DE1520658C - Verfahren zur Polymerisation von alpha-Olefinen - Google Patents
Verfahren zur Polymerisation von alpha-OlefinenInfo
- Publication number
- DE1520658C DE1520658C DE1520658C DE 1520658 C DE1520658 C DE 1520658C DE 1520658 C DE1520658 C DE 1520658C
- Authority
- DE
- Germany
- Prior art keywords
- aluminum
- catalyst
- transition metal
- polymerization
- titanium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000006116 polymerization reaction Methods 0.000 title claims description 29
- 238000000034 method Methods 0.000 title claims description 19
- 239000004711 α-olefin Substances 0.000 title description 7
- 239000003054 catalyst Substances 0.000 claims description 67
- 229910052782 aluminium Inorganic materials 0.000 claims description 53
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminum Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 45
- 229910052723 transition metal Inorganic materials 0.000 claims description 22
- 150000003624 transition metals Chemical class 0.000 claims description 22
- YONPGGFAJWQGJC-UHFFFAOYSA-K Titanium(III) chloride Chemical compound Cl[Ti](Cl)Cl YONPGGFAJWQGJC-UHFFFAOYSA-K 0.000 claims description 17
- 239000005977 Ethylene Substances 0.000 claims description 14
- 239000003085 diluting agent Substances 0.000 claims description 14
- VGGSQFUCUMXWEO-UHFFFAOYSA-N ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims description 14
- -1 aluminum compound Chemical class 0.000 claims description 12
- IJDNQMDRQITEOD-UHFFFAOYSA-N butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 claims description 11
- 239000001273 butane Substances 0.000 claims description 11
- 125000000217 alkyl group Chemical group 0.000 claims description 7
- 150000001875 compounds Chemical class 0.000 claims description 7
- 125000004432 carbon atoms Chemical group C* 0.000 claims description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims 1
- 229910052799 carbon Inorganic materials 0.000 claims 1
- 239000010936 titanium Substances 0.000 description 55
- 235000010210 aluminium Nutrition 0.000 description 44
- 230000000694 effects Effects 0.000 description 38
- 229910052719 titanium Inorganic materials 0.000 description 25
- 229920000642 polymer Polymers 0.000 description 24
- RTAQQCXQSZGOHL-UHFFFAOYSA-N titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 24
- IMNFDUFMRHMDMM-UHFFFAOYSA-N n-heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 16
- 239000000203 mixture Substances 0.000 description 10
- XJDNKRIXUMDJCW-UHFFFAOYSA-J Titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 description 8
- 238000002474 experimental method Methods 0.000 description 8
- 239000007788 liquid Substances 0.000 description 7
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 7
- VSCWAEJMTAWNJL-UHFFFAOYSA-K Aluminium chloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 229920000573 polyethylene Polymers 0.000 description 6
- 239000004215 Carbon black (E152) Substances 0.000 description 5
- 239000001257 hydrogen Substances 0.000 description 5
- 229910052739 hydrogen Inorganic materials 0.000 description 5
- 150000002430 hydrocarbons Chemical class 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- 239000002002 slurry Substances 0.000 description 4
- YNLAOSYQHBDIKW-UHFFFAOYSA-M Diethylaluminium chloride Chemical compound CC[Al](Cl)CC YNLAOSYQHBDIKW-UHFFFAOYSA-M 0.000 description 3
- 241001026509 Kata Species 0.000 description 3
- 239000004698 Polyethylene (PE) Substances 0.000 description 3
- VOITXYVAKOUIBA-UHFFFAOYSA-N Triethylaluminium Chemical compound CC[Al](CC)CC VOITXYVAKOUIBA-UHFFFAOYSA-N 0.000 description 3
- 230000004913 activation Effects 0.000 description 3
- 150000001336 alkenes Chemical class 0.000 description 3
- 229920001400 block copolymer Polymers 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000000178 monomer Substances 0.000 description 3
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 3
- 239000001294 propane Substances 0.000 description 3
- 239000010802 sludge Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 2
- ZGEGCLOFRBLKSE-UHFFFAOYSA-N Heptene Chemical compound CCCCCC=C ZGEGCLOFRBLKSE-UHFFFAOYSA-N 0.000 description 2
- 231100000614 Poison Toxicity 0.000 description 2
- 241000158147 Sator Species 0.000 description 2
- 125000004104 aryloxy group Chemical group 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 150000002367 halogens Chemical class 0.000 description 2
- VLKZOEOYAKHREP-UHFFFAOYSA-N hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 2
- 239000012442 inert solvent Substances 0.000 description 2
- 239000002609 media Substances 0.000 description 2
- 239000002574 poison Substances 0.000 description 2
- 238000002203 pretreatment Methods 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- YXFVVABEGXRONW-UHFFFAOYSA-N toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 2
- KPZGRMZPZLOPBS-UHFFFAOYSA-N 1,3-dichloro-2,2-bis(chloromethyl)propane Chemical compound ClCC(CCl)(CCl)CCl KPZGRMZPZLOPBS-UHFFFAOYSA-N 0.000 description 1
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-Hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 1
- KWKAKUADMBZCLK-UHFFFAOYSA-N 1-Octene Chemical compound CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 description 1
- IZMHKHHRLNWLMK-UHFFFAOYSA-M Aluminium monochloride Chemical compound Cl[Al] IZMHKHHRLNWLMK-UHFFFAOYSA-M 0.000 description 1
- AFFLGGQVNFXPEV-UHFFFAOYSA-N Decene Chemical compound CCCCCCCCC=C AFFLGGQVNFXPEV-UHFFFAOYSA-N 0.000 description 1
- 229920000181 Ethylene propylene rubber Polymers 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N Hafnium Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- 210000004072 Lung Anatomy 0.000 description 1
- 241001676573 Minium Species 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N Nonene Chemical compound CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- YWAKXRMUMFPDSH-UHFFFAOYSA-N Pentene Chemical compound CCCC=C YWAKXRMUMFPDSH-UHFFFAOYSA-N 0.000 description 1
- 108060007162 RALY Proteins 0.000 description 1
- 229910052770 Uranium Inorganic materials 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 125000003342 alkenyl group Chemical group 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 125000002877 alkyl aryl group Chemical group 0.000 description 1
- 125000000304 alkynyl group Chemical group 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- 125000003710 aryl alkyl group Chemical group 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 125000004429 atoms Chemical group 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- KZBUYRJDOAKODT-UHFFFAOYSA-N chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000000875 corresponding Effects 0.000 description 1
- 125000005356 cycloalkylalkenyl group Chemical group 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- RGSFGYAAUTVSQA-UHFFFAOYSA-N cyclopentane Chemical compound C1CCCC1 RGSFGYAAUTVSQA-UHFFFAOYSA-N 0.000 description 1
- 239000002612 dispersion media Substances 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- HQQADJVZYDDRJT-UHFFFAOYSA-N ethene;prop-1-ene Chemical group C=C.CC=C HQQADJVZYDDRJT-UHFFFAOYSA-N 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 125000004836 hexamethylene group Chemical class [H]C([H])([*:2])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[*:1] 0.000 description 1
- 239000008079 hexane Substances 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 125000004435 hydrogen atoms Chemical group [H]* 0.000 description 1
- 235000015243 ice cream Nutrition 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000009533 lab test Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910001507 metal halide Inorganic materials 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N o-xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 150000002899 organoaluminium compounds Chemical class 0.000 description 1
- 150000002902 organometallic compounds Chemical class 0.000 description 1
- 125000004817 pentamethylene group Chemical class [H]C([H])([*:2])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[*:1] 0.000 description 1
- OFBQJSOFQDEBGM-UHFFFAOYSA-N pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 1
- GQCRMKIDBZVXFG-UHFFFAOYSA-N pentane;phenol Chemical compound CCCCC.OC1=CC=CC=C1 GQCRMKIDBZVXFG-UHFFFAOYSA-N 0.000 description 1
- 239000002685 polymerization catalyst Substances 0.000 description 1
- 230000000379 polymerizing Effects 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000003716 rejuvenation Effects 0.000 description 1
- 150000003334 secondary amides Chemical class 0.000 description 1
- 125000000467 secondary amino group Chemical class [H]N([*:1])[*:2] 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 125000000446 sulfanediyl group Chemical group *S* 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-N sulfonic acid Chemical compound OS(O)=O LSNNMFCWUKXFEE-UHFFFAOYSA-N 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 150000003609 titanium compounds Chemical class 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- JFALSRSLKYAFGM-UHFFFAOYSA-N uranium(0) Chemical compound [U] JFALSRSLKYAFGM-UHFFFAOYSA-N 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium(0) Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Description
1 2
Die Erfindung betrifft ein Verfahren zur Polymeri- dampfte Metallverbindung, wie beispielsweise Alusation
von a-Olefinen, wobei ein Katalysator, welcher miniumtrichlorid, und Wasserstoff enthält, reduziert
ein reduziertes Übergangsmetallhalogenid enthält, werden. Die Reaktionsprodukte werden gewonnen
mit eirem Aluminiumtrialkyl behandelt wird und und in einem inerten Lösungsmittel gemischt, um feindarin
Polymerisation des «-Olefins ausgeführt wird. 5 zerteilte. Katalysatorbestandteile zu bilden, welche
Dabei wird also das Übergangsmetallhalogenid in bei der Polymerisation von a-Olefinen gute Aktivität
einer Wertigkeitsstufe verwendet, die mindestens um besitzen, wenn sie mit organometallischen Verbindun-.
1 unter der maximalen Wertigkeit liegt und im fol- gen,.. .insbesondere . Aluminiumtrialkylen, aktiviert
genden als »reduzierte Wertigkeit« bezeichnet wird. werden.
Der neue Katalysator nach der Erfindung besitzt io Bei all den vorhergehenden Verfahren zur Herunerwartete
Aktivität bei der Polymerisation von stellung von Übergangsmetallhalogeniden im Zustand
a-Olefinen, insbesondere von Äthylen. reduzierter Valenz, insbesondere Titantrichlörid, ob
In der italienischen Patentschrift 526 101 wird die mit Aluminiumchlorid zusammen kristallisiert oder
Polymerisation von Propylen beschrieben, indem ein nicht, hat die Polymerisation von «-Olefinen mit dem
Katalysator, wie beispielsweise Titanchlorid, in einer 15 Übergangsmetallhalogenid, das mit einem Alumiriium-Wertigkeitsstufe
unter 4 verwendet wird. In der alykl gefördert ist, Katalysatoraktivitäten ergeben, bei
Patentschrift wird ausgeführt, daß, wenn eine feste denen Ausbeuten in der Größenordnung von 250 bis
Titanverbindung, beispielsweise ein pulverförmiges 400 Kilogramm Polymer pro Kilogramm in dem
Titantrichlörid, welche in einem Kohlenwasserstoff- Katalysator verwendetes Titan erhalten werden. Das
lösungsmittel suspendiert ist und mit Triäthylalumi- so Verfahren nach der Erfindung stellt, wie erläutert
nium auf 50 bis 900C erhitzt wird, verwendet wird, wird, ein verbessertes Verfahren zur Polymerisation
um Propylen zu polymerisieren, das Produkt vorwie- von «-Olefinen, insbesondere Äthylen, dar, wobei eine
gend kristalline Natur hat. Außer in der italienischen unerwartete Katalysatoraktivität erhalten wird, so
Patentschrift 526 101 ist in vielen Vorveröffentlichun- daß 500 oder mehr Kilogramm Äthylenpolymer pro
gen durch Beispiele die Verwendung von Titantri- 35 Stunde pro Kilogramm verwendetes Titan erzeugt
chlorid als ein Katalysatorbestandteil bei der Poly- werden. Die Produktivität des Katalysators führt zu
merisation von a-Olefinen gezeigt worden, wobei mehreren tausend Kilogramm Polymer pro Kilogramm
verschiedenartige Arbeitsmethoden angewandt wer- Titan. '
den. Die Erfindung hat es sich zur Aufgabe gemacht,
In den verschiedenen Vorveröffentlichungen, bei- 30 einen Katalysator mit erhöhter Aktivität herzustellen
spielsweise den britischen Patentschriften 878 373 und damit ein verbessertes Verfahren zur Polymeri-
und 877 050 und der belgischen Patentschrift 563 558, sation von a-Olefinen zu schaffen unter Verwendung
ist gezeigt worden, daß Titantetrachlorid zu der drei- eines höchst aktiven Katalysators der genannten Art,
wertigen Form durch verschiedene Verfahren reduziert ~ wobei hohe Ausbeuten an Polymerem pro Kilogramm
werden kann, welche umfassen: 35 verwendetes Übergangsmetall erhalten werden.
1. Es wird Aluminium mit Titantetrachlorid erhitzt, Vorteilhafterweise erfolgt die Vorbehandlung eines
und nach Beendigung der Reaktion wird von dem Titantrihalogenidkatalysatorbestandteils mit einer Or-Reaktionsprodukt
nicht umgesetztes Titantetra- ganoaluminiumverbindung in einem Zweistufenverchlorid
abgetrennt und ein kristalliner Stoff, fahren um seine Aktivität bei_der Polymerisation von
welcher Titantrichlörid enthält, gewonnen; 4° «-Olefinen, insbesondere von Äthylen, zu einem hoch-
2. Übergangsmetallhalogenide, insbesondere Titan- molekularen Polymer zu erhöhen
tetrachlorid, werden mit Metallalkylen, beispiels- Das erfindungsgemaße Verfahren zur Polymen-
weise Aluminiumtriäthyl, in einem Verdünnungs- sa"on.von «^Jefinen mit einem Katalysator aus einem
mittel oberhalb 100°C reduziert; reduzierten Übergangsmetallhalogenid und einer alu-
3. Titantetrachlorid wird in der Dampfphase mit 45 miniumorganischen Verbindung ist dadurch gekenn-Wasserstoff
reduziert · zeichnet, daß das Ubsrgangsmetallhalogemd mit einem
4. Titantetrachlorid wird mit Titanpulver reduziert. Aluminiumtrialkyl vorbehandelt wurde, indem zu
diesem reduzierten Übergangsmetallhalogenid in einem
Bei all den vorhergehenden Verfahren wird das Verdünnungsmittel etwa 25 bis 75% des gesamten
Übergangsmetallhalogenid in einer Wertigkeitsstufe 50 für ein Endmolverhältnis Al zu Übergangsmetall von
erhalten, die mindestens um 1 unter der maximalen 1:1 bis 5:1 erforderlichen Aluminiums bei einer Tem-Wertigkeit
liegt (beispielsweise wird Titantetrachlorid peratur von etwa 50 bis 7O0C im Verlaufe von 3 bis
zu der Titantrichloridform reduziert). 30 Minuten zugesetzt würden, und danach eine weitere
So kann gemäß der bekannten Verfahren zur Her- Menge einer Aluminiumverbindung in einem Anteil
stellung von Titantrichlörid (oder anderer Übergangs- 55 zugesetzt wurde, um das Molverhältnis Aluminium
metallhalogenide) dieser Katalysatorbe;tandteil zu- zu Übergangsmetall auf etwa 1:1 bis 5:1 zu bringen,
sammen mit Aluminiumchlorid kristallisiert werden Dabei hat es sich als zweckmäßig erwiesen, daß das
entsprechend der Formel TiCI3" · 0,33AlCl3 oder als Übergangsmetallhalogenid in einem inerten Lösungseine
feste purpurne TiCl3-Verbindung hergestellt mittel suspendiert wird. Vorteilhafterweise wird das
werden. . 60 bei dieser Vorbehandlungsstufe anfallende Reaktions-Gemäß
der australischen Patentschrift 52 974/59 gemisch auf eine Temperatur unterhalb etwa 6O0C,
können Übergangsmetallhalogenide der Gruppen IV aber oberhalb etwa 2O0C gekühlt und dazu die weitere
und VIII, beispielsweise Titan, Zirkonium, Hafnium, Organoaluminiumverbindung zugesetzt, um das GeThorium,
Uran, Vanadium, Niob, Tantal, Chrom, samtverhältnis Aluminium zu Übergangsmetallhalo-Molybdän
und Wolfram, in einem Zustand reduzierter 65 genid des zusammengesetzten Katalysators auf etwa
Wertigkeit hergestellt werden, indem die verdampften 1:1 bis 5:1, aber vorzugsweise 1:1 bis 2:1 zu bringen.
Übergangsmetallhalogenide bei erhöhten Tempe- Als Übergangsmetallhalogenid wird später Titanraturen
in einer Atmosphäre, welche eine ver- trichlorid erwähnt, aber dadurch soll die Erfindung .
3 4
nicht beschränkt werden. Ebenso wird später auf die Propylen und flüssigem Propan oder flüssigem Pro-Polymerisation
von Äthylen Bezug genommen, wenn pylen und flüssigem Heptan in verschiedenen MoI-nicht
anderes gesagt wird. konzentrationen besteht, auszuführen. Bei einer be-
Der bevorzugte Katalysator bei Durchführung des vorzugteh Ausführungsform der Erfindung wird
verbesserten Verfahrens nach der Erfindung ist ein . 5 Äthylen in flüssigem Butan polymerisiert, wie später
vorgebildetes Titantrichlorid. Titantrichlorid an sich, in den spezifischen Beispielen erläutert wird,
beispielsweise das durch Reduktion von TiCl4 mit Es kann jedes »-Olefin mit dem verbesserten Kata-Wasserstoff hergestellte oder zusammen mit Alumi- lysator und nach dem erfindungsgemäßen Verfahren niumchlorid kristallisierte, ist im Handel erhältlich. polymerisiert werden. Beispiele für solche Olefine Das im - Handel erhältliche, mit Aluminiumchlorid io sind Äthylen, Propylen, Butylene, beispielsweise zusammenkristallisierte Titantrichlorid hat eine nomi- Buten-1, Pentene, beispielsweise Penten-1, Hexene, nelle Zusammensetzung von 3 TiCl3 · AlCl3, obgleich beispielsweise Hexen-1, Heptene, Octene, Nonene das molare Verhältnis dieser beiden Bestandteile oder Decene. Es können auch Gemische dieser Verschwanken kann. Es können bei dem erfindungsgemä- bindungen, in denen eine gegenüber der anderen überßen Verfahren auch andere Katalysatoren mit ver- 15 wiegt, beispielsweise Äthylen-Propylen oder Propylenschiedenen Verhältnissen von TiCl3 zu AlCl3 verwendet Buten-1, copolymerisiert werden, um nicht gelenkte werden, beispielsweise 5TiCl3-AlCl3, das hergestellt Copolymere oder Äthylen-Propylen-Kautschukarten wird, indem die beiden Komponenten zusammen oder Elastomere herzustellen, indem die spezifischen durch eine Kugelmühle gegeben werden. Verhältnisse der beiden Monomerkomponenten va-
beispielsweise das durch Reduktion von TiCl4 mit Es kann jedes »-Olefin mit dem verbesserten Kata-Wasserstoff hergestellte oder zusammen mit Alumi- lysator und nach dem erfindungsgemäßen Verfahren niumchlorid kristallisierte, ist im Handel erhältlich. polymerisiert werden. Beispiele für solche Olefine Das im - Handel erhältliche, mit Aluminiumchlorid io sind Äthylen, Propylen, Butylene, beispielsweise zusammenkristallisierte Titantrichlorid hat eine nomi- Buten-1, Pentene, beispielsweise Penten-1, Hexene, nelle Zusammensetzung von 3 TiCl3 · AlCl3, obgleich beispielsweise Hexen-1, Heptene, Octene, Nonene das molare Verhältnis dieser beiden Bestandteile oder Decene. Es können auch Gemische dieser Verschwanken kann. Es können bei dem erfindungsgemä- bindungen, in denen eine gegenüber der anderen überßen Verfahren auch andere Katalysatoren mit ver- 15 wiegt, beispielsweise Äthylen-Propylen oder Propylenschiedenen Verhältnissen von TiCl3 zu AlCl3 verwendet Buten-1, copolymerisiert werden, um nicht gelenkte werden, beispielsweise 5TiCl3-AlCl3, das hergestellt Copolymere oder Äthylen-Propylen-Kautschukarten wird, indem die beiden Komponenten zusammen oder Elastomere herzustellen, indem die spezifischen durch eine Kugelmühle gegeben werden. Verhältnisse der beiden Monomerkomponenten va-
Gemäß dem Verfahren nach der Erfindung wird «o riiert werden, wie in der Technik bekannt ist. Es köndas
Titantrichlorid in der ersten Stufe mit einer nen Blockcopolymere verschiedener a-Olefim nach
Organoaluminiumverbindung, beispielsweise einem der erfindungsgemäßen Methode polymerisiert werden,
Aluminiumtrialkyl, in welchem die Alkylgruppen . beispielsweise Blockcopolymere von Propylen auf
1 bis 10 Kohlenstoffatome enthalten können, vor- Äthylen und umgekehrt oder alternierende Copolybehandelt.
Aluminiumtriäthyl hat sich für diese Vor- 25 mere, wie beispielsweise Polyäthylen-Polypro; ylenbehandlung
als besonders brauchbar erwiesen. Für Polyäthylen, oder Blockcopolymere gefolgt durch nicht
die zweite oder die Aktivierungsstufe können Organo- gelenkte Copolymere und gefolgt durch weitere Blockaluminiumverbindungen
der allgemeinen Formel AlR3, copolymersegmente.
wo R ein Alkyl ist, und R1R2AlX verwendet werden. Polymerisationstemperaturen sind nicht entscheidend
In der Verbindung R1R2AlX können R1 und R2 30 und können beträchtlich schwanken, wie in der Techgleich oder verschieden sein, und jedes kann ein Wasser- nik bekannt ist. Wenn ein Polymerschiamm oder ein
Stoffatom oder einen Kohlenwasserstoffrest, beispiels- Polymer in Teilchenform gewünscht wird, können die
weise ein Alkyl-, Alkaryl-, Aryl-, Aralkyl-, Alkenyl-, Polymerisationstemperaturen von 60 bis 120°C reichen,
Alkynyl-, Cycloalkyl- oder Cycloalkenylrest, darstellen, vorzugsweise von 70 bis 95°C. Bei einem Verfahren,
und X kann ein Wasserstofiatom, ein Halogen, eine 35 wo das Polymer in Lösung bleiben soll, können Tem-Alkoxy-
oder Aryloxygruppe oder den Rest eines peraturen oberhalb 1200C entsprechend verwendet
sekundären Amins oder Amids, Merkaptans, Thio- werden. In solchen Fällen, wenn beispielsweise Pentan
phenols einer Carbonsäure oder einer SuIfonsäure als ein Verdünnungsmittel verwendet wird, löst sich
bedeuten. Die in der zweiten Stufe verwendete Alu- das gebildete Polymer in dem Verdünnungsmittel,
miniumverbindung kann auch durch die allgemeine 40 wenn die Polymerisation oberhalb 1200C ausgeführt
Formel RAlY1Y2 dargestellt werden, und R kann das wird, und wird als Lösung gewonnen, woraus es danach
gleiche sein wie oben, während Y1 und Y2 gleich oder durch Kühlen gefällt wird.
verschieden sein können und jedes ein Halogen, Die Drücke, welche höchst vorteilhaft bei dem Vereine
Alkoxy- oder eine Aryloxygruppe bezeichnen fahren nach der Erfindung verwendet werden können,
kann. > 45 liegen zwischen Atmosphärendruck und 12,3 kg/cm2.
In der Polymerisationsstufe können als Verdün- Es wird jedoch bemerkt, daß die Drücke je nach dem
nungsmittel zur Ausführung der Polymerisation (und/ besonderen verwendeten Verdünnungsmittel variieren
oder der Vorbehandlungsstufe des Katalysators) ge- können. So können, wenn ein normalerweise flüssiger
sättigte Kohlenwasserstoffe, beispielsweise Propan, Kohlenwasserstoff als das Verdünnungsmittel verwen-Butan,
Pentan, Hexan, Heptan und Cycloaliphaten 50 det wird, beispielsweise Heptan, Polymerisationen bei
wie Cyclopentan, Cyclohexan und substituierte Cyclo- Drücken von etwa Atmosphärendruck bis zu unter
aliphaten wie auch Aromaten, beispielsweise Xylol etwa 7 kg/cm2 ausgeführt werden, während, wenn ent-
und Toluol, verwendet werden. Es hat sich als vorteil- weder das Monomer oder ein normalerweise gasförhaft
erwiesen, das Polymerisationsverfahren nach der miges Mittel als das Dispersionsmedium verwendet
Erfindung unter Verwendung eines normalerweise 55 wird, Drücke angewandt werden müssen, die mingasförmigen
inerten Verdünnungsmittels, welches unter destens so hoch sind wie die Verflüssigungsdrücke;
den Verfahrensbedingungen verflüssigt wird, beispiels- beispielsweise wird Propylen bei 200C bei einem Druck
weise von inerten Kohlenwasserstoffverdünnungsmit- von etwa 10,5 kg/cm3 flüssig.
teln, die durch Propan und Butan dargestellt werden, _ Das bevorzugte Verfahren zur Polymerisation von
auszuführen. Überdies können die verwendeten spe- 60 Äthylen nach der Erfindung kann kontinuierlich oder
zifischen Monomeren auch als ihre öigenen Verdün- chargenweise ausgeführt werden. Bei einem kontinungsmittel
in der Polymerisationsstufe verwendet nuierlichen Verfahren können passende Einrichtungen
werden, indem der Reaktor einfach unter Druck ge- eingebaut werden, indem verschiedene Einheiten für
setzt wird, um die Bestandteile, beispielsweise Propy- die zweistufige Vorbehandlung des Katalysators
len oder Buten-1, zu verflüssigen. Das erfindungs- 65 und die Aktivierung vorgesehen werden, an die sich
gemäße Verfahren umfaßt auch eine Ausführungsform, passende Vorrichtungen zur kontinuierlichen PoIydie
Polymerisationsreaktion in einem heterogenen merisation anschließen. Bei einem chargenweisen Verflüssigen
Verdünnungsmittel, das z. B. aus flüssigem fahren kann der Katalysator in situ hergestellt werden
5 6
durch Vorbehandeln mit anschließender Aktivierung, Temperatur beeinflußt, bei welcher der letzte Zusatz
und dann wird Äthylen zugesetzt. . der Aluminiumverbindung erfolgt.
Es ist nicht bekannt, warum eine Vorbehandlung Der bevorzugte Katalysator zum Gebrauch bei der
von Titantrichlorid mit Organoaluminiumverbindun- Polymerisation von a-Olefinen, insbesondere Äthylen,
gen zu einem sehr aktiven Polymerisationskatalysator 5 ist ein zusammenkristallisiertes TiCl3 · AlCl3, das in
führt. Wenn jedoch die Komponenten nicht vorrea- der ersten Stufe mit Aluminiumtriäthyl vorbehandelt
gieren, ist die Aktivität des Katalysators gering (im ist. Für die zweite Vorbehandlungsstufe können zuVergleich
zu dem behandelten Katalysator). Es wird sätzlich zu Aluminiumtrialkylen andere Aluminiumangenommen, daß durch die Verbehandlung das alkyle verwendet werden, beispielsweise Diäthylalu-Titan
aus einem dreiwertigen Zustand zu einem Zu- io miniummonochlorid oder Gemische aus. anderen
stand geringerer Wertigkeit reduziert. wird und ein Organoaluminiumverbindungen. Die bevorzugten Verneuer
Aluminium-Titan-Komplex gebildet wird, wel- dünnungsmittel bei Ausführung des Verfahrens nach
eher dadurch die Reaktion zwischen dem Katalysator der Erfindung sind Butan und bevorzugte Drücke von
und dem Monomeren beeinflußt. Atmosphärendruck bis 12,3 kg/cm2 sowie Polymeri-
Die Bedingungen für die erste Behandlungsstufe 15 sationstemperaturen von 70 bis 95°C.
der Katalysatorkomponenten sind ganz spezifisch, und Um die Erfindung näher zu erläutern, werden die
es müssen 25 bis 75% eines Aluminiumtrialkyls, folgenden spezifischen Ausführungsbeispiele angege-
bezogen auf die gesamte zu verwendende Organo- ben.
aluminiumverbindung, zu dem Titantrichlorid in Bei den unten angegebenen Beispielen wird die erste
einem Verdünnungsmittel bei einer Temperatur zwi- 20 Stufe oder Vorbehandlung allgemein ausgeführt,
sehen 50 und 70°C, aber vorzugsweise bei 6O0C, indem 25 bis 75% des Aluminiumtriäthyls zu dem
zugesetzt werden; diese Temperatur muß 3 bis 30 Mi- Titantrichloridkatalysatorbestaridteil in Heptan bei
nuten, vorzugsweise etwa 5 Minuten, gehalten werden. 60° C zugesetzt und 5 Minuten bei 6O0C vorbehandelt
Im Anschluß an die Vorbehandlungsstufe wird vor- werden, während das anfängliche Verhältnis Al/Ti
zugsweise gekühlt und die restliche Aluminiumver- 25 bei 0,50 beibehalten wird. Vorzugsweise wird das
bindung, welche erforderlich ist, um einen Kataly- Gemisch dann gekühlt, und dann erfolgt der zweite
sator zu erzeugen, der ein Verhältnis von Aluminium Zusatz der Aluminiumverbindung. Dann wird der
zu Titan von etwa 1:1 bis 5:1 und vorzugsweise 1:1 vorbehandelte Katalysator in verschiedenen Kon-
bis 2:1 besitzt, zugesetzt; diese kann bei dieser Stufe zentrationen in Gramm pro Liter und den endgültigen
in der Zusammensetzung von dem in der ersten Stufe 30 Verhältnissen von Al/Ti von 1:1 bis 5:1 bei der
verwendeten Aluminiurhtrialkyl verschieden sein. Der Polymerisation verwendet, welche in Heptan oder
Rest der Aluminiumverbindung wird vorzugsweise Butan bei bevorzugten Temperaturen von etwa 80°C
bei Temperaturen von 60°C oder darunter, beispiels- und Drücken von etwa 12,3 kg/cm2 ausgeführt werden
weise 20 bis 40° C, zugesetzt. Wie später erläutert kann. Die Katalysatoraktivität wird durch die folgende
wird, wird die Wirksamkeit des Katalysators durch die 35 Formel bestimmt:
., . . „ Gramm Polymer
Aktivität =
Gramm Katalysator · Reaktionszeit in Stunden
Die angewandte Reaktionszeit ist 1 Stunde, und die 4° das mit Äthylen bei 75°C gesättigt ist, übergeführt.
Aktivität ist auf vorhandenes Titanmetall bezogen, Die Polymerisation wird 1 Stunde lang bei Atmosphä-
wenn nicht der Gesamtkatalysator angegeben wird. rendruck ausgeführt. Es wird eine Ausbeute von 64,4 g
Die Aktivität ist nicht mit der Ausbeute zu verwech- Polymer erhalten, welche einer auf Titan bezogenen
sein. Unter Ausbeute ist die Gesamtmenge Polymer, Katalysatoraktivität von 1440 entspricht. Das end-
welche pro Kilogramm Titan oder, wenn dieses be- 45 gültige Verhältnis von AI/Ti ist in diesem Beispiel 1,0,
sonders angegeben wird, pro Kilogramm Gesamtkata- und bei der Vorbehandlung ist das Al/Ti-Verhältnis
lysator erzeugt wird, zu verstehen. Es werden Ausbeu- 0,50.
ten von mindestens 7500 Kilogramm pro Kilogramm B e i s d i e 1 2
Titan durch das Verfahren und den Katalysator nach
Titan durch das Verfahren und den Katalysator nach
der Erfindung erzielt. Es können Ausbeuten bis zu 50 Das Verfahren von Beispiel 1 wird wiederholt
50 000 Kilogramm Polyäthylenpolymer pro Kilo- mit dem Unterschied, daß der zweite Zusatz von
gramm Titan erzeugt werden, wenn optimale und Aluminiumtriäthyl mengenmäßig erhöht wird, so daß
bevorzugte Reaktionsbedingungen verwendet werden. das endgültige Al/Ti-Verhältnis 2,0 ist. Die Ausbeute
Es versteht sich daher, daß in den hier angegebenen an Äthylenpolymerem ist 80 g, was einer auf Titan
Beispielen die Aktivität für eine begrenzte Zeit ge- 55 bezogenen Katalysatoraktivität von 1800 entspricht,
messen wird, d. h. 1 Stunde, wenn nicht anderes gesagt wird, und dieses hat nichts mit der Fähigkeit Beispiel3
des Katalysators, Polymer bis zu seiner Erschöpfung
des Katalysators, Polymer bis zu seiner Erschöpfung
zu erzeugen, zu tun. Zu 0,370 g TiCl3 · 0,33 AlCl3, welche mit 25 ml
B . · 1 1 60 Heptan verdünnt sind, werden bei 50°C 25 ml 0,0748-
e ! s P ' e molares Aluminiumtriäthyl zugesetzt. Man läßt den
Zu 0,185 g TiCl3 · 0,33 AlCl3, die mit 10 ml Heptan Schlamm 5 Minuten reagieren, und darin wjrd er in
verdünnt sind, werden bei 6O0C 5 ml 0,094molares 500 ml Hepten, das bei 75°C und Atmosphärendruck
Aluminiumtriäthyl zugesetzt. Die Reaktion wird mit Äthylen gesättigt ist, übergeführt. Die Polymeri-
5 Minuten lang durchgeführt. Am Ende dieser Zeit 65 sation wird 1 Stunde lang ausgeführt, und es werden
wird der Schlamm auf 40°C gekühlt, und es werden 43 g Äthylenpolymer erhalten. Die Ausbeute entspricht
5 ml 0,094molares Aluminiumtriäthyl zugesetzt. Der einer auf Titan bezogenen Katalysatoraktivität von
Katalysatorschlamm wird dann in 500 ml Heptan, 970. Dieses Beispiel zeigt, daß die zweistufige-Vor-
Tabelle I | Katalysator wirksamkeit |
Polymerisations geschwindigkeit Gewichtsteile/ Std./Gewichts- teil Gesamtkata lysator |
|
Versuch Nr. |
Temperatur des letzten Alumi- niumtriäthyl- zusatzes .',· °c |
1260 1440 1010 |
191 219 153 |
1 2 3 |
30 , 40 60 |
behandlung notwendig ist, um eine hohe Katalysatoraktivität zu erhalten.
B e i s ρ i e 1 4
Zu 0,144 g Titantrichlorid, das durch Reduktion von f itantetrachlorid mit Wasserstoff hergestellt und mit
15 ml Heptan verdünnt wird, werden 2,5 ml O,188molares Aluminiumtriäthyl bei 60° C zugesetzt. Der Schlamm
wird 5 Minuten erhitzt und dann auf 40° C gekühlt. Dann werden weitere 7,5 ml O,188molares Aluminiumtriäthyl
zugesetzt, und das Katalysatorgemisch wird dann in 500 ml Heptan, das bei 75° C uncTAtmosphärendruck
mit Äthylen gesättigt ist, übergeführt. Die Polymerisation wird 1 Stunde lang ausgeführt; es
werden 64,7 g Polymer erzeugt, was einer auf Titan bezogenen Aktivität von 1450 entspricht. Bei diesem
Beispiel ist in der ersten Behandlungsstufe das Al/Ti-Verhältnis 0,50, während das endgültige Verhältnis
2,0 ist.
B e i sp i el 5
Zu 0,185 g des im Beispiel 4 verwendeten Titantrichlorids,
welches mit 15 ml Heptan verdünnt ist, werden bei Zimmertemperatur 10 ml O,188molares Aluminiumtriäthyl
zugesetzt. Nach 5 Minuten wird der Katalysatorschlamm in 500 ml Heptan, das bei 75° C
mit Äthylen gesättigt ist, übergeführt und die Polymerisation 1 Stunde bei Atmosphärendruck ausgeführt.
Es werden 42 g Polymer erhalten, was einer auf Titan bezogenen Katalysator aktivität von 950 entspricht.
In diesem Beispiel ist das Al/Ti-Verhältnis 2,0. Dieses
Beispiel zeigt, daß es notwendig ist, das Titantrichlorid, wie hier erläutert, vorzubehandeln, um die hohe Katalysatoraktivität
nach der Erfindung zu erhalten.
B ei s ρ i e 1 6
Zu 0,185 g TiCl3 · 0,33 AlCl3, die mit 6,3 ml Heptan
verdünnt sind, werden 2,5 ml 0,180molares Tritähylaluminium bei 60°C zugesetzt und 5 Minuten bei dieser
Temperatur gehalten. Das Gemisch wird dann auf ■40° C gekühlt, und es werden 7,5 ml O,188molares
Diäthylaluminiummonochlorid zugesetzt (Al/Ti-Verhältnis 2,0). Der Katalysatorschlamm wird dann zu
500 ml Heptan, das bei 75° C und Atmosphärendruck mit Propylen gesättigt ist, zugesetzt. Es wird ein Polymer
von vorwiegend isotaktischem Gehalt bei wesentlicher Katalysatoraktivität erhalten.
In der folgenden Tabelle I sind drei Versuche angegeben,
welche Reaktionen erläutern, bei denen das Verfahren von Beispiel 1 angewandt wurde mit dem
Unterschied, daß die Temperatur bei der zweiten Stufe des Zusatzes von Aluminiumtriäthyl geändert ist.
In der folgenden Tabelle II sind weitere Ergebnisse verzeichnet, die erhalten werden, wenn das anfängliche
Al/Ti-Verhältnis in der Vorbehandlungsstufe geändert
wird. Bei diesen Versuchen wird das endgültige Al/Ti-Verhältnis konstant bei 1,0 gehalten, während das
Al/Ti in der Vorbehandlungsstufe geändert wird.. Es werden in jedem Falle 0,185 g TiCl3 · 0,33 AlCl3
verwendet, und die Vorbehandlung mit Aluminiumtriäthyl wird, wie oben erläutert, bei 60°C während
ίο 5 Minuten ausgeführt.
Der zweite Aluminiumtriäthylzusatz erfolgt bei
40° C (mit Ausnahme von Versuch Nr. 7, wo die gesamte Al uminiumverbindung anfangs zugesetzt wird).
Die Polymerisation wird bei 75 0C 1 Stunde bei Atmosphärendruck
ausgeführt.
Die obigen Ergebnisse zeigen eine maximale Katalysatöraktivität,
wenn der zweite Aluminiumtriäthylzusatz: bei 4O0C ausgeführt wird.
• Ver-
such
Nr.
4
5
6
5
6
Anfängliches
Al/Ti-Verhältnis
Al/Ti-Verhältnis
0,2
0,5
0,7
1,0
0,5
0,7
1,0
Aktivität (Ti)
Gewichtsteile/
Gewichtsteile/
Std.
1170
1440
950
970
Gesamtaktivität Gramm Katalysator Gewichtsteile/Gewichtsteile/Std.
178 214 144 147
Aus den obigen Versuchen kann man ersehen, daß höchste Katalysatoraktivität, sowohl bezogen auf
Titan wie auch auf Gesamtkatalysator, für ein Al/Ti-Verhältnis von 0,50 bei der Vorbehandlung erzielt
wird. Wenn sich das Al/Ti-Verhältnis bei der Vorbehandlung 1,0 nähert, nimmt die Aktivität etwas ab.
In der folgenden Tabelle III werden die Vorbehandlungsbedingungen konstant gehalten. Bei diesen Versuchen
werden 0,185 g TiCl3 · 0,33 AlCl3 vorbehandelt,
so daß das Al/Ti-Verhältnis von 0,50 bei 60°C während 5 Minuten erhalten wird. Das restliche Aluminiumtriäthyl
wird bei 40° C zugesetzt und die Polymerisation wie vorher bei Atmosphärendruck ausgeführt.
Versuch Nr. |
Endgültiges Al/Ti |
Aktivität (Ti) Gewichtsteile/ Gewichtsteile/ |
Gesamtaktivität Gramm Kataly sator Gewichts- teile/Gewichts- |
OLU. | teile/Std. | ||
8 | 1,0 | 1440 | 219 |
9 | 2,0 | 1800 | 200 |
10 | 2,0 | 1170 | 130 |
11 | 2,0 | 1900 | 212 |
12 | 5,0 | 1640 | 110 |
. 13 | 25,0 | 1170 | 18,2 · |
Wie aus den obigen Ergebnissen hervorgeht, wird die optimale, auf Titan bezogene Aktivität für ein
Al/Ti-Verhältnis von 2,0 erhalten. Die höchste Aktivität, bezogen auf gesamte Gramm Katalysator, tritt
jedoch bei einem Al/Ti-Verhältnis von 1,0 auf. Man sieht auch, daß durch Erhöhung des Al/Ti-Verhältnisses
auf 25,0 die Aktivität nicht erhöht wird. Bei Versuch Nr. 10 sind die niedrigen Aktivitäten (die
immer noch höher sind als ohne Vorbehandlung nach der Erfindung) auf unreines Lösungsmittel zurückzuführen.
. 109 683/104
Die folgende Tabelle IV enthält weitere Werte bezüglich des Verfahrens nach der Erfindung. Der
Katalysator wird hergestellt, indem der Zweistufenzusatz von Aluminiumtriäthyl angewandt wird, wie
er zuvor beschrieben wurde. Die Konzentration bei der Vorbehandlung wird variiert, indem die zum Aufschlämmen
des 3 TiCl3-AlCl3 verwendete Menge
Heptan geändert wird. Die erforderliche Menge Aluminiumtriäthyl wird als eine 0,188molare Lösung zugesetzt.
Die Vorbehandlung wird 5 Minuten lang bei 60° C mit einem Al/Ti-Verhältnis von 0,50 ausgeführt.
Es wird weitere Trialuminiumlösung bei 4O0C zugesetzt,
um ein endgültiges Verhältnis von Al/Ti von 2,0 zu erhalten. Bei allen Versuchen werden 0,185 g
3 TiCl3 · AlCl3 verwendet. Polymerisationen werden
bei 75°C 1 Stunde lang bei Atmosphärendruck ausgeführt.
Tabelle IV | Aktivität (Ti) Gewichtsteile/ Gewichtsteile/ Std. |
Aktivität Ge- wichtsteile/Ge- teile/Std. |
|
Ver such Nr. |
Konzentration . bei Vorbehand lung Gesamt gramm/Liter |
1540 1500 1590 2030 1760 |
172 167 177 226 196 |
14 15 16 17 18 |
6,8 13,7 13,7 27,1 • 53,3 |
Aus den obigen Ergebnissen ersieht man, daß die Katalysatoraktivität auch von der Konzentration bei
der Vorbehandlung abhängt; höhere Konzentrationen ergeben höhere Aktivitäten. Die beste Aktivität ergibt
sich bei einer Konzentration von 27,1 g/Liter.
Bei Versuchen gemäß dem Verfahren von Beispiel 1 wurde gefunden, daß das Titanchlorid am besten auf
Vorbehandlung mit einem Aluminiumtrialkyl und insbesondere, wenn die Alkylgruppen 1 bis 10 Kohlenstoffatome
enthalten, anspricht.
Bei weiteren Versuchen, bei denen Titantrichlorid mit Triäthylaluminium 5 Minuten bei 60°C mit einem
Al/Ti-Verhältnis von 0,5 vorbehandelt wurde, wurde jedoch gefunden, daß, wenn Diäthylaluminiummonochlorid
und Aluminiumtriäthyl in der zweiten Behandlungsstufe verwendet werden, d.h. bei 40°C
zugesetzt werden, um das Endverhältnis von Ti/Al auf 2,00 zu bringen, die Katalysatoraktivität, bezogen
auf Titan, 1450 ist. So können zusätzlich zu dem Gebrauch von Diäthylaluminiummonochlorid auch Gemische
aus diesem Cokatalysator mit Aluminiumtriäthyl verwendet werden.
Bei einem weiteren Polymerisationsversuch, wie im Beispiel 1 angegeben ist, mit einem Endverhältnis
Al/Ti von 2,00, der aber 2 Stunden lang ausgeführt wurde, ist die Katalysatoraktivität, bezogen auf Titan,
3700 Gewichtsteile pro Gewichtsteil Titan.
Bei Polymerisationsversuchen in Chargen in einem größeren Maßstab als in den vorhergehenden Beispielen
ergibt sich eine Katalysatorproduktivität von mehreren tausend Gewichtsteilen Polyäthylen pro
Gewichtsteil Titan. Die Vorbehandlung des Katalysators wird im wesentlichen wie im Beispiel 1 ausgeführt
mit dem Unterschied, daß zusätzliches Aluminiumtriäthyl zu dem Butanverdünnungsmittel zugesetzt
wird, um Katalysatorgifte zu neutralisieren. Dieses erklärt die hohen AI/Ti-Molverhältnisse.
Temperatur, 0C
Druck, kg/cm2 ......
Katalysatorkonzentration,
g/Liter
Lösungsmittel ;.
Verweilzeit, Std
Al/Ti, Molverhältnis
Polymererzeugungsgeschwindigkeit, kg/Std...
Ausbeute Gewichtsteile
Polymer/Gewichtsteil
Ausbeute Gewichtsteile
Polymer/Gewichtsteil
Gesamtkatalysator .
Ausbeute Gewichtsteile
Polymer/Gewichtsteil
ao Titan
Polymer/Gewichtsteil
ao Titan
Versuch Nr.
1 ! 2
76,7
L0,54
L0,54
0,31
Butan
Butan
1,2
24/1,0
24/1,0
20
427
26 000
77,8
11,25
11,25
0,28
Butan
Butan
1,5
90/1,0
90/1,0
442
97 000
Bei den obigen Versuchen wird vorbehandelter Katalysator gemäß der Erfindung in einen Chargenreaktor
gegeben, welcher Butan als das Verdünnungsmittel enthält. Der Katalysator wurde in zwei Stufen,
wie zuvor angegeben, behandelt, wobei Heptan als Verdünnungsmittel verwendet wurde. Der Katalysator,
TiCl3- 0,33 AlCl3, wurde mit Aluminiumtriäthyl in der
ersten und zweiten Vorbehandlungsstufe aktiviert und dann in einen 441 Liter fassenden Reaktor gegeben.
Weil das Butanverdünnungsmittel, wie erwähnt, mit Aluminiumtriäthyl vorbehandelt wurde, um Katalysatorgifte
zu beseitigen, ist das Endverhältnis Al/Ti höher als bei den Laboratoriumsversuchen kleineren
Umfanges. Bei dem angeführten Chargenversuch war der Katalysator noch zu dem Zeitpunkt, als der
Polymerisationsversuch beendet war, aktiv. Die Katalysatoraktivität war am höchsten bei den Versuchen,
bei welchen die Konzentration des Katalysators etwa 0,28 g/Liter betrug. Diese Versuche zeigen die unvorhersehbare
Produktivität eines erfindungsgemäß hergestellten und bei dem Verfahren nach der Erfindung
verwendeten Katalysators.
Bei Wiederholung der vorhergehenden Versuche, aber unter Verwendung von Wasserstoff zwecks Erniedrigung des Molekulargewichts wurde gefunden, daß vergleichbare Produktivitäten über längere ,Verweilzeiten erhalten werden konnten.
Bei Wiederholung der vorhergehenden Versuche, aber unter Verwendung von Wasserstoff zwecks Erniedrigung des Molekulargewichts wurde gefunden, daß vergleichbare Produktivitäten über längere ,Verweilzeiten erhalten werden konnten.
Claims (7)
1. Verfahren zur Polymerisation von a-01efinen mit einem Katalysator, aus einem reduzierten
Übergangsmetallhalogenid und einer aluminiumorganischen Verbindung, dadurch gekennzeichnet,
daß das Übergangsmetallhalogenid mit einem Aluminiumtrialkyl vorbehandelt wurde, indem zu diesem reduzierten Übergangsmetallhalogenid
in einem Verdünnungsmittel etwa 25 bis 75 °/o des gesamten für ein Endmolverhältnis
Al zu Übergangsmetair von 1:1 bis 5:1 er-'
forderlichen Aluminiums bei einer Temperatur von etwa 50 bis 70°C im Verlaufe von 3 bis 30 Minuten
zugesetzt wurden, und danach eine weitere Menge einer Aluminiumverbindung in. einem Anteil zugesetzt
wurde; um das Molverhältnis Aluminium zu Übergangsmetall auf etwa 1:1 bis 5:1 zu bringen.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß Butan als ein Polymerisationsmedium
verwendet wird.
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet,
daß Titantrichlorid als das reduzierte Übergangsmetallhalogenid verwendet wird.
4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Vorbehandlungsstufe bei einer
Temperatur von etwa 60° C ausgeführt wird.
5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Polymerisation in einem normalerweise
gasförmigen, verflüssigten, inerten Koh-
lenwasserstoffverdünnungsmittel bei Drücken bis zu 12,3 kg/cm2 ausgeführt wird.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß als «-Olefin Äthylen und als Aluminiumalkyl
ein A-luminiumtrialkyl verwendet
wird, dessen Alkylgruppe 1 bis 10 Kohleristoffatome hat.
7. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß der Endzusatz von Aluminiumalky}
bei einer Temperatur von 20 bis 600C ausgeführt
wird und als Aluminiumalkyl Aluminiumtriäthyl verwendet wird.
Family
ID=
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE68906763T2 (de) | Vanadiumkatalysator auf einem Träger für die Olefinpolymerisation, dessen Verfahren zur Herstellung und Anwendung. | |
DE3002879C2 (de) | Verfahren zur stereospezifischen Homo- oder Copolymerisation von α-Olefinen mit 3 bis 6 Kohlenstoffatomen oder zur Copolymerisation dieser α-Olefine mit Äthylen und hierfür verwendbare Titankatalysatorkomponente | |
DE1420364A1 (de) | Verfahren zur Herstellung fester kristalliner Polymerisate aus Olefinen | |
DE1420503B2 (de) | Verfahren zur polymerisation von aethylenisch ungesaettigten kohlenwasserstoffen | |
DE2615390B2 (de) | Verfahren zur Polymerisation von Äthylen, allein oder zusammen mit a -Olefinen mit 3 - 20 C-Atomen oder mit Diolefinen | |
DE2734652C2 (de) | ||
DE69408271T2 (de) | Katalysatorsystem für die Polymerisation von Alpha-Olefinen und Verfahren zu dieser Polymerisation | |
DE2500505A1 (de) | Polymerisationskatalysator und verfahren zur polymerisation von alphaolefinen | |
DE2814692C2 (de) | ||
DE3004768C2 (de) | ||
DE2256780A1 (de) | Verfahren zur polymerisation von alpha-olefinen | |
DE2901393C2 (de) | ||
EP0401776A2 (de) | Verfahren zur Herstellung eines poly-1-olefins | |
DE2128046C3 (de) | Verfahren zur Herstellung von Äthylenpolymerisaten | |
DE1520658B2 (de) | Verfahren zur polymerisation von alpha olefinen | |
DE2332050C3 (de) | Verfahren zur Polymerisation von Äthylen | |
DE2112839C2 (de) | Verfahren zur Herstellung von alternierenden Copolymerisaten durch Copolymerisation von Butadien -(1,3), Isopren oder Pentadien - (1,3) mit einem α-Olefin der allgemeinen Formel CH ↓2↓ = CHR, in der R eine normale Alkylgruppe mit 1 bis 4 Kohlenstoffatomen bedeutet oder mit Styrol | |
DE1520658C (de) | Verfahren zur Polymerisation von alpha-Olefinen | |
DE1542401C (de) | Verfahren zur Herstellung eines Ka talysators fur die alpha Olefinpolymeri sation Ausscheidung aus 1520658 | |
DE1520567A1 (de) | Verfahren zur Herstellung von kristallinen Polyolefinen | |
EP0007061A1 (de) | Verfahren zur Polymerisation von 1-Oelfinen | |
DE2301136C3 (de) | Verfahren zum Herstellen einer modifizierten Titan-Komponente fur Katalysatoren des Ziegler-Natta-Typs | |
DE1542401B (de) | Verfahren zur Herstellung eines Ka talysators fur die alpha Olefinpolymen sation | |
DE1128145B (de) | Verfahren zur Herstellung eines Polymerisats mit trans-1,4-Struktur aus einem konjugierten diolefinischen Kohlenwasserstoff | |
DE2709857C2 (de) |