzen und die »Und«-Gatter 102 und 103 nur wirksam zu machen, wenn das »Und«-Gatter 101 durch einen aktiven Zustand an dem 0-Ausgang des Flip-Flop XLl wirksam gemacht ist, was dem inaktiven oder Rückstell-Zustand des Flip-Flop entspricht. Folglich wird ein inaktiver Flip-Flop durch Anlegen eines Steuerimpulses in den aktiven Zustand gesetzt.
ίο Die Gatter 102 und 103, die von dem, wie angenommen, durch das Gatter 101 durchgegangenen Impuls wirksam gemacht sind, lassen den angelegten Steuerimpuls (entweder CW oder CCW) zu einem nachfolgenden »Oder«-Gatter 105 oder 205 passieren, je nach der Reihenfolge der Erregungsfolge und je nachdem, welcher Flip-Flop XLl oder XL3 rückgestellt werden soll. Falls also das Flip-Flop XLl inaktiv ist, wenn ein CPK-Impuls zugeführt wird, wird das Flip-Flop XLl rückgesetzt und das Flip-Flop XLl gesetzt, so daß eine Schrittdrehung des Schrittmotors im Uhrzeigersinn erfolgt. Wenn dagegen ein CCPK-Impuls empfangen wird, wird statt dessen das Flip-Flop XL3 rückgestellt, so daß eine Weiterdrehung des Schrittmotors entgegen dem Uhrzeigersinn erfolgt. In der beschriebenen Schaltanordnung ist noch zusätzlich ein »Und«- Gatter 120 vorgesehen, um gegebenenfalls die Situation zu bewältigen, wenn alle Flip-Flops gleichzeitig erregt sind. Das Gatter 120 ist an die 1-Ausgänge der Flip-Flops angeschlossen, so daß es in einer solchen Situation wirksam gemacht wird. Der nächste Steuerimpuls CW oder CCW wird von dem wirksam gemachten Gatter 120 durch das »Oder«-Gatter 305 geschickt, wo er als ein zusätzlicher Eingang auftritt und das Rücksetzen der Flip-Flop-Stufe XLl bewirkt; damit ist der gewünschte Zustand hergestellt, daß die beiden Flip-Flops XLl und XL3 eingeschaltet sind, wie dies in Fig. 7 gezeigt ist. Somit ist klar ersichtlich, wie die in Fig. 8 dargestellte Schaltanordnung die erstrebte Betriebsweise in Übereinstimmung mit dem Veitch-Diagramm der Fig. 7 gewährleistet ohne Rücksicht auf den Erregungszustand des Systems beim Empfang der zugeführten Steuerimpulse.
Die Fig. 9 und 10 stellen eine besondere Ausführungsform der Erfindung zum Steuern eines Schrittmotors mit verbesserter Funktionsweise dar; hierin ist zwischen den Erregungszuständen der beiden Spulenpaargruppen, wie sie Fig. 7 zeigt, ein Übergangsschritt eingeschaltet. Fig. 9 ist ein der Fig. 7 ähnliches Veitch-Diagramm, bei dem jedoch die Übergangsso schritte gezeigt sind, die in einer zeitweiligen Erregung eines einzelnen Spulenpaares bestehen. Sonst entspricht die Funktion dieser Ausführungsform derjenigen der Fig. 7; aus Gründen der Vereinfachung sind daher in Fig. 9 nur diejenigen Übergänge, die sich von Fig. 7 unterscheiden, dargestellt. Fig. 10 zeigt die entsprechende Schaltanordnung als Blockschema. Sie entspricht der Schaltanordnung der Fig. 8 mit Ausnahme eines zusätzlichen Verzögerungselementes 130, 230 oder 330, das in der S-Zuleitung (Setzeingang) jeder der drei Stufen liegt. Die Verzögerung dieser Elemente ist so gewählt, daß sie annähernd die Hälfte der Periode der angelegten Steuerimpulse beträgt. Sie dient dazu, sicherzustellen, daß das Flip-Flop, das gerade aberregt ist, in einer Zeitspanne, die gleich der Verzögerungsspanne ist, rückgesetzt ist, bevor das nachfolgende Flip-Flop gesetzt wird.
Hierzu 2 Blatt Zeichnungen

Claims (5)

Patentansprüche:
1. Steuerschaltungsanordnung zur Steuerung eines Schrittmotors, insbesondere für ein schrittweise anzutreibendes Schreibgerät, wobei der Schrittmotor einen Stator mit einer ungeraden Anzahl von Statorpolpaaren, deren Statorpole jeweils eine Statorwicklung tragen, und einen Rotor mit einer geraden Anzahl von Rotorpolpaaren aufweist, die jeweils keine Wicklung tragen, dadurch gekennzeichnet, daß Steuereinrichtungen (XLl, XLl, XL3) vorhanden sind, die jeweils nur die zwei benachbarten Statorpolpaaren zugehörigen Statorwicklungen (2.S, 5 S, 35, 6 S; IS, 45, 25, 5S) gleichzeitig erregen.
2. Steuerschaltungsanordnung nach Anspruch 1, dadurch gekennzeichnet, daß die Steuereinrichtungen (XLl, XLl, XL3) beim Übergang der Erregung von zwei benachbarten Statorpolpaaren zugehörigen Statorwicklungen (25, 55, 35, 65; IS, 45, 25, 55) auf die zwei weiteren benachbarten Statorpolpaaren zugehörigen Statorwicklungen die Erregung der dem einen Statorpolpaar zugehörigen Statorwicklungen der noch erregten Statorwicklungen beenden, bevor die Erregung der den zwei weiteren benachbarten Statorpolpaaren zugehörigen Statorwicklungen beginnt.
3. Steuerschaltungsanordnung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Steuereinrichtungen für jedes Statorwicklungspaar ein einen Setzeingang (5), einen Rückstelleingang (R) und zwei, jeweils zueinander komplementäre Ausgangssignale führende Ausgänge aufweisendes Flipflop (XLl, XLl, XL3) enthält, dessen Setzeingang (S) mit dem Ausgang eines UND-Gliedes (101; 201; 301) verbunden ist, welches mit einem Eingang an dem im zurückgestellten Zustand des betreffenden Flipflops ein »1 «-Signal führenden Ausgang angeschlossen ist und welches mit einem weiteren Eingang an dem Ausgang eines sämtlichen Flipflops (XLl, XLl, XL3) gemeinsamen Steuerung-ODER-Gliedes (94) angeschlossen ist, das an zwei Eingängen mit für einen Rechtslauf bzw. Linkslauf des Rotors des Schrittmotors dienenden Steuerimpulsen beaufschlagbar ist, daß an dem Setzeingang jedes Flipflops (JSTLl, XLl, XL3) ferner zwei weitere UND-Glieder (102, 103; 202, 203; 302, 303) mit ihrem jeweils einen Eingang angeschlossen sind, daß die anderen beiden Eingänge der weiteren UND-Glieder (102, 103; 202, 203; 302, 303) jeweils mit den Steuerimpulsen für einen Rechtslauf bzw. für einen Linkslauf des Rotors des Schrittmotors beaufschlagbar sind und daß die Ausgänge der weiteren UND-Glieder (102, 103; 202, 203; 202, 302, 303) jeweils über ein ODER-Glied (105; 205, 305) mit dem Rückstelleingang (R) eines dem jeweiligen Flipflop (XLl, XLl, XL3) bezüglich der Erregung von Statorwicklungspaaren unmittelbar folgenden bzw. vorangehenden Flipflops verbunden sind.
4. Steuerschaltungsanordnung nach Anspruch 3, dadurch gekennzeichnet, daß sämtliche bei im Setzzustand befindlichen Flipflops (JSTLl, JiTL2, ΛΧ3) ein »1 «-Signal führende Ausgänge (1) der betreffenden Flipflops mit den Eingängen eines npch weiteren UND-Gliedes (120) verbunden sind, Welches mit einem weiteren Eingang an dem Ausgang des Steuerungs-ODER-Gliedes (94) angeschlossen ist und dessen Ausgang mit einem Eingang eines der ODER-Gliedes (305) verbunden ist.
5. Steuerschaltungsanordnung nach Anspruch 3 und 4, dadurch gekennzeichnet, daß dem Setzeingang (5) jedes Flipflops (XLl, XLl, XL3) ein Verzögerungsglied (130, 230, 330) vorgeschaltet ist.
DE1548604A 1964-10-26 1965-10-26 Steuerschaltungsanordnung zur Steuerung eines Schrittmotors, insbesondere für ein schrittweise anzutreibendes Schreibgerät Expired DE1548604C3 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US406243A US3381193A (en) 1964-10-26 1964-10-26 Incremental stepping motor apparatus and methods for driving

Publications (3)

Publication Number Publication Date
DE1548604A1 DE1548604A1 (de) 1970-05-06
DE1548604B2 true DE1548604B2 (de) 1974-06-06
DE1548604C3 DE1548604C3 (de) 1975-01-30

Family

ID=23607130

Family Applications (2)

Application Number Title Priority Date Filing Date
DE1548604A Expired DE1548604C3 (de) 1964-10-26 1965-10-26 Steuerschaltungsanordnung zur Steuerung eines Schrittmotors, insbesondere für ein schrittweise anzutreibendes Schreibgerät
DE6610664U Expired DE6610664U (de) 1964-10-26 1965-10-26 Schrittmotor zum betrieben eines schrittmotors.

Family Applications After (1)

Application Number Title Priority Date Filing Date
DE6610664U Expired DE6610664U (de) 1964-10-26 1965-10-26 Schrittmotor zum betrieben eines schrittmotors.

Country Status (3)

Country Link
US (1) US3381193A (de)
DE (2) DE1548604C3 (de)
NL (1) NL146990B (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2946328A1 (de) * 1978-11-21 1980-05-22 Berney Sa Jean Claude Analoge anzeigevorrichtung

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3430083A (en) * 1966-12-07 1969-02-25 Gen Precision Systems Inc Variable reluctance stepper motor
US3547503A (en) * 1968-06-11 1970-12-15 Barden Corp Dual step motor controlled low friction oscillating bearing arrangement for gyroscope rotor or the like
US3555328A (en) * 1969-05-15 1971-01-12 William P Hunsdorf Dc motor with rotating brush holder
US3626269A (en) * 1969-08-25 1971-12-07 Calma Co Stepping motor drive
US3706924A (en) * 1969-12-04 1972-12-19 Royal Industries Power supply for a stepping motor
US3659177A (en) * 1970-09-11 1972-04-25 Gen Motors Corp Step motor drive circuit
US3801891A (en) * 1972-08-30 1974-04-02 Oktronics Inc Four phase stepping motor control
US4002279A (en) * 1974-12-30 1977-01-11 Monarch Marking Systems, Inc. Record feeding apparatus and method
JPS58144598A (ja) * 1982-02-22 1983-08-27 Ricoh Co Ltd ステツピングモ−タの駆動方式
EP0240204A3 (de) * 1986-04-03 1988-10-19 Adept Technology, Inc. Schrittschaltmotor mit veränderbarer Reluktanz
DE3936662A1 (de) * 1989-11-03 1991-06-06 Peter Stichnothe Wicklungsanordnung bei schrittmotoren, die hoehere schrittgeschwindigkeiten bei hohem drehmoment und hohem haltemoment ermoeglicht

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3124732A (en) * 1964-03-10 Reversible step motor switching circuit
US3112433A (en) * 1962-01-31 1963-11-26 Space Technology Lab Inc Multiphase electrical system
US3127548A (en) * 1962-03-26 1964-03-31 Automation Development Corp Three phase controller using sequence switching
US3243677A (en) * 1963-02-18 1966-03-29 Motorola Inc Motor control circuit
US3250977A (en) * 1963-03-29 1966-05-10 Bendix Corp System for driving a stepping motor at varying speeds
US3218535A (en) * 1963-04-03 1965-11-16 James E Holthaus Servo-controlled shaft position device
US3304480A (en) * 1963-05-16 1967-02-14 Conoflow Corp Digital actuator including feedback representation of the stepper motor winding energization state
US3297927A (en) * 1964-02-20 1967-01-10 Scantlin Electronics Inc Controller for display board
US3293459A (en) * 1964-04-30 1966-12-20 Robertshaw Controls Co Stepping motors and control means

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2946328A1 (de) * 1978-11-21 1980-05-22 Berney Sa Jean Claude Analoge anzeigevorrichtung

Also Published As

Publication number Publication date
DE1548604A1 (de) 1970-05-06
NL146990B (nl) 1975-08-15
DE1548604C3 (de) 1975-01-30
DE6610664U (de) 1975-07-10
US3381193A (en) 1968-04-30
NL6513779A (de) 1966-04-27

Similar Documents

Publication Publication Date Title
DE2429492C3 (de) Schrittweise oder kontinuierlich betreibbarer elektrischer Motor, insbesondere Schrittmotor zum Antrieb eines Rollenzählwerkes
DE2424120C2 (de) Fotografische Belichtungsregelvorrichtung
DE19533076A1 (de) Steuerschaltung für einen bürstenlosen Synchron-Elektromotor
DE1303612B (de)
DE1548604C3 (de) Steuerschaltungsanordnung zur Steuerung eines Schrittmotors, insbesondere für ein schrittweise anzutreibendes Schreibgerät
DE1933422A1 (de) Selbstanlaufender Einphasensynchronmotor
DE1613172B2 (de) Steuerschaltung zum betrieb eines schrittmotors im schnellgang
DE1538832C3 (de) Verfahren und Anordnung zur Drehzahlsteuerung eines Schrittmotors
DE1638104C2 (de) System zur Umwandlung digitaler elektrischer Steuersignale in diskrete, abgestufte Winkelbewegungen in einem mehrphasigen elektrischen Schrittmotor
DE2743411B2 (de) Steuerschaltung zum schrittweisen Betreiben eines kollektorlosen Gleichstrommotors
DE3007848A1 (de) Schrittmotor
DE2721240C3 (de) Schaltungsanordnung zum Betreiben eines Schrittmotors im optimalen Lastwinkelbereich
DE2808534B2 (de) Reversierbarer Schrittmotor für eine analoge Quarzuhr
DE2314599C3 (de) Vorrichtung zum Transport eines regelmäßig perforierten bandförmigen Bildträgere
EP0299968B1 (de) Vorrichtung zum einstellen des rotors eines drehschalters
DE1802531C3 (de) Anordnung mit einem elektrischen Schrittmotor
DE2532650C2 (de) Bürstenloser Gleichstrommotor
DE2406793B2 (de) Steuerung zum kontrollierten Abbremsen einer Wickelmaschine
DE2834579C2 (de) Motor
DE1513881C (de) Schaltung eines offenen Regel kreises zur digitalen Regelung der Laufcharakteristik eines synchronen Induktionsmotors
AT210005B (de) Magnetmotor mit vormagnetisiertem Stator und Rotor
DE2332012C2 (de)
DE2430585A1 (de) Synchronmotor
DE2642601C2 (de) Elektromagnetisch betätigter Verschlußmechanismus
DE1774707C3 (de) Einrichtung zum Steuern eines Lochers für Aufzeichnungsträger

Legal Events

Date Code Title Description
C3 Grant after two publication steps (3rd publication)
E77 Valid patent as to the heymanns-index 1977
EHJ Ceased/non-payment of the annual fee