DE10258394A1 - Tücher zur Pflege keratinischer Fasern - Google Patents

Tücher zur Pflege keratinischer Fasern Download PDF

Info

Publication number
DE10258394A1
DE10258394A1 DE2002158394 DE10258394A DE10258394A1 DE 10258394 A1 DE10258394 A1 DE 10258394A1 DE 2002158394 DE2002158394 DE 2002158394 DE 10258394 A DE10258394 A DE 10258394A DE 10258394 A1 DE10258394 A1 DE 10258394A1
Authority
DE
Germany
Prior art keywords
acid
und
preferred
alkyl
cationic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE2002158394
Other languages
English (en)
Inventor
Erik Dr. Schulze Zur Wiesche
Miriam Mende
Detlef Dr. Hollenberg
Susanne Schmarje
Elisabeth Dr. Poppe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Priority to DE2002158394 priority Critical patent/DE10258394A1/de
Priority to PCT/EP2003/013745 priority patent/WO2004052322A1/de
Priority to EP03789137A priority patent/EP1569603A1/de
Publication of DE10258394A1 publication Critical patent/DE10258394A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/0208Tissues; Wipes; Patches
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/34Alcohols
    • A61K8/345Alcohols containing more than one hydroxy group
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/36Carboxylic acids; Salts or anhydrides thereof
    • A61K8/365Hydroxycarboxylic acids; Ketocarboxylic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/40Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing nitrogen
    • A61K8/41Amines
    • A61K8/416Quaternary ammonium compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair

Abstract

Vorgeschlagen werden Tücher zur Pflege von keratinischen Fasern. Die Tücher sind mit einer Zusammensetzung, enthaltend kationische Verbindungen und Polyole sowie gegebenenfalls weitere Wirk- und Hilfsstoffe, behandelt.

Description

  • Die Erfindung betrifft Pflegetücher, die mit einer speziellen Lösung behandelt sind, sowie die Verwendung dieser Tücher zur Pflege keratinischer Fasern.
  • Kosmetische Mittel zur Pflege und zum Erhalt der natürlichen Funktionen von Haut und Haar gewinnen mehr und mehr an Bedeutung. Dazu tragen unter anderem die veränderten Verbrauchergewohnheiten und Modetrends bei. So werden beispielsweise durch das intensive Nutzen von Sonnenstudios Haut und Haar in ihrer Struktur stärker durch UV-Licht nachhaltig beeinträchtigt. Diese Beeinträchtigungen zeigen sich auf der Haut wie dem Haar beispielsweise durch einen Verlust der Elastizität.
  • Weiterhin führt die ausgiebige körperliche Betätigung in der Freizeit zu einer häufigen intensiven Reinigung von Haut und Haar. Dadurch kann der Schutzfilm aus Talg, welcher kontinuierlich von den zahlreichen Talgdrüsen produziert wird, oder aber die Sebumproduktion der Talgdrüsen selbst stark beeinträchtigt werden. Als Folge stellen sich eine fettige Haut und fettiges Haar ein. Weiterhin werden aus dem an sich gesunden Haar wesentliche Teile der natürlichen Lipidschicht herausgelöst.
  • Modetrends mit aktuellen Farben für „make-up", Lippenstifte zum Färben der Lippen und Maskara sowie Haarfärbe- und Wellmittel tragen bei beanspruchter Haut und vorbelastetem Haar ein übriges zur Beeinträchtigung des natürlichen Zustandes von Haut und Haar bei. Es ist daher nicht erstaunlich, wenn der Anteil der Verbraucher mit empfindlicher, wenig elastischer, spröder und gereizt reagierender Haut sowie einem in der Kämmbarkeit, der Splißrate, dem Glanz, der Elastizität, der Sprödigkeit und der Höchstreißkraft beeinträchtigtem Haar stark zunimmt.
  • Nicht zuletzt durch die starke Beanspruchung der Haare, beispielsweise durch das Färben oder Dauerwellen als auch durch die Reinigung der Haare mit Shampoos und durch Umweltbelastungen, nimmt die Bedeutung von Pflegeprodukten mit möglichst langanhaltender Wirkung zu. Derartige Pflegemittel beeinflussen die natürliche Struktur und die Eigenschaften der Haare. So können anschließend an solche Behandlungen beispielsweise die Naß- und Trockenkämmbarkeit des Haares, der Halt und die Fülle des Haares optimiert sein oder die Haare vor einer erhöhten Splißrate geschützt sein.
  • Es ist daher seit langem üblich, die Haare einer speziellen Nachbehandlung zu unterziehen. Dabei werden, üblicherweise in Form einer Spülung, die Haare mit speziellen Wirkstoffen, beispielsweise quaternären Ammoniumsalzen oder speziellen Polymeren, behandelt. Durch diese Behandlung werden je nach Formulierung die Kämmbarkeit, der Halt und die Fülle der Haare verbessert und die Splißrate verringert.
  • Weiterhin wurden in jüngster Zeit sogenannte Kombinationspräparate entwickelt, um den Aufwand der üblichen mehrstufigen Verfahren, insbesondere bei der direkten Anwendung durch Verbraucher, zu verringern.
  • Diese Präparate enthalten neben den üblichen Komponenten, beispielsweise zur Reinigung der Haare, zusätzlich Wirkstoffe, die früher den Haarnachbehandlungsmitteln vorbehalten waren. Der Konsument spart somit einen Anwendungsschritt; gleichzeitig wird der Verpackungsaufwand verringert, da ein Produkt weniger gebraucht wird.
  • Die zur Verfügung stehenden Wirkstoffe sowohl für separate Nachbehandlungsmittel als auch für Kombinationspräparate wirken im allgemeinen bevorzugt an der Haaroberfläche. So sind Haarpflegemittel bekannt, welche dem Haar Glanz, Halt, Fülle, bessere Naß- oder Trockenkämmbarkeiten verleihen oder dem Spliß vorbeugen. Genauso bedeutend wie das äußere Erscheinungsbild der Haare ist jedoch der innere strukturelle Zusammenhalt der Haarfasern, der insbesondere bei oxidativen und reduktiven Prozessen wie Färbung und Dauerwellen stark beeinflußt werden kann.
  • Es hat daher nicht an Versuchen gefehlt, diese Mißstände zu beheben. Dabei wurden u.a. Emulsionen zur Hautpflege bezüglich ihres Reizpotentiales durch die Auswahl geeigneter Emulgatoren weiter optimiert. Zur Reinigung von Haut und Haar werden milde Tenside eingesetzt, um Haut und Haar nicht zusätzlich zu belasten. Mit rückfettenden Substanzen wird versucht, die Anregung der Sebumproduktion bei der Reinigung zu vermeiden. UV-Schutzmittel und Vitamine wie beispielsweise Vitamin E sollen die nachteiligen Auswirkungen des UV-Lichtes mindern. Proteinhydrolysate werden zum Ausgleich der inneren Struktur von Haut und Haar eingesetzt. Mit Pflanzen- und Algenextrakten kann beispielsweise der Feuchtehaushalt von Haut- und Haar beeinflußt werden.
  • All diese Verbesserungen haben jedoch immer noch nicht zu Produkten geführt, welche sowohl den veränderten Lebensgewohnheiten als auch den Verbraucheransprüchen nach einem gepflegten und gesundem Haar Rechnung tragen. Überraschenderweise hat sich jedoch gezeigt, daß unter Verwendung von speziellen Pflegetüchern das Haar schnell und anhaltend gepflegt, regeneriert und sogar gestylt werden kann.
  • Unter dem Oberbegriff „Papier bzw. Tuch" werden ca. 3000 verschiedene Sorten und Artikel verstanden, die sich in ihren Anwendungsgebieten und ihrer Beschaffenheit zum Teil erheblich unterscheiden können. Zu ihrer Herstellung werden eine Reihe von Zusatzstoffen benötigt, von denen Füllstoffe (z.B. Kreide oder Kaolin) und Bindemittel (z.B. Stärke) zu den wichtigsten zählen. Für den Bereich der Tissue- und Hygienepapiere und -tücher, die in engeren Kontakt mit der menschlichen Haut gebracht werden, besteht ein besonderes Bedürfnis nach einem angenehmen Weichgriff, der dem Papier üblicherweise durch eine sorgfältige Auswahl der Faserstoffe und insbesondere einen hohen Anteil an frischem Holzschliff oder Cellulose verliehen wird. In der Vergangenheit hat es daher nicht an Versuchen gemangelt, Tissuepapiere so zu behandeln, daß ein angenehmerer Weichgriff resultiert. Gegenstand der internationalen Patentanmeldung WO 95/35411 sind Tissuepapiere, welche einen wasserfreien Emulgator (beispielweise Petrolatum), einen Träger (Fettalkohole, Fettsäuren oder Fettalkoholethoxylate mit jeweils 12 bis 22 Kohlenstoffatomen im Fettrest) sowie Tenside mit einem HLB-Wert von 4 bis 20 enthalten. Die internationale Patentanmeldung WO 95/35412 offenbart ähnliche Tissuepapiere, wobei als Softener wasserfreie Mischungen von (a) Mineralölen, (b) Fettalkoholen oder Fettsäuren und (c) Fettalkoholethoxylaten zum Einsatz kommen. Gegenstand der intenationalen Patentanmeldung WO 95/16824 sind Tissuepapiere, die Mineralöl, Fettalkoholethoxylate und nichtionische Tenside (Sorbitanester, Glucamide) enthalten. Des weiteren werden in der internationalen Patentanmeldung WO 97/30216 Avivagemittel für Papiertaschentücher beschrieben, die (a) langkettige Fettalkohole, (b) Wachsester, (c) nichtionische Emulgatoren und (d) Mineralöl enthalten. In all diesen Schriften findet sich jedoch nicht der geringste Hinweis auf eine Pflege keratinischer Fasern. Es besteht daher weiterhin das Bedürfnis die Wirkungsweise von Tissuepapieren und damit die Zugänglichkeit von kosmetischen Zubereitungen bei ihrer Anwendung zu verbessern. Vom anwendungstechnischen Standpunkt aus gilt es besonders den Weichgriff und die Sensorik der Tissuetücher zu verbessern und diesen Tissuetüchern eine schonende, das heißt nicht entfettende gleichzeitig jedoch konditionierende und pflegende Reinigungsleistung für keratinische Fasern zu verleihen.
  • Tissupapiere und/oder Tissuegewebe und/oder Tissuetücher (im weiteren mit Tissuepapieren bezeichnet), auf die sich die vorliegende Erfindung bezieht, können ein- oder mehrlagig aufgebaut sein. In der Regel weisen die Papiere ein Quadratmetergewicht von 10 bis 65, vorzugsweise 15 bis 30 g und eine Dichte von 0,6 g/cm3 und weniger auf. Beispiele für Tissuepapiere sind Toilettenpapiere, Papiertaschentücher, Gesichtsreinigungstücher, Abschminktücher, Erfrischungstücher, Haushaltstücher und dergleichen. Je nach Anwendung können die Tücher besondere Wirkstoffe enthalten, beispielsweise Feuchtigkeitsspender, Insektenrepellents (After-Sun-Tücher), Dihydroxyaceton, Deowirkstoffe, Tenside (Gesichtsreinigungstücher), pflegende Öle, antiinflammatorische Wirkstoffe (Babytücher) und dergleichen. Neben den papierbasierten Tissues kommen auch entsprechende Tissuegewebe in Frage, die aus Faser- oder Fleecestoff hergestellt werden.
  • Die Behandlung der Tissuepapiere mit den kosmetischen Zubereitungen kann in an sich bekannter Weise erfolgen, wobei die Lösung mindestens auf eine Seite der Papiere aufgetragen wird. Hierzu eignen sich grundsätzlich alle einschlägig bekannten Methoden, mit deren Hilfe man Flüssigkeiten oder Schmelzen auf mehr oder weniger feste Oberflächen auftragen kann, wie z.B. Versprühen, Drucken (z.B. Flexodruck), Beschichten (Gravurbeschichtung), Extrusion sowie Kombinationen dieser Verfahren. Es ist ebenso möglich, die Tücher mit den Zubereitungen zu tränken. Nach dem Auftragen der Zubereitungen kann sich ein kurzer Trockenschritt anschließen. Ausführlich werden Verfahren zum Behandeln von Tissuepapieren mit kosmetischen Zubereitungen in den schon eingangs genannten Schriften WO 95/35411 und WO 97/30216 beschrieben, auf die hiermit ausdrücklich Bezug genommen wird.
  • Um das Gewebe oder Tissuepapier mit der Pflegelösung zu tränken, wird es entweder mit ihr besprüht oder in sie eingetaucht, wobei es in beiden Fällen gegebenfalls durch Schaumbildung oder eine zu geringe Benetzung zu einer Verminderung des Durchsatzes in der Produktion kommen kann. Eine Aufgabe der vorliegenden Erfindung hat somit darin bestanden, Feuchttücher unter Verwendung spezieller Tenside zur Verfügung zu stellen, welche frei sind von den geschilderten Problemen.
  • Aus logistischen Gründen ist die Verwendung von Konzentraten zur Herstellung der Imprägnierlösungen für die Feuchttücher vorteilhaft. Nachteilig ist, dass die Konzentrate beim Verdünnen vielfach die Tendenz zur Schaumbildung zeigen. Außerdem kann es zur Ausbildung von Gelphasen kommen, was zu einem erhöhten Zeitaufwand bei der Herstellung der Tranklösungen führt. In beiden Fällen wird der Durchsatz in der Produktion reduziert.
  • Überraschenderweise wurde gefunden, dass kationische Substanzen, besonders kationische Tenside, insbesondere vom Typ der Esterquats und/oder kationisierten Proteinhydrolysate und/oder kationische Polymere in Kombination mit Polyhydroxyverbindungen die komplexe Aufgabe in ausgezeichneter Weise erfüllen. Imprägniermittel auf der Basis dieser Wirkstoffkombination erweisen sich als niedrigviskos und schaumfrei während des Imprägnierprozesses bei der Herstellung der Tücher, in der Anwendung hinterlassen die mit dieser Wirkstofflösung getränkten Feuchttücher sehr gut gepflegte und geschützte und weiterhin nicht beeinträchtigte keratinische Fasern.
  • Gegenstand der Erfindung sind Pflegetücher zur Pflege keratinischer Fasern, die sich dadurch auszeichnen, dass sie mit einer Kombination (W) aus
    • a) kationischen Substanzen (A) und
    • b) Polyhydroxyverbindungen (B) behandelt sind.
  • Unter keratinischen Fasern werden erfindungsgemäß Pelze, Wolle, Federn und insbesondere menschliche Haare verstanden.
  • Erfindungsgemäß bevorzugt sind mehrlagige Tissuetücher. Insbesondere sind erfindungsgemäß solche Tissuetücher bevorzugt, welche zwischen den einzelnen Lagen eine undurchlässige und/oder teildurchlässige Sperrschicht haben. Die teildurchlässige Sperrschicht kann beispielsweise als semipermeable Membran ausgebildet sein. Bei derartigen Tüchern können zwei oder mehrere Tränklösungen auf ein Tuch aufgebracht werden. Dies kann ganz besonders bevorzugt sein, um mit der einen Seite der Feuchttücher eine Konditionierung mittels der auf das Tuch aufgebrachten Zusammensetzung zu bewirken. Mit der anderen Seite kann dann beispielsweise zum Trocknen nachgerieben werden. Es kann aber auch bevorzugt auf der zweiten Seite eine weitere pflegende und/oder festigende, fixierende Tränklösung aufgebracht sein.
  • Weiterhin kann es erfindungsgemäß ganz besonders bevorzugt sein, wenn die Tücher aus mindestens 3 Lagen getränkten Tissuetuches bestehen. Vorteilhaft ist dann zwischen mindestens 2 Lagen getränktem Tuch jeweils 1 Lage Tuch als semipermeable Membran ausgebildet. Die semipermeable Membran ist dabei in Richtung mindestens einer der äußeren Tuchlagen durchlässig. Dadurch kann beispielsweise eine Tränklösung auf die innerste Schicht aufgebracht werden, welche entweder nicht mischbar und/oder nicht stabil mit der äußeren Tränklösung ist. Hierdurch wird es möglich „two in one Tücher" zur Reinigung und Pflege und/oder zur Pflege und zum Stylen anzubieten.
  • In einer bevorzugten Ausführungsform ist eine Tuchlage, welche bevorzugt außen liegt, mit einer pflegenden Tränklösung befeuchtet. Diese Tränklösung enthält neben weiteren Bestandteilen mindestens eine kationische Substanz, Fettstoffe und/oder Pflegestoffe wie Proteine und Aminosäuren sowie gegebenenfalls deren Derivate, Vitamine und Vitaminvorstufen und Pflanzenextrakte. Diese Inhaltsstoffe werden im folgenden detailliert beschrieben. Insbesondere sind in dieser Ausführungsform dem Fachmann bekannte Wirkstoffe mit Repaireffekten enthalten. Hierunter fallen einerseits die zuvor genannten Substanzklassen, aber auch Polyhydroxyverbindungen wie Polyhydroxysäuren und Saccharide, welche ebenfalls im folgenden beschrieben werden.
  • Diese bevorzugte Ausführungsform kann erfindungsgemäß derart ausgestaltet sein, daß das Tuch einlagig aufgebaut ist. In der Ausgestaltung des einlagigen Tuches ist es ganz besonders bevorzugt, wenn das Tuch unmittelbar vor oder während der Anwendung auf Temperaturen von 20 bis 50°C, bevorzugt auf 25 bis 40°C erwärmt wird. Die Erwärumg des Tuches vor der Anwendung kann beispielsweise mittels eines handelsüblichen Fönes, einer handelsüblichen Trockenhaube, einer Mikrowelle oder anderen Verfahren zur Erwärmung erfolgen. Bevorzugt wird ein Fön oder eine Trockenhaube benutzt, um das Tuch, welches auf dem Haar liegt oder um einzelne Haarsträhnen gewickelt wurde, zu erwärmen. Mit Hilfe der zugeführten Wärme wird eine effektivere Wirkung am Haar erreicht. Selbstverständlich kann das Tuch auch ohne Wärmezuführung für wenige Sekunden bis zu 10 Minuten auf dem Haar verbleiben oder das Haar nur durch wiederholtes Wischen mit dem Tuch in Kontakt gebracht werden.
  • Eine zweite bevorzugte Ausführungsform ist die Ausgestaltung als mehrlagiges Tuch. In dieser Ausgestaltungsform ist eine Lage des Tuches mit einer Tränklösung wie zuvor beschrieben aufgebaut. Eine weitere Lage Tuch ist demgegenüber bevorzugt mit einer zweiten Tränklösung behandelt. Diese zweite Tränklösung enthält neben weiteren Bestandteilen mindestens ein kationisches Polymer und mindestens ein weiteres Polymer, wobei das weitere Polymer bevorzugt eine Silikonverbindung und/oder ein filmbildendes Polymer ist. In dieser Ausgestaltungsform kann es ebenfalls bevorzugt sein, dieses Tuch wie zuvor beschrieben zu erwärmen. Der besondere Vorteil dieser Ausgestaltungsform ist, daß mit einer Seite Pflege- und die keratinische Fasern regenerierende Substanzen auf und in die Faser eingebracht werden. Anschließend werden ohne einen Spülprozeß durch einfaches Wenden des Tuches mit der Anwendung der zweiten Seite die regenerierten Fasern versiegelt.
  • Selbstverständlich umfaßt die Erfindung die unterschiedliche farbliche Gestaltung der Tuchlagen. Weiterhin umfaßt die erfindungsgemäße Lehre auch den Aufbau der Tücher aus mehreren Materialien, insbesondere in Bezug auf die Saugfähigkeit und Durchlässigkeit der unterschiedlichen Tuchlagen.
  • Die erfindungsgemäße Wirkstoffkombination enthält als erste zwingende Komponente eine kationische Verbindung (A). Unter kationischer Verbindung sind zu verstehen: kationische Tenside (A1) und kationische Polymere (A2).
  • Als erste Verbindungsklasse der kationischen Verbindungen können erfindungsgemäß besonders bevorzugt kationische Tenside (A1) verwendet werden.
  • Typische Beispiele für bevorzugte kationische Tenside sind insbesondere quaternäre Ammoniumverbindungen wie Tetraalkylammoniumverbindungen, Ammoniumhalogenide, insbesondere Chloride und Bromide, wie Alkyltrimethylammoniumchloride, Dialkyldimethylammoniumchloride und Trialkylmethylammoniumchloride, z.B. Cetyltrimethylammoniumchlorid, Stearyltrimethylammoniumchlorid, Distearyldimethylammoniumchlorid, Lauryldimethylammoniumchlorid, Lauryldimethylbenzylammoniumchlorid und Tricetylmethylammoniumchlorid, sowie die unter den INCI-Bezeichnungen Quaternium-27 und Quaternium-83 bekannten Imidazolium-Verbindungen. Die langen Alkylketten der oben genannten Tenside weisen bevorzugt 8 bis 30 Kohlenstoffatome auf. Weiterhin sind als kationische Tenside erfindungsgemäß Hydroxyethyl Hydroxycetyl Dimmonium Chloride (Dehyquart E) oder aber Esterquats verwendbar. Bei letzteren handelt es sich beispielsweise um quaternierte Fettsäuretriethanolaminestersalze der Formel (E5-I),
    Figure 00080001
    in der R14CO für einen Acylrest mit 6 bis 22 Kohlenstoffatomen, R15 und R16 unabhängig voneinander für Wasserstoff oder R14CO, R15 für einen Alkylrest mit 1 bis 4 Kohlenstoffatomen oder eine (CH2CH2O)m4H-Gruppe, ml, m2 und m3 in Summe für 0 oder Zahlen von 1 bis 12, m4 für Zahlen von 1 bis 12 und Y für Halogenid, Alkylsulfat oder Alkylphosphat steht. Typische Beispiele für Esterquats, die im Sinne der Erfindung Verwendung finden können, sind Produkte auf Basis von Capronsäure, Caprylsäure, Caprinsäure, Lawinsäure, Myristinsäure, Palmitinsäure, Isostearinsäure, Stearinsäure, Ölsäure, Elaidinsäure, Arachinsäure, Behensäure und Erucasäure sowie deren technische Mischungen, wie sie beispielsweise bei der Druckspaltung natürlicher Fette und Öle anfallen. Vorzugsweise werden technische C12/18-Kokosfettsäuren und insbesondere teilgehärtete C16/18-Talg- bzw. Palmfettsäuren sowie elaidinsäurereiche C16/18-Fettsäureschnitte eingesetzt. Zur Herstellung der quaternierten Ester können die Fettsäuren und das Triethanolamin im molaren Verhältnis von 1,1 : 1 bis 3 : 1 eingesetzt werden. Im Hinblick auf die anwendungstechnischen Eigenschaften der Esterquats hat sich ein Einsatzverhältnis von 1,2 : 1 bis 2,2 : 1, vorzugsweise 1,5 : 1 bis 1,9 : 1 als besonders vorteilhaft erwiesen. Die bevorzugten Esterquats stellen technische Mischungen von Mono-, Di- und Triestern mit einem durchschnittlichen Veresterungsgrad von 1,5 bis 1,9 dar und leiten sich von technischer C16 /18- Talg- bzw. Palmfettsäure (Iodzahl 0 bis 40) ab. Aus anwendungstechnischer Sicht haben sich quaternierte Fettsäuretriethanolaminestersalze der Formel (E5-I) als besonders vorteilhaft erwiesen, in der R14CO für einen Acylrest mit 16 bis 18 Kohlenstoffatomen, R15 für R15CO, R16 für Wasserstoff, R17 für eine Methylgruppe, ml, m2 und m3 für 0 und Y für Methylsulfat steht.
  • Neben den quaternierten Fettsäuretriethanolaminestersalzen kommen als Esterquats ferner auch quaternierte Estersalze von Fettsäuren mit Diethanolalkylaminen der Formel (E5-II) in Betracht,
    Figure 00090001
    in der R18CO für einen Acylrest mit 6 bis 22 Kohlenstoffatomen, R19 für Wasserstoff oder R18CO, R20 und R21 unabhängig voneinander für Alkylreste mit 1 bis 4 Kohlenstoffatomen, m5 und m6 in Summe für 0 oder Zahlen von 1 bis 12 und Y wieder für Halogenid, Alkylsulfat oder Alkylphosphat steht.
  • Als weitere Gruppe geeigneter Esterquats sind schließlich die quaternierten Estersalze von Fettsäuren mit 1,2-Dihydroxypropyldialkylaminen der Formel (E5-III) zu nennen,
    Figure 00100001
    in der R22CO für einen Acylrest mit 6 bis 22 Kohlenstoffatomen, R23 für Wasserstoff oder R22CO, R24, R25 und R26 unabhängig voneinander für Alkylreste mit 1 bis 4 Kohlenstoffatomen, m7 und m8 in Summe für 0 oder Zahlen von 1 bis 12 und X wieder für Halogenid, Alkylsulfat oder Alkylphosphat steht.
  • Schließlich kommen als Esterquats noch Stoffe in Frage, bei denen die Ester- durch eine Amidbindung ersetzt ist und die vorzugsweise basierend auf Diethylentriamin der Formel (E5-IV) folgen,
    Figure 00100002
    in der R27CO für einen Acylrest mit 6 bis 22 Kohlenstoffatomen, R28 für Wasserstoff oder R27CO, R29 und R30 unabhängig voneinander für Alkylreste mit 1 bis 4 Kohlenstoffatomen und Y wieder für Halogenid, Alkylsulfat oder Alkylphosphat steht. Derartige Amidesterquats sind beispielsweise unter der Marke Incroquat® (Croda) im Markt erhältlich.
  • Beispiele für kommerziell erhältliche Esterquats sind die unter den Warenzeichen Stepantex®, Dehyquart® und Armocare® vertriebenen Produkte. Die Produkte Armocare® VGH-70, ein N,N-Bis(2-Palmitoyloxyethyl)dimethylammoniumchlorid, sowie Dehyquart® F-75, Dehyquart® C-4046, Dehyquart® L80 und Dehyquart® AU-35 sind einzelne Stellvertreter dieser Typen.
  • Bevorzugte Esterquats sind quaternierte Estersalze von Fettsäuren mit Triethanolamin, quaternierte Estersalze von Fettsäuren mit Diethanolalkylaminen und quaternierten Estersalzen von Fettsäuren mit 1,2-Dihydroxypropyldialkylaminen.
  • Die Alkylamidoamine werden üblicherweise durch Amidierung natürlicher oder synthetischer Fettsäuren und Fettsäureschnitte mit Dialkylaminoaminen hergestellt. Eine erfindungsgemäß besonders geeignete Verbindung aus dieser Substanzgruppe stellt das unter der Bezeichnung Tegoamid® S 18 im Handel erhältliche Stearamidopropyl-dimethylamin dar.
  • Die kationischen Tenside (A1) sind in den erfindungsgemäß verwendeten Zusammensetzungen bevorzugt in Mengen von 0,05 bis 10 Gew.-%, bezogen auf das gesamte Mittel, enthalten. Mengen von 0,1 bis 5 Gew.-% sind besonders bevorzugt.
  • Weiterhin sind zu den kationischen Verbindungen kationische Polymere zu rechnen. Unter kationischen Polymeren (A2) sind Polymere zu verstehen, welche in der Haupt- und/oder Seitenkette eine Gruppe aufweisen, welche „temporär" oder „permanent" kationisch sein kann. Als „permanent kationisch" werden erfindungsgemäß solche Polymere bezeichnet, die unabhängig vom pH-Wert des Mittels eine kationische Gruppe aufweisen. Dies sind in der Regel Polymere, die ein quartäres Stickstoffatom, beispielsweise in Form einer Ammoniumgruppe, enthalten. Bevorzugte kationische Gruppen sind quartäre Ammoniumgruppen. Insbesondere solche Polymere, bei denen die quartäre Ammoniumgruppe über eine C1-4-Kohlenwasserstoffgruppe an eine aus Acrylsäure, Methacrylsäure oder deren Derivaten aufgebaute Polymerhauptkette gebunden sind, haben sich als besonders geeignet erwiesen.
  • Homopolymere der allgemeinen Formel (G1-I),
    Figure 00120001
    in der R1 = -H oder -CH3 ist, R2, R3 und R4 unabhängig voneinander ausgewählt sind aus C1-4-Alkyl-, -Alkenyl- oder -Hydroxyalkylgruppen, m = 1, 2, 3 oder 4, n eine natürliche Zahl und X ein physiologisch verträgliches organisches oder anorganisches Anion ist, sowie Copolymere, bestehend im wesentlichen aus den in Formel (G1-I) aufgeführten Monomereinheiten sowie nichtionogenen Monomereinheiten, sind besonders bevorzugte kationische Polymere. Im Rahmen dieser Polymere sind diejenigen erfindungsgemäß bevorzugt, für die mindestens eine der folgenden Bedingungen gilt:
    R1 steht für eine Methylgruppe
    R2, R3 und R4 stehen für Methylgruppen
    m hat den Wert 2.
  • Als physiologisch verträgliches Gegenionen X kommen beispielsweise Halogenidionen, Sulfationen, Phosphationen, Methosulfationen sowie organische Ionen wie Lactat-, Citrat-, Tartrat- und Acetationen in Betracht. Bevorzugt sind Halogenidionen, insbesondere Chlorid.
  • Ein besonders geeignetes Homopolymer ist das, gewünschtenfalls vernetzte, Poly(methacryloyloxyethyltrimethylammoniumchlorid) mit der INCI-Bezeichnung Polyquaternium-37. Die Vernetzung kann gewünschtenfalls mit Hilfe mehrfach olefinisch ungesättigter Verbindungen, beispielsweise Divinylbenzol, Tetraallyloxyethan, Methylenbisacrylamid, Diallylether, Polyallylpolyglycerylether, oder Allylethern von Zuckern oder Zuckerderivaten wie Erythritol, Pentaerythritol, Arabitol, Mannitol, Sorbitol, Sucrose oder Glucose erfolgen. Methylenbisacrylamid ist ein bevorzugtes Vernetzungsagens.
  • Das Homopolymer wird bevorzugt in Form einer nichtwäßrigen Polymerdispersion, die einen Polymeranteil nicht unter 30 Gew.-% aufweisen sollte, eingesetzt. Solche Polymerdispersionen sind unter den Bezeichnungen Salcare® SC 95 (ca. 50 % Polymeranteil, weitere Komponenten: Mineralöl (INCI-Bezeichnung: Mineral Oil) und Tridecyl-polyoxypropylen-polyoxyethylen-ether (INCI-Bezeichnung: PPG-1-Trideceth-6)) und Salcare® SC 96 (ca. 50 % Polymeranteil, weitere Komponenten: Mischung von Diestern des Propylenglykols mit einer Mischung aus Capryl- und Caprinsäure (INCI-Bezeichnung: Propylene Glycol Dicaprylate/Dicaprate) und Tridecyl-polyoxypropylen-polyoxyethylen-ether (INCI-Bezeichnung: PPG-1-Trideceth-6)) im Handel erhältlich.
  • Copolymere mit Monomereinheiten gemäß Formel (G1-I) enthalten als nichtionogene Monomereinheiten bevorzugt Acrylamid, Methacrylamid, Acrylsäure-C1–4-alkylester und Methacrylsäure-C1–4-alkylester. Unter diesen nichtionogenen Monomeren ist das Acrylamid besonders bevorzugt. Auch diese Copolymere können, wie im Falle der Homopolymere oben beschrieben, vernetzt sein. Ein erfindungsgemäß bevorzugtes Copolymer ist das vernetzte Acrylamid-Methacryloyloxyethyltrimethylammoniumchlorid-Copolymer. Solche Copolymere, bei denen die Monomere in einem Gewichtsverhältnis von etwa 20:80 vorliegen, sind im Handel als ca. 50%ige nichtwäßrige Polymerdispersion unter der Bezeichnung Salcare® SC 92 erhältlich.
  • Weitere bevorzugte kationische Polymere sind beispielsweise
    • – quaternisierte Cellulose-Derivate, wie sie unter den Bezeichnungen Celquat® und Polymer JR© im Handel erhältlich sind. Die Verbindungen Celquat® H 100, Celquat® L 200 und Polymer JR®400 sind bevorzugte quaternierte Cellulose-Derivate,
    • – kationische Alkylpolyglycoside gemäß der DE-PS 44 13 686 ,
    • – kationiserter Honig, beispielsweise das Handelsprodukt Honeyquat® 50,
    • – kationische Guar-Derivate, wie insbesondere die unter den Handelsnamen Cosmedia®Guar und Jaguar® vertriebenen Produkte,
    • – Polysiloxane mit quaternären Gruppen, wie beispielsweise die im Handel erhältlichen Produkte Q2-7224 (Hersteller: Dow Corning; ein stabilisiertes Trimethylsilylamodimethicon), Dow Corning® 929 Emulsion (enthaltend ein hydroxyl-amino-modifiziertes Silicon, das auch als Amodimethicone bezeichnet wird), SM-2059 (Hersteller: General Electric), SLM-55067 (Hersteller: Wacker) sowie Abil®-Quat 3270 und 3272 (Hersteller: Th. Goldschmidt), diquaternäre Polydimethylsiloxane, Quaternium-80),
    • – polymere Dimethyldiallylammoniumsalze und deren Copolymere mit Estern und Amiden von Acrylsäure und Methacrylsäure. Die unter den Bezeichnungen Merquat®100 (Poly(dimethyldiallylammoniumchlorid)) und Merquat®550 (Dimethyldiallylammoniumchlorid-Acrylamid-Copolymer) im Handel erhältlichen Produkte sind Beispiele für solche kationischen Polymere,
    • – Copolymere des Vinylpynolidons mit quaternierten Derivaten des Dialkylaminoalkylacrylats und -methacrylats, wie beispielsweise mit Diethylsulfat quaternierte Vinylpyrrolidon-Dimethylaminoethylmethacrylat-Copolymere. Solche Verbindungen sind unter den Bezeichnungen Gafquat®734 und Gafquat®755 im Handel erhältlich,
    • – Vinylpyrrolidon-Vinylimidazoliummethochlorid-Copolymere, wie sie unter den Bezeichnungen Luviquat® FC 370, FC 550, FC 905 und HM 552 angeboten werden,
    • – quaternierter Polyvinylalkohol,
    • – sowie die unter den Bezeichnungen Polyquaternium 2, Polyquaternium 17, Polyquaternium 18 und Polyquaternium 27 bekannten Polymeren mit quartären Stickstoffatomen in der Polymerhauptkette.
  • Gleichfalls als kationische Polymere eingesetzt werden können die unter den Bezeichnungen Polyquaternium-24 (Handelsprodukt z. B. Quatrisoft® LM 200), bekannten Polymere. Ebenfalls erfindungsgemäß verwendbar sind die Copolymere des Vinylpyrrolidons, wie sie als Handelsprodukte Copolymer 845 (Hersteller: ISP), Gaffix® VC 713 (Hersteller: ISP), Gafquat®ASCP 1011, Gafquat®HS 110, Luviquat®8155 und Luviquat® MS 370 erhältlich sind.
  • Weitere erfindungsgemäße kationische Polymere sind die sogenannten „temporär kationischen" Polymere. Diese Polymere enthalten üblicherweise eine Aminogruppe, die bei bestimmten pH-Werten als quartäre Ammoniumgruppe und somit kationisch vorliegt. Bevorzugt sind beispielsweise Chitosan und dessen Derivate, wie sie beispielsweise unter den Handelsbezeichnungen Hydagen® CMF, Hydagen® HCMF, Kytamer® PC und Chitolam® NB/101 im Handel frei verfügbar sind.
  • Erfindungsgemäß bevorzugte kationische Polymere sind kationische Cellulose-Derivate und Chitosan und dessen Derivate, insbesondere die Handelsprodukte Polymer JR 400, Hydagen® HCMF und Kytamer® PC, kationische Guar-Derivate, kationische Honig-Derivate, insbesondere das Handelsprodukt Honeyquat® 50, kationische Alkylpolyglycodside gemäß der DE-PS 44 13 686 , Polymere vom Typ Polyquaternium-37 sowie Polysiloxane mit quaternären Gruppen wie die Abil®-Quat – Typen, die als Amodimethicone bezeichneten Typen und Quaternium-80.
  • Weiterhin sind kationiserte Proteinhydrolysate zu den kationischen Polymeren zu zählen, wobei das zugrunde liegende Proteinhydrolysat vom Tier, beispielsweise aus Collagen, Milch oder Keratin, von der Pflanze, beispielsweise aus Weizen, Mais, Reis, Kartoffeln, Soja oder Mandeln, von marinen Lebensformen, beispielsweise aus Fischcollagen oder Algen, oder biotechnologisch gewonnenen Proteinhydrolysaten, stammen kann. Die den erfindungsgemäßen kationischen Derivaten zugrunde liegenden Proteinhydrolysate können aus den entsprechenden Proteinen durch eine chemische, insbesondere alkalische oder saure Hydrolyse, durch eine enzymatische Hydrolyse und/oder einer Kombination aus beiden Hydrolysearten gewonnen werden. Die Hydrolyse von Proteinen ergibt in der Regel ein Proteinhydrolysat mit einer Molekulargewichtsverteilung von etwa 100 Dalton bis hin zu mehreren tausend Dalton. Bevorzugt sind solche kationischen Proteinhydrolysate, deren zugrunde liegender Proteinanteil ein Molekulargewicht von 100 bis zu 25000 Dalton, bevorzugt 250 bis 5000 Dalton aufweist. Weiterhin sind unter kationischen Proteinhydrolysaten quaternierte Aminosäuren und deren Gemische zu verstehen. Die Quaternisierung der Proteinhydrolysate oder der Aminosäuren wird häufig mittels quarternären Ammoniumsalzen wie beispielsweise N,N-Dimethyl-N-(n-Alkyl)-N-(2-hydroxy-3-chloro-n-propyl)ammoniumhalogeniden durchgeführt. Weiterhin können die kationischen Proteinhydrolysate auch noch weiter derivatisiert sein. Als typische Beispiele für die erfindungsgemäßen kationischen Proteinhydrolysate und -derivate seien die unter den INCI – Bezeichnungen im „International Cosmetic Ingredient Dictionary and Handbook", (seventh edition 1997, The Cosmetic, Toiletry, and Fragrance Association 1101 17th Street, N.W., Suite 300, Washington, DC 20036-4702) genannten und im Handel erhältlichen Produkte genannt: Cocodimonium Hydroxypropyl Hydrolyzed Collagen, Cocodimopnium Hydroxypropyl Hydrolyzed Casein, Cocodimonium Hydroxypropyl Hydrolyzed Collagen, Cocodimonium Hydroxypropyl Hydrolyzed Hair Keratin, Cocodimonium Hydroxypropyl Hydrolyzed Keratin, Cocodimonium Hydroxypropyl Hydrolyzed Rice Protein, Cocodimonium Hydroxypropyl Hydrolyzed Silk, Cocodimonium Hydroxypropyl Hydrolyzed Soy Protein, Cocodimonium Hydroxypropyl Hydrolyzed Wheat Protein, Cocodimonium Hydroxypropyl Silk Amino Acids, Hydroxypropyl Arginine Lauryl/Myristyl Ether HCl, Hydroxypropyltrimonium Gelatin, Hydroxypropyltrimonium Hydrolyzed Casein, Hydroxypropyltrimonium Hydrolyzed Collagen, Hydroxypropyltrimonium Hydrolyzed Conchiolin Protein, Hydroxypropyltrimonium Hydrolyzed Keratin, Hydroxypropyltrimonium Hydrolyzed Rice Bran Protein, Hydroxyproypltrimonium Hydrolyzed Silk, Hydroxypropyltrimonium Hydrolyzed Soy Protein, Hydroxypropyl Hydrolyzed Vegetable Protein, Hydroxypropyltrimonium Hydrolyzed Wheat Protein, Hydroxypropyltrimonium Hydrolyzed Wheat Protein/Siloxysilicate, Laurdimonium Hydroxypropyl Hydrolyzed Soy Protein, Laurdimonium Hydroxypropyl Hydrolyzed Wheat Protein, Laurdimonium Hydroxypropyl Hydrolyzed Wheat Protein/Siloxysilicate, Lauryldimonium Hydroxypropyl Hydrolyzed Casein, Lauryldimonium Hydroxypropyl Hydrolyzed Collagen, Lauryldimonium Hydroxypropyl Hydrolyzed Keratin, Lauryldimonium Hydroxypropyl Hydrolyzed Silk, Lauryldimonium Hydroxypropyl Hydrolyzed Soy Protein, Steardimonium Hydroxypropyl Hydrolyzed Casein, Steardimonium Hydroxypropyl Hydrolyzed Collagen, Steardimonium Hydroxypropyl Hydrolyzed Keratin, Steardimonium Hydroxypropyl Hydrolyzed Rice Protein, Steardimonium Hydroxypropyl Hydrolyzed Silk, Steardimonium Hydroxypropyl Hydrolyzed Soy Protein, Steardimonium Hydroxypropyl Hydrolyzed Vegetable Protein, Steardimonium Hydroxypropyl Hydrolyzed Wheat Protein, Steartimonium Hydroxyethyl Hydrolyzed Collagen, Quaternium-76 Hydrolyzed Collagen, Quaternium-79 Hydrolyzed Collagen, Quaternium-79 Hydrolyzed Keratin, Quaternium-79 Hydrolyzed Milk Protein, Quaternium-79 Hydrolyzed Silk, Quaternium-79 Hydrolyzed Soy Protein, Quaternium-79 Hydrolyzed Wheat Protein.
  • Ganz besonders bevorzugt sind die kationischen Proteinhydrolysate und -derivate auf pflanzlicher Basis.
  • Selbstverständlich umfaßt die erfindungsgemäße Lehre auch die Verwendung von mehreren kationaktiven Verbindungen (A). Dabei ist es bevozugt, wenn derartige Mischungen jeweils mindestens eine kationaktive Substanz aus der Klasse der kationischen Tenside und der Klasse der kationischen Polymere stammt. Selbstverständlich können auch zwei oder mehr kationische Tenside mit einem oder mehreren kationischen Polymeren gemeinsam verwendet werden.
  • Die zweite zwingende Komponente ist ausgewählt aus den Polyhydroxyverbindungen. Unter Polyhydroxyverbindungen im Sinne der Erfindung werden alle Substanzen verstanden, welche die Definition in Römpp's Lexikon der Chemie, Version 2.0 der CD – ROM Ausgabe von 1999, Verlag Georg Thieme, erfüllen. Demnach sind unter Polyhydroxyverbindungen organische Verbindungen mit mindestens zwei Hydroxygruppen zu verstehen. Insbesondere sind im Sinne der vorliegenden Erfindung hierunter zu verstehen:
    • – Polyole mit mindestens zwei Hydroxygruppen, und mit einer Kohlenstoffkette von 2 bis 30 Kohlenstoffatomen wie beispielsweise Trimethylolpropan,
    • – Ethoxilate und/oder Propoxylate mit 1 bis 50 Mol Ethylenoxid und oder Propylenoxid der zuvor genannten Polyole,
    • – Kohlenhydrate, Zuckeralkohole und Zucker sowie deren Salze,
    • – insbesondere Monosaccharide, Disaccharide, Trisaccharide und Oligosaccharide, wobei diese auch in Form von Aldosen, Ketosen und/oder Lactosen, sowie geschützt durch übliche und in der Literatur bekannte -OH – und -NH – Schutzgruppen, wie beispielsweise die Triflatgruppe, die Trimethylsilylgruppe oder Acylgruppen sowie weiterhin in Form der Methylether und als Phosphatester, vorliegen können,
    • – Aminodesoxyzucker, Desoxyzucker, Thiozucker, wobei diese auch in Form von Aldosen, Ketosen und/oder Lactosen, sowie geschützt durch übliche und in der Literatur bekannte -OH – und -NH – Schutzgruppen, wie beispielsweise die Triflatgruppe, die Trimethylsilylgruppe oder Acylgruppen sowie weiterhin in Form der Methylether und als Phosphatester, vorliegen können, Bevorzugt sind hierunter Monosaccharide mit 3 bis 8 C – Atomen, wie beispielsweise Triosen, Tetrosen, Pentosen, Hexosen, Heptosen und Octosen, wobei diese auch in Form von Aldosen, Ketosen und/oder Lactosen sowie geschützt durch übliche und in der Literatur bekannte -OH – und -NH – Schutzgruppen, wie beispielsweise die Triflatgruppe, die Trimethylsilylgruppe oder Acylgruppen sowie weiterhin in Form der Methylether und als Phosphatester, vorliegen können, Weiterhin sind bevorzugt Oligosaccharide mit bis zu 50 Monomereinheiten, wobei diese auch in Form von Aldosen, Ketosen und/oder Lactosen sowie geschützt durch übliche und in der Literatur bekannte -OH – und -NH – Schutzgruppen, wie beispielsweise die Triflatgruppe, die Trimethylsilylgruppe oder Acylgruppen sowie weiterhin in Form der Methylether und als Phosphatester, vorliegen können.
  • Ganz besonders bevorzugte Polyole der vorliegenden Erfindung sind Polyole mit 2 bis 12 C-Atomen im Molekülgerüst. Diese Polyole können geradkettig, verzweigt, cyclisch und/oder ungesättigt sein. Die Hydroxygruppen sind dabei ganz besonders bevorzugt endständig benachbart oder endständig durch den Rest der Kette voneinander getrennt. Als Beispiele für diese Polyole seien genannt: Glykol, Polyethylenglykol bis zu einem Molgewicht bis zu 1000 Dalton, Neopentylglykol, Partialglycerinether mit einem Molgewicht bis zu 1000 Dalton, 1,2-Propandiol, 1,3-Propandiol, Glycerin, 1,2-Butandiol, 1,3-Butandiol, 1,4-Butandiol, 1,2,3-Butantriol, 1,2,4-Butantriol, Pentandiole, beispielsweise 1,2-Pentandiol, 1,5-Pentandiol, Hexandiole, 1,2-Hexandiol, 1,6-Hexandiol, 1,2,6-Hexantriol, 1,4-cyclo-Hexandiol, 1,2-cyclo-Hexandiol, Heptandiole, 1,2-Heptandiol, 1,7-Heptandiol, Oktandiole, 1,2-Oktandiol, 1,8-Oktandiol, 2-Ethyl-l,3-hexandiol, Octadienole, Decadienole, Dodekandiole, 1,2-Dodekandiol, 1,12-Dodekandiol, 1,12-Dodekandiol mit 10 Mol EO, Dodecadienole.
  • Weiterhin beispielhaft für die erfindungsgemäßen Polyole seien erwähnt Sorbit, Inosit, Mannit, Tetrite, Pentite, Hexite, Threit, Erythrit, Adonit, Arabit, Xylit, Dulcit, Erythrose, Threose, Arabinose, Ribose, Xylose, Lyxose, Glucose, Galactose, Mannose, Allose, Altrose, Gulose, Idose, Talose, Fructose, Sorbose, Psicose, Tegatose, Desoxyribose, Glucosamin, Galaktosamin, Rhamnose, Digitoxose, Thioglucose, Saccharose, Lactose, Trehalose, Maltose, Cellobiose, Melibiose, Gestiobiose, Rutinose, Raffinose sowie Cellotriose. Weiterhin sei auf die einschlägige Fachliteratur wie beispielsweise Beyer-Walter, Lehrbuch der organischen Chemie, S. Hirzel Verlag Stuttgart, 19. Auflage, Abschnitt III, Seiten 393 und folgende verwiesen.
  • Selbstverständlich umfaßt die erfindungsgemäße Lehre alle isomeren Formen, wie cis– trans – Isomere, Diastereomere, Epimere, Anomere und chirale Isomere.
  • Erfindungsgemäß ist es auch möglich, eine Mischung aus mehreren Polyofen (B) einzusetzen.
  • Die erfindungsgemäßen Polyole (B) sind in den Mitteln in Konzentrationen von 0,01 Gew.% bis zu 20 Gew.%, vorzugsweise von 0,05 Gew.% bis zu 15 Gew.% und ganz besonders bevorzugt in Mengen von 0,1 Gew.% bis zu 10 Gew.% enthalten.
  • In einer weiteren bevorzugten Ausführungsform der Erfindung kann die Wirkung der erfindungsgemäßen Wirkstoffkombination (W) durch Fettstoffe (D) weiter gesteigert werden. Unter Fettstoffen sind zu verstehen Fettsäwen, Fettalkohole, natürliche und synthetische Wachse, welche sowohl in fester Form als auch flüssig in wäßriger Dispersion vorliegen können, und natürliche und synthetische kosmetische Ölkomponenten zu verstehen.
  • Als Fettsäwen (D1) können eingesetzt werden lineare und/oder verzweigte, gesättigte und/oder ungesättigte Fettsäwen mit 6 – 30 Kohlenstoffatomen. Bevorzugt sind Fettsäwen mit 10 – 22 Kohlenstoffatomen. Hierunter wären beispielsweise zu nennen die Isostearinsäuren, wie die Handelsprodukte Emersol® 871 und Emersol® 875, und Isopalmitinsäuren wie das Handelsprodukt Edenor® IP 95, sowie alle weiteren unter den Handelsbezeichnungen Edenor® (Cognis) vertriebenen Fettsäwen. Weitere typische Beispiele für solche Fettsäuren sind Capronsäure, Caprylsäure, 2-Ethylhexansäure, Caprinsäure, Lawinsäure, Isotridecansäure, Myristinsäure, Palmitinsäure, Palmitoleinsäure, Stearinsäure, Isostearinsäure, Ölsäure, Elaidinsäure, Petroselinsäurure, Linolsäure, Linolensäure, Elaeostearinsäure, Arachinsäure, Gadoleinsäure, Behensäure und Erucasäure sowie deren technische Mischungen, die z.B. bei der Druckspaltung von natürlichen Fetten und Ölen, bei der Oxidation von Aldehyden aus der Roelen'schen Oxosynthese oder der Dimerisierung von ungesättigten Fettsäwen anfallen. Besonders bevorzugt sind üblicherweise die Fettsäureschnitte, welche aus Cocosöl oder Palmöl erhältlich sind; insbesondere bevorzugt ist in der Regel der Einsatz von Stearinsäure.
  • Die Einsatzmenge beträgt dabei 0,1 – 15 Gew.%, bezogen auf das gesamte Mittel. Bevorzugt beträgt die Menge 0,5 -10 Gew.%, wobei ganz besonders vorteilhaft Mengen von 1 – 5 Gew.% sein können.
  • Als Fettalkohole (D2) können eingesetzt werden gesättigte, ein- oder mehrfach ungesättigte, verzweigte oder unverzweigte Fettalkohole mit C6–C30-, bevorzugt C10–C22- und ganz besonders bevorzugt C12–C22- Kohlenstoffatomen. Einsetzbar im Sinne der Erfindung sind beispielsweise Decanol, Octanol, Octenol, Dodecenol, Decenol, Octadienol, Dodecadienol, Decadienol, Oleylalkohol, Erucaalkohol, Ricinolalkohol, Stearylalkohol, Isostearylalkohol, Cetylalkohol, Laurylalkohol, Myristylalkohol, Arachidylalkohol, Caprylalkohol, Caprinalkohol, Linoleylalkohol, Linolenylalkohol und Behenylalkohofl, sowie deren Guerbetalkohole, wobei diese Aufzählung beispielhaften und nicht limitierenden Charakter haben soll. Die Fettalkohole stammen jedoch von bevorzugt natürlichen Fettsäuren ab, wobei üblicherweise von einer Gewinnung aus den Estern der Fettsäuren durch Reduktion ausgegangen werden kann. Erfindungsgemäß einsetzbar sind ebenfalls solche Fettalkoholschnitte, die durch Reduktion natürlich vorkommender Triglyceride wie Rindertalg, Palmöl, Erdnußöl, Rüböl, Baumwollsaatöl, Sojaöl, Sonnenblumenöl und Leinöl oder aus deren Umesterungsprodukten mit entsprechenden Alkoholen entstehenden Fettsäureestern erzeugt werden, und somit ein Gemisch von unterschiedlichen Fettalkoholen darstellen. Solche Substanzen sind beispielsweise unter den Bezeichnungen Stenol®, z.B. Stenol® 1618 oder Lanette®, z.B. Lanette® O oder Lorol®, z.B. Lorol® C8, Lorol® C14, Lorol® C18, Lorol® C8-18, HD-Ocenol®, Crodacol®, z.B. Crodacol® CS, Novol®, Eutanol® G, Guerbitol® 16, Guerbitol® 18, Guerbitol® 20, Isofol® 12, Isofol® 16, Isofol® 24, Isofol® 36, Isocarb® 12, Isocarb® 16 oder Isocarb® 24 käuflich zu erwerben. Selbstverständlich können erfindungsgemäß auch Wollwachsalkohole, wie sie beispielsweise unter den Bezeichnungen Corona®, White Swan®, Coronet® oder Fluilan® käuflich zu erwerben sind, eingesetzt werden. Die Fettalkohole werden in Mengen von 0,1 – 30 Gew.-%, bezogen auf die gesamte Zubereitung, bevorzugt in Mengen von 0,1 – 20 Gew.-% eingesetzt.
  • Als natürliche oder synthetische Wachse (D3) können erfindungsgemäß eingesetzt werden feste Paraffine oder Isoparaffine, Carnaubawachse, Bienenwachse, Candelillawachse, Ozokerite, Ceresin, Walrat, Sonnenblumenwachs, Fruchtwachse wie beispielsweise Apfelwachs oder Citruswachs, Microwachse aus PE- oder PP. Derartige Wachse sind beispielsweise erhältlich über die Fa. Kahl & Co., Trittau.
  • Die Einsatzmenge beträgt 0,1 – 50 Gew.% bezogen auf das gesamte Mittel, bevorzugt 0,1 – 20 Gew.% und besonders bevorzugt 0,1-15 Gew.% bezogen auf das gesamte Mittel.
  • Zu den natürlichen und synthetischen kosmetischen Ölkörpern (D4), welche die Wirkung des erfindungsgemäßen Wirkstoffes steigern können, sind beispielsweise zu zählen:
    • – pflanzliche Öle. Beispiele für solche Öle sind Sonnenblumenöl, Olivenöl, Sojaöl, Rapsöl, Mandelöl, Jojobaöl, Orangenöl, Weizenkeimöl, Pfirsichkernöl und die flüssigen Anteile des Kokosöls. Geeignet sind aber auch andere Triglyceridöle wie die flüssigen Anteile des Rindertalgs sowie synthetische Triglyceridöle.
    • – flüssige Paraffinöle, Isoparaffinöle und synthetische Kohlenwasserstoffe sowie Di-n-alkylether mit insgesamt zwischen 12 bis 36 C-Atomen, insbesondere 12 bis 24 C-Atomen, wie beispielsweise Di-n-octylether, Di-n-decylether, Di-n-nonylether, Di-n-undecylether, Di-n-dodecylether, n-Hexyl-n-octylether, n-Octyl-n-decylether, n-Decyl-n-undecylether, n-Undecyl-n-dodecylether und n-Hexyl-n-Undecylether sowie Di-tertbutylether, Di-iso-pentylether, Di-3-ethyldecylether, tert.-Butyl-n-octylether, iso-Pentyl-n-octylether und 2-Methyl-pentyl-n-octylether. Die als Handelsprodukte erhältlichen Verbindungen 1,3-Di-(2-ethyl-hexyl)-cyclohexan (Cetiol® S) und Di-n-octylether (Cetiofl® OE) können bevorzugt sein.
    • – Esteröle. Unter Esterölen sind zu verstehen die Ester von C6–C30 – Fettsäuren mit C2-C30 – Fettalkoholen. Bevorzugt sind die Monoester der Fettsäuren mit Alkoholen mit 2 bis 24 C-Atomen. Beispiele für eingesetzte Fettsäurenanteile in den Estern sind Capronsäure, Caprylsäure, 2-Ethylhexansäure, Caprinsäure, Laurinsäure, Isotridecansäure, Myristinsäure, Palmitinsäure, Palmitoleinsäure, Stearinsäure, Isostearinsäure, Ölsäure, Elaidinsäure, Petroselinsäure, Linolsäure, Linolensäure, Elaeostearinsäure, Arachinsäure, Gadoleinsäure, Behensäure und Erucasäure sowie deren technische Mischungen, die z.B. bei der Druckspaltung von natürlichen Fetten und Ölen, bei der Oxidation von Aldehyden aus der Roelen'schen Oxosynthese oder der Dimerisierung von ungesättigten Fettsäwen anfallen. Beispiele für die Fettalkoholanteile in den Esterölen sind Isopropylalkohol, Capronalkohol, Caprylalkohol, 2-Ethylhexylalkohol, Caprinalkohol, Laurylalkohol, Isotridecylalkohol, Myristylalkohol, Cetylalkohol, Palmoleylalkohol, Stearylalkohol, Isostearylalkohol, Oleylalkohol, Elaidylalkohol, Petroselinylalkohol, Linolylalkohol, Linolenylalkohol, Elaeostearylalkohol, Arachylalkohol, Gadoleylalkohol, Behenylalkohol, Erucylalkohol und Brassidylalkohol sowie deren technische Mischungen, die z.B. bei der Hochdruckhydrierung von technischen Methylestern auf Basis von Fetten und Ölen oder Aldehyden aus der Roelen'schen Oxosynthese sowie als Monomerfraktion bei der Dimerisierung von ungesättigten Fettalkoholen anfallen. Erfindungsgemäß besonders bevorzugt sind Isopropylmyristat (Rilanit® IPM), Isononansäwe-C16-18-alkylester (Cetiol® SN), 2-Ethylhexylpalmitat (Cegesoft® 24), Stearinsäwe-2-ethylhexylester (Cetiol® 868), Cetyloleat, Glycerintricaprylat, Kokosfettalkohol-caprinat/-caprylat (Cetiol® LC), n-Butylstearat, Oleylerucat (Cetiol® J 600), Isopropylpalmitat (Rilanit® IPP), Oleyl Oleate (Cetiol®), Laurinsäwehexylester (Cetiol® A), Di-n-butyladipat (Cetiol® B), Myristylmyristat (Cetiol® MM), Cetearyl Isononanoate (Cetiol® SN), Ölsäwedecylester (Cetiol® V).
    • – Dicarbonsäweester wie Di-n-butyladipat, Di-(2-ethylhexyl)-adipat, Di-(2-ethylhexyl)succinat und Di-isotridecylacelaat sowie Diolester wie Ethylenglykol-dioleat, Ethylenglykol-di-isotridecanoat, Propylenglykol-di(2-ethylhexanoat), Propylenglykoldi-isostearat, Propylenglykol-di-pelargonat, Butandiol-di-isostearat, Neopentylglykoldicaprylat,
    • – koholen, beispielsweise beschrieben in der DE-OS 197 56 454 , Glycerincarbonat oder Dicaprylylcarbonat (Cetiol® CC),
    • – Trifettsäureester von gesättigten und/oder ungesättigten linearen und/oder verzweigten Fettsäuren mit Glycerin.
  • Die Einsatzmenge der natürlichen und synthetischen kosmetischen Ölkörper in den erfindungsgemäß verwendeten Mitteln beträgt üblicherweise 0,1 – 30 Gew.%, bezogen auf das gesamte Mittel, bevorzugt 0,1 – 20 Gew.-%, und insbesondere 0,1 – 15 Gew.-%.
  • Eine ganz besonders bevorzugte Gruppe von Fettstoffen (D) sind die Fettsäurepartialglyceride (D5). Diese Fettsäurepartialglyceride sind Monoglyceride, Diglyceride und deren technische Gemische. Bei der Verwendung technischer Produkte können herstellungsbedingt noch geringe Mengen Triglyceride enthalten sein. Die Partialglyceride folgen vorzugsweise der Formel (D-V),
    Figure 00230001
    in der R4, R5 und R6 unabhängig voneinander für Wasserstoff oder für einen linearen oder verzweigten, gesättigten und/oder ungesättigten Acylrest mit 6 bis 22, vorzugsweise 12 bis 18, Kohlenstoffatomen stehen mit der Maßgabe, daß mindestens eine dieser Gruppen für einen Acylrest und mindestens eine dieser Gruppen für Wasserstoff steht. Die Summe (m + n + q) steht für 0 oder Zahlen von 1 bis 100, vorzugsweise für 0 oder 5 bis 25. Bevorzugt steht R4 für einen Acylrest und R5 und R6 für Wasserstoff und die Summe (m + n + q) ist 0. Typische Beispiele sind Mono- und/oder Diglyceride auf Basis von Capronsäure, Caprylsäure, 2-Ethylhexansäure, Caprinsäure, Laurinsäure, Isotridecansäure, Myristinsäure, Palmitinsäure, Palmoleinsäure, Stearinsäure, Isostearinsäure, Ölsäure, Elaidinsäure, Petroselinsäure, Linolsäure, Linolensäure, Elaeostearinsäure, Arachinsäure, Gadoleinsäure, Behensäure und Erucasäure sowie deren technische Mischungen. Vorzugsweise werden Ölsäuremonoglyceride eingesetzt.
  • Das Fettsäurepartialglycerid ist in den erfindungsgemäß verwendeten Mitteln bevorzugt in Mengen von 0,1 – 20 Gew.-%, insbesondere 0,1 – 10 Gew.-%, bezogen auf das gesamte Mittel enthalten.
  • Die Gesamtmenge an Öl- und Fettkomponenten in den erfindungsgemäßen Mitteln beträgt üblicherweise 0,5 – 75 Gew.-%, bezogen auf das gesamte Mittel. Mengen von 0,5 – 35 Gew.-% sind erfindungsgemäß bevorzugt.
  • Ebenfalls als vorteilhaft hat sich die Kombination des Wirkstoffes (W) mit Tensiden (E) erwiesen. In einer weiteren bevorzugten Ausführungsform enthalten die erfindungsgemäß verwendeten Mittel Tenside. Unter dem Begriff Tenside werden grenzflächenaktive Substanzen, die an Ober- und Grenzflächen Adsorptionsschichten bilden oder in Volumenphasen zu Mizellkolloiden oder lyotropen Mesophasen aggregieren können, verstanden. Man unterscheidet Aniontenside bestehend aus einem hydrophoben Rest und einer negativ geladenen hydrophilen Kopfgruppe, amphotere Tenside, welche sowohl eine negative als auch eine kompensierende positive Ladung tragen, kationische Tenside, welche neben einem hydrophoben Rest eine positiv geladene hydrophile Gruppe aufweisen, und nichtionische Tenside, welche keine Ladungen sondern starke Dipolmomente aufweisen und in wäßriger Lösung stark hydratisiert sind. Weitergehende Definitionen und Eigenschaften von Tensiden finden sich in „H.-D.Dörfler, Grenzflächen- und Kolloidchemie, VCH Verlagsgesellschaft mbH. Weinheim, 1994". Die zuvor wiedergegebene Begriffsbestimmung findet sich ab S. 190 in dieser Druckschrift.
  • Als anionische Tenside (E1) eignen sich in erfindungsgemäßen Zubereitungen alle für die Verwendung am menschlichen Körper geeigneten anionischen oberflächenaktiven Stoffe. Diese sind gekennzeichnet durch eine wasserlöslich machende, anionische Gruppe wie z.B. eine Carboxylat-, Sulfat-, Sulfonat- oder Phosphat-Gruppe und eine lipophile Asylgruppe mit etwa 8 bis 30 C-Atomen. Zusätzlich können im Molekül Glykol- oder Polyglykolether-Gruppen, Ester-, Ether- und Amidgruppen sowie Hydroxylgruppen enthalten sein. Beispiele für geeignete anionische Tenside sind, jeweils in Form der physiologisch verträglichen Salze oder der freien Säuren beispielsweise Natrium-, Kalium-, Magnesium-, Zink-, Calcium-, Aluminium-, und Ammonium- sowie der Mono-, Di- und Trialkanolammoniumsalze mit 2 bis 4 C-Atomen in der Alkanolgruppe,
    • – lineare und verzweigte Fettsäuren mit 8 bis 30 C-Atomen (Seifen),
    • – Ethercarbonsäuren der Formel R-O-(CH2-CH2O)X CH2-COOH, in der R eine lineare Alkylgruppe mit 8 bis 30 C-Atomen und x = 0 oder 1 bis 16 ist,
    • – Acylsarcoside mit 8 bis 24 C-Atomen in der Asylgruppe,
    • – Acyltauride mit 8 bis 24 C-Atomen in der Asylgruppe,
    • - Acylisethionate mit 8 bis 24 C-Atomen in der Asylgruppe,
    • – Sulfobernsteinsäuremono- und -dialkylester mit 8 bis 24 C-Atomen in der Alkylgruppe und Sulfobernsteinsäuremono-alkylpolyoxyethylester mit 8 bis 24 C-Atomen in der Alkylgruppe und 1 bis 6 Oxyethylgruppen,
    • – lineare Alkansulfonate mit 8 bis 24 C-Atomen,
    • – lineare Alpha-Olefinsulfonate mit 8 bis 24 C-Atomen,
    • – Alpha-Sulfofettsäuremethylester von Fettsäwen mit 8 bis 30 C-Atomen,
    • – Alkylsulfate und Alkylpolyglykolethersulfate der Formel R-O(CH2-CH2O)X-OSO3H, in der R eine bevorzugt lineare Alkylgruppe mit 8 bis 30 C-Atomen und x = 0 oder 1 bis 12 ist,
    • – Gemische oberflächenaktiver Hydroxysulfonate gemäß DE-A-37 25 030 ,
    • – sulfatierte Hydroxyalkylpolyethylen- und/oder Hydroxyalkylenpropylenglykolether gemäß DE-A-37 23 354 ,
    • – Sulfonate ungesättigter Fettsäwen mit 8 bis 24 C-Atomen und 1 bis 6 Doppelbindungen gemäß DE-A-39 26 344 ,
    • – Ester der Weinsäure und Zitronensäure mit Alkoholen, die Anlagerungsprodukte von etwa 2-15 Molekülen Ethylenoxid und/oder Propylenoxid an Fettalkohole mit 8 bis 22 C-Atomen darstellen,
    • – Alkyl- und/oder Alkenyletherphosphate der Formel (E1-I),
      Figure 00250001
      in der R1 bevorzugt für einen aliphatischen Kohlenwasserstoffrest mit 8 bis 30 Kohlenstoffatomen, R2 für Wasserstoff, einen Rest (CH2CH2O)nRl oder X, n für Zahlen von 1 bis 10 und X für Wasserstoff, ein Alkali- oder Erdalkalimetall oder NR3R4R5R6, mit R3 bis R6 unabhängig voneinander stehend für Wasserstoff oder einen C1 bis C4 – Kohlenwasserstoffrest, steht,
    • – sulfatierte Fettsäurealkylenglykolester der Formel (E1-II) R7CO(AlkO)nSO3M (E1-II)in der R7CO- für einen linearen oder verzweigten, aliphatischen, gesättigten und/oder ungesättigten Acylrest mit 6 bis 22 C-Atomen, Alk für CH2CH2, CHCH3CH2 und/oder CH2CHCH3, n für Zahlen von 0,5 bis 5 und M für ein Kation steht, wie sie in der DE-OS 197 36 906.5 beschrieben sind,
    • – Monoglyceridsulfate und Monoglyceridethersulfate der Formel (E1-III)
      Figure 00260001
      in der R8CO für einen linearen oder verzweigten Acylrest mit 6 bis 22 Kohlenstoffatomen, x, y und z in Summe für 0 oder für Zahlen von 1 bis 30, vorzugsweise 2 bis 10, und X für ein Alkali- oder Erdalkalimetall steht. Typische Beispiele für im Sinne der Erfindung geeignete Monoglycerid(ether)sulfate sind die Umsetzungsprodukte von Laurinsäuremonoglycerid, Kokosfettsäuremonoglycerid, Palmitinsäuremonoglycerid, Stearinsäuremonoglycerid, Ölsäuremonoglycerid und Talgfettsäuremonoglycerid sowie deren Ethylenoxidaddukte mit Schwefeltrioxid oder Chlorsulfonsäure in Form ihrer Natriumsalze. Vorzugsweise werden Monoglyceridsulfate der Formel (E1-III) eingesetzt, in der R8CO für einen linearen Acylrest mit 8 bis 18 Kohlenstoffatomen steht, wie sie beispielsweise in der EP-B1 0 561 825 , der EP-B1 0 561 999 , der DE-A1 42 04 700 oder von A.K.Biswas et al. in J.Am.Oil.Chem.Soc. 37, 171 (1960) und F.U.Ahmed in J.Am.Oil.Chem.Soc. 67, 8 (1990) beschrieben worden sind,
    • – Amidethercarbonsäuren wie sie in der EP 0 690 044 beschrieben sind,
    • – Kondensationsprodukte aus C8–C30 – Fettalkoholen mit Proteinhydrolysaten und/oder Aminosäuren und deren Derivaten, welche dem Fachmann als Eiweissfettsäurekondensate bekannt sind, wie beispielsweise die Lamepon® – Typen, Gluadin® – Typen, Hostapon® KCG oder die Amisoft® – Typen.
  • Bevorzugte anionische Tenside sind Alkylsulfate, Alkylpolyglykolethersulfate und Ethercarbonsäuren mit 10 bis 18 C-Atomen in der Alkylgruppe und bis zu 12 Glykolethergruppen im Molekül, Sulfobernsteinsäuremono- und -dialkylester mit 8 bis 18 C-Atomen in der Alkylgruppe und Sulfobernsteinsäuremono-alkylpolyoxyethylester mit 8 bis 18 C-Atomen in der Alkylgruppe und 1 bis 6 Oxyethylgruppen, Monoglycerdisulfate, Alkyl- und Alkenyletherphosphate sowie Eiweissfettsäurekondensate.
  • Als zwitterionische Tenside (E2) werden solche oberflächenaktiven Verbindungen bezeichnet, die im Molekül mindestens eine quartäre Ammoniumgruppe und mindestens eine -COO(–) – oder -SO3 (–)-Gruppe tragen. Besonders geeignete zwitterionische Tenside sind die sogenannten Betaine wie die N-Alkyl-N,N-dimethylammonium-glycinate, beispielsweise das Kokosalkyl-dimethylammoniumglycinat, N-Acyl-aminopropyl-N,Ndimethylammoniumglycinate, beispielsweise das Kokosacylaminopropyl-dimethylammoniumglycinat, und 2-Alkyl-3-carboxymethyl-3-hydroxyethyl-imidazoline mit jeweils 8 bis 18 C-Atomen in der Alkyl- oder Acylgruppe sowie das Kokosacylaminoethylhydroxyethylcarboxymethylglycinat. Ein bevorzugtes zwitterionisches Tensid ist das unter der INCI-Bezeichnung Cocamidopropyl Betaine bekannte Fettsäureamid-Derivat.
  • Unter ampholytischen Tensiden (E3) werden solche oberflächenaktiven Verbindungen verstanden, die außer einer C8–C24 – Alkyl- oder -Acylgruppe im Molekül mindestens eine freie Aminogruppe und mindestens eine -COOH- oder -SO3H-Gruppe enthalten und zur Ausbildung innerer Salze befähigt sind. Beispiele für geeignete ampholytische Tenside sind N-Alkylglycine, N-Alkylpropionsäuren, N-Alkylaminobuttersäuren, N-Alkyliminodipropionsäuren, N-Hydroxyethyl-N-alkylamidopropylglycine, N-Alkyltaurine, N-Alkylsarcosine, 2-Alkylaminopropionsäuren und Alkylaminoessigsäuren mit jeweils etwa 8 bis 24 C-Atomen in der Alkylgruppe. Besonders bevorzugte ampholytische Tenside sind das N-Kokosalkylaminopropionat, das Kokosacylaminoethylaminopropionat und das C12-C18–Acylsarcosin.
  • Nichtionische Tenside (E4) enthalten als hydrophile Gruppe z.B. eine Polyolgruppe, eine Polyalkylenglykolethergruppe oder eine Kombination aus Polyol- und Polyglykolethergruppe. Solche Verbindungen sind beispielsweise
    • – Anlagerungsprodukte von 2 bis 50 Mol Ethylenoxid und/oder 0 bis 5 Mol Propylenoxid an lineare und verzweigte Fettalkohole mit 8 bis 30 C-Atomen, an Fettsäuren mit 8 bis 30 C-Atomen und an Alkylphenole mit 8 bis 15 C-Atomen in der Alkylgruppe,
    • – mit einem Methyl- oder C2–C6– Alkylrest endgruppenverschlossene Anlagerungsprodukte von 2 bis 50 Mol Ethylenoxid und/oder 0 bis 5 Mol Propylenoxid an lineare und verzweigte Fettalkohole mit 8 bis 30 C-Atomen, an Fettsäuren mit 8 bis 30 C-Atomen und an Alkylphenole mit 8 bis 15 C-Atomen in der Alkylgruppe, wie beispielsweise die unter den Verkaufsbezeichnungen Dehydol® LS, Dehydol® LT (Cognis) erhältlichen Typen,
    • – C12-C30-Fettsäuremono- und -diester von Anlagerungsprodukten von 1 bis 30 Mol Ethylenoxid an Glycerin,
    • – Anlagerungsprodukte von 5 bis 60 Mol Ethylenoxid an Rizinusöl und gehärtetes Rizinusöl,
    • – Polyolfettsäureester, wie beispielsweise das Handelsprodukt Hydagen® HSP (Cognis) oder Sovermol – Typen (Cognis),
    • – alkoxilierte Triglyceride,
    • – alkoxilierte Fettsäurealkylester der Formel (E4-I) R1CO-(OCH2CHR2)wOR3 (E4-I)in der RICO für einen linearen oder verzweigten, gesättigten und/oder ungesättigten Acylrest mit 6 bis 22 Kohlenstoffatomen, R2 für Wasserstoff oder Methyl, R3 für lineare oder verzweigte Alkylreste mit 1 bis 4 Kohlenstoffatomen und w für Zahlen von 1 bis 20 steht,
    • – Aminoxide,
    • – Hydroxymischether, wie sie beipielsweise in der DE-OS 19738866 beschrieben sind,
    • – Sorbitanfettsäureester und Anlagerungeprodukte von Ethylenoxid an Sorbitanfettsäureester wie beispielsweise die Polysorbate,
    • – Zuckerfettsäureester und Anlagerungsprodukte von Ethylenoxid an Zuckerfettsäureester,
    • – Anlagerungsprodukte von Ethylenoxid an Fettsäurealkanolamide und Fettamine,
  • Als bevorzugte nichtionische Tenside haben sich die Alkylenoxid-Anlagerungsprodukte an gesättigte lineare Fettalkohole und Fettsäuren mit jeweils 2 bis 30 Mol Ethylenoxid pro Mol Fettalkohol bzw. Fettsäure erwiesen. Zubereitungen mit hervorragenden Eigenschaften werden ebenfalls erhalten, wenn sie als nichtionische Tenside Fettsäureester von ethoxyliertem Glycerin enthalten.
  • Diese Verbindungen sind durch die folgenden Parameter gekennzeichnet. Der Alkylrest R enthält 6 bis 22 Kohlenstoffatome und kann sowohl linear als auch verzweigt sein. Bevorzugt sind primäre lineare und in 2-Stellung methylverzweigte aliphatische Reste. Solche Alkylreste sind beispielsweise 1-Octyl, 1-Decyl, 1-Lauryl, 1-Myristyl, 1-Cetyl und 1-Stearyl. Besonders bevorzugt sind 1-Octyl, 1-Decyl, 1-Lauryl, 1-Myristyl. Bei Verwendung sogenannter "Oxo-Alkohole" als Ausgangsstoffe überwiegen Verbindungen mit einer ungeraden Anzahl von Kohlenstoffatomen in der Alkylkette.
  • Weitere banz besonders bevorzugte nicht-ionische Tenside stellen die sogenannten Zuckertenside Bei Zuckertensiden handelt es sich einmal um ein Alkyl- oder Alkenyloligoglykosid. Diese Zuckertenside stellen bekannte nichtionische Tenside gemäß Formel (E4-ll) dar, R1O-[G]P (E4-II)in der R1 für einen Alkyl- oder Alkenylrest mit 4 bis 22 Kohlenstoffatomen, G für einen Zuckerrest mit 5 oder 6 Kohlenstoffatomen und p für Zahlen von 1 bis 10 steht. Sie können nach den einschlägigen Verfahren der präparativen organischen Chemie erhalten werden. Stellvertretend für das umfangreiche Schrifttum sei hier auf die Übersichtsarbeit von Biermann et al. in Starch/Stärke 45, 281 (1993), B. Salka in Cosm. Toil. 108, 89 (1993) sowie J. Kahre et al. in SÖFW-Journal Heft 8, 598 (1995) verwiesen.
  • Die Alkyl- und Alkenyloligoglykoside können sich von Aldosen bzw. Ketosen mit 5 oder 6 Kohlenstoffatomen, vorzugsweise von Glucose, ableiten. Die bevorzugten Alkyl- und/oder Alkenyloligoglykoside sind somit Alkyl- und/oder Alkenyloligoglucoside. Die Indexzahl p in der allgemeinen Formel (I) gibt den Oligomerisierungsgrad (DP), d. h. die Verteilung von Mono- und Oligoglykosiden an und steht für eine Zahl zwischen 1 und 10. Während p im einzelnen Molekül stets ganzzahlig sein muß und hier vor allem die Werte p = 1 bis 6 annehmen kann, ist der Wert p für ein bestimmtes Alkyloligoglykosid eine analytisch ermittelte rechnerische Größe, die meistens eine gebrochene Zahl darstellt. Vorzugsweise werden Alkyl- und/oder Alkenyloligoglykoside mit einem mittleren Oligomerisierungsgrad p von 1,1 bis 3,0 eingesetzt. Aus anwendungstechnischer Sicht sind solche Alkyl- und/oder Alkenyloligoglykoside bevorzugt, deren Oligomerisierungsgrad kleiner als 1,7 ist und insbesondere zwischen 1,2 und 1,4 liegt. Der Alkyl- bzw. Alkenylrest R1 kann sich von primären Alkoholen mit 4 bis 11, vorzugsweise 8 bis 10 Kohlenstoffatomen ableiten. Typische Beispiele sind Butanol, Capronalkohol, Caprylalkohol, Caprinalkohol und Undecylalkohol sowie deren technische Mischungen, wie sie beispielsweise bei der Hydrierung von technischen Fettsäuremethylestern oder im Verlauf der Hydrierung von Aldehyden aus der Roelen'schen Oxosynthese erhalten werden. Bevorzugt sind Alkyloligoglucoside der Kettenlänge C8-C10 (DP = 1 bis 3), die als Vorlauf bei der destillativen Auftrennung von technischem C8-C18-Kokosfettalkohol anfallen und mit einem Anteil von weniger als 6 Gew.% C12-Alkohol verunreinigt sein können sowie Alkyloligoglucoside auf Basis technischer C9/11-Oxoalkohole (DP = 1 bis 3). Der Alkyl- bzw. Alkenylrest R1 kann sich ferner auch von primären Alkoholen mit 12 bis 22, vorzugsweise 12 bis 14 Kohlenstoffatomen ableiten. Typische Beispiele sind Laurylalkohol, Myristylalkohol, Cetylalkohol, Palmoleylalkohol, Stearylalkohol, Isostearylalkohol, Oleylalkohol, Elaidylalkohol, Petroselinylalkohol, Arachylalkohol, Gadoleylalkohol, Behenylalkohol, Erucylalkohol, Brassidylalkohol sowie deren technische Gemische, die wie oben beschrieben erhalten werden können. Bevorzugt sind Alkyloligoglucoside auf Basis von gehärtetem C12/14-Kokosalkohol mit einem DP von 1 bis 3.
  • Weitere Zuckertenside sind erfindungsgemäß Fettsäure-N-alkylpolyhydroxyalkylamide, nichtionische Tenside der Formel (E4-III), R2CO-NR3-[Z] (E4-III)in der R2CO für einen aliphatischen Acylrest mit 6 bis 22 Kohlenstoffatomen, R3 für Wasserstoff, einen Alkyl- oder Hydroxyalkylrest mit 1 bis 4 Kohlenstoffatomen und [Z] für einen linearen oder verzweigten Polyhydroxyalkylrest mit 3 bis 12 Kohlenstoffatomen und 3 bis 10 Hydroxylgruppen steht.
  • Bei den Fettsäure-N-alkylpolyhydroxyalkylamiden handelt es sich um bekannte Stoffe, die üblicherweise durch reduktive Aminierung eines reduzierenden Zuckers mit Ammoniak, einem Alkylamin oder einem Alkanolamin und nachfolgende Acylierung mit einer Fettsäu re, einem Fettsäurealkylester oder einem Fettsäurechlorid erhalten werden können. Hinsichtlich der Verfahren zu ihrer Herstellung sei auf die US-Patentschriften US 1,985,424 , US 2,016,962 und US 2,703,798 sowie die Internationale Patentanmeldung WO 92/06984 verwiesen. Eine Übersicht zu diesem Thema von H. Kelkenberg findet sich in Tens. Surf. Det. 25, 8 (1988). Vorzugsweise leiten sich die Fettsäure-N-alkylpolyhydroxyalkylamide von reduzierenden Zuckern mit 5 oder 6 Kohlenstoffatomen, insbesondere von der Glucose ab. Die bevorzugten Fettsäure-N-alkylpolyhydroxyalkylamide stellen daher Fettsäure-N-alkylglucamide dar, wie sie durch die Formel (E4-IV) wiedergegeben werden: R2CO-NR3-CH2-(CHOH)4-CH2OH (E4-IV)
  • Vorzugsweise werden als Fettsäure-N-alkylpolyhydroxyalkylamide Glucamide der Formel (E4-IV) eingesetzt, in der R3 für Wasserstoff oder eine Alkylgruppe steht und R2CO für den Acylrest der Capronsäure, Caprylsäure, Caprinsäure, Laurinsäure, Myristinsäure, Palmitinsäure, Palmoleinsäure, Stearinsäure, Isostearinsäure, Ölsäure, Elaidinsäure, Petroselinsäure, Linolsäure, Linolensäure, Arachinsäure, Gadoleinsäure, Behensäure oder Erucasäure bzw. derer technischer Mischungen steht. Besonders bevorzugt sind Fettsäure-N-alkylglucamide der Formel (E4-IV), die durch reduktive Aminierung von Glucose mit Methylamin und anschließende Acylierung mit Laurinsäure oder C12/14-Kokosfettsäure bzw. einem entsprechenden Derivat erhalten werden. Weiterhin können sich die Polyhydroxyalkylamide auch von Maltose und Palatinose ableiten.
  • Das Zuckertensid ist in den erfindungsgemäß verwendeten Mitteln bevorzugt in Mengen von 0,1 – 30 Gew.-%, bezogen auf das gesamte Mittel, enthalten. Mengen von 0,1 – 15 Gew.-% sind besonders bevorzugt. Selbstverständlich ist es erfindungsgemäß auch möglich mehrere Zuckertenside zu verwenden.
  • Bei den als Tensid eingesetzten Verbindungen mit Alkylgruppen kann es sich jeweils um einheitliche Substanzen handeln. Es ist jedoch in der Regel bevorzugt, bei der Herstellung dieser Stoffe von nativen pflanzlichen oder tierischen Rohstoffen auszugehen, so daß man Substanzgemische mit unterschiedlichen, vom jeweiligen Rohstoff abhängigen Alkylkettenlängen erhält.
  • Bei den Tensiden, die Anlagerungsprodukte von Ethylen- und/oder Propylenoxid an Fettalkohole oder Derivate dieser Anlagerungsprodukte darstellen, können sowohl Produkte mit einer "normalen" Homologenverteilung als auch solche mit einer eingeengten Homologenverteilung verwendet werden. Unter "normaler" Homologenverteilung werden dabei Mischungen von Homologen verstanden, die man bei der Umsetzung von Fettalkohol und Alkylenoxid unter Verwendung von Alkalimetallen, Alkalimetallhydroxiden oder Alkalimetallalkoholaten als Katalysatoren erhält. Eingeengte Homologenverteilungen werden dagegen erhalten, wenn beispielsweise Hydrotalcite, Erdalkalimetallsalze von Ethercarbonsäuren, Erdalkalimetalloxide, -hydroxide oder -alkoholate als Katalysatoren verwendet werden. Die Verwendung von Produkten mit eingeengter Homologenverteilung kann bevorzugt sein.
  • Die Tenside (E) werden in Mengen von 0,1 – 45 Gew.%, bevorzugt 0,5 – 30 Gew.% und ganz besonders bevorzugt von 0,5 – 25 Gew.%, bezogen auf das gesamte erfindungsgemäß verwendete Mittel, eingesetzt.
  • Anionische, nichtionische, zwitterionische und/oder amphotere Tenside sowie deren Mischungen können erfindungsgemäß bevorzugt sein.
  • In einer weiteren bevorzugten Ausführungsform kann die Wirkung der erfindungsgemäßen Wirkstoffkombination (W) durch Emulgatoren (F) gesteigert werden. Emulgatoren bewirken an der Phasengrenzfläche die Ausbildung von wasser- bzw. ölstabilen Adsorptionsschichten, welche die dispergierten Tröpfchen gegen Koaleszenz schützen und damit die Emulsion stabilisieren. Emulgatoren sind daher wie Tenside aus einem hydrophoben und einem hydrophilen Molekülteil aufgebaut. Hydrophile Emulgatoren bilden bevorzugt O/W – Emulsionen und hydrophobe Emulgatoren bilden bevorzugt W/O – Emulsionen. Unter einer Emulsion ist eine tröpfchenförmige Verteilung (Dispersion) einer Flüssigkeit in einer anderen Flüssigkeit unter Aufwand von Energie zur Schaffung von stabilisierenden Phasengrenzflächen mittels Tensiden zu verstehen. Die Auswahl dieser emulgierenden Tenside oder Emulgatoren richtet sich dabei nach den zu dispergierenden Stoffen und der jeweiligen äußeren Phase sowie der Feinteiligkeit der Emulsion. Weiterführende Definitionen und Eigenschaften von Emulgatoren finden sich in „H.-D.Dörfler, Grenzflächen- und Kolloidchemie, VCH Verlagsgesellschaft mbH. Weinheim, 1994". Erfindungsgemäß verwendbare Emulgatoren sind beispielsweise
    • – Anlagerungsprodukte von 4 bis 30 Mol Ethylenoxid und/oder 0 bis 5 Mol Propylenoxid an lineare Fettalkohole mit 8 bis 22 C-Atomen, an Fettsäuren mit 12 bis 22 C-Atomen und an Alkylphenole mit 8 bis 15 C-Atomen in der Alkylgruppe,
    • – C12-C22-Fettsäuremono- und -diester von Anlagerungsprodukten von 1 bis 30 Mol Ethylenoxid an Polyole mit 3 bis 6 Kohlenstoffatomen, insbesondere an Glycerin,
    • – Ethylenoxid- und Polyglycerin-Anlagerungsprodukte an Methylglucosid-Fettsäureester, Fettsäurealkanolamide und Fettsäureglucamide,
    • – Gemische aus Alkyl-(oligo)-glucosiden und Fettalkoholen zum Beispiel das im Handel erhältliche Produkt Montanov®68,
    • – Anlagerungsprodukte von 5 bis 60 Mol Ethylenoxid an Rizinusöl und gehärtetes Rizinusöl,
    • – Partialester von Polyolen mit 3-6 Kohlenstoffatomen mit gesättigten Fettsäuren mit 8 bis 22 C-Atomen,
    • – Sterine. Als Sterine wird eine Gruppe von Steroiden verstanden, die am C-Atom 3 des Steroid-Gerüstes eine Hydroxylgruppe tragen und sowohl aus tierischem Gewebe (Zoosterine) wie auch aus pflanzlichen Fetten (Phytosterine) isoliert werden. Beispiele für Zoosterine sind das Cholesterin und das Lanosterin. Beispiele geeigneter Phytosterine sind Ergosterin, Stigmasterin und Sitosterin. Auch aus Pilzen und Hefen werden Sterine, die sogenannten Mykosterine, isoliert.
    • – Phospholipide. Hierunter werden vor allem die Glucose-Phospolipide, die z.B. als Lecithine bzw. Phospahtidylcholine aus z.B. Eidotter oder Pflanzensamen (z.B. Sojabohnen) gewonnen werden, verstanden.
    • – Fettsäureester von Zuckern und Zuckeralkoholen, wie Sorbit,
    • – Polyglycerine und Polyglycerinderivate wie beispielsweise Polyglycerinpoly-l2-hydroxystearat (Handelsprodukt Dehymuls® PGPH),
    • – Lineare und verzweigte Fettsäuren mit 8 bis 30 C – Atomen und deren Na-, K-, Ammonium-, Ca-, Mg- und Zn – Salze.
  • Die erfindungsgemäßen Mittel enthalten die Emulgatoren bevorzugt in Mengen von 0,1 – 25 Gew.-%, insbesondere 0,5 – 15 Gew.-%, bezogen auf das gesamte Mittel.
  • Bevorzugt können die erfindungsgemäßen Zusammensetzungen mindestens einen nichtionogenen Emulgator mit einem HLB-Wert von 5 bis 18, gemäß den im Römpp-Lexikon Chemie (Hrg. J. Falbe, M. Regitz), 10. Auflage, Georg Thieme Verlag Stuttgart, New York, (1997), Seite 1764, aufgeführten Definitionen enthalten. Nichtionogene Emulgatoren mit einem HLB-Wert von 5-15 können erfindungsgemäß besonders bevorzugt sein.
  • Als weiterhin vorteilhaft hat es sich gezeigt, daß Polymere (G) die Wirkung der erfindungsgemäßen Wirkstoffmischung (W) unterstützen können. In einer bevorzugten Ausführungsform werden den erfindungsgemäß verwendeten Zusammensetzungen daher Polymere zugesetzt, wobei sich sowohl kationische, anionische, amphotere als auch nichtionische Polymere als wirksam erwiesen haben.
  • Bei den anionischen Polymeren (G2), welche die Wirkung der erfindungsgemäßen Wirkstoffkombination (W) unterstützen können, handelt es sich um anionische Polymere, welche Carboxylat- und/oder Sulfonatgruppen aufweisen. Beispiele für anionische Monomere, aus denen derartige Polymere bestehen können, sind Acrylsäure, Methacrylsäure, Crotonsäure, Maleinsäureanhydrid und 2-Acrylamido-2-methylpropansulfonsäure. Dabei können die sauren Gruppen ganz oder teilweise als Natrium-, Kalium-, Ammonium-, Mono- oder Triethanolammonium-Salz vorliegen. Bevorzugte Monomere sind 2-Acrylamido-2-methylpropansulfonsäure und Acrylsäure.
  • Als ganz besonders wirkungsvoll haben sich anionische Polymere erwiesen, die als alleiniges oder Co-Monomer 2-Acrylamido-2-methylpropansulfonsäure enthalten, wobei die Sulfonsäuregruppe ganz oder teilweise als Natrium-, Kalium-, Ammonium-, Mono- oder Triethanolammonium-Salz vorliegen kann.
  • Besonders bevorzugt ist das Homopolymer der 2-Acrylamido-2-methylpropansulfonsäure, das beispielsweise unter der Bezeichnung Rheothik®11-80 im Handel erhältlich ist.
  • Innerhalb dieser Ausführungsform kann es bevorzugt sein, Copolymere aus mindestens einem anionischen Monomer und mindestens einem nichtionogenen Monomer einzusetzen. Bezüglich der anionischen Monomere wird auf die oben aufgeführten Substanzen verwiesen. Bevorzugte nichtionogene Monomere sind Acrylamid, Methacrylamid, Acrylsäureester, Methacrylsäureester, Vinylpynolidon, Vinylether und Vinylester.
  • Bevorzugte anionische Copolymere sind Acrylsäure-Acrylamid-Copolymere sowie insbesondere Polyacrylamidcopolymere mit Sulfonsäuregruppen-haltigen Monomeren. Ein besonders bevorzugtes anionisches Copolymer besteht aus 70 bis 55 Mol % Acrylamid und 30 bis 45 Mol-% 2-Acrylamido-2-methylpropansulfonsäure, wobei die Sulfonsäuregruppe ganz oder teilweise als Natrium-, Kalium-, Ammonium-, Mono- oder Triethanolammonium-Salz vorliegt. Dieses Copolymer kann auch vernetzt vorliegen, wobei als Vernetzungsagentien bevorzugt polyolefinisch ungesättigte Verbindungen wie Tetraallyloxyethan, Allylsucrose, Allylpentaerythrit und Methylen-bisacrylamid zum Einsatz kommen. Ein solches Polymer ist in dem Handelsprodukt Sepigel®305 der Firma SEPPIC enthalten. Die Verwendung dieses Compounds, das neben der Polymerkomponente eine Kohlenwasserstoffmischung (C13-C14-Isoparaffin) und einen nichtionogenen Emulgator (Laureth-7) enthält, hat sich im Rahmen der erfindungsgemäßen Lehre als besonders vorteilhaft erwiesen.
  • Auch die unter der Bezeichnung Simulgel®600 als Compound mit Isohexadecan und Polysorbat-80 vertriebenen Natriumacryloyldimethyltaurat-Copolymere haben sich als erfindungsgemäß besonders wirksam erwiesen.
  • Ebenfalls bevorzugte anionische Homopolymere sind unvernetzte und vernetzte Polyacrylsäuren. Dabei können Allylether von Pentaerythrit, von Sucrose und von Propylen bevorzugte Vernetzungsagentien sein. Solche Verbindungen sind beispielsweise unter dem Warenzeichen Carbopol® im Handel erhältlich.
  • Copolymere aus Maleinsäureanhydrid und Methylvinylether, insbesondere solche mit Vernetzungen, sind ebenfalls farberhaltende Polymere. Ein mit 1,9-Decadiene vernetztes Maleinsäure-Methylvinylether-Copolymer ist unter der Bezeichnungg Stabileze® QM im Handel erhältlich.
  • Weiterhin können als Polymere zur Steigerung der Wirkung der erfindungsgemäßen Wirkstoffkombination (W) amphotere Polymere (G3) verwendet werden. Unter dem Begriff amphotere Polymere werden sowohl solche Polymere, die im Molekül sowohl freie Aminogruppen als auch freie -COOH- oder SO3H-Gruppen enthalten und zur Ausbildung innerer Salze befähigt sind, als auch zwitterionische Polymere, die im Molekül quartäre Ammoniumgruppen und -COO- oder -SO3 -Gruppen enthalten, und solche Polymere zusammengefaßt, die -COOH- oder SO3H-Gruppen und quartäre Ammoniumgruppen enthalten.
  • Ein Beispiel für ein erfindungsgemäß einsetzbares Amphopolymer ist das unter der Bezeichnung Amphomer® erhältliche Acrylharz, das ein Copolymeres aus tert.-Butylaminoethylmethacrylat, N-(1,1,3,3-Tetramethylbutyl)acrylamid sowie zwei oder mehr Monomeren aus der Gruppe Acrylsäure, Methacrylsäure und deren einfachen Estern darstellt.
  • Weitere erfindungsgemäß einsetzbare amphotere Polymere sind die in der britischen Offenlegungsschrift 2 104 091, der europäischen Offenlegungsschrift 47 714, der europäischen Offenlegungsschrift 217 274, der europäischen Offenlegungsschrift 283 817 und der deutschen Offenlegungsschrift 28 17 369 genannten Verbindungen.
  • Bevorzugt eingesetzte amphotere Polymere sind solche Polymerisate, die sich im wesentlichen zusammensetzen aus
    • (a) Monomeren mit quartären Ammoniumgruppen der allgemeinen Formel (G3-I), R1-CH=CR2-CO-Z-(CnH2n)-N(+)R3R4R5 A(–) (G3-I)in der R1 und R2 unabhängig voneinander stehen für Wasserstoff oder eine Methylgruppe und R3, R4 und RS unabhängig voneinander für Alkylgruppen mit 1 bis 4 Kohlenstoffatomen, Z eine NH-Gruppe oder ein Sauerstoffatom, n eine ganze Zahl von 2 bis 5 und A(–) das Anion einer organischen oder anorganischen Säure ist, und (b) monomeren Carbonsäuren der allgemeinen Formel (G3-II), R6-CH=CR7-COOH (G3-II)in denen R6 und R7 unabhängig voneinander Wasserstoff oder Methylgruppen sind.
  • Diese Verbindungen können sowohl direkt als auch in Salzform, die durch Neutralisation der Polymerisate, beispielsweise mit einem Alkalihydroxid, erhalten wird, erfindungsgemäß eingesetzt werden. Bezüglich der Einzelheiten der Herstellung dieser Polymerisate wird ausdrücklich auf den Inhalt der deutschen Offenlegungsschrift 39 29 973 Bezug genommen. Ganz besonders bevorzugt sind solche Polymerisate, bei denen Monomere des Typs (a) eingesetzt werden, bei denen R3, R4 und R5 Methylgruppen sind, Z eine NH-Gruppe und A(–) ein Halogenid-, Methoxysulfat- oder Ethoxysulfat-Ion ist; Acrylamidopropyl-trimethyl-ammoniumchlorid ist ein besonders bevorzugtes Monomeres (a). Als Monomeres (b) für die genannten Polymerisate wird bevorzugt Acrylsäure verwendet.
  • Die erfindungsgemäßen Zusammensetzungen können in einer weiteren Ausführungsform nichtionogene Polymere (G4) enthalten.
  • Geeignete nichtionogene Polymere sind beispielsweise:
    • – Vinylpyrrolidon/Vinylester-Copolymere, wie sie beispielsweise unter dem Warenzeichen Luviskol® (BASF) vertrieben werden. Luviskol® VA 64 und Luviskol® VA 73, jeweils Vinylpyrrolidon/Vinylacetat-Copolymere, sind ebenfalls bevorzugte nichtionische Polymere.
    • – Celluloseether, wie Hydroxypropylcellulose, Hydroxyethylcellulose und Methylhydroxypropylcellulose, wie sie beispielsweise unter den Warenzeichen Culminal® und Benecel® (AQUALON) vertrieben werden.
    • – Schellack
    • – Polyvinylpyrrolidone, wie sie beispielsweise unter der Bezeichnung Luviskol® (BASF) vertrieben werden.
    • – Siloxane. Diese Siloxane können sowohl wasserlöslich als auch wasserunlöslich sein. Geeignet sind sowohl flüchtige als auch nichtflüchtige Siloxane, wobei als nichtflüchtige Siloxane solche Verbindungen verstanden werden, deren Siedepunkt bei Normaldruck oberhalb von 200°C liegt. Bevorzugte Siloxane sind Polydialkylsiloxane, wie beispielsweise Polydimethylsiloxan, Polyalkylarylsiloxane, wie beispielsweise Polyphenylmethylsiloxan, ethoxylierte Polydialkylsiloxane sowie Polydialkylsiloxane, die Amin- und/oder Hydroxy-Gruppen enthalten.
    • – Glycosidisch substituierte Silicone gemäß der EP 0612759 81 .
  • Es ist erfindungsgemäß auch möglich, daß die verwendeten Zubereitungen mehrere, insbesondere zwei verschiedene Polymere gleicher Ladung und/oder jeweils ein ionisches und ein amphoteres und/oder nicht ionisches Polymer enthalten.
  • Die Polymere (G) sind in den erfindungsgemäß verwendeten Zusammensetzungen bevorzugt in Mengen von 0,05 bis 10 Gew.-%, bezogen auf das gesamte Mittel, enthalten. Mengen von 0,1 bis 5, insbesondere von 0,1 bis 3 Gew.-%, sind besonders bevorzugt.
  • Weiterhin können in den erfindungsgemäß verwendeten Zubereitungen Proteinhydrolysate und/oder Aminosäuren und deren Derivate (H) enthalten sein. Proteinhydrolysate sind Produktgemische, die durch sauer, basisch oder enzymatisch katalysierten Abbau von Proteinen (Eiweißen) erhalten werden. Unter dem Begriff Proteinhydrolysate werden erfindungsgemäß auch Totalhydrolysate sowie einzelne Aminosäuren und deren Derivate sowie Gemische aus verschiedenen Aminosäuren verstanden. Weiterhin werden erfindungsgemäß aus Aminosäuren und Aminosäurederivaten aufgebaute Polymere unter dem Begriff Proteinhydrolysate verstanden. Zu letzteren sind beispielsweise Polyalanin, Polyasparagin, Polyserin etc. zu zählen. Weitere Beispiele für erfindungsgemäß einsetzbare Verbindungen sind L-Alanyl-L-prolin, Polyglycin, Glycyl-L-glutamin oder D/L-Methionin-S-Methylsulfoniumchlorid. Selbstverständlich können erfindungsgemäß auch β-Aminosäuren und deren Derivate wie β-Alanin, Anthranilsäure oder Hippursäure eingesetzt werden. Das Molgeweicht der erfindungsgemäß einsetzbaren Proteinhydrolysate liegt zwischen 75, dem Molgewicht für Glycin, und 200000, bevorzugt beträgt das Molgewicht 75 bis 50000 und ganz besonders bevorzugt 75 bis 20000 Dalton.
  • Erfindungsgemäß können Proteinhydrolysate sowohl pflanzlichen als auch tierischen oder marinen oder synthetischen Ursprungs eingesetzt werden.
  • Tierische Proteinhydrolysate sind beispielsweise Elastin-, Kollagen-, Keratin-, Seiden- und Milcheiweiß-Proteinhydrolysate, die auch in Form von Salzen vorliegen können. Solche Produkte werden beispielsweise unter den Warenzeichen Dehylan® (Cognis), Promois® (Interorgana), Collapuron® (Cognis), Nutrilan® (Cognis), Gelita-Sol© (Deutsche Gelatine Fabriken Stoess & Co), Lexein® (Inolex) und Kerasol® (Croda) vertrieben.
  • Erfindungsgemäß bevorzugt ist die Verwendung von Proteinhydrolysaten pflanzlichen Ursprungs, z. B. Soja-, Mandel-, Erbsen-, Kartoffel- und Weizenproteinhydrolysate. Solche Produkte sind beispielsweise unter den Warenzeichen Gluadin© (Cognis), DiaMin© (Diamalt), Lexein® (Inolex), Hydrosoy® (Croda), Hydrolupin® (Croda), Hydrosesame® (Croda), Hydrotritium® (Croda) und Crotein® (Croda) erhältlich.
  • Wenngleich der Einsatz der Proteinhydrolysate als solche bevorzugt ist, können an deren Stelle gegebenenfalls auch anderweitig erhaltene Aminosäuregemische eingesetzt werden. Ebenfalls möglich ist der Einsatz von Derivaten der Proteinhydrolysate, beispielsweise in Form ihrer Fettsäure-Kondensationsprodukte. Solche Produkte werden beispielsweise unter den Bezeichnungen Lamepon® (Cognis), Lexein® (Inolex), Crolastin® (Croda) oder Crotein® (Croda) vertrieben.
  • Die Proteinhydrolysate oder deren Derivate sind in den erfindungsgemäß verwendeten Mitteln bevorzugt in Mengen von 0,1 bis 10 Gew.-%, bezogen auf das gesamte Mittel, enthalten. Mengen von 0,1 bis 5 Gew.-% sind besonders bevorzugt.
  • Weiterhin kann in einer bevorzugten Ausführungsform der Erfindung die Wirkung der Wirkstoffkombination (W) durch UV–Filter (I) gesteigert werden. Die erfindungsgemäß zu verwendenden UV-Filter unterliegen hinsichtlich ihrer Struktur und ihrer physikalischen Eigenschaften keinen generellen Einschränkungen. Vielmehr eignen sich alle im Kosmetikbereich einsetzbaren UV-Filter, deren Absorptionsmaximum im UVA (315-400 nm)-, im UVB (280-315nm)- oder im UVC (<280 nm)-Bereich liegt. UV-Filter mit einem Absorptionsmaximum im UVB-Bereich, insbesondere im Bereich von etwa 280 bis etwa 300 nm, sind besonders bevorzugt.
  • Die erfindungsgemäß verwendeten UV-Filter können beispielsweise ausgewählt werden aus substituierten Benzophenonen, p-Aminobenzoesäureestern, Diphenylacrylsäureestern, Zimtsäureestern, Salicylsäureestern, Benzimidazolen und o-Aminobenzoesäureestern.
  • Beispiele für erfindungsgemäß verwendbar UV-Filter sind 4-Amino-benzoesäure, N,N,N-Trimethyl-4-(2-oxoborn-3-ylidenmethyl)anilin-methylsulfat, 3,3,5-Trimethyl-cyclohexylsalicylat (Homosalate), 2-Hydroxy-4-methoxy-benzophenon (Benzophenone-3; Uvinul®M 40, Uvasorb®MET, Neo Heliopan®BB, Eusolex®4360), 2-Phenylbenzimidazol-5-sulfonsäure und deren Kalium-, Natrium- und Triethanolaminsalze (Phenylbenzimidazole sulfonic acid; Parsol®HS; Neo Heliopan®Hydro), 3,3'-(1,4-Phenylendimethylen)-bis(7,7-dimethyl-2-oxo-bicyclo-[2.2.1]hept-l-yl-methan-sulfonsäure) und deren Salze, 1-(4-tert.-Butylphenyl)-3-(4-methoxyphenyl)-propan-l,3-dion (Butyl methoxydibenzoylmethane; Parsol®1789, Eusolex®9020), α-(2-Oxoborn-3-yliden)-toluol-4-sulfonsäure und deren Salze, ethoxylierte 4-Aminobenzoesäure-ethylester (PEG-25 PABA; Uvinul®P 25), 4-Dimethylaminobenzoesäure-2-ethylhexylester (Octyl Dimethyl PABA; Uvasorb®DMO, Escalol®507, Eusolex®6007), Salicylsäure-2-ethylhexylester (Octyl Salicylat; Escalol®587, Neo Heliopan®OS, Uvinul®O18), 4-Methoxyzimtsäure-isopentylester (Isoamyl p-Methoxycinnamate; Neo Heliopan®E 1000), 4-Methoxyzimtsäure-2-ethylhexyl-ester (Octyl Methoxycinnamate; Parsol®MCX, Escalol®557, Neo Heliopan®AV), 2-Hydroxy-4-methoxybenzophenon-5-sulfonsäure und deren Natriumsalz (Benzophenone-4; Uvinul®MS 40; Uvasorb®S 5), 3-(4'-Methylbenzyliden)-D,L-Campher (4-Methylbenzylidene camphor; Parsol®5000, Eusolex®6300), 3-Benzyliden-campher (3-Benzylidene camphor), 4-Isopropylbenzylsalicylat, 2,4,6-Trianilino-(p-carbo-2'-ethylhexyl-1'-oxi)-1,3,5-triazin, 3-Imidazol-4-yl-acrylsäure und deren Ethylester, Polymere des N-{(2 und 4)-[2-oxoborn-3-ylidenmethyl]benzyl}-acrylamids, 2,4-Dihydroxybenzophenon (Benzophenone-1; Uvasorb®20 H, Uvinul®400), 1,1'-Diphenylacrylonitrilsäure-2-ethylhexyl-ester (Octocrylene; Eusolex®OCR, Neo Heliopan®Type 303, Uvinul®N 539 SG), o-Aminobenzoesäure-menthylester (Menthyl Anthranilate; Neo Heliopan®MA), 2,2',4,4'-Tetrahydroxybenzophenon (Benzophenone-2; Uvinul®D-50), 2,2'-Dihydroxy-4,4'-dimethoxybenzophenon (Benzophenone-6), 2,2'-Dihydroxy-4,4'-dimethoxybenzophenon-5-natriumsulfonat und 2-Cyano-3,3-diphenylacrylsäure-2'-ethylhexylester. Bevorzugt sind 4-Aminobenzoesäure, N,N,N-Trimethyl-4-(2-oxobom-3-ylidenmethyl)anilin-methylsulfat, 3,3,5- Trimethyl-cyclohexylsalicylat, 2-Hydroxy-4-methoxy-benzophenon, 2-Phenylbenzimidazol-5-sulfonsäue und deren Kalium-, Natrium- und Triethanolaminsalze, 3,3'-(1,4-Phenylendimethylen)-bis(7,7-dimethyl-2-oxo-bicyclo-[2.2.1 ]hept-l-yl-methan-sulfonsäure) und deren Salze, 1-(4-tert.-Butylphenyl)-3-(4-methoxyphenyl)-propan-l,3-dion, α-(2-Oxoborn-3-yliden)-toluol-4-sulfonsäure und deren Salze, ethoxylierte 4-Aminobenzoesäure-ethylester, 4-Dimethylaminobenzoesäure-2-ethylhexylester, Salicylsäure-2-ethylhexylester, 4-Methoxyzimtsäure-isopentylester, 4-Methoxyzimtsäure-2-ethylhexyl-ester, 2-Hydroxy-4-methoxybenzophenon-5-sulfonsäure und deren Natriumsalz, 3-(4'-Methylbenzyliden)-D,L-Campher, 3-Benzyliden-campher, 4-Isopropylbenzylsalicylat, 2,4,6-Trianilino-(p-carbo-2'-ethylhexyl-1'-oxi)-1,3,5-triazin, 3-Imidazol-4-yl-acrylsäure und deren Ethylester, Polymere des N-{(2 und 4)-[2-oxoborn-3-ylidenmethyl]benzyl}-acrylamid. Erfindungsgemäß ganz besonders bevorzugt sind 2-Hydroxy-4-methoxy-benzophenon, 2-Phenylbenzimidazol-5-sulfonsäure und deren Kalium-, Natrium- und Triethanolaminsalze, 1-(4-tert.-Butylphenyl)-3-(4-methoxyphenyl)-propan-l,3-dion, 4-Methoxyzimtsäure-2-ethylhexyl-ester und 3-(4'-Methylbenzyliden)-D,L-Campher.
  • Bevorzugt sind solche UV-Filter, deren molarer Extinktionskoeffizient am Absorptionsmaximum oberhalb von 15 000, insbesondere oberhalb von 20000, liegt.
  • Weiterhin wurde gefunden, daß bei strukturell ähnlichen UV-Filtern in vielen Fällen die wasserunlösliche Verbindung im Rahmen der erfindungsgemäßen Lehre die höhere Wirkung gegenüber solchen wasserlöslichen Verbindungen aufweist, die sich von ihr durch eine oder mehrere zusätzlich ionische Gruppen unterscheiden. Als wasserunlöslich sind im Rahmen der Erfindung solche UV-Filter zu verstehen, die sich bei 20 °C zu nicht mehr als 1 Gew.-%, insbesondere zu nicht mehr als 0,1 Gew.-%, in Wasser lösen. Weiterhin sollten diese Verbindungen in üblichen kosmetischen Ölkomponenten bei Raumtemperatur zu mindestens 0,1, insbesondere zu mindestens 1 Gew.-% löslich sein). Die Verwendung wasserunlöslicher UV-Filter kann daher erfindungsgemäß bevorzugt sein.
  • Gemäß einer weiteren Ausführungsform der Erfindung sind solche UV-Filter bevorzugt, die eine kationische Gruppe, insbesondere eine quartäre Ammoniumgruppe, aufweisen.
  • Diese UV-Filter weisen die allgemeine Struktur U – Q auf.
  • Der Strukturteil U steht dabei für eine UV-Strahlen absorbierende Gruppe. Diese Gruppe kann sich im Prinzip von den bekannten, im Kosmetikbereich einsetzbaren, oben genannten UV-Filtern ableiten, in dem eine Gruppe, in der Regel ein Wasserstoffatom, des UV-Filters durch eine kationische Gruppe Q, insbesondere mit einer quartären Aminofunktion, ersetzt wird.
  • Verbindungen, von denen sich der Strukturteil U ableiten kann, sind beispielsweise
    • – substituierte Benzophenone,
    • – p-Aminobenzoesäureester,
    • – Diphenylacrylsäureester,
    • – Zimtsäureester,
    • – Salicylsäureester,
    • – Benzimidazole und
    • – o-Aminobenzoesäureester.
  • Strukturteile U, die sich vom Zimtsäureamid oder vom N,N-Dimethylamino-benzoesäureamid ableiten, sind erfindungsgemäß bevorzugt.
  • Die Strukturteile U können prinzipiell so gewählt werden, daß das Absorptionsmaximum der UV-Filter sowohl im UVA(315-400 nm)-, als auch im UVB(280-315nm)- oder im UVC(<280 nm)-Bereich liegen kann. UV-Filter mit einem Absorptionsmaximum im UVB-Bereich, insbesondere im Bereich von etwa 280 bis etwa 300 nm, sind besonders bevorzugt.
  • Weiterhin wird der Strukturteil U, auch in Abhängigkeit von Strukturteil Q, bevorzugt so gewählt, daß der molare Extinktionskoeffizient des UV-Filters am Absorptionsmaximum oberhalb von 15 000, insbesondere oberhalb von 20000, liegt.
  • Der Strukturteil Q enthält als kationische Gruppe bevorzugt eine quartäre Ammoniumgruppe. Diese quartäre Ammoniumgruppe kann prinzipiell direkt mit dem Strukturteil U verbunden sein, so daß der Strukturteil U einen der vier Substituenten des positiv gela denen Stickstoffatomes darstellt. Bevorzugt ist jedoch einer der vier Substituenten am positiv geladenen Stickstoffatom eine Gruppe, insbesondere eine Alkylengruppe mit 2 bis 6 Kohlenstoffatomen, die als Verbindung zwischen dem Strukturteil U und dem positiv geladenen Stickstoffatom fungiert.
  • Vorteilhafterweise hat die Gruppe Q die allgemeine Struktur -(CH2)x_N+R1R2R3X, in der x steht für eine ganze Zahl von 1 bis 4, R1 und R2 unabhängig voneinander stehen für C1–4-Alkylgruppen, R3 steht für eine C1–22-Alkylgruppe oder eine Benzylgruppe und X" für ein physiologisch verträgliches Anion. Im Rahmen dieser allgemeinen Struktur steht x bevorzugt für die die Zahl 3, R1 und R2 jeweils für eine Methylgruppe und R3 entweder für eine Methylgruppe oder eine gesättigte oder ungesättigte, lineare oder verzweigte Kohlenwasserstoffkette mit 8 bis 22, insbesondere 10 bis 18, Kohlenstoffatomen.
  • Physiologisch verträgliche Anionen sind beispielsweise anorganische Anionen wie Halogenide, insbesondere Chlorid, Bromid und Fluorid, Sulfationen und Phosphationen sowie organische Anionen wie Lactat, Citrat, Acetat, Tartrat, Methosulfat und Tosylat.
  • Zwei bevorzugte UV-Filter mit kationischen Gruppen sind die als Handelsprodukte erhältlichen Verbindungen Zimtsäureamidopropyl-trimethylammoniumchlorid (Incroquat®UV-283) und Dodecyl-dimethylaminobenzamidopropyl-dimethylammoniumtosylat (Escalol® HP 610).
  • Selbstverständlich umfaßt die erfindungsgemäße Lehre auch die Verwendung einer Kombination von mehreren UV-Filtern. Im Rahmen dieser Ausführungsform ist die Kombination mindestens eines wasserunlöslichen UV-Filters mit mindestens einem UV-Filter mit einer kationischen Gruppe bevorzugt.
  • Die UV-Filter (I) sind in den erfindungsgemäß verwendeten Mitteln üblicherweise in Mengen 0,1-5 Gew.-%, bezogen auf das gesamte Mittel, enthalten. Mengen von 0,4-2,5 Gew.% sind bevorzugt.
  • Die Wirkung der erfindungsgemäßen Wirkstoffkombination (W) kann weiterhin durch eine 2-Pyrrolidinon-5-carbonsäure und deren Derivate (J) gesteigert werden. Ein weiterer Gegenstand der Erfindung ist daher die Verwendung des Wirkstoffes in Kombination mit Derivaten der 2-Pyrrolidinon-5-carbonsäure. Bevorzugt sind die Natrium-, Kalium-, Calcium-, Magnesium- oder Ammoniumsalze, bei denen das Ammoniumion neben Wasserstoff eine bis drei C1- bis C4-Alkylgruppen trägt. Das Natriumsalz ist ganz besonders bevorzugt. Die eingesetzten Mengen in den erfindungsgemäßen Mitteln betragen 0,05 bis 10 Gew.%, bezogen auf das gesamte Mittel, besonders bevorzugt 0,1 bis 5, und insbesondere 0,1 bis 3 Gew.%.
  • Ebenfalls als vorteilhaft hat sich die Kombination der Wirkstoffkombination (W) mit Vitaminen, Provitaminen und Vitaminvorstufen sowie deren Derivaten (K) erwiesen.
  • Dabei sind erfindungsgemäß solche Vitamine, Pro-Vitamine und Vitaminvorstufen bevorzugt, die üblicherweise den Gruppen A, B, C, E, F und H zugeordnet werden.
  • Zur Gruppe der als Vitamin A bezeichneten Substanzen gehören das Retinol (Vitamin A1) sowie das 3,4-Didehydroretinol (Vitamin A2). Das β-Carotin ist das Provitamin des Retinols. Als Vitamin A-Komponente kommen erfindungsgemäß beispielsweise Vitamin A-Säure und deren Ester, Vitamin A-Aldehyd und Vitamin A-Alkohol sowie dessen Ester wie das Palmitat und das Acetat in Betracht. Die erfindungsgemäß verwendeten Zubereitungen enthalten die Vitamin A-Komponente bevorzugt in Mengen von 0,05-1 Gew.-%, bezogen auf die gesamte Zubereitung.
  • Zur Vitamin B-Gruppe oder zu dem Vitamin B-Komplex gehören u. a.
    • – Vitamin B1 (Thiamin)
    • – Vitamin B2 (Riboflavin)
    • – Vitamin B3. Unter dieser Bezeichnung werden häufig die Verbindungen Nicotinsäure und Nicotinsäureamid (Niacinamid) geführt. Erfindungsgemäß bevorzugt ist das Nicotinsäureamid, das in den erfindungsgemäß verwendetenen Mitteln bevorzugt in Mengen von 0,05 bis 1 Gew.-%, bezogen auf das gesamte Mittel, enthalten ist.
    • – Vitamin B5 (Pantothensäure, Panthenol und Pantolacton). Im Rahmen dieser Gruppe wird bevorzugt das Panthenol und/oder Pantolacton eingesetzt. Erfindungsgemäß einsetzbare Derivate des Panthenols sind insbesondere die Ester und Ether des Panthenols sowie kationisch derivatisierte Panthenole. Einzelne Vertreter sind beispielsweise das Panthenoltriacetat, der Panthenolmonoethylether und dessen Monoacetat sowie die in der WO 92/13829 offenbarten kationischen Panthenolderivate. Die genannten Verbindungen des Vitamin B5-Typs sind in den erfindungsgemäß verwendeten Mitteln bevorzugt in Mengen von 0,05 – 10 Gew.-%, bezogen auf das gesamte Mittel, enthalten. Mengen von 0,1 – 5 Gew.-% sind besonders bevorzugt.
    • - Vitamin B6 (Pyridoxin sowie Pyridoxamin und Pyridoxal).
  • Vitamin C (Ascorbinsäure). Vitamin C wird in den erfindungsgemäß verwendeten Mitteln bevorzugt in Mengen von 0,1 bis 3 Gew.-%, bezogen auf das gesamte Mittel eingesetzt. Die Verwendung in Form des Palmitinsäureesters, der Glucoside oder Phosphate kann bevorzugt sein. Die Verwendung in Kombination mit Tocopherolen kann ebenfalls bevorzugt sein.
  • Vitamin E (Tocopherole, insbesondere α-Tocopherol). Tocopherol und seine Derivate, worunter insbesondere die Ester wie das Acetat, das Nicotinat, das Phosphat und das Succinat fallen, sind in den erfindungsgemäß verwendeten Mitteln bevorzugt in Mengen von 0,05-1 Gew.-%, bezogen auf das gesamte Mittel, enthalten.
  • Vitamin F. Unter dem Begriff „Vitamin F" werden üblicherweise essentielle Fettsäuren, insbesondere Linolsäure, Linolensäure und Arachidonsäure, verstanden.
  • Vitamin H. Als Vitamin H wird die Verbindung (3aS,4S, 6aR)-2-Oxohexahydrothienol[3,4-d]-imidazol-4-valeriansäure bezeichnet, für die sich aber inzwischen der Trivialname Biotin durchgesetzt hat. Biotin ist in den erfindungsgemäß verwendeten Mitteln bevorzugt in Mengen von 0,0001 bis 1,0 Gew.-%, insbesondere in Mengen von 0,001 bis 0,01 Gew.-% enthalten.
  • Bevorzugt enthalten die erfindungsgemäß verwendeten Mittel Vitamine, Provitamine und Vitaminvorstufen aus den Gruppen A, B, E und H.
  • Panthenol, Pantolacton, Pyridoxin und seine Derivate sowie Nicotinsäureamid und Biotin sind besonders bevorzugt.
  • Schließlich läßt sich die Wirkung der Wirkstoffinischung (W) auch durch den kombinierten Einsatz mit Pflanzenextrakten (L) steigern.
  • Üblicherweise werden diese Extrakte durch Extraktion der gesamten Pflanze hergestellt. Es kann aber in einzelnen Fällen auch bevorzugt sein, die Extrakte ausschließlich aus Blüten und/oder Blättern der Pflanze herzustellen.
  • Hinsichtlich der erfindungsgemäß verwendbaren Pflanzenextrakte wird insbesondere auf die Extrakte hingewiesen, die in der auf Seite 44 der 3. Auflage des Leitfadens zur Inhaltsstoffdeklaration kosmetischer Mittel, herausgegeben vom Industrieverband Körperpflege- und Waschmittel e.V. (IKW), Frankfurt, beginnenden Tabelle aufgeführt sind.
  • Erfindungsgemäß sind vor allem die Extrakte aus Grünem Tee, Eichenrinde, Brennessel, Hamamelis, Hopfen, Henna, Kamille, Klettenwurzel, Schachtelhalm, Weißdorn, Lindenblüten, Mandel, Aloe Vera, Fichtennadel, Roßkastanie, Sandelholz, Wacholder, Kokosnuß, Mango, Aprikose, Limone, Weizen, Kiwi, Melone, Orange, Grapefruit, Salbei, Rosmarin, Birke, Malve, Wiesenschaumkraut, Quendel, Schafgarbe, Thymian, Melisse, Hauhechel, Huflattich, Eibisch, Meristem, Ginseng und Ingwerwurzel bevorzugt.
  • Besonders bevorzugt sind die Extrakte aus Grünem Tee, Eichenrinde, Brennessel, Hamamelis, Hopfen, Kamille, Klettenwurzel, Schachtelhalm, Lindenblüten, Mandel, Aloe Vera, Kokosnuß, Mango, Aprikose, Limone, Weizen, Kiwi, Melone, Orange, Grapefruit, Salbei, Rosmarin, Birke, Wiesenschaumkraut, Quendel, Schafgarbe, Hauhechel, Meristem, Ginseng und Ingwerwurzel.
  • Ganz besonders für die erfindungsgemäße Verwendung geeignet sind die Extrakte aus Grünem Tee, Mandel, Aloe Vera, Kokosnuß, Mango, Aprikose, Limone, Weizen, Kiwi und Melone.
  • Als Extraktionsmittel zur Herstellung der genannten Pflanzenextrakte können Wasser, Alkohole sowie deren Mischungen verwendet werden. Unter den Alkoholen sind dabei niedere Alkohole wie Ethanol und Isopropanol, insbesondere aber mehrwertige Alkohole wie Ethylenglykol und Propylenglykol, sowohl als alleiniges Extraktionsmittel als auch in Mischung mit Wasser, bevorzugt. Pflanzenextrakte auf Basis von Wasser/Propylenglykol im Verhältnis 1:10 bis 10:1 haben sich als besonders geeignet erwiesen.
  • Die Pflanzenextrakte können erfindungsgemäß sowohl in reiner als auch in verdünnter Form eingesetzt werden. Sofern sie in verdünnter Form eingesetzt werden, enthalten sie üblicherweise ca. 2 – 80 Gew.-% Aktivsubstanz und als Lösungsmittel das bei ihrer Gewinnung eingesetzte Extraktionsmittel oder Extraktionsmittelgemisch.
  • Weiterhin kann es bevorzugt sein, in den erfindungsgemäßen Mitteln Mischungen aus mehreren, insbesondere aus zwei, verschiedenen Pflanzenextrakten einzusetzen.
  • Zusätzlich kann es sich als vorteilhaft erweisen, wenn neben der erfindungsgemäßen Wirkstoffmischung (W) Penetrationshilfsstoffe und/oder Quellmittel (M) enthalten sind. Hierzu sind beispielsweise zu zählen Harnstoff und Harnstoffderivate, Guanidin und dessen Derivate, Arginin und dessen Derivate, Wasserglas, Imidazol und dessen Derivate, Histidin und dessen Derivate, Benzylalkohol, Carbonate, Hydrogencarbonate, Monohydrogenphosphate, Dihydrogenphosphate oder Phosphate.
  • Vorteilhaft im Sinne der Erfindung können zusätzlich kurzkettige Carbonsäuren (N) die Wirkstoffkombination (W) unterstützen. Unter kurzkettigen Carbonsäuren und deren Derivaten im Sinne der Erfindung werden Carbonsäuren verstanden, welche gesättigt oder ungesättigt und/oder geradkettig oder verzweigt oder cyclisch und/oder aromatisch und/oder heterocyclisch sein können und ein Molekulargewicht kleiner 750 aufweisen. Bevorzugt im Sinne der Erfindung können gesättigte oder ungesättigte geradkettigte oder verzweigte Carbonsäuren mit einer Kettenlänge von 1 bis zu 16 C-Atomen in der Kette sein, ganz besonders bevorzugt sind solche mit einer Kettenlänge von 1 bis zu 12 C-Atomen in der Kette.
  • Die kurzkettigen Carbonsäuren im Sinne der Erfindung können ein, zwei, drei oder mehr Carboxygruppen aufweisen. Bevorzugt im Sinne der Erfindung sind Carbonsäuren mit mehreren Carboxygruppen, insbesondere Di- und Tricarbonsäuren. Die Carboxygruppen können ganz oder teilweise als Ester, Säureanhydrid, Lacton, Amid, Imidsäure, Lactam, Lactim, Dicarboximid, Carbohydrazid, Hydrazon, Hydroxam, Hydroxim, Amidin, Amidoxim, Nitril, Phosphon- oder Phosphatester vorliegen. Die erfindungsgemäßen Carbonsäuren können selbstverständlich entlang der Kohlenstoffkette oder des Ringgerüstes substituiert sein. Zu den Substituenten der erfindungsgemäßen Carbonsäuren sind beispielsweise zu zählen C1-C8-Alkyl-, C2-C8-Alkenyl-, Aryl-, Aralkyl- und Aralkenyl-, Hydroxymethyl-, C2-C8-Hydroxyalkyl-,C2-C8-Hydroxyalkenyl-, Aminomethyl-, C2-C8-Aminoalkyl-, Cyano-, Formyl-, Oxo-, Thioxo-, Hydroxy-, Mercapto-, Amino-, Carboxy- oder Iminogruppen. Bevorzugte Substituenten sind – C1-C8-Alkyl-, Hydroxymethyl-, Hydroxy-, Amino- und Carboxygruppen. Besonders bevorzugt sind Substituenten in α– Stellung. Ganz besonders bevorzugte Substituenten sind Hydroxy-, Alkoxy- und Aminogruppen, wobei die Aminofunktion gegebenenfalls durch Alkyl-, Aryl-, Aralkyl- und/oder Alkenylreste weiter substituiert sein kann. Weiterhin sind ebenfalls bevorzugte Carbonsäurederivate die Phosphon- und Phosphatester.
  • Als Beispiele für erfindungsgemäße Carbonsäuren seien genannt Ameisensäure, Essigsäure, Propionsäure, Buttersäure, Isobuttersäure, Valeriansäure, Isovaleriansäure, Pivalinsäure, Oxalsäure, Malonsäure, Bernsteinsäure, Glutarsäure, Glycerinsäure, Glyoxylsäure, Adipinsäure, Pimelinsäure, Korksäure, Azelainsäure, Sebacinsäure, Propiolsäure, Crotonsäure, Isocrotonsäure, Elaidinsäure, Maleinsäure, Fumarsäure, Muconsäure, Citraconsäure, Mesaconsäure, Camphersäure, Benzoesäure, o,m,p-Phthalsäure, Naphthoesäure, Toluoylsäure, Hydratropasäure, Atropasäure, Zimtsäure, Isonicotinsäure, Nicotinsäure, Bicarbaminsäure, 4,4'-Dicyano-6,6'-binicotinsäure, 8-Carbamoyloctansäure, 1,2,4-Pentantricarbonsäure, 2-Pynolcarbonsäure, 1,2,4,6,7-Napthalinpentaessigsäure, Malonaldehydsäure, 4-Hydroxy-phthalamidsäure, 1-Pyrazolcarbonsäure, Gallussäure oder Propantricarbonsäure, eine Dicarbonsäure ausgewählt aus der Gruppe, die gebildet wird durch Verbindungen der allgemeinen Formel (N-I),
    Figure 00490001
    in der Z steht für eine lineare oder verzweigte Alkyl- oder Alkenylgruppe mit 4 bis 12 Kohlenstoffatomen, n für eine Zahl von 4 bis 12 sowie eine der beiden Gruppen X und Y für eine COOH-Gruppe und die andere für Wasserstoff oder einen Methyl- oder Ethylrest, Dicarbonsäuren der allgemeinen Formel (N-I), die zusätzlich noch 1 bis 3 Methyl- oder Ethylsubstituenten am Cyclohexenring tragen sowie Dicarbonsäuren, die aus den Dicarbonsäuren gemäß Formel (N-I) formal durch Anlagerung eines Moleküls Wasser an die Doppelbindung im Cyclohexenring entstehen.
  • Dicarbonsäuren der Formel (N-I) sind in der Literatur bekannt. Ein Herstellungsverfahren ist beispielsweise der US-Patentschrift 3,753,968 zu entnehmen.
  • Die Dicarbonsäuren der Formel (N-I) können beispielsweise durch Umsetzung von mehrfach ungesättigten Dicarbonsäuren mit ungesättigten Monocarbonsäuren in Form einer Diels-Alder-Cyclisierung hergestellt werden. Üblicherweise wird man von einer mehrfach ungesättigten Fettsäure als Dicarbonsäurekomponente ausgehen. Bevorzugt ist die aus natürlichen Fetten und Ölen zugängliche Linolsäure. Als Monocarbonsäurekomponente sind insbesondere Acrylsäure, aber auch z.B. Methacrylsäure und Crotonsäure bevorzugt. Üblicherweise entstehen bei Reaktionen nach Diels-Alder Isomerengemische, bei denen eine Komponente im Überschuß vorliegt. Diese Isomerengemische können erfindungsgemäß ebenso wie die reinen Verbindungen eingesetzt werden.
  • Erfindungsgemäß einsetzbar neben den bevorzugten Dicarbonsäuren gemäß Formel (N-I) sind auch solche Dicarbonsäuren, die sich von den Verbindungen gemäß Formel (N-I) durch 1 bis 3 Methyl- oder Ethyl-Substituenten am Cyclohexylring unterscheiden oder aus diesen Verbindungen formal durch Anlagerung von einem Molekül Wasser an die Doppelbildung des Cyclohexenrings gebildet werden.
  • Als erfindungsgemäß besonders wirksam hat sich die Dicarbonsäure(-mischung) erwiesen, die durch Umsetzung von Linolsäure mit Acrylsäure entsteht. Es handelt sich dabei um eine Mischung aus 5- und 6-Carboxy-4-hexyl-2-cyclohexen-l-octansäure. Solche Verbindungen sind kommerziell unter den Bezeichnungen Westvaco Diacid® 1550 und Westvaco Diacid® 1595 (Hersteller: Westvaco) erhältlich.
  • Neben den zuvor beispielhaft aufgeführten erfindungsgemäßen kurzkettigen Carbonsäuren selbst können auch deren physiologisch verträgliche Salze erfindungsgemäß eingesetzt werden. Beispiele für solche Salze sind die Alkali-, Erdalkali-, Zinksalze sowie Ammoniumsalze, worunter im Rahmen der vorliegenden Anmeldung auch die Mono-, Di- und Trimethyl-, -ethyl- und -hydroxyethyl-Ammoniumsalze zu verstehen sind. Ganz besonders bevorzugt können im Rahmen der Erfindung jedoch mit alkalisch reagierenden Aminosäuren, wie beispielsweise Arginin, Lysin, Ornithin und Histidin, neutralisierte Säuren eingesetzt werden. Weiterhin kann es aus Formulierungsgründen bevorzugt sein, die Carbonsäure aus den wasserlöslichen Vertretern, insbesondere den wasserlöslichen Salzen, auszuwählen.
  • Weiterhin ist es erfindungsgemäß bevorzugt, Hydroxycarbonsäuren und hierbei wiederum insbesondere die Dihydroxy-, Trihydroxy- und Polyhydroxycarbonsäuren sowie die Dihydroxy-, Trihydroxy- und Polyhydroxy- di-, tri- und polycarbonsäuren gemeinsam mit der Wirkstoffkombination (W) einzusetzen. Hierbei hat sich gezeigt, daß neben den Hydroxycarbonsäuren auch die Hydroxycarbonsäureester sowie die Mischungen aus Hydroxycarbonsäuren und deren Estern als auch polymere Hydroxycarbonsäuren und deren Ester ganz besonders bevorzugt sein können. Bevorzugte Hydroxycarbonsäureester sind beispielsweise Vollester der Glycolsäure, Milchsäure, Äpfelsäure, Weinsäure oder Citronensäure. Weitere grundsätzlich geeigneten Hydroxycarbonsäureester sind Ester der β-Hydroxypropionsäure, der Tartronsäure, der D-Gluconsäure, der Zuckersäure, der Schleimsäure oder der Glucwonsäure. Als Alkoholkomponente dieser Ester eignen sich primäre, lineare oder verzweigte aliphatische Alkohole mit 8 – 22 C-Atomen, also z.B. Fettalkohole oder synthetische Fettalkohole. Dabei sind die Ester von C 12-C 15-Fettalkoholen besonders bevorzugt. Ester dieses Typs sind im Handel erhältlich, z.B. unter dem Warenzeichen Cosmacol® der EniChem, Augusta Industriale. Besonders bevorzugte Polyhydroxypolycarbonsäuren sind Polymilchsäure und Polyweinsäure sowie deren Ester.
  • Neben der erfindungsgemäß zwingend erforderlichen Wirkstoffmischung (W) und den weiteren, oben genannten bevorzugten Komponenten können diese Zubereitungen prinzipiell alle weiteren, dem Fachmann für solche kosmetischen Mittel bekannten Komponenten enthalten.
  • Weitere Wirk-, Hilfs- und Zusatzstoffe sind beispielsweise
    • – nichtionische Polymere wie beispielsweise Vinylpyrrolidon/Vinylacrylat-Copolymere, Polyvinylpyrrolidon und Vinylpynolidon/Vinylacetat-Copolymere und Polysiloxane,
    • – Verdickungsmittel wie Agar-Agar, Guar-Gum, Alginate, Xanthan-Gum, Gummi arabicum, Karaya-Gummi, Johannisbrotkemmehl, Leinsamengummen, Dextrane, Cellulose-Derivate, z. B. Methylcellulose, Hydroxyalkylcellulose und Carboxymethylcellulose, Stärke-Fraktionen und Derivate wie Amylose, Amylopektin und Dextrine, Tone wie z. B. Bentonit oder vollsynthetische Hydrokolloide wie z. B. Polyvinylalkohol,
    • – haarkonditionierende Verbindungen wie Phospholipide, beispielsweise Sojalecithin, Ei-Lecitin und Kephaline, sowie Silikonöle,
    • – Parfümöle, Dimethylisosorbid und Cyclodextrine,
    • – Lösungsmittel und -vermittler wie Ethanol, Isopropanol, Ethylenglykol, Propylenglykol, Glycerin und Diethylenglykol,
    • – symmetrische und unsymmetrische, lineare und verzweigte Dialkylether mit insgesamt zwischen 12 bis 36 C-Atomen, insbesondere 12 bis 24 C-Atomen, wie beispielsweise Di-n-octylether, Di-n-decylether, Di-n-nonylether, Di-n-undecylether und Di-ndodecylether, n-Hexyl-n-octylether, n-Octyl-n-decylether, n-Decyl-n-undecylether, n-Undecyl-n-dodecylether und n-Hexyl-n-Undecylether sowie Di-tert-butylether, Di-isopentylether, Di-3-ethyldecylether, tert.-Butyl-n-octylether, iso-Pentyl-n-octylether und 2-Methyl-pentyl-n-octylether,
    • – Fettalkohole, insbesondere lineare und/oder gesättigte Fettalkohole mit 8 bis 30 C-Atomen,
    • – Monoester von C8 bis C30 – Fettsäuren mit Alkoholen mit 6 bis 24 C-Atomen,
    • – faserstrukturverbessernde Wirkstoffe, insbesondere Mono-, Di- und Oligosaccharide, wie beispielsweise Glucose, Galactose, Fructose, Fruchtzucker und Lactose,
    • – konditionierende Wirkstoffe wie Paraffinöle, pflanzliche Öle, z. B. Sonnenblumenöl, Orangenöl, Mandelöl, Weizenkeimöl und Pfirsichkernöl sowie
    • – Phospholipide, beispielsweise Sojalecithin, Ei-Lecithin und Kephaline,
    • – quaternierte Amine wie Methyl-1-alkylamidoethyl-2-alkylimidazolinium-methosulfat,
    • – Entschäumer wie Silikone,
    • – Farbstoffe zum Anfärben des Mittels,
    • – Antischuppenwirkstoffe wie Piroctone Olamine, Zink Omadine und Climbazol,
    • – Wirkstoffe wie Allantoin und Bisabolol,
    • – Cholesterin,
    • - Konsistenzgeber wie Zuckerester, Polyolester oder Polyolalkylether,
    • – Fette und Wachse wie Walrat, Bienenwachs, Montanwachs und Paraffine,
    • – Fettsäurealkanolamide,
    • – Komplexbildner wie EDTA, NTA, β-Alanindiessigsäure und Phosphonsäuren,
    • – Quell- und Penetrationsstoffe wie primäre, sekundäre und tertiäre Phosphate,
    • – Trübungsmittel wie Latex, Styrol/PVP- und Styrol/Acrylamid-Copolymere
    • – Perlglanzmittel wie Ethylenglykolmono- und -distearat sowie PEG-3-distearat,
    • – Pigmente,
    • – Reduktionsmittel wie z. B. Thioglykolsäure und deren Derivate, Thiomilchsäure, Cysteamin, Thioäpfelsäure und α-Mercaptoethansulfonsäure,
    • – Treibmittel wie Propan-Butan-Gemische, N2O, Dimethylether, CO2 und Luft,
    • – Antioxidantien.
  • Bezüglich weiterer fakultativer Komponenten sowie die eingesetzten Mengen dieser Komponenten wird ausdrücklich auf die dem Fachmann bekannten einschlägigen Handbücher, z. B. die oben genannte Monographie von Kh. Schrader verwiesen.
  • Als Konfektionierung dieser Zubereitungen sind beispielsweise Cremes, Lotionen, Lösungen, Wässer, Emulsionen wie W/O-, O/W-, PIT-Emulsionen (Emulsionen nach der Lehre der Phaseninversion, PIT genannt), Mikroemulsionen und multiple Emulsionen, Gele, Sprays, Aerosole und Schaumaerosole geeignet. Der pH-Wert dieser Zubereitungen kann prinzipiell bei Werten von 2-11 liegen. Er liegt bevorzugt zwischen 5 und 11, wobei Werte von 6 bis 10 besonders bevorzugt sind. Zur Einstellung dieses pH-Wertes kann praktisch jede für kosmetische Zwecke verwendbare Säure oder Base verwendet werden. Üblicherweise werden als Säuren Genußsäuren verwendet. Unter Genußsäuren werden solche Säuren verstanden, die im Rahmen der üblichen Nahrungsaufnahme aufgenommen werden und positive Auswirkungen auf den menschlichen Organismus haben. Genußsäuren sind beispielsweise Essigsäure, Milchsäure, Weinsäure, Zitronensäure, Äpfelsäure, Ascorbinsäure und Gluconsäure. Im Rahmen der Erfindung ist die Verwendung von Zitronensäure und Milchsäure besonders bevorzugt.
  • Auf der Haut und dem Haar verbleibende Zubereitungen haben sich als besonders wirksam erwiesen und können daher bevorzugte Ausführungsformen der erfindungsgemäßen Lehre darstellen. Unter auf der Haut und dem Haar verbleibend werden erfindungsgemäß solche Zubereitungen verstanden, die nicht im Rahmen der Behandlung nach einem Zeitraum von wenigen Sekunden bis zu einer Stunde mit Hilfe von Wasser oder einer wäßrigen Lösung wieder von der Haut ab- oder aus dem Haar ausgespült werden. Vielmehr verbleiben die Zubereitungen bis zur nächsten Wäsche auf der Haut oder dem Haar.
  • In einer besonderen Ausführungsform der erfindungsgemäßen Mittel kann es bevorzugt sein, wenn die Mittel als Mikroemulsion vorliegen. Unter Mikroemulsionen werden im Rahmen der Erfindung ebenfalls sogenannte „PIT"-Emulsionen verstanden. Bei diesen Emulsionen handelt es sich im Prinzip um Systeme mit den 3 Komponenten Wasser, Öl und Emulgator, die bei Raumtemperatur als Öl-in-Wasser (O/W)-Emulsion vorliegen. Beim Erwärmen dieser Systeme bilden sich in einem bestimmten Temperaturbereich (üblicherweise als Phaseninversiontemperatur oder „PIT" bezeichnet) Mikroemulsionen aus, die sich bei weiterer Erwärmung in Wasser-in-Öl(W/O)-Emulsionen umwandeln. Bei anschließendem Abkühlen werden wieder O/W-Emulsionen gebildet, die aber auch bei Raumtemperatur als Mikroemulsionen mit einem mittleren Teilchendurchmesser von kleiner als 400 nm, insbesondere mit einem Teilchendurchmesser von etwa 100-300 nm, vorliegen. Einzelheiten bezüglich dieser sehr stabilen, niedrigviskosen Systeme, für die sich die Bezeichnung „PIT-Emulsionen" allgemein durchgesetzt hat, sind einer Vielzahl von Druckschriften zu entnehmen, für die stellvertretend die Veröffentlichungen in Angew.
  • Chem. 97, 655-669 (1985) und Adv. Colloid Interface Sci 58, 119-149 (1995) genannt werden.
  • Erfindungsgemäß können solche Mikro- oder „PIT"-Emulsionen bevorzugt sein, die einen mittleren Teilchendurchmesser von etwa 200 nm aufweisen.
  • Die Herstellung der erfindungsgemäßen Mikroemulsionen kann beispielsweise in der Art erfolgen, daß zunächst die Phaseninversionstemperatur des Systems bestimmt wird, indem man eine Probe der auf übliche Weise hergestellten Emulsion erhitzt und unter Verwendung eines Leitfähigkeitsmeßgerätes die Temperatur bestimmt, bei der die Leitfahigkeit stark abnimmt. Die Abnahme der spezifischen Leitfähigkeit der zunächst vorhandenen O/W-Emulsion nimmt dabei in der Regel über einen Temperaturbereich von 2 bis 8°C von ursprünglich mehr als 1 mS/cm auf Werte unterhalb von 0,1 mS/cm ab. Dieser Temperaturbereich entspricht dann dem Phaseninversions-Temperaturbereich. Nachdem somit der Phaseninversions-Temperaturbereich bekannt ist, kann man die zunächst wie üblich hergestellte Emulsion aus Ölkomponente, nichtionogenem Emulgator, zumindest Teilen des Wassers sowie gegebenenfalls weiteren Komponenten auf eine Temperatur erhitzen, die innerhalb oder oberhalb des Phaseninversions-Temperaturbereiches liegt, sodann abkühlen und gegebenenfalls weitere Komponenten sowie das restliche Wasser hinzufügen. Alternativ kann auch die Herstellung der Mikroemulsion direkt bei einer Temperatur erfolgen, die innerhalb oder oberhalb des Phaseninversions-Temperaturbereiches liegt. Die so hergestellte Mikroemulsion wird dann auf eine Temperatur unterhalb des Phaseninversions-Temperaturbereiches, üblicherweise Raumtemperatur, abgekühlt.
  • Beispiele
  • Alle Mengenangaben sind soweit nicht anders angegeben in Gew.%.
  • 1. Wirkungsnachweis
  • Alle Mengenangaben sind soweit nicht anders vermerkt in Gew.%.
  • Ein 12,5 cm2 großes Stück Faserflies MD 2000 (Besteller. E18 A 40 der Fa. Corovin) wird mit 1,0 g der folgenden Rezeptur 1 besprüht:
    Stenol® 1618 Cetearyl Alcohol (Cognis) 0,75%
    Eumulgin® B2Ceteareth-20 (Cognis) 0,15%
    Dehyquart® A-CA Cetrimoniumchlorid (Cognis, 25 Gew.%) 0,75%
    Glycerin 0,75%
    Wasser, Konservierung, Parfüm ad 100
    pH – Wert 3,5
  • Eine Haarsträhne vom Typ Fischbach und Miller 6933 von 2g Gewicht wurde mit einer handelsüblichen Dauerwelle (Poly Lock Extra Stark) 3 mal kaltgewellt. Die so vorgeschädigte Haarsträhne wurde 24 h bei Raumtemperatur und ca. 50 % rel. Luftfeuchte konditioniert. Anschließend wurde diese Haarsträhne mit Hilfe des wie zuvor hergestellten Tuches behandelt.
  • Eine weitere wie zuvor dargestellte geschädigte Haarsträhne wurde mit der Rezeptur als Konditioner in konventioneller Weise behandelt. Dazu wurde die Haarsträhne mit 1g der Rezeptur 1 Minute behandelt und unter fließendem Wasser 30 Sekunden ausgespült. Nach dem Trocknen und Konditionieren (24 h bei Raumtemperatur und ca. 50 % relativer Luftfeuchte) wurden die beiden Haarsträhnen gegeneinander verglichen.
  • 30 geschulte Probanden verglichen die Haarsträhne in Bezug auf ihren Griff und die Kämmbarkeit. 28 der 30 Personen befanden beide Haarsträhnen als absolut gleich. 2 der Personen befanden die nur mit dem Konditioniertuch behandelte Haarsträhne sogar als angenehmer im Griff und leichter kämmbar. Alle Personen beurteielten den Zeitvorteil und die einfache Handhabung eines ansonsten konventionell aufgebauten Konditioners als hervorragend. 2. Weitere Anwendungsbeispiele 2.1 Pflegetuch gegen Haarspliß
    Abil Quat® 3270 (Degussa) Quaternium-80 4,0%
    Brij® 30 (ICI) Laureth-4 1,5%
    Natrosol® 250 HR (Hercules) Hydroxyethylcellulose 1,0%
    Salcare® SC96 (Clariant) 0,5%
    DC 1501® (Dow Corning) Cyclopentasiloxane (and) Dimethiconol 50,0
    Polymer JR® 400 (Ucar)Polyquaternium-10 0,2
    Panthenol 75 0,2
    Glycerinsäure 0,2
    Wasser, Konservierung, Parfüm, Farbstoff ad 100
    pH–Wert 3,0
  • Diese Formulierung kann sowohl auf Polypropylenfasern als auch auf Viskosefasern aufgetragen werden. Zur Anwendung wird das Pflegetuch wiederholt insbesondere über die keratinischen Fasern gestrichen.
  • In einer weiteren Anwendungsform werden die keratinischen Fasern im Bereich der Haarspitzen mit dem Tuch umwickelt und mit einem Fön erwärmt.
  • 2.2 Zweilagiges Pflegetuch
  • Mit 2,0 g der Rezeptur 1 aus dem zuvor beschriebenen Wirkungsnachweis wird eine Seite eines 100 cm2 großen zweilagigen Vliesstoffes aus Viskose beschichtet. Anschließend wird die zweite Seite desselben Gewebes mit 2,0 g der Rezeptur gemäß Beispiel 2.1 befeuchtet. Auf diese Art wird ein konditionierendes und restrukturierendes Pflegetuch erhalten.

Claims (8)

  1. Pflegetücher, dadurch gekennzeichnet, daß sie mit einer Lösung enthaltend eine Kombination (W) aus a) kationischen Verbindungen (A) und b) Polyhydroxyverbindungen (B) behandelt sind.
  2. Pflegetücher nach Anspruch 1, dadurch gekennzeichnet, daß sie als kationische Verbindungen kationische Tenside (A1) enthalten.
  3. Pflegetücher nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß die Polyhydroxyverbindungen (B) ausgewählt sind aus den Polyolen mit mindestens 2 bis 12 Kohlenstoffatomen und mindestens 2 Hydroxygruppen.
  4. Pflegetücher nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß zusätzlich weitere anionische und/oder amphotere bzw. zwitterionische Tenside enthalten sind.
  5. Pflegetücher nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß zusätzlich nichtionische und/oder anionische und/oder amphotere Polymere enthalten sind.
  6. Pflegetücher nach Ansprüche 5, dadurch gekennzeichnet, daß die Polymeren ausgewählt sind aus nicht-ionischen und/oder amphoteren Polymeren.
  7. Verwendung von Pflegetücher nach einem der Ansprüche 1 bis 6 zur Pflege von keratinischen Fasern.
  8. Verfahren zur Pflege von keratinischen Fasern, dadurch gekennzeichnet, daß ein Pflegetuch gemäß einem der Ansprüche 1 bis 6 mit den keratinischen Fasern in Kontakt gebracht wird, ohne daß anschließend die keratinischen Fasern zusätzlich mit Wasser gespült werden.
DE2002158394 2002-12-12 2002-12-12 Tücher zur Pflege keratinischer Fasern Withdrawn DE10258394A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE2002158394 DE10258394A1 (de) 2002-12-12 2002-12-12 Tücher zur Pflege keratinischer Fasern
PCT/EP2003/013745 WO2004052322A1 (de) 2002-12-12 2003-12-05 Tücher zur pflege keratinischer fasern
EP03789137A EP1569603A1 (de) 2002-12-12 2003-12-05 Tücher zur pflege keratinischer fasern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE2002158394 DE10258394A1 (de) 2002-12-12 2002-12-12 Tücher zur Pflege keratinischer Fasern

Publications (1)

Publication Number Publication Date
DE10258394A1 true DE10258394A1 (de) 2004-06-24

Family

ID=32336315

Family Applications (1)

Application Number Title Priority Date Filing Date
DE2002158394 Withdrawn DE10258394A1 (de) 2002-12-12 2002-12-12 Tücher zur Pflege keratinischer Fasern

Country Status (3)

Country Link
EP (1) EP1569603A1 (de)
DE (1) DE10258394A1 (de)
WO (1) WO2004052322A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2005256329B2 (en) * 2004-06-25 2011-08-18 Henkel Kommanditgesellschaft Auf Aktien Hair conditioners comprising amino-functional silicones

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10975338B2 (en) * 2017-05-16 2021-04-13 The Procter & Gamble Company Active agent-containing three-dimensional articles
US10975340B2 (en) 2017-05-16 2021-04-13 The Procter & Gamble Company Active agent-containing fibrous structure articles
US10975339B2 (en) 2017-05-16 2021-04-13 The Procter & Gamble Company Active agent-containing articles

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19961358A1 (de) * 1999-12-17 2001-06-21 Cognis Deutschland Gmbh Verfahren zur kosmetischen Behandlung der menschlichen Haut
DE10102543A1 (de) * 2001-01-19 2002-07-25 Cognis Deutschland Gmbh Emulsionen auf Basis spezieller Emulgatoren
DE10117502A1 (de) * 2001-04-07 2002-10-17 Cognis Deutschland Gmbh Kosmetiktücher zur Haarpflege
DE10117500A1 (de) * 2001-04-07 2002-10-17 Cognis Deutschland Gmbh Reinigungstücher zur Haarpflege
US20030091617A1 (en) * 2001-06-07 2003-05-15 Mrozinski James S. Gel-coated oil absorbing skin wipes
DE10162184A1 (de) * 2001-10-26 2003-05-08 Cognis Deutschland Gmbh Imprägnierlösung für Kosmetiktücher

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2005256329B2 (en) * 2004-06-25 2011-08-18 Henkel Kommanditgesellschaft Auf Aktien Hair conditioners comprising amino-functional silicones

Also Published As

Publication number Publication date
EP1569603A1 (de) 2005-09-07
WO2004052322A1 (de) 2004-06-24

Similar Documents

Publication Publication Date Title
EP2020227B1 (de) Kationische Cellulosederivate in Kosmetika
DE10022077A1 (de) Kosmetisches Mittel enthaltend 2-Furanonderivate
WO2005115314A1 (de) Verfahren zur restrukturierung keratinischer fasern
EP1232739A1 (de) Wirkstoffkombination aus Kohlenwasserstoffen und Ölen in kosmetischen Mitteln
EP2717843B1 (de) Stylingmittel mit interessanter textur
EP1404286B2 (de) Haarbehandlungsmittel mit carnitintartrat
EP1779845B1 (de) Verwendung kationischer Cellulosederivate in Kosmetika
DE102004030886A1 (de) Haarkonditionierende Mittel mit aminofunktionellen Siliconen
WO2005115328A1 (de) Haut- und haarbehandlungsmittel mit verbessertem leistungsprofil
DE102009002881A1 (de) Haar- und kopfhautschonende Shampoos und Conditioner
WO2002045665A1 (de) Neue verwendung von polyhydroxyverbindungen
DE102006002767A1 (de) Kosmetische Mittel enthaltend ein Polysiloxan und ein Esteröl und weitere Wirkstoffe
DE10258394A1 (de) Tücher zur Pflege keratinischer Fasern
DE102005029534A1 (de) Kosmetische Mittel enthaltend eine Polyammonium-Polysiloxan Verbindung und weitere Wirkstoffe
WO2007048486A1 (de) Haarbehandlungsmittel mit verbesserter pflegeleistung sowie verfahren zur applikation des mittels
EP1363586B1 (de) Verfahren zur dauerhaften verformung keratinischer fasern und mittel
EP1430884A1 (de) Ölduschbad mit spezieller Tensidkombination
EP1569605B1 (de) Reinigungstücher zur reinigung keratinischer fasern
WO2003035018A1 (de) Neue verwendung von zuckertensiden und fettsäurepartialglyceriden in farbverändernden mitteln
EP1791602A1 (de) Verfahren zur pflege keratinischer fasern
DE102009028085A1 (de) Verwendung von Olivenöl und Proteinhydrolysaten in der Haarpflege
EP1669109A1 (de) Pflegende Haarbehandlungsmittel mit keratinreduzierenden Substanzen
DE102004062339A1 (de) Mittel zur Behandlung von grün-stichigem Haar

Legal Events

Date Code Title Description
8127 New person/name/address of the applicant

Owner name: HENKEL AG & CO. KGAA, 40589 DUESSELDORF, DE

8139 Disposal/non-payment of the annual fee