DE1464932C - Selbstreinigendes Brennstoffelement fur einen Kernreaktor - Google Patents
Selbstreinigendes Brennstoffelement fur einen KernreaktorInfo
- Publication number
- DE1464932C DE1464932C DE1464932C DE 1464932 C DE1464932 C DE 1464932C DE 1464932 C DE1464932 C DE 1464932C
- Authority
- DE
- Germany
- Prior art keywords
- fuel
- cooling gas
- fuel element
- passage
- chamber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000000446 fuel Substances 0.000 title claims description 102
- 238000004140 cleaning Methods 0.000 title description 5
- 239000000112 cooling gas Substances 0.000 claims description 32
- 230000004992 fission Effects 0.000 claims description 28
- OKTJSMMVPCPJKN-UHFFFAOYSA-N carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 26
- 229910002804 graphite Inorganic materials 0.000 claims description 24
- 239000010439 graphite Substances 0.000 claims description 24
- 239000002245 particle Substances 0.000 claims description 11
- 238000009792 diffusion process Methods 0.000 claims description 10
- 239000000463 material Substances 0.000 claims description 10
- 239000011148 porous material Substances 0.000 claims description 10
- 229910052734 helium Inorganic materials 0.000 claims description 9
- 239000001307 helium Substances 0.000 claims description 9
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium(0) Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims description 9
- 230000035699 permeability Effects 0.000 claims description 6
- 239000007789 gas Substances 0.000 description 13
- 238000001816 cooling Methods 0.000 description 10
- 238000003776 cleavage reaction Methods 0.000 description 4
- 239000002826 coolant Substances 0.000 description 4
- 238000001125 extrusion Methods 0.000 description 4
- 229910052770 Uranium Inorganic materials 0.000 description 3
- 239000003610 charcoal Substances 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000004744 fabric Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- JFALSRSLKYAFGM-UHFFFAOYSA-N uranium(0) Chemical compound [U] JFALSRSLKYAFGM-UHFFFAOYSA-N 0.000 description 3
- 230000000712 assembly Effects 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 230000000875 corresponding Effects 0.000 description 2
- 231100001004 fissure Toxicity 0.000 description 2
- 229910052743 krypton Inorganic materials 0.000 description 2
- DNNSSWSSYDEUBZ-UHFFFAOYSA-N krypton(0) Chemical compound [Kr] DNNSSWSSYDEUBZ-UHFFFAOYSA-N 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052756 noble gas Inorganic materials 0.000 description 2
- 150000002835 noble gases Chemical class 0.000 description 2
- 238000005086 pumping Methods 0.000 description 2
- PPNXXZIBFHTHDM-UHFFFAOYSA-N Aluminium phosphide Chemical compound P#[Al] PPNXXZIBFHTHDM-UHFFFAOYSA-N 0.000 description 1
- 241000272517 Anseriformes Species 0.000 description 1
- 210000001138 Tears Anatomy 0.000 description 1
- 229910052776 Thorium Inorganic materials 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- YZUCHPMXUOSLOJ-UHFFFAOYSA-N ethyne;thorium Chemical compound [Th].[C-]#[C] YZUCHPMXUOSLOJ-UHFFFAOYSA-N 0.000 description 1
- 238000007373 indentation Methods 0.000 description 1
- 238000011068 load Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000003758 nuclear fuel Substances 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000002296 pyrolytic carbon Substances 0.000 description 1
- 230000002285 radioactive Effects 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 230000003068 static Effects 0.000 description 1
- ZSLUVFAKFWKJRC-UHFFFAOYSA-N thorium Chemical compound [Th] ZSLUVFAKFWKJRC-UHFFFAOYSA-N 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon(0) Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Description
1 2
Die Erfindung betrifft ein Brennstoffelement für das sich dadurch auszeichnet, daß in der Längsboh-
einen gasgekühlten Kernreaktor, das dem Kühlgas rung des Körpers eine Venturidüse angeordnet ist
ausgesetzt ist, mit einem langgestreckten, wenigstens und daß der Durchgang in den Niederdruckbereich
eine Brennstoffkammer enthaltenden Körper, von der Venturidüse mündet, so daß infolge der Druck-
dem mindestens ein Teil für das Kühlgas durchlässig 5 differenz zwischen dem Gesamtdruck des Kühlgases
ist, so daß es in die Brennstoffkammer fließen kann, und dem Druck im Niederdruckbereich der Venturi-
mit spaltbarem Brennstoff in der Brennstoff kammer, düse Kühlgas durch den gasdurchlässigen Teil des
mit einem Durchgang zwischen der Brennstoffkammer Körpers hindurch in die Brennstoffkammer und von
und einer vom Kühlgas durchflossenen Längsbohrung dort über den Brennstoff und über die Spaltprodukt-
des Körpers, und mit einer Spaltproduktfalle zwischen io falle durch den Durchgang in das durch die Längs-
dem Durchgang und dem Brennstoff. bohrung fließende Kühlgas fließen kann. Ein der-
Die Entfernung der Spaltprodukte aus dem Inneren artiges Brennstoffelement zeichnet sich durch eine
- der Höchtemperaturkernreaktoren mit Gaskühlung besondere Einfachheit und seine Unabhängigkeit von
und aus den Brennkammern der Brennstoffelemente besonderen Hilfsvorrichtungen aus. Es ist billig herist
notwendig, um die Ablagerung der kondensier- 15 zustellen und läßt sich auf einfache Weise in einen
baren Spaltprodukte auf dem Reaktor zu vermeiden. Reaktor einbauen.
Die Spaltprodukte werden im allgemeinen aus dem Einzelheiten der Erfindung ergeben sich aus der
Reaktor entfernt, indem man einen Teil des Kühl- nachfolgenden Beschreibung an Hand der Figuren,
gases über den spaltbaren Brennstoff in dem Brenn- F i g. 1 zeigt einen senkrechten Schnitt durch ein
Stoffelement führt. Das Gas spült die Spaltprodukte 20 erfindungsgemäßes Brennstoffelement, zum Teil in
aus dem Brennstoff mit sich fort und befördert sie aufgebrochener Darstellung;
aus dem Brennstoffelement mit einer steuerbaren F i g. 2 zeigt einen Querschnitt längs der Linie 2-2
Strömungsgeschwindigkeit in eine geeignete Auf- derFig. 1;
fangvorrichtung für Spaltprodukte, wo sie dann aus F i g. 3 zeigt im Aufriß, zum Teil im Schnitt, eine
dem Kühlgas entfernt werden, um das Kühlgas wie- 25 Vielzahl von Brennstoffelementen nach Fig. 1, die im
der in das System zurückzuführen. Kern eines Reaktors, gehaltert sind.
Es ist bekannt, Brennstoffelemente zur Abfuhr von - Das Brennstoffelement 30 hat eine längliche zylin-Spaltprodukten
mit einer Reihe innerer Durchfüh- drische Form, ist gasdurchlässig und weist eine Bohrungen
herzustellen, durch die Kühlgas hindurch- rung 32 auf. In dem Mittelteil 36 des Brennstoffgeschickt
wird, und dabei ein Diffusionsgefälle durch 30 elements 30 ist mindestens eine Brennstoffkammer
den Brennstoff hindurch zu diesen Durchführungen 34 vorgesehen. In der Bohrung 32. ist eine Venturihin
aufrechtzuerhalten, damit das Kühlgas die Spalt- düse 38 vorgesehen, die mit der Brennstoffkammer
produkte des Spaltstoffes mit sich reißt (deutsche 34 über einen Durchgang 40 verbunden ist, so daß
Auslegeschrift 1051422). Zur Erzeugung des Diffu- in der Brennstoffkammer 34 ein verminderter Druck
sionsgefälles wurden bisher gesonderte Pumpvorrich- 35 auftritt, wenn ein Kühlgas durch die Bohrung 32 hintungen
in dem Kühlgaskreislauf verwendet. Es ist durchgeleitet wird. Der verminderte Druck in der
ferner bekannt, in den Brennstoffelementen selbst Brennstoffkammer 34 bewirkt, daß das Kühlgas durch
innere Auffangmittel einzubauen, durch die das den durchlässigen Teil 36 des. Brennstoffelementes 30
Kühlgas hindurchströmt, nachdem es die Spaltpro- in die Brennstoffkammer 34 dringt, wo es die Spaltdukte
aufgenommen hat, wobei das Auffangmittel 4° produkte aus dem Brennstoff mit sich fortreißt. Das
den größten Teil der kondensierbaren Spaltprodukte Gas strömt dann durch ein in die Brennstoffkammer
entfernt. Das Kühlgas wird dann durch eine äußere 34 eingebrachtes inneres Auffangmittel 54 für Spalt-Auffangvorrichtung
geleitet, damit die restlichen produkte, das den größten Anteil der kondensier-Spaltprodukte
entfernt werden und der Anteil an baren Spaltprodukte entfernt. Das Kühlgas strömt
radioaktivem Material auf den gewünschten Wert 45 dann durch die Venturidüse 38 in die Bohrung 32
vermindert wird (französische Patentschrift 1269 842 des Elements 30 zurück,
sowie USA.-Patentschrift 3 010 889). Im weiteren wird das Brennstoffelement so be-
sowie USA.-Patentschrift 3 010 889). Im weiteren wird das Brennstoffelement so be-
Die bekannten Vorrichtungen für ein inneres Auf- schrieben, wie es seiner Lage in dem Reaktorkern
fangen der Spaltprodukte, die als künstliche Reini- entspricht. Der Teil 36 besteht aus einem Moderatorgungsvorrichtungen
bekannt sind, erfordern sorgfältig 50 material, das den Betriebsbedingungen eines Reaktorausgearbeitete
Rohrleitungen und Strömungsanlagen, kerns standhalten kann und dessen Permeabilität
ferner ein kompliziertes Kopfstück, von dein aus das ausreicht, um ein Kühlgas, beispielsweise Helium,
Kühlgas in das Innere des Brennstoffelementes ge- leicht durchzulassen, aber klein genug ist, um den
leitet und die durch das Brennstoffelement strömen- Hauptanteil der Spaltprodukte in dem Mittelteil 36
den, aus dem Reaktor kommenden Gase entfernt 55 zurückzuhalten. Der Teil 36 der dargestellten Auswerden.
Ihre Herstellung ist daher sehr kostspielig. führungsform besteht vorzugsweise aus Graphit mit
Die Aufrechterhaltung eines ausreichenden Druck- einer Permeabilität gegenüber Helium zwischen 10~2
Unterschiedes in dem Kühlgaskreislauf zur Durch- bis 10~3 cm2/sec.
führung des Kühlgases durch die Spaltproduktauf- Ferner weist der für das Brennstoffelement vorfangvorrichtung
erfordert zudem zusätzliche Pump- 60 zugsweise verwendete Graphit eine solche Porenvorrichtungen,
die die Vorrichtung aufwendiger wer- struktur auf, die eine Rückdiffusion der Spaltproden
lassen. dukte behindert. Unter der Rückdiffusion von Spalt-
Der vorliegenden Erfindung liegt deshalb die Auf- produkten versteht man die Diffusion der Spaltgabe
zugrunde, eine Vorrichtung anzugeben, die auf produkte durch das Brennstoffelement aus Graphit
einfache Weise die Abführung der Spaltprodukte aus 65 in einer Richtung entgegen dem Heliumstrom in das
einem Brennstoffelement ermöglicht. Innere des Brennstoffelements. Man nimmt an, daß
Diese Aufgabe wird crfmdiingsgcmäß durch ein diese bevorzugte Porcnstruktur besonders bei sol-
Bremistnffclcmunt der oben angegebenen Art gelöst, ehern Graphit auftritt, der übermäßig viel relativ
3 4
große Poren und weniger relativ kleine Poren auf- verbleibenden Spaltprodukte, d. h. die Edelgase, die
weist, im Gegensatz zu einem Graphit, der vorwie- nicht durch das innere Auffangmittel entfernt worden
gend mittlere oder kleine Poren hat. Die großen sind, werden an das erste Kühlsystem übertragen,
Poren erlauben eine größere Geschwindigkeit des wie im weiteren beschrieben wird, und darauffolgend
Kühlgases durch -den Graphitformkörper, was, wie 5 aus dem ersten Kühlsystem mit Hilfe einer externen
man annimmt, die Rückdiffusion der.Spaltprodukte Auffangvorrichtung entfernt.
durch das Brennstoffelement aus Graphit verhindert. Eine mit Metall überzogene Holzkohlej beispiels-
Graphite verschiedener Hersteller mit der gleichen weise eine silberüberzogene Holzkohle wurde als
Permeabilität gegenüber Helium haben, wie fest- Auffangmittel für geeignet befunden. Die metallüber-
gestellt wurde, ganz verschiedene Porenstrukturen, io zogene Holzkohle entfernt alle Spaltprodukte, abge-
so daß die Helium-Permeabilität allein kein ausrei- sehen von den genannten Edelgasen, die an das pri-
chendes Kriterium dafür ist, ob der spezielle Graphit märe Kühlsystem übertragen werden,
für Brennelemente nach der Erfindung geeignet ist. Bei dem in der Figur dargestellten Ausführungs-
Bis jetzt ist noch kein Verfahren bekannt, um die beispiel ist das untere Ende der Bohrung 32 mit
Porenstruktur des Graphits zu kennzeichnen; im all- 15 Hilfe einer geeigneten Technik vergrößert worden,
gemeinen wird jedes Formstück einzeln geprüft, in- um das Einsetzen eines korrespondierend geformten,
dem es der Rückdiffusion von Krypton unterzogen im allgemeinen zylindrischen länglichen Venturi-
wird, um zu bestimmen, ob seine Porenstruktur die rohres 42 mit einer Bohrung 46 in das untere Ende
Rückdiffusion der Spaltprodukte verhindern wird. des Mittelteils 36 zu ermöglichen. Die Bohrung 46
Der Mittelteil 36 des Graphitformkörpers kann 20 weist eine Venturidüse auf, d. h. eine Verengung, die
beliebig hergestellt werden, d. h. durch maschinelle aus zwei abgestumpften Kegeln gebildet ist, die an
Bearbeitung oder durch ein Strangpreßverfahren. Die ihren zugespitzten Enden durch einen kleinen Zylin-
symmetrische Form der bevorzugten Ausführungs- der, der sogenannten Venturidüse 38, verbunden sind,
form legt ein Strängpreßverfahren nahe. Wie aus der F i g. 1 hervorgeht, hat das Venturi-
Es sind eine Vielzahl länglicher, voneinander ge- 35 rohr 42 ein vergrößertes zylindrisches unteres End-
trennter, im allgemeinen zylindrischer Kammern teil 52, das in eine Gegenbohrung im Ende des Teiles
oder Durchgänge 34 in dem Mittelteil 36 vorgesehen. 36 eingreift. Die Gegenbohrung hat einen solchen
Die Mittelpunkte der Kammern 34 liegen auf zwei Durchmesser, daß alle Kammern 34 in sie einmünden
konzentrischen Kreisen. Jede Kammer 34 enthält, in und über eine ringförmige Ausnehmung 44 auf der
drei Zonen angeordnet, spaltbaren Brennstoff, eine 30 oberen Fläche des unteren Endteiles 52 zusammen-
Moderatorsubstanz und ein Auffangmittel. hängen. Eine ringförmige Filtervorrichtung 54 ist in
Obwohl eine beliebige Auswahl der üblichen spalt- der Ausnehmung 44 eingebracht. Hierfür kann jedes
baren Brennstoffe in den Kammern 34 des Brenn- beliebige geeignete Filter, beispielsweise ein poröser
Stoffelements 30 verwendet werden kann, ist insbe- Ring aus Kohlenstoff verwendet werden. Das Ven-
sondere der Gebrauch eines Kernbrennstoffes vorteil- 35 turirohr 42 weist eine Vielzahl kleiner Durchgänge
haft, der aus einer dichten Packung von einzelnen 4Q auf, die die Verbindung zwischen der ringförmigen
spaltbaren Brennstoffpartikeln besteht. Eine solche Kammer 44 und der Düse 38 herstellen, wobei das
Brennstoffpackung kann bekannte, einzeln ein- oder obere Ende der Bohrung 46 mit dem unteren Ende
mehrschichtig umhüllte oder nicht umhüllte Spalt- der Bohrung des Mittelteils 36 in Verbindung steht,
partikel, beispielsweise aus Urandikarbid und Tho- 40 Geeignete Dichtungen 48 und 50, beispielsweise aus
riumdikarbid, enthalten. Silizium- und/oder Zirkonlot, liegen zwischen dem
Eine derartige Brennstoffpackung wird gegenüber Mittelteil und dem Venturirohr sowohl oberhalb als
den üblichen kompakten und gesinterten Brennstoffen auch unterhalb der Ausnehmung,
bevorzugt, da auf diese Weise die Notwendigkeit der Das Venturirohr 42 ist mit einem, im allgemeinen
Fertigung und/oder Bearbeitung des Brennstoffs ent- 45 zylindrischen Endstück 56 durch geeignete Vorrich-
fällt und der Graphitformkörper, in den der Brenn- tungen verbunden, beispielsweise durch einen mit
stoff eingebracht wird, mit geringeren Toleranzen einem Gewinde versehenen nach unten ragenden
hergestellt werden kann. Die diskreten Brennstoff- Fortsatz, der. in eine mit einem korrespondierenden
partikel sind auch leichter zu handhaben, sie können Gewinde versehene Ausnehmung im oberen Teil des
in die Brennstoffkammem in dem Brennstoffelement 50 Endstückes eingeschraubt ist. Das Endteil besteht aus
eingefüllt werden, während die kompakten Brenn- einem Material, beispielsweise Graphit, das den Be-
stoffe vorsichtig in das Element eingesetzt werden triebsbedingungen in dem Reaktor standhalten kann,
müssen. * ' Das Endstück weist eine vertikal verlaufende zentrische
Für das Brennstoffelement der vorliegenden Erfin- Bohrung 58 auf, die die Bohrung 46 fortsetzt. Das
dung wird daher vorzugsweise eine Mischung aus mit 55 Endstück 56 ist abgeschrägt und greift in eine korres-
einer Hülle aus pyrolytischem Kohlenstoff über- pondierende Ausnehmung in einer zylindrischen
zogenen Uran- und Thoriumdikarbidpartikeln, die in Kappe 60 ein, mit der es in eine Gitterplatte 62 in
. einer Graphitmatrix verteilt vorliegen, verwendet. dem Reaktor (nicht dargestellt) eingebaut wird. In
Unmittelbar unterhalb der Brennstoffpartikel be- dieser Verbindung hat die Kappe einen nach unten
findet sich eine Schicht aus Graphitpartikeln, die als 60 hervorstehenden Vorsprung, der in eine öffnung der
Moderator für die Brennstoffschicht wirken und Gitterplatte 62 eingreift. Das Venturirohr 42 besteht
unterhalb der Graphitmoderatorschicht befindet sich aus einem beliebigen geeigneten Material, das den
eine Schicht aus einem geeigneten Auffangmittel für Betriebsbedingungen des Reaktors standhält. Graphit
die Spaltprodukte, die aus den Brennstoffpartikeln wurde als geeignet befunden. Das Venturirohr 42 ist
durch das Kühlmittel fortgerissen werden, das durch 65 in dem Beispiel in die entsprechende Ausnehmung
die Kammer strömt. Das Auffangmittel in der Kam- der Bohrung 32 des Mittelteils 36 zu einem Teil seiner
mer wird dazu verwendet, die kondensierbaren Spalt- Länge eingeschraubt,
produkte aus dem Reinigungsgas zu entfernen. Die Eine nach unten verlaufende Bohrung 63 in der
Kappe 60 trifft mit der Bohrung 58 in dem Endteil Kühlvolumens durch die äußere Auffangvorrichtung
52 zusammen. geleitet, sind im allgemeinen ausreichend, um die
Ein oberes zylindrisches Endteil 64 mit einer verti- Aktivität des Kühlgases auf einen annehmbaren Wert
kai verlaufenden Bohrung 66 ist mit dem oberen zu vermindern.
Ende des Mittelteils 36 verbunden. Hier hat das 5 Gemäß einem Ausführungsbeispiel werden Brennobere
Endteil einen nach unten ragenden mit Ge- Stoffelemente die in einem 500 Mega-Watt gaswinde
versehenen Fortsatz, der in eine mit Innen- gekühlten Reaktor verwendet werden können, durch
gewinde versehene Ausnehmung im oberen Ende des Strangpressen eines ringförmigen Mittelteils der 24
Mittelteils eingreift. Das obere Endteil besteht aus regelmäßig voneinander beabstandete Brennstoffeinem
Material, beispielsweise Graphit, das den Be- io kammern enthält, mit einer Länge von etwa 5,63 m
triebsbedingungen des Reaktors standhalten kann. hergestellt. Jedes Brennstoffelement besteht aus einem
Das obere Endteil 64 ist mit dem Mittelteil 36 abge- Graphit mit einer Helium-Permeabilität von
dichtet durch eine ringförmige Dichtung 68, die in 10 ~2 cm2/sec und einer Porenstruktur, die der Rückeiner
ringförmigen Rille in dem Mittelteil 36 liegt. diffusion der Spaltprodukte standhält. Es hat eine
Eine ringförmige Ausnehmung 70 in der Bohrung 66 15 Gesamtlänge von 6,10 m, einen Außendurchmesser
dient dazu, das Brennstoffelement aus dem Reaktor- von 11,4 cm und eine Bohrung von 3,8 cm. Eine Verkern
mit Hilfe einer Greifvorrichtung (nicht darge- engung von 0,95 cm Durchmesser ist in der Bohrung
stellt) herausnehmen zu können. vorgesehen.
Im Betrieb werden die Brennstoffelemente in den Mit Kohlenstoff umhüllte Uran- und Thoriumhohlen Kappen 60 befestigt, die sich in der Gitter- 20 dikarbidpartikel sind in einer Graphitmatrix verteilt
platte 62 befinden (F i g. 3). Sie können auch durch und in dem oberen Teil der Brennstoffkammern von
andere geeignete Vorrichtungen, beispielsweise durch etwa 4,57 m Länge untergebracht. Gleiche Anteile '
ein Rohr, das in die Gitterplatte eingeschraubt sein eines Graphitmoderators und einer Schicht eines Aufkann,
an ihrem Platz gehalten werden. Geeignete fangmittels füllen den restlichen Teil der Brennstoff-Trennringe
(nicht dargestellt) befinden sich über 25 kammern aus.
jedem der Brennstoffelemente, um sie gegeneinander 3000 derartige Brennstoffelemente werden in einem
in guter Ausrichtung in dem Reaktor halten, zu kön- Reaktorkern angeordnet. Beim Betrieb des Reaktors
nen. Ein geeignetes Kühlgas, beispielsweise Helium, wird ein Heliumkühlgas in den Reaktor eingeleitet
wird nach oben durch die Gitterplatte hindurch- mit einer Strömungsgeschwindigkeit von 2,04 ·
geführt; der Hauptteil des Gases strömt durch die 30 106 kg/Std., davon strömen 1,36 · 106 kg/Std. um das
öffnungen 72 in der Gitterplatte und außen um die Äußere der Brennstoffelemente und 0,68 · 10e kg/Std.
einzelnen Brennstoffelemente. Der kleinere Teil der durch das Innere. Die Verengung in den Bohrungen
Gase strömt nach oben durch das Innere eines jeden der Brennstoffelemente verursachen einen Druck-Brennstoffelements.
Es wurde festgestellt, daß be- unterschied von etwa 1 kg/cm2 zwischen den Brennfriedigende
Bedingungen dann vorliegen, wenn unge- 35 kammern und dem Kühlstrom. Dieser Druckunterfähr
ein Drittel des Gesamtflusses durch das Innere schied bewirkt eine Reinigungsströmungsgeschwindigder
Brennstoffelemente geleitet wird. keit von 0,454 kg/Std./Element oder insgesamt
Der Teil des Kühlgases, der durch das Innere jedes 1362 kg/Std. durch alle Brennstoffkammern der EIe-Elementes
strömt, muß durch die Venturidüse oder mente. Der Reinigungsstrom von 1362 kg/Std. reicht
eine andere Verengung in der Bohrung des Elementes 40 aus, um praktisch vollständig zu verhindern, daß die
hindurchströmen. Dabei entsteht ein Druckabfall an Spaltprodukte, die aus den Brennstoffpartikeln komder
Verengung und am Punkt der größten Einbuch- men, durch die Wände in den Hauptkühlkreis getung
ein kleinerer statischer Druck. langen. Ein Druckabfall von 0,2 bis 0,3 kg/cm2 tritt
Der geringere Druck unmittelbar an der Venturi- ein, während der Gasstrom durch ein Brennstoffdüse
verursacht einen geringeren Druck in den 45 element strömt.
Brennstoffkammern, da diese mit der Venturidüse Eine äußere Brennstoffspaltproduktauffangvorrich-
über die ringförmige Kammer und die Durchgänge tung ist für das Kühlmittel vorgesehen, damit Krypton
in dem Venturirohr in Verbindung stellen. und Xenon entfernt werden und die Gesamtradio-
Die Strömung des Kühlgases in der Brennstoff- aktivität auf dem gewünschten Wert gehalten werden
kammer reißt die Spaltprodukte aus dem Brennstoff, 50 kann. Die äußere Auffangvorrichtung bewältigt etwa
die sich in dem oberen Teil des Brennstoffelements 5% der gesamten Kühlströmung pro Stunde,
befinden, mit sich fort. Das Gas strömt nach unten Das erfindungsgemäße Brennstoffelement ermög-
befinden, mit sich fort. Das Gas strömt nach unten Das erfindungsgemäße Brennstoffelement ermög-
von dem brennstoffenthaltenden Teil jeder Brenn- licht es, die Spaltprodukte aus seinem Inneren zu
Stoffkammer durch die Graphitmoderatorpartikel und entfernen, ohne daß umständliche Sammelleitungen,
das Reinigungsmittel in die ringförmige Kammer, die 55 Verteilerköpfe und Rohranordnungen innerhalb der
mit allen Brennstoffkammern jedes Elements in Ver- Reaktorgitterplatten für die Übertragung der gasbindung
steht, von da aus strömt es durch die Durch- förmigen Kühlmittel um und durch das Brenngänge
in dem Venturirohr in den Kühlgasstrom, der Stoffelement vorgesehen sein müssen. Durch das verdurch
das Innere des Brennstoffelements strömt. besserte Brennstoffelement wird die Notwendigkeit
Die Aktivität des Gases in dem primären Kühl- 60 einer äußeren Spaltproduktreinigungsvorrichtung,
system kann durch geeignete äußere Auffangvorrich- ferner auch Vorrichtungen zur Strömungsverteilung
tungen gesteuert werden. Man hat festgestellt, daß es innerhalb der Reaktorhülle vermieden. Das erfinnicht
erforderlich ist, alle Spaltprodukte, die nicht dungsgemäße Brennstoffelement ist billiger herzuvon
dem Auffangmittel des primären Kühlkreises stellen. Bei einem Druckabfall kann außerdem kein
entfernt wurden, zu entfernen. Sichere Arbeitsbedin- 65 Rückstrom aus der vorgesehenen inneren Reinigungsgungen
können dann erreicht werden, wenn man nur vorrichtung eintreten.
einen Teil des Primürkiihlmittels durch die äußere Hs soll darauf hingewiesen werden, daß die VerAuffangvorrichtung
leitet. 5 %/Std. des gesamten wendung einer Venturidüse zur Erzeugung eines
Druckabfalls innerhalb des Brennstoffelements nur als eine mögliche Ausführungsform angesehen wird.
Andere geeignete Vorrichtungen zur Herstellung eines Druckabfalls auf ähnliche Weise, d. h. eine Düse,
eine Prellplatte, ein verengter Durchgang usw., werden als äquivalente Mittel angesehen.
Claims (6)
1. Brennstoffelement für einen gasgekühlten Kernreaktor, das dem Kühlgas ausgesetzt ist, mit
einem langgestreckten, wenigstens eine Brennstoffkammer enthaltenden Körper, von dem mindestens
ein Teil für das Kühlgas durchlässig ist, so daß es in die Brennstoffkammer fließen kann,
mit spaltbarem Brennstoff in der Brennstoffkammer, mit einem Durchgang zwischen der Brennstoffkammer
und einer vom Kühlgas durchflossenen Längsbohrung des Körpers, und mit einer Spaltproduktfalle zwischen dem Durchgang und
dem Brennstoff, dadurch gekennzeich-20 net, daß in der Längsbohrung (32) des Körpers
(36) eine Venturidüse (38) angeordnet ist und daß der Durchgang (40) in den Niederdruckbereich
der Venturidüse (38) mündet, so daß infolge der Druckdifferenz zwischen dem Gesamtdruck des
Kühlgases und dem Druck im Niederdruckbereich der Venturidüse Kühlgas durch den gasdurchlässigen
Teil des Körpers (36) hindurch in die Brennstoffkammer (34) und von dort über den
Brennstoff und über die Spaltproduktfalle (54) durch den Durchgang (40) in das durch die
Längsbohrung (32) fließende Kühlgas fließen kann.
2. Brennstoffelement nach Anspruch 1, dadurch gekennzeichnet, daß der Körper (36) aus Graphit
mit einer Helium-Permeabilität von 10~2 bis ΙΟ"3 cm2/sec besteht.
3. Brennstoffelement nach Anspruch 2, dadurch gekennzeichnet, daß der Graphit eine Porenstruktur
aufweist, die die Rückdiffusion von Spaltprodukten verhindert.
4. Brennstoffelement nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die
Venturidüse (38) durch ein Venturirohr (42) gebildet ist. das am unteren Ende der Längsbohrung
(32) angebracht ist.
5. Brennstoffelement nach einem der Ansprüche 1 bis 4, gekennzeichnet durch mehrere
sich in Längsrichtung erstreckende Brennstoffkammern (34) und durch einen Ringdurchgang
(44) in dem Brennstoffelement, der eine Verbindung zwischen allen Brennstoffkammern und dem
sich nächst der Venturidüse (38) öffnenden Durchgang (40) herstellt.
6. Brennstoffelement nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß der
m den Brennstoffkammern (34) angeordnete Brennstoff einzelne Partikel aus spaltbarem Material
enthält, die mit einer die Spaltprodukte zurückhaltenden Schicht bedeckt sind.
Hierzu 1 Blatt Zeichnungen 109 608/70
Family
ID=
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69104450T2 (de) | Fussstückplatte für Brennstabbündel eines Kernreaktors. | |
DE1260038B (de) | Verfahren und Vorrichtung zum Abfuehren von Spaltgasen aus Kernreaktorbrennelementen | |
DE2048595A1 (de) | Abzugsystem fur einen gasgekuhlten Kernreaktor | |
DE1464932B1 (de) | Selbstreinigendes Brennstoffelement für einen Kernreaktor | |
DE1589853A1 (de) | Kernbrennstoffpille und Brennstab | |
DE1439785B2 (de) | Atomkernreaktor mit einem Neutronenreflektor aus moderierendem Material | |
DE69504588T2 (de) | Filter für Siedewasserkernreaktorbrennstabbündel | |
DE2325828A1 (de) | Verfahren zur beeinflussung der reaktivitaet eines gasgekuehlten kernreaktors | |
DE1589662B2 (de) | Kernbrennstoffelement | |
DE1464932C (de) | Selbstreinigendes Brennstoffelement fur einen Kernreaktor | |
DE2609231A1 (de) | Regeleinrichtung fuer einen kernreaktor | |
DE2705942C2 (de) | ||
DE2508350B2 (de) | Verfahren zum entfernen der spaltgase aus einem atomkernreaktor aus homogenen kernbrennstoffen | |
DE2915179C2 (de) | ||
DE1514081B2 (de) | Atomkernreaktor mit brenn und oder brutstoff in kugel foermigen gestalt | |
DE1180857B (de) | Brennstoffelement fuer gasgekuehlte Kernreaktoren | |
DE2628465C3 (de) | Moderatoranordnung im Kern eines Atomkernreaktors, der mit geschmolzenem Salz als Brennstoff arbeitet und Verfahren und Halterung zum Herstellen und zum Ein- und Ausführen der Moderatoranordnung | |
DE1942433A1 (de) | Brennelement fuer Kernreaktoren | |
DE1589010A1 (de) | Brennstoffelement fuer Kernreaktoren | |
DE2543462C3 (de) | Verfahren zur Herstellung einer Adsorbermaterial enthaltenden Stützhülse für Kernreaktor-Brennstäbe | |
DE69403725T2 (de) | Kernbrennstab mit Mitteln zur Versagenseinschränkung | |
DE1439785C (de) | Atomkernreaktor mit einem Neutronenreflektor aus moderierendem Material | |
DE2303992A1 (de) | Brennstoffstab fuer einen mit fluessigem metall gekuehlten schnellen brutreaktor | |
DE2757396A1 (de) | Brennelement fuer schnelle kernreaktoren | |
DE2023250C3 (de) | Sicherheitseinrichtung in einem Kernreaktorbrennstab mit geschlossenem Spaltgassammelraum |