WO2005115328A1 - Haut- und haarbehandlungsmittel mit verbessertem leistungsprofil - Google Patents

Haut- und haarbehandlungsmittel mit verbessertem leistungsprofil Download PDF

Info

Publication number
WO2005115328A1
WO2005115328A1 PCT/EP2005/003544 EP2005003544W WO2005115328A1 WO 2005115328 A1 WO2005115328 A1 WO 2005115328A1 EP 2005003544 W EP2005003544 W EP 2005003544W WO 2005115328 A1 WO2005115328 A1 WO 2005115328A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
fatty
skin
acids
composition according
Prior art date
Application number
PCT/EP2005/003544
Other languages
English (en)
French (fr)
Inventor
Dieter Goddinger
Ingrid Bitter
Original Assignee
Henkel Kommanditgesellschaft Auf Aktien
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel Kommanditgesellschaft Auf Aktien filed Critical Henkel Kommanditgesellschaft Auf Aktien
Publication of WO2005115328A1 publication Critical patent/WO2005115328A1/de

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/34Alcohols
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/39Derivatives containing from 2 to 10 oxyalkylene groups
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/73Polysaccharides
    • A61K8/731Cellulose; Quaternized cellulose derivatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/73Polysaccharides
    • A61K8/737Galactomannans, e.g. guar; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/81Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • A61K8/817Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen; Compositions or derivatives of such polymers, e.g. vinylimidazol, vinylcaprolactame, allylamines (Polyquaternium 6)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/10Washing or bathing preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/02Preparations for cleaning the hair
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/12Preparations containing hair conditioners
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/54Polymers characterized by specific structures/properties
    • A61K2800/542Polymers characterized by specific structures/properties characterized by the charge
    • A61K2800/5426Polymers characterized by specific structures/properties characterized by the charge cationic

Definitions

  • the invention relates to an agent for cleaning and care of skin and hair on the basis of a special combination of active ingredients, a method for cleaning and care of skin and hair and the use of the agent for body care.
  • Detergents for skin and hair such as those commercially available as liquid soaps, shampoos, shower baths, foam baths, shower and washing gels, not only have to have good cleansing properties, but should also be well tolerated for the skin and mucous membranes and also if used frequently, do not lead to excessive degreasing or dry skin.
  • the consumer also assesses the properties of use according to the amount and quality of the foam that forms during use, the care effect and the feeling of freshness.
  • the invention therefore relates to compositions for cleaning and care of skin and hair, comprising a) at least one wash base, b) at least one cationic polymer and c) at least one polyglycerol fatty acid ester and / or a polyglycerol fatty acid ester mixture.
  • the wash base is a surfactant mixture of anionic, amphoteric or zwitterionic and nonionic surfactants, or of mixtures of these classes of surfactants.
  • Suitable anionic surfactants in preparations according to the invention are all anionic surface-active substances suitable for use on the human body. These are characterized by a water-solubilizing, anionic. Group such as B. a carboxylate, sulfate, sulfonate or phosphate group and a lipophilic alkyl group with about 8 to 30 carbon atoms. In addition, glycol or polyglycol ether groups, ester, ether and amide groups and hydroxyl groups can be contained in the molecule. Examples of suitable anionic surfactants are, in each case in the form of the sodium, potassium and ammonium as well as the mono-, di- and tnalkanolammonium salts with 2 to 4 carbon atoms in the alkanol group,
  • - Acylglutamates of the formula XOOC-CH 2 CH 2 CH (C (NH) OR) -COOX, in the RCO for a linear or branched acyl radical having 6 to 22 carbon atoms and 0 and / or 1, 2 or 3 double bonds and X represents hydrogen, an alkali and / or alkaline earth metal, ammonium, alkylammonium, alkanolammonium or glucammonium,
  • Sulfosuccinic acid mono- and dialkyl esters with 8 to 24 carbon atoms in the alkyl group and sulfosuccinic acid mono-alkyl polyoxyethyl esters with 8 to 24 carbon atoms in the alkyl group and 1 to 6 oxyethyl groups, linear alkane sulfonates with 8 to 24 carbon atoms, linear alpha-olefin sulfonates with 8 to 24 carbon atoms, alpha-sulfofatty acid methyl esters of fatty acids with 8 to 30 carbon atoms, alkyl sulfates and alkyl polyglycol ether sulfates of the formula RO (CH 2 -CH 2 O) x - OSO 3 H, in which R is a preferably linear alkyl group with 8 to 30 carbon atoms and x 0 or 1 to 12,
  • Esters of tartaric acid and citric acid with alcohols the addition products of about 2-15 molecules of ethylene oxide and / or propylene oxide to fatty alcohols with 8 to 22 carbon atoms, alkyl and / or alkenyl ether phosphates of the formula (II), O R6 (OCH 2 CH 2 ) n-0-P-OR7 (II) OX in R 6 preferably for an aliphatic hydrocarbon radical with 8 to 30 carbon atoms, R 7 for hydrogen, a radical (CH 2 CH 2 O) n R 6 or X, n for Numbers from 1 to 10 and X represents hydrogen, an alkali or alkaline earth metal or NR 8 R 9 R 10 R 11 , with R 8 to R 1 independently of one another representing a C 1 to C 4 hydrocarbon radical, sulfated fatty acid alkylene glycol ester Formula (III), Rl2CO (AlkO) n SO 3 M (III)
  • Typical examples of monoglyceride (ether) sulfates suitable for the purposes of the invention are the reaction products of lauric acid monoglyceride, coconut fatty acid monoglyceride, palmitic acid monoglyceride, stearic acid monoglyceride, oleic acid monoglyceride and tallow fatty acid monoglyceride as well as their ethylene oxide adducts with sulfur trioxide adducts with sulfur trioxide in their formulas with trioxide of sulfuric acid with sulfuric acid trioxide with their sulfur trioxide.
  • Monoglyceride sulfates of the formula (IV) are preferably used, in which R 13 CO stands for a linear acyl radical having 8 to 18 carbon atoms
  • Preferred anionic surfactants are alkyl sulfates, alkyl polyglycol ether sulfates and ether carboxylic acid salts with 10 to 18 carbon atoms in the alkyl group and up to 12 glycol ether groups in the molecule and sulfosuccinic acid and dialkyl esters with 8 to 18 carbon atoms in the alkyl group and sulfosuccinic acid mono-alkyl polyoxyethyl ester with 8 up to 18 carbon atoms in the alkyl group and 1 to 6 oxyethyl groups. Lauryl ether sulfates with a degree of ethoxylation of 1 to 3 are particularly preferred.
  • the anionic surfactants are usually present in the agents according to the invention in amounts of 1 to 25% by weight, in particular 5 to 15% by weight.
  • Zwitterionic surfactants are surface-active compounds that contain at least one quaternary ammonium group and at least one -COO 9 - or -S ⁇ 3 (_) group in the molecule.
  • Particularly suitable zwitterionic surfactants are the so-called betaines such as the N-alkyl-N, N-dimethylammonium glycinate, for example the cocoalkyldimethylammonium glycinate, N-acylaminopropyl-NN-dimethylammonium glycinate, for example the cocoacylaminopropyldimethylammonium glycinate, and 2-alkyl-3-carboxym - 3-hydroxyethyl-imidazolines, each with 8 to 18 carbon atoms in the alkyl or acyl group, and also the cocoacylaminoethylhydroxyethylcarboxymethylglycinate.
  • a preferred zwitterionic surfactant is the fatty acid amide derivative
  • Amphoteric surfactants are understood to mean those surface-active compounds which, in addition to a C 8 -C 2 alkyl or acyl group, contain at least one free amino group and at least one -COOH or -SO 3 H group in the molecule and are capable of forming internal salts
  • suitable ampholytic surfactants are N-alkylglycines, N-alkylpropionic acids, N-alkylamino-butyric acids, N-alkyliminodipropionic acids, N-hydroxyethyl-N-alkylamidopropylglycines, N-alkyltaurines, N-alkyl sarcosines, 2-alkylaminopropionic acids and alkylaminoacetic acids each with about 8 to 24 carbon atoms in the alkyl group.
  • Particularly preferred ampholytic surfactants are the N-coconut alkyl aminopropionate, the coconut acylaminoethyl aminopropionate and the
  • amphoteric and / or zwitterionic surfactants for the purposes of the invention are betaines, in particular cocamidopropyl betaine.
  • the amphoteric surfactants are usually contained in the agents according to the invention in amounts of 1 to 15% by weight, in particular 2 to 8% by weight.
  • the skin and hair treatment compositions contain as wash base a mixture of at least one anionic surfactant and at least one zwitterionic or amphoteric surfactant.
  • Nonionic surfactants contain z as a hydrophilic group.
  • B a polyol group, a polyalkylene glycol ether group or a combination of polyol and polyglycol ether group.
  • Such connections are, for example
  • alkoxylated fatty acid alkyl esters of the formula (V) R14CO— (0CH 2 CHR15) W 0R16 (V) in which R 14 CO represents a linear or branched, saturated and / or unsaturated acyl radical having 6 to 22 carbon atoms, R 15 represents hydrogen or methyl, R 16 represents linear or branched alkyl radicals having 1 to 4 carbon atoms and w represents numbers from 1 to 20,
  • Sorbitan fatty acid esters and addition products of ethylene oxide with sorbitan fatty acid esters such as, for example, the polysorbates
  • alkyl polygycosides according to the general formula RO- (Z) x where R is alkyl, Z is sugar and x is the number of sugar units.
  • the alkyl polyglycosides which can be used according to the invention can contain only one specific alkyl radical R. Usually, however, these compounds are made from natural fats and oils or mineral oils. In this case, the alkyl radicals R are mixtures corresponding to the starting compounds or corresponding to the respective working up of these compounds.
  • R consists essentially of C 8 and C 10 alkyl groups, essentially from C 12 and C 4 alkyl groups, essentially from C 8 to C 6 alkyl groups or essentially from C 12 - to C ⁇ 6 alkyl groups or consists essentially of C 16 to Cis alkyl groups.
  • Any mono- or oligosaccharides can be used as the sugar building block Z.
  • Sugar with 5 or 6 carbon atoms and the corresponding oligosaccharides are usually used.
  • sugars are glucose, fructose, galactose, arabinose, ribose, xylose, lyxose, allose, old rose, mannose, gulose, idose, talose and sucrose.
  • Preferred sugar components are glucose, fructose, galactose, arabinose and sucrose; Glucose is particularly preferred.
  • alkyl polyglycosides which can be used according to the invention contain on average 1.1 to 5 sugar units. Alkyl polyglycosides with x values of 1.1 to 2.0 are preferred. Alkyl glycosides in which x is 1.1 to 1.8 are very particularly preferred.
  • alkoxylated homologs of the alkyl polyglycosides mentioned can also be used according to the invention. These homologues can contain an average of up to 10 ethylene oxide and / or propylene oxide units per alkyl glycoside unit.
  • alkylene oxide adducts with saturated linear fatty alcohols and fatty acids each with 2 to 30 moles of ethylene oxide per mole of fatty alcohol or fatty acid as well as ethylene oxide adducts with hydrogenated castor oil with 5 to 60 moles of ethylene oxide per mole of castor oil have proven to be preferred nonionic surfactants. Preparations with excellent properties are also obtained if they contain fatty acid esters of ethoxylated glycerol as nonionic surfactants.
  • the alkyl radical R contains 6 to 22 carbon atoms and can be either linear or branched. Primary linear and methyl-branched aliphatic radicals in the 2-position are preferred. Such alkyl radicals are, for example, 1-octyl, 1-decyl, 1-lauryl, 1-myristyl, 1-cetyl and 1-stearyl. 1-Octyl, 1- are particularly preferred. Decyl, 1-lauryl, 1-myristyl. When using so-called "oxo alcohols" as starting materials, compounds with an odd number of carbon atoms in the alkyl chain predominate.
  • the compounds with alkyl groups used as surfactant can each be uniform substances. However, it is generally preferred to use native vegetable or animal raw materials in the production of these substances, so that substance mixtures with different alkyl chain lengths depending on the respective raw material are obtained.
  • both products with a "normal” homolog distribution and those with a narrowed homolog distribution can be used.
  • “Normal” homolog distribution is understood to mean mixtures of homologs which are obtained as catalysts from the reaction of fatty alcohol and alkylene oxide using alkali metals, alkali metal hydroxides or alkali metal alcoholates.
  • narrow homolog distributions are obtained if, for example, hydrotalcites, alkaline earth metal salts of ether carboxylic acids, alkaline earth metal oxides, hydroxides or alcoholates are used as catalysts. The use of products with a narrow homolog distribution can be preferred.
  • cationic surfactants can also be present in the wash base.
  • Cationic surfactants which can be used according to the invention are, for example, of the type of the quaternary ammonium compounds, the esterquats and the amidoamines.
  • Preferred quaternary ammonium compounds are ammonium halides, in particular chlorides and bromides, such as alkyltrimethylammonium chlorides, dialkyldimethylammonium chlorides and trialkylmethylammonium chlorides, e.g. B.
  • cetyltrimethylammonium chloride stearyltrimethylammonium chloride, distearyldimethylammonium chloride, lauryldimethylammonium chloride, lauryldimethyl benzylammonium chloride and tricetylmethylammonium chloride, as well as the imidazolium compounds known under the INCI names Quatemium-27 and Quaternium-83.
  • the long alkyl chains of the above-mentioned surfactants preferably have 10 to 18 carbon atoms.
  • Ester quats are known substances which contain both at least one ester function and at least one quaternary ammonium group as a structural element.
  • Preferred ester quats are quaternized ester salts of fatty acids with triethanolamine, quaternized ester salts of fatty acids with diethanolalkylamines and quaternized ester salts of fatty acids with 1,2-dihydroxypropyldialkylamines.
  • Such products are sold, for example, under the trademarks Stepantex ® , Dehyquart ® and Armocare ® .
  • alkylamidoamines are usually produced by amidation of natural or synthetic fatty acids and fatty acid cuts with dialkylaminoamines.
  • An inventively particularly suitable compound from this group is that available under the name Tegoamid ® S 18 commercially stearamidopropyl dimethylamine.
  • the total surfactant content in the agents according to the invention is 5 to 25% by weight, based on the total agent. Amounts of 7 to 20% by weight are particularly preferred.
  • the action of the active ingredient according to the invention can be increased by emulsifiers.
  • emulsifiers are, for example
  • Ci2-C 22 fatty acid monoesters and diesters of addition products from 1 to 30
  • Sterols are understood to be a group of steroids that are
  • Atom 3 of the steroid structure has a hydroxyl group and both animal tissue (zoosterols) and vegetable fats
  • phytosterols can be isolated.
  • examples of zoosterols are cholesterol and lanosterol.
  • Examples of suitable phytosterols are ergosterol,
  • Phospholipids include primarily the glucose phospholipids, e.g. as lecithins or phosphatidylcholines from e.g. Egg yolk or
  • Plant seeds e.g. soybeans are understood.
  • Fatty acid esters of sugars and sugar alcohols such as sorbitol
  • Polyglycerols and polyglycerol derivatives such as polyglycerol poly
  • Linear and branched fatty acids with 8 to 30 carbon atoms and their Na, K,
  • the agents according to the invention preferably contain the emulsifiers in amounts of 0.1-25% by weight, in particular 0.5-15% by weight, based on the total agent.
  • compositions according to the invention can preferably contain at least one nonionic emulsifier with an HLB value of 8 to 18, according to the 10th edition, Georg Thieme Verlag Stuttgart, New York, in Römpp-Lexikon Chemie (Ed. J. Falbe, M. Regitz). (1997), page 1764, contain the definitions listed.
  • Nonionic emulsifiers with an HLB value of 10-15 can be particularly preferred according to the invention.
  • Cationic polymers for the purposes of the invention are understood to mean polymers which have groups in the main and / or side chain which can be “temporary” or “permanent” cationic.
  • polymers which have a cationic group irrespective of the pH of the composition are referred to as "permanently cationic".
  • These are usually polymers that contain a quaternary nitrogen atom, for example in the form of an ammonium group.
  • Preferred cationic groups are quaternary ammonium groups.
  • those polymers in which the quaternary ammonium group is bonded to a polymer main chain composed of acrylic acid, methacrylic acid or derivatives thereof via a C 4 -hydrocarbon group have proven to be particularly suitable.
  • n is an nat che un Za 'is a phys olog sc treaty ches organic chemicals it or inorganic anion, and copolymers consisting essentially of the listed in formula (VI) monomer units and nonionogenic monomer units are particularly preferred cationic polymers.
  • R 17 stands for a methyl group
  • R 18 , R 19 and R 20 represent methyl groups
  • m has the value 2.
  • Suitable physiologically acceptable counterions X " are, for example, halide ions, sulfate ions, phosphate ions, methosulfate ions and organic ions such as lactate, citrate, tartrate and acetate ions.
  • halide ions in particular chloride, are preferred.
  • a particularly suitable homopolymer is, if desired crosslinked, poly (methacryloyloxyethyltrimethylammonium chloride) with the INCI name Polyquaternium-37.
  • the crosslinking can be carried out with the aid of polyolefinically unsaturated compounds, for example divinylbenzene, tetraallyloxyethane, methylene bisacrylamide, diallyl ether, polyallyl polyglyceryl ether, or allyl ether of sugars or sugar derivatives such as erythritol, pentaerythritol, arabitol, mannitol, sorbitol, sucrose or glucose.
  • Methylene bisacrylamide is a preferred crosslinking agent.
  • the homopolymer is preferably used in the form of a non-aqueous polymer dispersion which should not have a polymer content below 30% by weight.
  • a non-aqueous polymer dispersion which should not have a polymer content below 30% by weight.
  • Such polymer dispersions are available under the names Salcare ® SC 95 (approx. 50% polymer content, further components: mineral oil (INCI name: Mineral Oil) and tridecyl-polyoxypropylene-polyoxyethylene ether (INCI name: PPG-1-Trideceth-6) ) and Salcare ® SC 96 (approx.
  • Copolymers with monomer units of the formula (VI) preferably contain, as nonionic monomer units, acrylamide, methacrylamide, C 1 -C alkyl acrylate and C 4 -C 4 methacrylic acid alkyl ester.
  • nonionic monomers acrylamide is particularly preferred.
  • these copolymers can also be crosslinked.
  • a preferred copolymer according to the invention is the crosslinked acrylamide Methacryloyloxyethyltrimethylammonium chloride copolymer.
  • cationic polymers are, for example, - quaternized cellulose derivatives, such as are available under the designations quat Cel ® and Polymer JR ® commercially.
  • the compounds Celquat ® H 100, Celquat ® L 200 and Polymer JR ® 400 are preferred quaternized cellulose derivatives, - cationic alkyl polyglycosides according to DE-PS 44 13 686, - cationized honey, for example the commercial product Honeyquat ® 50, - cationic Gua .
  • r-derivatives such as in particular the products sold under the trade names Cosmedia® ® Guar and Jaguar ®, - polysiloxanes with quaternary groups, such as the commercially available products Q2-7224 (manufacturer: Dow Corning; a stabilized trimethyl), Dow Corning ® 929 emulsion (containing a hydroxylamino-modified silicone, which is also called amodimethicone), SM-2059 (manufacturer: General Electric), SLM-55067 (manufacturer: Wacker) and Abil ® -Quat 3270 and 3272 (manufacturer: Th Goldschmidt; diquaternary polydimethylsiloxanes, quaternium 80), polymeric dimethyldiallylammonium salts and their copolymers with esters and amides of acrylic acid and methacrylic acid.
  • the products commercially available under the names Merquat ® 100 (poly (dimethyldiallylammonium chloride)) and Merquat ® 550 (dimethyldiallylammonium chloride-acrylamide copolymer) are examples of such cationic polymers, - copolymers of vinylpyrrolidone with quaternized derivatives of dialkylaminoalkyl acrylate and - methacrylate, such as vinylpyrrolidone-dimethylaminoethyl methacrylate copolymers quaternized with diethyl sulfate.
  • Such compounds are commercially available under the names Gafquat ® 734 and Gafquat ® 755, - vinylpyrrolidone-vinylimidazolium methochloride copolymers, as are offered under the names Luviquat ® FC 370, FC 550, FC 905 and HM 552, - quaternized polyvinyl alcohol, and those under the names - Polyquaternium 2, - Polyquaternium 17, - Polyquaternium 18 and - Polyquaternium 27 known polymers with quaternary nitrogen atoms in the main polymer chain.
  • cationic polymers are the so-called "temporarily cationic" polymers. These polymers usually contain an amino group which is present as a quaternary ammonium group at certain pH values and is therefore cationic.
  • chitosan and its derivatives such as 101 are freely available commercially, for example under the trade names Hydagen CMF ®, Hydagen HCMF ®, Kytamer ® PC and Chitolam ® NB /.
  • Chitosans are deacetylated chitins that are commercially available in different degrees of deacetylation and different degrees of degradation (molecular weights). Their manufacture is described, for example, in DE 44 40 625 A1 and in DE 1 95 03 465 A1.
  • Chitosans which are particularly suitable have a degree of deacetylation of at least 80% and a molecular weight of 5 ⁇ 10 5 to 5 ⁇ 10 ⁇ (g / mol).
  • the chitosan must be converted into the salt form. This can be done by dissolving in dilute aqueous acids. Suitable acids are mineral acids such as hydrochloric acid, sulfuric acid and phosphoric acid as well as organic acids such as low molecular weight carboxylic acids, polycarboxylic acids and hydroxycarboxylic acids. Higher molecular weight alkylsulfonic acids or alkylsulfuric acids or organophosphoric acids can also be used, provided that they have the required physiological tolerance.
  • Suitable acids for converting the chitosan into the salt form are, for example, acetic acid, glycolic acid, tartaric acid, malic acid, citric acid, lactic acid, 2-pyrrolidinone-5-carboxylic acid, benzoic acid or salicylic acid.
  • Low molecular weight hydroxycarboxylic acids such as glycolic acid or lactic acid are preferably used.
  • the cationic polymer is at least one polymer from the group Polyquatemium-7 (for example the polymer sold under the trade name Merquat 550 by Nalco or the polymer sold under the name Conditioner P7), Polyquatemium-10 (for example the one below the product polymer JR 400 product sold by Amerchol) or guar hydroxypropyltrimethylammonium chloride (for example the polymer sold under the trade name Jaguar Excel by Rhodia) in the skin and hair treatment compositions.
  • Polyquatemium-7 for example the polymer sold under the trade name Merquat 550 by Nalco or the polymer sold under the name Conditioner P7
  • Polyquatemium-10 for example the one below the product polymer JR 400 product sold by Amerchol
  • guar hydroxypropyltrimethylammonium chloride for example the polymer sold under the trade name Jaguar Excel by Rhodia
  • the cationic polymers are usually present in the agents according to the invention in amounts of 0.01 to 10% by weight, in particular in amounts of 0.05 to 5% by weight, based on the total weight of the agent.
  • an ester of polyglycerol with C 6 -C 6 fatty acids is used as component c).
  • component c) is polyglyceryl-3-caprate and / or polyglyceryl-4-caprate, in particular polyglyceryl-3-caprate.
  • Component c) is used in the agents according to the invention in an amount of 0.01 to 3% by weight, based on the total weight of the agent.
  • a content of component c) in the agents according to the invention of 0.1 to 2% by weight is particularly preferred.
  • the skin and hair treatment compositions can furthermore contain one or more representatives from the group of vitamins, protein hydrolyzates, plant extracts or pearlescent substances.
  • vitamins is understood to mean those vitamins, provitamins and vitamin derivatives which are usually assigned to groups A, B, C, E, F and H.
  • vitamin A includes retinol (vitamin A- ⁇ ) and 3,4-didehydroretinol (vitamin A 2 ).
  • the ß-carotene is the provitamin of retinol.
  • vitamin A acid and its esters, vitamin A aldehyde and vitamin A alcohol and its esters such as palmitate and acetate come into consideration as vitamin A components.
  • the preparations used according to the invention preferably contain the vitamin A component in amounts of 0.05-1% by weight, based on the entire preparation.
  • the vitamin B group or the vitamin B complex include u. a.
  • Vitamin B-i (thiamine)
  • Vitamin B 2 (riboflavin)
  • Vitamin B 3 The connections are often called this
  • Nicotinic acid and nicotinic acid amide (niacinamide) performed.
  • nicotinic acid amide is preferred, that in those used according to the invention Agents are preferably contained in amounts of 0.05 to 1 wt .-%, based on the total agent.
  • Vitamin B 5 pantothenic acid, panthenol and pantolactone.
  • panthenol and / or pantolactone is preferably used.
  • Derivatives of panthenol which can be used according to the invention are, in particular, the esters and ethers of panthenol and cationically derivatized panthenols. Individual representatives are, for example, panthenol triacetate, panthenol monoethyl ether and its monoacetate and the cationic panthenol derivatives disclosed in WO 92/13829.
  • the compounds of the vitamin Bs type mentioned are preferably present in the agents used according to the invention in amounts of 0.05-10% by weight, based on the total agent. Amounts of 0.1-5% by weight are particularly preferred.
  • Vitamin B 6 pyridoxine as well as pyridoxamine and pyridoxal).
  • Vitamin C (ascorbic acid). Vitamin C is preferably used in the agents used according to the invention in amounts of 0.1 to 3% by weight, based on the total agent. Use in the form of the palmitic acid ester, the glucosides or phosphates can be preferred. Use in combination with tocopherols may also be preferred.
  • Vitamin E tocopherols, especially ⁇ -tocopherol.
  • Tocopherol and its derivatives which include in particular the esters such as acetate, nicotinate, phosphate and succinate, are preferably present in the agents used according to the invention in amounts of 0.05-1% by weight, based on the total agent ,
  • Vitamin F usually means essential fatty acids, in particular linoleic acid, linolenic acid and arachidonic acid.
  • Vitamin H The compound (3aS, 4S, 6ar?) - 2-oxohexa- hydrothienol [3,4-] imidazole-4-valeric acid is called vitamin H, but for which there is the trivial name biotin has now become established.
  • Biotin is contained in the agents used according to the invention preferably in amounts of 0.0001 to 1.0% by weight, in particular in amounts of 0.001 to 0.01% by weight.
  • the preparations used according to the invention preferably contain vitamins, provitamins and vitamin precursors from groups A, B, E and H. Of course, several vitamins and vitamin precursors can also be present at the same time.
  • Panthenol, pantolactone, pyridoxine and their derivatives as well as nicotinamide and biotin are particularly preferred.
  • the total amount of vitamins and vitamin precursors used in the agents used according to the invention is 0.0001-10% by weight, based on the total agent, preferably 0.0001-5% by weight, and in particular 0.0001-3% by weight.
  • Protein hydrolyzates for the purposes of the invention are protein hydrolyzates and / or amino acids and their derivatives. Protein hydrolyzates are product mixtures that are obtained by acidic, basic or enzymatically catalyzed breakdown of proteins (proteins). According to the invention, the term protein hydrolyzates is also understood to mean total hydrolyzates and individual amino acids and their derivatives as well as mixtures of different amino acids. According to the invention, polymers constructed from amino acids and amino acid derivatives are furthermore to be understood under the term protein hydrolyzates. The latter include, for example, polyalanine, polyasparagine, polyserine, etc.
  • compositions which can be used according to the invention are L-alanyl-L-prolin, polyglycine, glycyl-L-glutamine or D / L-methionine-S-methylsulfonium chloride.
  • ß-amino acids and their derivatives such as ß-alanine, anthranilic acid or hippuric acid can also be used according to the invention.
  • the molecular weight of the protein hydrolyzates which can be used according to the invention is between 75, the molecular weight for glycine, and 200,000, preferably the molecular weight is 75 to 50,000 and very particularly preferably 75 to 20,000 daltons.
  • protein hydrolyzates of plant, animal, marine or synthetic origin can be used.
  • Animal protein hydrolyzates are, for example, elastin, collagen, keratin, silk and milk protein protein hydrolyzates, which can also be in the form of salts.
  • Such products are, for example, under the trademarks Dehylan ® (Cognis), Promois ® (Interorgana), Collapuron ® (Cognis), Nutrilan ® (Cognis), Gelita-Sol ® (Deutsche Gelatine Fabriken Stoess & Co), Lexein ® (Inolex) and Kerasol ® (Croda) sold.
  • protein hydrolysates of plant origin e.g. B. soy, almond, pea, potato and wheat protein hydrolyzates.
  • Such products are, for example, under the trademarks Gluadin ® (Cognis), DiaMin ® (Diamalt), Lexein ® (Inolex), Hydrosoy ® (Croda), Hydrolupin ® (Croda), Hydrosesame ® (Croda), Hydrotritium ® (Croda) and Crotein ® (Croda) available.
  • amino acid mixtures obtained in some other way can optionally be used in their place. It is also possible to use derivatives of the protein hydrolyzates, for example in the form of their fatty acid condensation products. Such products are sold for example under the names Lamepon® ® (Cognis), Lexein ® (Inolex), Crolastin ® (Croda) or crotein ® (Croda).
  • the protein hydrolyzates or their derivatives are preferably present in the preparations used according to the invention in amounts of 0.1 to 10% by weight, based on the total agent. Amounts of 0.1 to 5% by weight are particularly preferred.
  • plant extracts can be used in the skin and hair treatment compositions according to the invention. These extracts are usually produced by extracting the entire plant. In individual cases, however, it may also be preferred to produce the extracts exclusively from flowers and / or leaves of the plant.
  • the extracts from green tea, almond, aloe vera, coconut, mango, apricot, lime, wheat, kiwi and melon are particularly suitable for the use according to the invention.
  • Alcohols and mixtures thereof can be used as extractants for the production of the plant extracts mentioned.
  • alcohols lower alcohols such as ethanol and isopropanol, but in particular polyhydric alcohols such as ethylene glycol and propylene glycol, are preferred, both as the sole extracting agent and in a mixture with water.
  • Plant extracts based on water / propylene glycol in a ratio of 1:10 to 10: 1 have proven to be particularly suitable.
  • the plant extracts can be used both in pure and in diluted form. If they are used in diluted form, they usually contain about 2 to 80% by weight of active substance and, as a solvent, the extractant or extractant mixture used in their extraction.
  • mixtures of several, in particular two, different plant extracts in the agents according to the invention may be preferred.
  • the amount of plant extracts used in the agents used according to the invention is usually 0.01-50% by weight, based on the total agent, preferably 0.1-30% by weight, and in particular 0.1-20% by weight.
  • Pearlescent waxes are: alkylene glycol esters; fatty acid; partial glycerides; Esters of polyvalent, optionally hydroxy-substituted carboxylic acids with fatty alcohols having 6 to 22 carbon atoms; Fatty substances, such as, for example, fatty alcohols, fatty ketones, fatty aldehydes, fatty ethers and fatty carbonates, which have a total of at least 24 carbon atoms; Ring opening products of olefin epoxides with 12 to 22 carbon atoms with fatty alcohols with 12 to 22 carbon atoms and / or polyols with 2 to 15 carbon atoms and 2 to 10 hydroxyl groups and mixtures thereof.
  • the skin and hair treatment compositions further contain menthol or menthol derivatives, for example menthone glycerol acetal, menthoxypropanediol or camphor.
  • menthol or menthol derivatives for example menthone glycerol acetal, menthoxypropanediol or camphor.
  • the preferred amount of menthol or one of its derivatives is 0.005 to 1% by weight, in particular 0.01 to 0.2% by weight, in each case based on the total weight of the composition.
  • the agents according to the invention can furthermore contain vegetable, mineral or synthetic oils, as well as mixtures of these components.
  • Triglycerides and mixtures of triglycerides are usually used as natural (vegetable) oils.
  • Preferred natural oils for the purposes of the invention are coconut oil, (sweet) almond oil, walnut oil, peach kernel oil, avocado oil, tea tree oil (tea tree oil), soybean oil, sesame oil, sunflower oil, tsubaki oil, evening primrose oil, rice bran oil, palm kernel oil, mangokem oil, meadow foam oil, macaque oil, macaque oil, safflower oil, safflower oil Grape seed oil, apricot kernel oil, babssu oil, olive oil, wheat germ oil, pumpkin seed oil, mallow oil, hazelnut oil, safflower oil, canola oil, sasanqua oil, jojoba oil and shea butter.
  • Isoparaffin oils and synthetic hydrocarbons are used.
  • An inventively employable hydrocarbon is for example the commercial product available as a 1, 3-di- (2-ethyIhexyl) -cycIohexan (Cetiol ® S).
  • Suitable synthetic oils are dimers, telomers and polymers of olefins and silicone compounds, in particular dialkyl and alkylaryl silicones, such as, for example, dimethylpolysiloxane and methylphenylpolysiloxane, and their hydroxyl-terminated, alkoxylated and quaternized analogs.
  • dialkyl and alkylaryl silicones such as, for example, dimethylpolysiloxane and methylphenylpolysiloxane, and their hydroxyl-terminated, alkoxylated and quaternized analogs.
  • silicones are the products sold by Dow Corning under the names DC 190, DC 200, DC 344 and DC 345 (Cyclomethicone).
  • dimers, telomers and polymers of olefins are, according to the invention, in particular dimers, telomers and polymers which are composed of low molecular weight olefins such as ethylene, propylene, butylene, isobutylene, pentene, cyclopentene, isopentenes or 1-decene and which may optionally also be hydrogenated.
  • Such products may, for example, under the trade designations Nexbase ®, Permethyl ®, such as Permethyl ® 102A, Gulftene ®, for example Gulftene ® 10 or Gulftene ® 12, Arlamol ® PA01, Paradecinol ® , such as in particular Paradecinol ® FV 16-18, or Indopol ® can be purchased.
  • the oils which can be used according to the invention also include dialkyl ethers.
  • Dialkyl ethers which can be used according to the invention are in particular di-n-alkyl ethers having a total of between 12 to 36 carbon atoms, in particular 12 to 24 carbon atoms, such as, for example, di-n-octyl ether, di-n-decyl ether, di-n-nonyl ether, di- n-undecyl ether, di-n-dodecyl ether, n-hexyl-n-octyl ether, n-octyl-n-decyl ether, n-decyl-n-undecyl ether, n-undecyl-n-dodecyl ether and n-hexyl-n-undecyl ether as well Di-tert-butyl ether, di-iso-pentyl ether
  • the skin and hair treatment compositions according to the invention usually contain the water-insoluble oil component in a quantity range from 0.01 to 5% by weight, in particular from 0.1 to 3% by weight, based on the total weight of the composition.
  • the effect of the active ingredient combination according to the invention can be further optimized by further fatty substances.
  • Other fatty substances are to be understood as fatty acids, fatty alcohols and natural and synthetic waxes, which can be present both in solid form and in liquid form in aqueous dispersion.
  • Linear and / or branched, saturated and / or unsaturated fatty acids having 6 to 30 carbon atoms can be used as fatty acids.
  • Fatty acids with 10-22 carbon atoms are preferred.
  • isostearic as the commercial products Emersol ® 871 and Emersol ® 875
  • isopalmitic acids such as the commercial product Edenor ® IP 95, and all other products sold under the trade names Edenor ® (Cognis) fatty acids.
  • fatty acids are caproic acid, caprylic acid, 2-ethylhexanoic acid, capric acid, lauric acid, isotridecanoic acid, myristic acid, palmitic acid, palmitoleic acid, stearic acid, isostearic acid, oleic acid, elaidic acid, petroselinic acid, linoleic acid, linolenic acid, Elaeostearic acid, arachic acid, gadoleic acid, behenic acid and erucic acid and their technical mixtures, which are obtained, for example, in the pressure splitting of natural fats and oils, in the oxidation of aldehydes from Roelen's oxosynthesis or in the dimerization of unsaturated fatty acids.
  • the fatty acid cuts which are obtainable from coconut oil or palm oil are usually particularly preferred; the use of stearic acid is generally particularly preferred.
  • the amount used is 0.1-15% by weight, based on the total agent. In a preferred embodiment, the amount is 0.5-10% by weight, with amounts of 1-5% by weight being very particularly advantageous.
  • Saturated, mono- or polyunsaturated, branched or unbranched fatty alcohols with C @ - C 30 -, preferably C 10 - C 22 - and very particularly preferably C 2 - C 22 - carbon atoms can be used as fatty alcohols.
  • the fatty alcohols derive from preferably natural fatty acids, and it can usually be assumed that they are obtained from the esters of the fatty acids by reduction.
  • suitable according to the invention are those fatty alcohol cuts which are produced by reducing naturally occurring triglycerides such as beef tallow, palm oil, peanut oil, rapeseed oil, cottonseed oil, soybean oil, sunflower oil and linseed oil or fatty acid esters formed from their transesterification products with corresponding alcohols, and thus represent a mixture of different fatty alcohols.
  • Such substances are, for example, under the names Stenol ® , for example Stenol ® 1618 or Lanette ® , for example Lanette ® O or Lorol ® , for example Lorol ® C8, Lorol ® C14, Lorol ® C18, Lorol ® C8-18, HD-Ocenol ® , Crodacol ® , e.g.
  • Crodacol ® CS, Novol ® , Eutanol ® G, Guerbitol ® 16, Guerbitol ® 18, Guerbitol ® 20, Isofol ® 12, Isofol ® 16, Isofol ® 24, Isofol ® 36, Isocarb ® 12, Isocarb ® 16 or Isocarb ® 24 are commercially available.
  • wool wax alcohols such as those commercially available under the names Corona ® , White Swan ® , Coronet ® or Fluilan ® , can also be used.
  • the fatty alcohols are used in amounts of 0.1-20% by weight, based on the entire preparation, preferably in amounts of 0.1-10% by weight.
  • Solid paraffins or isoparaffins, camamauba waxes, beeswaxes, candelilla waxes, ozokerites, ceresine, walrus, sunflower waxes, fruit waxes such as apple wax or citrus waxes, microwaxes made of PE or PP can be used according to the invention as natural or synthetic waxes.
  • Such waxes are available, for example, from Kahl & Co., Trittau.
  • fatty substances are, for example
  • Ester oils are understood to be the esters of C 6 -C 30 fatty acids with C 2 -C 30 fatty alcohols.
  • the monoesters of fatty acids with alcohols having 2 to 24 carbon atoms are preferred.
  • Examples of fatty acid components used in the esters are ceproic acid, caprylic acid, 2-ethylhexanoic acid, capric acid, lauric acid, isotridecanoic acid, myristic acid, palmitic acid, palmitoleic acid, stearic acid, isostearic acid, oleic acid, elaidic acid, petroselinic acid, linoleic acid, arenoleic acid, linoleic acid, linoleic acid, linoleic acid, linoleic acid, linoleic acid, linoleic acid, linoleic acid, linoleic acid, linoleic acid, linoleic acid,
  • fatty alcohol components in the ester oils are isopropyl alcohol, capron alcohol, caprylic alcohol, 2-ethylhexyl alcohol, capric alcohol, lauryl alcohol, isotridecyl alcohol, myristyl alcohol, cetyl alcohol, palmoleyl alcohol, stearyl alcohol, isostearyl alcohol, oleyl alcohol, elaolyl alcohol, elaol alcohol, elaol alcohol, elaol alcohol, elaol alcohol Gadoleyl alcohol, be- nyl alcohol, erucyl alcohol and brassidyl alcohol and their technical mixtures, which are obtained, for example, in the high-pressure hydrogenation of technical methyl esters based on fats and oils or aldehydes from Roelen's oxo synthesis and as a monomer fraction in the dimerization of unsaturated fatty alcohols.
  • isopropyl myristate IPM Rilanit ®
  • isononanoic acid C16-18 alkyl ester Cetiol ® SN
  • 2-ethylhexyl palmitate Cegesoft ® 24
  • stearic acid-2-ethylhexyl ester Cetiol ® 868
  • cetyl oleate glycerol tricaprylate, KokosfettalkohoI- caprinatV-caprylate (Cetiol ® LC), n-butyl stearate, olerlerucate (Cetiol ® J 600), isopropyl palmitate (Rilanit ® IPP), oleyl oleates (Cetiol ® ), lauric acid hexyl ester (Cetiol ® A), di-n-butyl adipate (Cetiol ®
  • Dicarboxylic acid esters such as di-n-butyl adipate, di- (2-ethylhexyl) adipate, di- (2-ethylhexyl) succinate and di-isotridecyl acelate as well as diol esters such as ethylene glycol dioleate, ethylene glycol di-isotridecanoate, propylene glycol di (2 ethylhexanoate), propylene glycol di-isostearate, propylene glycol di-pelargonate, butanediol di-isostearate, neopentyl glycol dicaprylate,
  • Ethoxylated or non-ethoxylated mono, - di- and trifatty acid esters of saturated and / or unsaturated linear and / or branched fatty acids with glycerol with a degree of ethoxylation of 0 - 60 such as Monomuls ® 90-018, Monomuls ® 90-L12, Cetiol ® HE or Cutina ® MD.
  • Cetiol ® HE and Monomuls ® 90-O18 are particularly preferred fat components in the sense of the invention.
  • Short-chain carboxylic acids (N) can also be used advantageously for the purposes of the invention.
  • Short-chain carboxylic acids and their derivatives for the purposes of the invention are understood to mean carboxylic acids which can be saturated or unsaturated and / or straight-chain or branched or cyclic and / or aromatic and / or heterocyclic and have a molecular weight of less than 750.
  • the short-chain carboxylic acids in the context of the invention can have one, two, three or more carboxy groups.
  • carboxylic acids having several carboxy groups preference is given to carboxylic acids having several carboxy groups, in particular di- and tricarboxylic acids.
  • the carboxy groups can be present in whole or in part as an ester, acid anhydride, lactone, amide, imidic acid, lactam, lactim, dicarboximide, carbohydrazide, hydrazone, hydroxam, hydroxime, amidine, amidoxime, nitrile, phosphonic or phosphate ester.
  • the carboxylic acids according to the invention can of course be substituted along the carbon chain or the ring structure.
  • the substituents of the carboxylic acids according to the invention include, for example, C1-C8-alkyl, C2-C8-alkenyl, aryl, aralkyl and aralkenyl, hydroxymethyl, C2-C8-hydroxyalkyl, C2-C8-hydroxyalkenyl, Aminomethyl, C2-C8 aminoalkyl, cyano, formyl, oxo, thioxo, hydroxyl, mercapto, amino, carboxy or imino groups.
  • Preferred substituents are C1-C8-alkyl, hydroxymethyl, hydroxy, amino and carboxy groups. Substituents in the ⁇ position are particularly preferred.
  • substituents are hydroxyl, alkoxy and amino groups, where the amino function can optionally be further substituted by alkyl, aryl, aralkyl and / or alkenyl radicals.
  • preferred carboxylic acid derivatives are the phosphonic and phosphate esters.
  • carboxylic acids are formic acid, acetic acid, propionic acid, butyric acid, isobutyric acid, valeric acid, isovaleric acid, pivalic acid, oxalic acid, malonic acid, succinic acid, Glutaric acid, glyceric acid, glyoxylic acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, propiolic acid, crotonic acid, isocrotonic acid, elaidic acid, maleic acid, fumaric acid, muconic acid, citraconic acid, mesaconic acid, camphoric acid, benzoic acid, o, m, t-phthalic acid hydratropic acid, atropic acid, cinnamic acid, isonicotinic acid, nicotinic acid, Bicarbaminklare, 4,4 '-Dicyano-6,6'-binicotinkladidilic acid, 8-
  • Carbamoyloctanoic acid 1, 2,4-pentanetricarboxylic acid, 2-pyrrolecarboxylic acid, 1, 2,4,6,7-naphthalenepentaacetic acid, malonaldehyde acid, 4-hydroxyphthalamic acid, 1-pyrazolecarboxylic acid, gallic acid or propane tricarboxylic acid, a dicarboxylic acid selected from the group consisting of is formed by compounds of the general formula (Nl),
  • n a number from 4 to 12 and one of the two groups X and Y for a COOH group and the other for hydrogen or a methyl or Ethyl radical
  • dicarboxylic acids of the general formula (Nl) which additionally carry 1 to 3 methyl or ethyl substituents on the cyclohexene ring
  • dicarboxylic acids which formally form from the dicarboxylic acids of the formula (Nl) by the addition of a molecule of water to the double bond in the cyclohexene ring dicarboxylic acids of the general formula (Nl) which additionally carry 1 to 3 methyl or ethyl substituents on the cyclohexene ring
  • dicarboxylic acids which formally form from the dicarboxylic acids of the formula (Nl) by the addition of a molecule of water to the double bond in the cyclohexene ring.
  • Dicarboxylic acids of the formula (N-1) are known in the literature.
  • a manufacturing process can be found, for example, in US Pat. No. 3,753,968.
  • the dicarboxylic acids of the formula (NI) can be prepared, for example, by reacting polyunsaturated dicarboxylic acids with unsaturated monocarboxylic acids in the form of a Diels-Alder cyclization. Usually one is from a polyunsaturated fatty acid as a dicarboxylic acid component out.
  • the linoleic acid accessible from natural fats and oils is preferred.
  • Acrylic acid, but also, for example, methacrylic acid and crotonic acid are particularly preferred as the monocarboxylic acid component.
  • Diels-Alder reactions usually produce mixtures of isomers in which one component is in excess. According to the invention, these isomer mixtures can be used just like the pure compounds.
  • those dicarboxylic acids which differ from the compounds of the formula (Nl) by 1 to 3 methyl or ethyl substituents on the cyclohexyl ring or formally by addition of one of these compounds can also be used according to the invention Molecule water is formed on the double formation of the cyclohexene ring.
  • the dicarboxylic acid (mixture) which results from the reaction of linoleic acid with acrylic acid has proven to be particularly advantageous according to the invention. It is a mixture of 5- and 6-carboxy-4-hexyl-2-cyclohexen-1-octanoic acid.
  • Such compounds are commercially available under the designations Westvaco Diacid 1550 Westvaco Diacid ® ® 1595 (manufacturer: Westvaco).
  • polyhydroxycarboxylic acids as well as the dihydroxy, trihydroxy and polyhydroxy di, tri and polycarboxylic acids. It has been shown here that, in addition to the hydroxycarboxylic acids, the hydroxycarboxylic acid esters and the mixtures of hydroxycarboxylic acids and their esters as well as polymeric hydroxycarboxylic acids and their esters can be very particularly preferred.
  • Preferred hydroxycarboxylic acid esters are, for example, full esters of glycolic acid, lactic acid, malic acid, tartaric acid or citric acid.
  • Other basically suitable hydroxycarboxylic acid esters are esters of ⁇ -hydroxypropionic acid, tartronic acid, D-gluconic acid, sugar acid, mucic acid or glucuronic acid.
  • esters are primary, linear or branched aliphatic alcohols with 8-22 carbon atoms, for example fatty alcohols or synthetic fatty alcohols.
  • the esters of C12-C15 fatty alcohols are particularly preferred. Esters of this type are commercially available, eg under the trademark Cosmacol® ® EniChem, Augusta Industriale.
  • Particularly preferred polyhydroxy polycarboxylic acids are polylactic acid and poly-tartaric acid and their esters.
  • conditioning agents are silicone oils and silicone gums, in particular dialkyl and alkylarylsiloxanes, such as, for example, dimethylpolysiloxane and methylphenylpolysiloxane, and their alkoxylated and quaternized analogs.
  • silicone oils and silicone gums in particular dialkyl and alkylarylsiloxanes, such as, for example, dimethylpolysiloxane and methylphenylpolysiloxane, and their alkoxylated and quaternized analogs.
  • silicones are the Dow Corning under the names DC 190, DC 200 and DC 1401 products sold and the commercial product Fancorsil ® L1M -1.
  • cationic silicone oils such as, for example, the commercially available products Q2-7224 (manufacturer: Dow Corning; a stabilized trimethylsilylamodimethicone), Dow Corning® 939 emulsion (containing a hydroxylamino-modified silicone, also known as amodimethicone) ), SM-2059 (manufacturer: General Electric), SLM-55067 (manufacturer: Wacker) and Abil ® -Quat 3270 and 3272 (manufacturer adherer: Th. Goldschmidt; diquaternary polydimethylsiloxanes, Quaternium-80).
  • a suitable anionic silicone oil is the product Dow Corning ® 1784.
  • Thickeners such as agar agar, guar gum, alginates, xanthan gum, gum arabic, karaya gum, locust bean gum, linseed gums, dextrans, cellulose derivatives, e.g. B. methyl cellulose, hydroxyalkyl cellulose and carboxymethyl cellulose, starch fractions and derivatives such as amylose, amylopectin and dextrins, clays such. B. bentonite or fully synthetic hydrocolloids such.
  • hair-conditioning compounds such as phospholipids, for example soy lecithin, egg lecithin and cephalins, and silicone oils,
  • Solvents and intermediates such as ethanol, isopropanol, ethylene glycol, propylene glycol, glycerin and diethylene glycol,
  • active ingredients which improve fiber structure in particular mono-, di- and oligosaccharides, such as, for example, glucose, galactose, fructose, fructose and lactose,
  • anti-dandruff agents such as piroctone olamine, zinc omadine and climbazol
  • Opacifiers such as latex, styrene / PVP and styrene / acrylamide copolymers
  • Pearlescent agents such as ethylene glycol mono- and distearate and PEG-3 distearate,
  • Propellants such as propane-butane mixtures, N 2 O, dimethyl ether, CO 2 and air,
  • Preservatives such as benzoic acid or salicylic acid, inorganic salts of mono- or polyvalent cations, for example sodium chloride,
  • formulations of the agents according to the invention are not subject to any restrictions and can be formulated as an emulsion, cream, solution, gel or mousse.
  • a second subject of the invention is a method for cleaning and care of skin and hair, in which the composition according to the invention is applied to the skin and / or hair, distributed and rinsed out again with water.
  • a third subject of the invention is the use of the composition according to the invention for the cleaning and care of skin and hair.

Abstract

Gegenstand der Erfindung sind Mittel zur Reinigung und Pflege von Haut und Haaren, enthaltend a) mindestens eine Waschbase, b) mindestens ein kationisches Polymer und c) mindestens einen Polyglycerinfettsäureester und/oder ein Polyglycerinfettsäureestergemisch. Die Körperreinigung unter Verwendung dieser Mittel führt zu einem signifikant verbesserten Frische-Pflege-Ergebnis.

Description

"Haut- und Haarbehandlungsmittel mit verbessertem Leistungsprofil"
Die Erfindung betrifft ein Mittel zur Reinigung und Pflege von Haut und Haaren auf der Basis einer speziellen Wirkstoffkombination, ein Verfahren zur Reinigung und Pflege von Haut und Haaren sowie die Verwendung des Mittels für die Körperpflege.
Reinigungsmittel für Haut und Haare, wie sie beispielsweise als flüssige Seifen, Shampoos, Duschbäder, Schaumbäder, Dusch- und Waschgele im Handel erhältlich sind, müssen nicht nur ein gutes Reinigungsvermögen aufweisen, sondern sollen weiterhin für die Haut und die Schleimhäute gut verträglich sein und auch bei häufiger Anwendung nicht zu starker Entfettung oder Hauttrockenheit führen. Darüber hinaus beurteilt der Verbraucher die Gebrauchseigenschaften aber auch nach der Menge und der Qualität des bei der Anwendung sich bildenden Schaums, nach der Pflegewirkung und dem Frischegefühl.
In modernen Haut- und Haarbehandlungsmitteln versucht man üblicherweise alle diese Anforderungen in einem Produkt zu vereinen. Umfangreiche Studien haben jedoch gezeigt, dass beispielsweise Duschbäder generell vom Verbraucher entweder als Frische-orientiertes Produkt oder als pflegendes Produkt beurteilt werden. Bei den Frische-orientierten Produkten wird das Frische-Erlebnis positiv beurteilt, hautpflegende Aspekte werden dagegen vom Verbraucher vermisst. Auf der anderen Seite versorgen die pflegenden Produkte die Haut und das Haar fühlbar mit Pflegesubstanzen, weisen aber die vom Verbraucher bemängelten Nachteile der geringeren Frischewirkung und gegebenenfalls des geringeren Schaumvermögens auf, was meist mit dem Gefühl einer schlechteren Reinigungsleistung einhergeht.
Vollkommen überraschend wurde nun ein neuartiges Mittel zur Reinigung von Haut und Haaren gefunden, das die verbraucherrelevanten Parameter Pflege und Frische in einzigartiger und idealer Weise vereinigt, ohne dass dabei die Reinigungsleistung verloren geht.
Gegenstand der Erfindung sind daher Mittel zur Reinigung und Pflege von Haut und Haaren, enthaltend a) mindestens eine Waschbase, b) mindestens ein kationisches Polymer und c) mindestens einen Polyglycerinfettsäureester und/oder ein Polyglycerinfettsäureestergemisch.
Bei der Waschbase handelt es sich erfindungsgemäß um ein Tensidgemisch aus anionischen, amphoteren- oder zwitterionischen und nichtionischen Tensiden, oder aus Gemischen dieser Tensidklassen.
Als anionische Tenside eignen sich in erfindungsgemäßen Zubereitungen alle für die Verwendung am menschlichen Körper geeigneten anionischen oberflächenaktiven Stoffe. Diese sind gekennzeichnet durch eine wasserlöslich machende, anionische . Gruppe wie z. B. eine Carboxylat-, Sulfat-, Sulfonat- oder Phosphat-Gruppe und eine lipophile Alkylgruppe mit etwa 8 bis 30 C-Atomen. Zusätzlich können im Molekül Glykol- oder Polyglykolether-Gruppen, Ester-, Ether- und Amidgruppen sowie Hydroxylgruppen enthalten sein. Beispiele für geeignete anionische Tenside sind, jeweils in Form der Natrium-, Kalium- und Ammonium- sowie der Mono-, Di- und Tnalkanolammoniumsalze mit 2 bis 4 C-Atomen in der Alkanolgruppe,
- lineare und verzweigte Fettsäuren mit 8 bis 30 C-Atomen (Seifen),
- Ethercarbonsäuren der Formel R-O-(CH CH2O)x -CH2-COOH, in der R eine lineare Alkylgruppe mit 8 bis 30 C-Atomen und x = 0 oder 1 bis 16 ist,
- Acylsarcoside mit 8 bis 24 C-Atomen in der Acylgruppe,
- Acyltauride mit 8 bis 24 C-Atomen in der Acylgruppe,
- Acylisethionate mit 8 bis 24 C-Atomen in der Acylgruppe,
- Acylglutamate der Formel XOOC-CH2CH2CH(C(NH)OR)-COOX, in der RCO für einen linearen oder verzweigten Acylrest mit 6 bis 22 Kohlenstoffatomen und 0 und/oder 1 , 2 oder 3 Doppelbindungen und X für Wasserstoff, ein Alkali- und/oder Erdalkalimetall, Ammonium, Alkylammonium, Alkanolammonium oder Glucammonium steht,
Sulfobernsteinsäuremono- und -dialkylester mit 8 bis 24 C-Atomen in der Alkylgruppe und Sulfobemsteinsäuremono-alkylpolyoxyethylester mit 8 bis 24 C-Atomen in der Alkylgruppe und 1 bis 6 Oxyethylgruppen, lineare Alkansulfonate mit 8 bis 24 C-Atomen, lineare Alpha-Olefinsulfonate mit 8 bis 24 C-Atomen, Alpha-Sulfofettsäuremethylester von Fettsäuren mit 8 bis 30 C-Atomen, Alkylsulfate und Alkylpolyglykolethersulfate der Formel R-O(CH2-CH2O)x- OSO3H, in der R eine bevorzugt lineare Alkylgruppe mit 8 bis 30 C-Atomen und x = 0 oder 1 bis 12 ist,
Gemische oberflächenaktiver Hydroxysulfonate gemäß DE-A-37 25 030, sulfatierte Hydroxyalkylpolyethylen- und/oder Hydroxyalkylenpropylen- glykolether gemäß DE-A-37 23 354,
Sulfonate ungesättigter Fettsäuren mit 8 bis 24 C-Atomen und 1 bis 6 Doppelbindungen gemäß DE-A-39 26 344,
Ester der Weinsäure und Zitronensäure mit Alkoholen, die Anlagerungsprodukte von etwa 2-15 Molekülen Ethylenoxid und/oder Propylenoxid an Fettalkohole mit 8 bis 22 C-Atomen darstellen, Alkyl- und/oder Alkenyletherphosphate der Formel (II), O R6(OCH2CH2)n-0-P-OR7 (II) OX in der R6 bevorzugt für einen aliphatischen Kohlenwasserstoffrest mit 8 bis 30 Kohlenstoffatomen, R7 für Wasserstoff, einen Rest (CH2CH2O)nR6 oder X, n für Zahlen von 1 bis 10 und X für Wasserstoff, ein Alkali- oder Erdalkalimetall oder NR8R9R10R11, mit R8 bis R1 unabhängig voneinander stehend für einen C1 bis C4 - Kohlen wasserstoffrest, steht, sulfatierte Fettsäurealkylenglykolester der Formel (III), Rl2CO(AlkO)nSO3M (III)
in der R12CO- für einen linearen oder verzweigten, aliphatischen, gesättigten und/oder ungesättigten Acylrest mit 6 bis 22 C-Atomen, Alk für CH2CH2, CHCH3CH2 und/oder CH2CHCH3, n für Zahlen von 0,5 bis 5 und M für ein Kation steht, wie sie in der DE-OS 197 36 906.5 beschrieben sind, Monoglyceridsulfate und Monoglyceridethersulfate der Formel (IV), wie sie beispielsweise in der EP-B1 0 561 825, der EP-B1 0 561 999, der DE-A1 42 04 700 oder von A.K.Biswas et al. in J.Am.Oil.Chem.Soc. 37, 171 (1960) und F.U.Ahmed in J.Am.Oil.Chem.Soc. 67, 8 (1990) beschrieben worden sind,
CH2O(CH2CH2O)x— COR13 CHO(CH2CH2O)yH (IV) C H2O(C H2C H2O)z— SO3X in der R13CO für einen linearen oder verzweigten Acylrest mit 6 bis 22 Kohlenstoffatomen, x, y und z in Summe für 0 oder für Zahlen von 1 bis 30, vorzugsweise 2 bis 10, und X für ein Alkali- oder Erdalkalimetall steht. Typische Beispiele für im Sinne der Erfindung geeignete Mono- glycerid(ether)sulfate sind die Umsetzungsprodukte von Laurin- säuremonoglycerid, Kokosfettsäuremonoglycerid, Palmitinsäuremonoglycerid, Stearinsäuremonoglycerid, Ölsäuremonoglycerid und Talgfettsäuremono- glycerid sowie deren Ethylenoxidaddukte mit Schwefeltrioxid oder Chlorsul- fonsäure in Form ihrer Natriumsalze. Vorzugsweise werden Monoglyceridsulfate der Formel (IV) eingesetzt, in der R13CO für einen linearen Acylrest mit 8 bis 18 Kohlenstoffatomen steht
Bevorzugte anionische Tenside sind Alkylsulfate, Alkylpolyglykolethersulfate und Ethercarbonsäuresalze mit 10 bis 18 C-Atomen in der Alkylgruppe und bis zu 12 Glykolethergruppen im Molekül und Sulfobernsteinsäuremono- und -dialkylester mit 8 bis 18 C-Atomen in der Alkylgruppe und Sulfobemsteinsäuremono-alkyl- polyoxyethylester mit 8 bis 18 C-Atomen in der Alkylgruppe und 1 bis 6 Oxyethylgruppen. Insbesondere bevorzugt sind Laurylethersulfate mit einem Ethoxylierungsgrad von 1 bis 3.
Die anionischen Tenside sind in den erfindungsgemäßen Mitteln üblicherweise in Mengen von 1 bis 25 Gew.-%, insbesondere von 5 bis 15 Gew.-%, enthalten.
Als zwitterionische Tenside werden solche oberflächenaktiven Verbindungen bezeichnet, die im Molekül mindestens eine quartäre Ammoniumgruppe und mindestens eine -COO9 - oder -Sθ3 (_) -Gruppe tragen. Besonders geeignete zwitterionische Tenside sind die sogenannten Betaine wie die N-Alkyl-N,N- dimethylammoniumglycinate, beispielsweise das Kokosalkyldimethylammonium- glycinat, N-Acyl-aminopropyl-N.N-dimethylammoniumglycinate, beispielsweise das Kokosacylaminopropyl-dimethylammoniumglycinat, und 2-Alkyl-3-carboxymethyl- 3-hydroxyethyl-imidazoline mit jeweils 8 bis 18 C-Atomen in der Alkyl- oder Acylgruppe sowie das Kokosäcylaminoethylhydroxyethylcarboxymethylglycinat. Ein bevorzugtes zwitterionisches Tensid ist das unter der INCI-Bezeichnung Cocamidopropyl Betaine bekannte Fettsäureamid-Derivat.
Unter amphoteren Tensiden werden solche oberflächenaktiven Verbindungen verstanden, die außer einer C8 - C2 - Alkyl- oder -Acylgruppe im Molekül mindestens eine freie Aminogruppe und mindestens eine -COOH- oder -SO3H-Gruppe enthalten und zur Ausbildung innerer Salze befähigt sind. Beispiele für geeignete ampholytische Tenside sind N-Alkylglycine, N-Alkylpropionsäuren, N-Alkylamino- buttersäuren, N-Alkyliminodipropionsäuren, N-Hydroxyethyl-N-alkylamidopropylg- lycine, N-Alkyltaurine, N-Alkylsarcosine, 2-Alkylaminopropionsäuren und Alkylaminoessigsäuren mit jeweils etwa 8 bis 24 C-Atomen in der Alkylgruppe. Besonders bevorzugte ampholytische Tenside sind das N-Kokosalkyl- aminopropionat, das Kokosacylaminoethylaminopropionat und das Cι2 - C18 - Acylsarcosin.
Bevorzugte amphotere und/oder zwitterionische Tenside im Sinne der Erfindung sind die Betaine, insbesondere Cocamidopropylbetain. Die amphoteren Tenside sind in den erfindungsgemäßen Mitteln üblicherweise in Mengen von 1 bis 15 Gew.-%, insbesondere von 2 bis 8 Gew.-%, enthalten.
In einer besonders bevorzugten Ausführungsform der Erfindung enthalten die Haut- und Haarbehandlungsmittel als Waschbase ein Gemisch aus mindestens einem anionischen Tensid und mindestens einem zwitterionischen oder amphoteren Tensid. Ganz besonders bevorzugt ist ein Gemisch aus Alkylsulfaten, Alkylethersulfaten, Ethercarbonsäuren und/oder Ethercarbonsäuresalzen mit Betainen und/oder den unter den INCI-Bezeichnungen C8-C22-Fettsäure- Amphoacetat und C8-C22-Fettsäure-Amphodiacetat bekannten Verbindungen.
Nichtionische Tenside enthalten als hydrophile Gruppe z. B. eine Polyolgruppe, eine Polyalkylenglykolethergruppe oder eine Kombination aus Polyol- und Polyglykolethergruppe. Solche Verbindungen sind beispielsweise
- Anlagerungsprodukte von 2 bis 50 Mol Ethylenoxid und/oder 0 bis 5 Mol Propylenoxid an lineare und verzweigte Fettalkohole mit 8 bis 30 C-Atomen, an Fettsäuren mit 8 bis 30 C-Atomen und an Alkylphenole mit 8 bis 15 C-Atomen in der Alkylgruppe,
- mit einem Methyl- oder C2 - C - Alkylrest endgruppenverschlossene Anlagerungsprodukte von 2 bis 50 Mol Ethylenoxid und/oder 0 bis 5 Mol Propylenoxid an lineare und verzweigte Fettalkohole mit 8 bis 30 C-Atomen, an Fettsäuren mit 8 bis 30 C-Atomen und an Alkylphenole mit 8 bis 15 C-Atomen in der Alkylgruppe, wie beispielsweise die unter den Verkaufsbezeichnungen Dehydol® LS, Dehydol® LT (Cognis) erhältlichen Typen,
- Cι2-C30-Fettsäuremono- und -diester von Anlagerungsprodukten von 1 bis 30 Mol Ethylenoxid an Glycerin,
- Anlagerungsprodukte von 5 bis 60 Mol Ethylenoxid an Rizinusöl und gehärtetes Rizinusöl, beispielsweise Rizinusöl-hydriert+40 EO, wie es beispielsweise unter dem Handelsnamen Cremophor CO 455 von der Firma SHC im Handel erhältlich ist,
- Polyolfettsäureester, wie beispielsweise das Handelsprodukt Hydagen® HSP (Cognis) oder Sovermol - Typen (Cognis), - alkoxilierte Triglyceride,
- alkoxilierte Fettsäurealkylester der Formel (V) R14CO— (0CH2CHR15)W0R16 (V) in der R14CO für einen linearen oder verzweigten, gesättigten und/oder ungesättigten Acylrest mit 6 bis 22 Kohlenstoffatomen, R15 für Wasserstoff oder Methyl, R16 für lineare oder verzweigte Alkylreste mit 1 bis 4 Kohlenstoffatomen und w für Zahlen von 1 bis 20 steht,
- Aminoxide,
- Hydroxymischether, wie sie beipielsweise in der DE-OS 19738866 beschrieben sind,
- Sorbitanfettsäureester und Anlagerungeprodukte von Ethylenoxid an Sorbitanfettsäureester wie beispielsweise die Polysorbate,
- Zuckerfettsäureester und Anlagerungsprodukte von Ethylenoxid an Zuckerfettsäureester,
- Anlagerungsprodukte von Ethylenoxid an Fettsäurealkanolamide und Fettamine,
- Fettsäure-N-alkylglucamide,
- Alkylpolygykoside entsprechend der allgemeinen Formel RO-(Z)x wobei R für Alkyl, Z für Zucker sowie x für die Anzahl der Zuckereinheiten steht. Die erfindungsgemäß verwendbaren Alkylpolyglykoside können lediglich einen bestimmten Alkylrest R enthalten. Üblicherweise werden diese Verbindungen aber ausgehend von natürlichen Fetten und Ölen oder Mineralölen hergestellt. In diesem Fall liegen als Alkylreste R Mischungen entsprechend den Ausgangsverbindungen bzw. entsprechend der jeweiligen Aufarbeitung dieser Verbindungen vor.
Besonders bevorzugt sind solche Alkylpolyglykoside, bei denen R im wesentlichen aus C8- und C10-Alkylgruppen, im wesentlichen aus C12- und Cι4-Alkylgruppen, im wesentlichen aus C8- bis Cι6-Alkylgruppen oder im wesentlichen aus C12- bis Cι6-Alkylgruppen oder im wesentlichen aus C16 bis Cis-Alkylgruppen besteht.
Als Zuckerbaustein Z können beliebige Mono- oder Oligosaccharide eingesetzt werden. Üblicherweise werden Zucker mit 5 bzw. 6 Kohlenstoffatomen sowie die entsprechenden Oligosaccharide eingesetzt. Solche Zucker sind beispielsweise Glucose, Fructose, Galactose, Arabinose, Ribose, Xylose, Lyxose, Allose, Altrose, Mannose, Gulose, Idose, Talose und Sucrose. Bevorzugte Zuckerbausteine sind Glucose, Fructose, Galactose, Arabinose und Sucrose; Glucose ist besonders bevorzugt.
Die erfindungsgemäß verwendbaren Alkylpolyglykoside enthalten im Schnitt 1 ,1 bis 5 Zuckereinheiten. Alkylpolyglykoside mit x-Werten von 1 ,1 bis 2,0 sind bevorzugt. Ganz besonders bevorzugt sind Alkylglykoside, bei denen x 1 ,1 bis 1 ,8 beträgt.
Auch die alkoxylierten Homologen der genannten Alkylpolyglykoside können erfindungsgemäß eingesetzt werden. Diese Homologen können durchschnittlich bis zu 10 Ethylenoxid- und/oder Propyienoxideinheiten pro Alkylglykosideinheit enthalten.
Als bevorzugte nichtionische Tenside haben sich die Alkylenoxid-Anlage- rungsprodukte an gesättigte lineare Fettalkohole und Fettsäuren mit jeweils 2 bis 30 Mol Ethylenoxid pro Mol Fettalkohol bzw. Fettsäure sowie Ethylenoxid- Anlagerungsprodukte an hydriertes Rizinusöl mit 5 bis 60 Mol Ethylenoxid pro Mol Rizinusöl erwiesen. Zubereitungen mit hervorragenden Eigenschaften werden ebenfalls erhalten, wenn sie als nichtionische Tenside Fettsäureester von ethoxyliertem Glycerin enthalten.
Diese Verbindungen sind durch die folgenden Parameter gekennzeichnet. Der Alkylrest R enthält 6 bis 22 Kohlenstoffatome und kann sowohl linear als auch verzweigt sein. Bevorzugt sind primäre lineare und in 2-Stellung methylverzweigte aliphatische Reste. Solche Alkylreste sind beispielsweise 1-Octyl, 1-Decyl, 1- Lauryl, 1-Myristyl, 1-Cetyl und 1-Stearyl. Besonders bevorzugt sind 1-Octyl, 1- Decyl, 1-Lauryl, 1-Myristyl. Bei Verwendung sogenannter "Oxo-Alkohole" als Ausgangsstoffe überwiegen Verbindungen mit einer ungeraden Anzahl von Kohlenstoffatomen in der Alkylkette.
Bei den als Tensid eingesetzten Verbindungen mit Alkylgruppen kann es sich jeweils um einheitliche Substanzen handeln. Es ist jedoch in der Regel bevorzugt, bei der Herstellung dieser Stoffe von nativen pflanzlichen oder tierischen Rohstoffen auszugehen, so dass man Substanzgemische mit unterschiedlichen, vom jeweiligen Rohstoff abhängigen Alkylkettenlängen erhält.
Bei den Tensiden, die Anlagerungsprodukte von Ethylen- und/oder Propylenoxid an Fettalkohole oder Derivate dieser Anlagerungsprodukte darstellen, können sowohl Produkte mit einer "normalen" Homologenverteilung als auch solche mit einer eingeengten Homologenverteilung verwendet werden. Unter "normaler" Homologenverteilung werden dabei Mischungen von Homologen verstanden, die man bei der Umsetzung von Fettalkohol und Alkylenoxid unter Verwendung von Alkalimetallen, Alkalimetallhydroxiden oder Alkalimetallalkoholaten als Katalysatoren erhält. Eingeengte Homologenverteilungen werden dagegen erhalten, wenn beispielsweise Hydrotalcite, Erdalkalimetallsalze von Ethercarbonsäuren, Erdalkalimetalloxide, -hydroxide oder -alkoholate als Katalysatoren verwendet werden. Die Verwendung von Produkten mit eingeengter Homologenverteilung kann bevorzugt sein.
In einer weiteren Ausführungsform der Erfindung können in der Waschbase außerdem kationische Tenside enthalten sein.
Erfindungsgemäß einsetzbare kationische Tenside sind beispielsweise vom Typ der quartären Ammoniumverbindungen, der Esterquats und der Amidoamine. Bevorzugte quaternäre Ammoniumverbindungen sind Ammoniumhalogenide, insbesondere Chloride und Bromide, wie Alkyltrimethylammoniumchloride, Dialkyldimethylammoniumchloride und Trialkylmethylammoniumchloride, z. B. Cetyltrimethylammoniumchlorid, Stearyltrimethylammoniumchlorid, Distea- ryldimethylammoniumchlorid, Lauryldimethylammoniumchlorid, Lauryldimethyl- benzylammoniumchlorid und Tricetylmethylammoniumchlorid, sowie die unter den INCI-Bezeichnungen Quatemium-27 und Quaternium-83 bekannten Imidazolium- Verbindungen. Die langen Alkylketten der oben genannten Tenside weisen bevorzugt 10 bis 18 Kohlenstoffatome auf.
Bei Esterquats handelt es sich um bekannte Stoffe, die sowohl mindestens eine Esterfunktion als auch mindestens eine quartäre Ammoniumgruppe als Strukturelement enthalten. Bevorzugte Esterquats sind quaternierte Estersalze von Fettsäuren mit Triethanolamin, quaternierte Estersalze von Fettsäuren mit Diethanolalkylaminen und quatemierten Estersalzen von Fettsäuren mit 1 ,2- Dihydroxypropyldialkylaminen. Solche Produkte werden beispielsweise unter den Warenzeichen Stepantex®, Dehyquart® und Armocare® vertrieben. Die Produkte Armocare® VGH-70, ein N,N-Bis(2-Palmitoyloxyethyl)dimethylammoniumchlorid, sowie Dehyquart® F-75, Dehyquart® C-4046, Dehyquart® L80 und Dehyquart® AU- 35 sind Beispiele für solche Esterquats.
Die Alkylamidoamine werden üblicherweise durch Amidierung natürlicher oder synthetischer Fettsäuren und Fettsäureschnitte mit Dialkylaminoaminen hergestellt. Eine erfindungsgemäß besonders geeignete Verbindung aus dieser Substanzgruppe stellt das unter der Bezeichnung Tegoamid® S 18 im Handel erhältliche Stearamidopropyl-dimethylamin dar.
Der Gesamttensidgehalt in den erfindungsgemäßen Mitteln beträgt 5 bis 25 Gew.- %, bezogen auf das gesamte Mittel. Mengen von 7 bis 20 Gew.-% sind besonders bevorzugt.
In einer weiteren bevorzugten Ausführungsform kann die Wirkung des erfindungsgemäßen Wirkstoffes durch Emulgatoren gesteigert werden. Solche Emulgatoren sind beispielsweise
Anlagerungsprodukte von 4 bis 30 Mol Ethylenoxid und/oder 0 bis 5 Mol Propylenoxid an lineare Fettalkohole mit 8 bis 22 C-Atomen, an Fettsäuren mit 12 bis 22 C-Atomen und an Alkylphenole mit 8 bis 15 C-Atomen in der
Alkylgruppe,
Ci2-C22-Fettsäuremono- und diester von Anlagerungsprodukten von 1 bis 30
Mol Ethylenoxid an Polyole mit 3 bis 6 Kohlenstoffatomen, insbesondere an
Glycerin,
Ethylenoxid- und Polyglycerin-Anlagerungsprodukte an Methylglucosid-
Fettsäureester, Fettsäurealkanolamide und Fettsäureglucamide,
C8-C22-Alkylmono- und oligoglycoside und deren ethoxylierte Analoga, wobei
Oligomerisierungsgrade von 1 ,1 bis 5, insbesondere 1 ,2 bis 2,0, und Glucose als Zuckerkomponente bevorzugt sind,
Gemische aus Alkyl-(oligo)-glucosiden und Fettalkoholen zu Beispiel das im
Handel erhältliche Produkt Montanov®68,
Anlagerungsprodukte von 5 bis 60 Mol Ethylenoxid an Rizinusöl und gehärtetes Rizinusöl,
Partialester von Polyolen mit 3 bis 6 Kohlenstoffatomen mit gesättigten
Fettsäuren mit 8 bis 22 C-Atomen,
Sterine. Als Sterine wird eine Gruppe von Steroiden verstanden, die am C-
Atom 3 des Steroid-Gerüsts eine Hydroxylgruppe tragen und sowohl aus tierischem Gewebe (Zoosterine) wie auch aus pflanzlichen Fetten
(Phytosterine) isoliert werden. Beispiele für Zoosterine sind das Cholersterin und das Lanosterin. Beispiele geeigneter Phytosterine sind Ergosterin,
Stigmasterin und Sitosterin. Auch aus Pilzen und Hefen werden Sterine, die sogenannten Mykosterine, isoliert.
Phospholipide. Hierunter werden vor allem die Glucose-Phospholipide, die z.B. als Lecithine bzw. Phosphatidylcholine aus z.B. Eidotter oder
Pflanzensamen (z.B. Sojabohnen) gewonnen werden, verstanden.
Fettsäureestervon Zuckern und Zuckeralkoholen, wie Sorbit,
Polyglycerine und Polyglycerinderivate wie beispielsweise Polyglycerinpoly-
12-hydroxystearat (Handelsprodukt Dehymuls®PGPH),
Lineare und verzweigte Fettsäuren mit 8 bis 30 C-Atomen und deren Na-, K-,
Ammonium-, Ca-, Mg- und Zn-Salze. Die erfindungsgemäßen Mittel enthalten die Emulgatoren bevorzugt in Mengen von 0,1 - 25 Gew.-%, insbesondere 0,5 - 15 Gew.-%, bezogen auf das gesamte Mittel.
Bevorzugt können die erfindungsgemäßen Zusammensetzungen mindestens einen nichtionogenen Emulgator mit einem HLB-Wert von 8 bis 18, gemäß den im Römpp-Lexikon Chemie (Hrg. J. Falbe, M.Regitz), 10. Auflage, Georg Thieme Verlag Stuttgart, New York, (1997), Seite 1764, aufgeführten Definitionen enthalten. Nichtionogene Emulgatoren mit einem HLB-Wert von 10 - 15 können erfindungsgemäß besonders bevorzugt sein.
Unter kationischen Polymeren im Sinne der Erfindung sind Polymere zu verstehen, welche in der Haupt- und/oder Seitenkette Gruppen aufweisen, welche "temporär" oder "permanent" kationisch sein können. Als "permanent kationisch" werden erfindungsgemäß solche Polymere bezeichnet, die unabhängig vom pH- Wert des Mittels eine kationische Gruppe aufweisen. Dies sind in der Regel Polymere, die ein quartäres Stickstoffatom, beispielsweise in Form einer Ammoniumgruppe, enthalten. Bevorzugte kationische Gruppen sind quartäre Ammoniumgruppen. Insbesondere solche Polymere, bei denen die quartäre Ammoniumgruppe über eine Cι-4-Kohlenwasserstoffgruppe an eine aus Acrylsäure, Methacrylsäure oder deren Derivaten aufgebaute Polymerhauptkette gebunden sind, haben sich als besonders geeignet erwiesen. Homopolymere der allgemeinen Formel (VI),
Figure imgf000013_0001
oder 4, n eine natürl che Za un ' ein phys olog sc verträg ches organisc es oder anorganisches Anion ist, sowie Copolymere, bestehend im wesentlichen aus den in Formel (VI) aufgeführten Monomereinheiten sowie nichtionogenen Monomereinheiten, sind besonders bevorzugte kationische Polymere. Im Rahmen dieser Polymere sind diejenigen erfindungsgemäß bevorzugt, für die mindestens eine der folgenden Bedingungen gilt: R17 steht für eine Methylgruppe R18, R19 und R20 stehen für Methylgruppen m hat den Wert 2.
Als physiologisch verträgliches Gegenionen X" kommen beispielsweise Halogenidionen, Sulfationen, Phosphationen, Methosulfationen sowie organische Ionen wie Lactat-, Citrat-, Tartrat- und Acetationen in Betracht. Bevorzugt sind Halogenidionen, insbesondere Chlorid.
Ein besonders geeignetes Homopolymer ist das, gewünschtenfalls vernetzte, Poly(methacryloyloxyethyltrimethylammoniumchlorid) mit der INCI-Bezeichnung Polyquaternium-37. Die Vernetzung kann gewünschtenfalls mit Hilfe mehrfach olefinisch ungesättigter Verbindungen, beispielsweise Divinylbenzol, Tetraallyloxyethan, Methylenbisacrylamid, Diallylether, Polyallylpolyglycerylether, oder Allylethem von Zuckern oder Zuckerderivaten wie Erythritol, Pentaerythritol, Arabitol, Mannitol, Sorbitol, Sucrose oder Glucose erfolgen. Methylenbisacrylamid ist ein bevorzugtes Vernetzungsagens.
Das Homopolymer wird bevorzugt in Form einer nichtwäßrigen Polymerdispersion, die einen Polymeranteil nicht unter 30 Gew.-% aufweisen sollte, eingesetzt. Solche Polymerdispersionen sind unter den Bezeichnungen Salcare® SC 95 (ca. 50 % Polymeranteil, weitere Komponenten: Mineralöl (INCI-Bezeichnung: Mineral Oil) und Tridecyl-polyoxypropylen-polyoxyethylen-ether (INCI-Bezeichnung: PPG- 1-Trideceth-6)) und Salcare® SC 96 (ca. 50 % Polymeranteil, weitere Komponenten: Mischung von Diestern des Propylenglykols mit einer Mischung aus Capryl- und Caprinsäure (INCI-Bezeichnung: Propylene Glycol Dicaprylate/Dicaprate) und Tridecyl-polyoxypropylen-polyoxyethylen-ether (INCI- Bezeichnung: PPG-1-Trideceth-6)) im Handel erhältlich.
Copolymere mit Monomereinheiten gemäß Formel (VI) enthalten als nichtionogene Monomereinheiten bevorzugt Acrylamid, Methacrylamid, Acrylsäure-Cι- -alkylester und Methacrylsäure-Cι-4-alkylester. Unter diesen nichtionogenen Monomeren ist das Acrylamid besonders bevorzugt. Auch diese Copolymere können, wie im Falle der Homopolymere oben beschrieben, vernetzt sein. Ein erfindungsgemäß bevorzugtes Copolymer ist das vernetzte Acrylamid- Methacryloyloxyethyltrimethylammoniumchlorid-Copolymer. Solche Copolymere, bei denen die Monomere in einem Gewichtsverhältnis von etwa 20:80 vorliegen, sind im Handel als ca. 50 %ige nichtwässrige Polymerdispersion unter der Bezeichnung Salcare® SC 92 erhältlich.
Weitere bevorzugte kationische Polymere sind beispielsweise - quatemisierte Cellulose-Derivate, wie sie unter den Bezeichnungen Cel- quat® und Polymer JR® im Handel erhältlich sind. Die Verbindungen Cel- quat® H 100, Celquat® L 200 und Polymer JR®400 sind bevorzugte quaternierte Cellulose-Derivate, - kationische Alkylpolyglycoside gemäß der DE-PS 44 13 686, - kationiserter Honig, beispielsweise das Handelsprodukt Honeyquat® 50, - kationische Gua.r-Derivate, wie insbesondere die unter den Handelsnamen Cosmedia®Guar und Jaguar® vertriebenen Produkte, - Polysiloxane mit quatemären Gruppen, wie beispielsweise die im Handel erhältlichen erhältlichen Produkte Q2-7224 (Hersteller: Dow Corning; ein stabilisiertes Trimethylsilylamodimethicon), Dow Corning® 929 Emulsion (enthaltend ein hydroxyl-amino-modifiziertes Silicon, das auch als Amodimethicone bezeichnet wird), SM-2059 (Hersteller: General Electric), SLM-55067 (Hersteller: Wacker) sowie Abil®-Quat 3270 und 3272 (Hersteller: Th. Goldschmidt; diquatemäre Polydimethylsiloxane, Quaternium- 80), - polymere Dimethyldiallylammoniumsalze und deren Copolymere mit Estern und Amiden von Acrylsäure und Methacrylsäure. Die unter den Bezeichnungen Merquat®100 (Poly(dimethyldiallylammoniumchlorid)) und Mer- quat®550 (Dimethyldiallylammoniumchlorid-Acrylamid-Copolymer) im Handel erhältlichen Produkte sind Beispiele für solche kationischen Polymere, - Copolymere des Vinylpyrrolidons mit quatemierten Derivaten des Dial- kylaminoalkylacrylats und -methacrylats, wie beispielsweise mit Diethyl- sulfat quaternierte Vinylpyrrolidon-Dimethylaminoethylmethacrylat-Copoly- mere. Solche Verbindungen sind unter den Bezeichnungen Gafquat®734 und Gafquat®755 im Handel erhältlich, - Vinylpyrrolidon-Vinylimidazoliummethochlorid-Copolymere, wie sie unter den Bezeichnungen Luviquat® FC 370, FC 550, FC 905 und HM 552 angeboten werden, - quatemierter Polyvinylalkohol, sowie die unter den Bezeichnungen - Polyquaternium 2, - Polyquaternium 17, - Polyquaternium 18 und - Polyquaternium 27 bekannten Polymeren mit quartären Stickstoffatomen in der Polymerhauptkette.
Gleichfalls als kationische Polymere eingesetzt werden können die unter den Bezeichnungen Polyquaternium-24 (Handelsprodukt z. B. Quatrisoft® LM 200), bekannten Polymere. Ebenfalls erfindungsgemäß verwendbar sind die Copolymere des Vinylpyrrolidons, wie sie als Handelsprodukte Copolymer 845 (Hersteller: ISP), Gaffix® VC 713 (Hersteller: ISP), Gafquat®ASCP 1011 , Gafquat®HS 110, Luviquat®8155 und Luviquat® MS 370 erhältlich sind.
Weitere erfindungsgemäße kationische Polymere sind die sogenannten "temporär kationischen" Polymere. Diese Polymere enthalten üblicherweise eine Aminogruppe, die bei bestimmten pH-Werten als quartäre Ammoniumgruppe und somit kationisch vorliegt. Bevorzugt sind beispielsweise Chitosan und dessen Derivate, wie sie beispielsweise unter den Handelsbezeichnungen Hydagen® CMF, Hydagen® HCMF, Kytamer® PC und Chitolam® NB/101 im Handel frei verfügbar sind. Chitosane sind deacetylierte Chitine, die in unterschiedlichen Deacetylierungsgraden und unterschiedlichen Abbaugraden (Molekulargewichten) im Handel erhältlich sind. Ihre Herstellung ist z.B. in DE 44 40 625 A1 und in DE 1 95 03 465 A1 beschrieben.
Besonders gut geeignete Chitosane weisen einen Deacetylierungsgrad von wenigstens 80 % und ein Molekulargewicht von 5 105 bis 5 10δ (g/mol) auf. Zur Herstellung erfindungsgemäßer Zubereitungen muss das Chitosan in die Salzform überführt werden. Dies kann durch Auflösen in verdünnten wässrigen Säuren erfolgen. Als Säuren sind sowohl Mineralsäuren wie z.B. Salzsäure, Schwefelsäure und Phosphorsäure als auch organische Säuren, z.B. niedermolekulare Carbonsäuren, Polycarbonsäuren und Hydroxycarbonsäuren geeignet. Weiterhin können auch höhermolekulare Alkylsulfonsäuren oder Alkylschwefelsäuren oder Organophosphorsäuren verwendet werden, soweit diese die erforderliche physiologische Verträglichkeit aufweisen. Geeignete Säuren zur Überführung des Chitosans in die Salzform sind z.B. Essigsäure, Glycolsäure, Weinsäure, Apfelsäure, Citronensäure, Milchsäure, 2-Pyrrolidinon-5- carbonsäure, Benzoesäure oder Salicylsäure. Bevorzugt werden niedermolekulare Hydroxycarbonsäuren wie z.B. Glycolsäure oder Milchsäure verwendet.
In einer besonders bevorzugten Ausführungsform der Erfindung ist als kationisches Polymer mindestens ein Polymer aus der Gruppe Polyquatemium-7 (beispielsweise das unter dem Handelsnamen Merquat 550 von der Firma Nalco oder das unter dem Namen Conditioner P7 vertriebene Polymer), Polyquatemium- 10 (beispielsweise das unter dem Handelsnamen Polymer JR 400 von der Firma Amerchol vertriebene Produkt) oder Guarhydroxypropyltrimethylammoniumchlorid (beispielsweise das unter dem Handelsnamen Jaguar Excel von der Firma Rhodia vertriebene Polymer) in den Haut- und Haarbehandlungsmitteln enthalten.
Die kationischen Polymere sind in den erfindungsgemäßen Mitteln üblicherweise in Mengen von 0,01 bis 10 Gew.-%, insbesondere in Mengen von 0,05 bis 5 Gew.- %, bezogen auf das Gesamtgewicht des Mittels, enthalten.
Als Komponente c) wird erfindungsgemäß ein Ester des Polyglycerins mit C6-Cu- Fettsäuren eingesetzt.
Es kann sich erfindungsgemäß auch um Gemische von Diglycerin-, Triglycerin- Tetraglycerin- oder höheren Polyglycerinmono-, di- oder trifettsäuren mit einer Kettenlänge von 10 bis 14 C-Atomen handeln. In einer besonders bevorzugten Ausführungsform der Erfindung ist die Komponente c) Polyglyceryl-3-caprat und/oder Polyglyceryl-4-caprat, insbesondere Polyglyceryl-3-caprat.
Die Komponente c) wird in den erfindungsgemäßen Mitteln in einer Menge von 0,01 bis 3 Gew.-%, bezogen auf das Gesamtgewicht des Mittels, eingesetzt. Besonders bevorzugt ist ein Gehalt der Komponente c) in den erfindungsgemäßen Mitteln von 0,1 bis 2 Gew.-%.
In einer weiteren bevorzugten Ausführungsform der Erfindung können die Haut- und Haarbehandlungsmittel weiterhin einen oder mehrere Vertreter aus der Gruppe der Vitamine, der Proteinhydrolysate, der Pflanzenextrakte oder der Perlglanzstoffe enthalten.
Erfindungsgemäß werden unter dem Begriff "Vitamine" solche Vitamine, ProVitamine und Vitaminderivate verstanden, die üblicherweise den Gruppen A, B, C, E, F und H zugeordnet werden.
Zur Gruppe der als Vitamin A bezeichneten Substanzen gehören das Retinol (Vitamin A-ι) sowie das 3,4-Didehydroretinol (Vitamin A2). Das ß-Carotin ist das Provitamin des Retinols. Als Vitamin A-Komponente kommen erfindungsgemäß beispielsweise Vitamin A-Säure und deren Ester, Vitamin A-Aldehyd und Vitamin A-Alkohol sowie dessen Ester wie das Palmitat und das Acetat in Betracht. Die erfindungsgemäß verwendeten Zubereitungen enthalten die Vitamin A- Komponente bevorzugt in Mengen von 0,05-1 Gew.-%, bezogen auf die gesamte Zubereitung.
Zur Vitamin B-Gruppe oder zu dem Vitamin B-Komplex gehören u. a.
Vitamin B-i (Thiamin)
Vitamin B2 (Riboflavin)
Vitamin B3. Unter dieser Bezeichnung werden häufig die Verbindungen
Nicotinsäure und Nicotinsäureamid (Niacinamid) geführt. Erfindungsgemäß bevorzugt ist das Nicotinsäureamid, das in den erfindungsgemäß verwendetenen Mitteln bevorzugt in Mengen von 0,05 bis 1 Gew.-%, bezogen auf das gesamte Mittel, enthalten ist.
Vitamin B5 (Pantothensäure, Panthenol und Pantolacton). Im Rahmen dieser Gruppe wird bevorzugt das Panthenol und/oder Pantolacton eingesetzt. Erfindungsgemäß einsetzbare Derivate des Panthenols sind insbesondere die Ester und Ether des Panthenols sowie kationisch derivatisierte Panthenole. Einzelne Vertreter sind beispielsweise das Panthenoltriacetat, der Panthe- nolmonoethylether und dessen Monoacetat sowie die in der WO 92/13829 offenbarten kationischen Panthenolderivate. Die genannten Verbindungen des Vitamin Bs-Typs sind in den erfindungsgemäß verwendeten Mitteln bevorzugt in Mengen von 0,05 - 10 Gew.-%, bezogen auf das gesamte Mittel, enthalten. Mengen von 0,1 - 5 Gew.-% sind besonders bevorzugt. Vitamin B6 (Pyridoxin sowie Pyridoxamin und Pyridoxal).
Vitamin C (Ascorbinsäure). Vitamin C wird in den erfindungsgemäß verwendeten Mitteln bevorzugt in Mengen von 0,1 bis 3 Gew.-%, bezogen auf das gesamte Mittel eingesetzt. Die Verwendung in Form des Palmitinsäureesters, der Glucoside oder Phosphate kann bevorzugt sein. Die Verwendung in Kombination mit Tocopherolen kann ebenfalls bevorzugt sein.
Vitamin E (Tocopherole, insbesondere α-Tocopherol). Tocopherol und seine Derivate, worunter insbesondere die Ester wie das Acetat, das Nicotinat, das Phosphat und das Succinat fallen, sind in den erfindungsgemäß verwendeten Mitteln bevorzugt in Mengen von 0,05-1 Gew.-%, bezogen auf das gesamte Mittel, enthalten.
Vitamin F. Unter dem Begriff "Vitamin F" werden üblicherweise essentielle Fettsäuren, insbesondere Linolsäure, Linolensäure und Arachidonsäure, verstanden.
Vitamin H. Als Vitamin H wird die Verbindung (3aS,4S,6ar?)-2-Oxohexa- hydrothienol[3,4- ]-imidazol-4-valeriansäure bezeichnet, für die sich aber inzwischen der Trivialname Biotin durchgesetzt hat. Biotin ist in den erfindungsgemäß verwendeten Mitteln bevorzugt in Mengen von 0,0001 bis 1 ,0 Gew.-%, insbesondere in Mengen von 0,001 bis 0,01 Gew.-% enthalten.
Bevorzugt enthalten die erfindungsgemäß verwendeten Zubereitungen Vitamine, Provitamine und Vitaminvorstufen aus den Gruppen A, B, E und H. Selbstverständlich können auch mehrere Vitamine und Vitaminvorstufen gleichzeitig enthalten sein.
Panthenol, Pantolacton, Pyridoxin und deren Derivate sowie Nicotinsäureamid und Biotin sind besonders bevorzugt.
Die Gesamteinsatzmenge der Vitamine und Vitaminvorstufen in den erfindungsgemäß verwendeten Mitteln beträgt 0,0001 - 10 Gew.%, bezogen auf das gesamte Mittel, bevorzugt 0,0001 - 5 Gew.-%, und insbesondere 0,0001 - 3 Gew.-%.
Als Proteinhydrolysate im Sinne der Erfindung werden Proteinhydrolysate und/oder Aminosäuren und deren Derivate verstanden. Proteinhydrolysate sind Produktgemische, die durch sauer, basisch oder enzymatisch katalysierten Abbau von Proteinen (Eiweißen) erhalten werden. Unter dem Begriff Proteinhydrolysate werden erfindungsgemäß auch Totalhydrolysate sowie einzelne Aminosäuren und deren Derivate sowie Gemische aus verschiedenen Aminosäuren verstanden. Weiterhin werden erfindungsgemäß aus Aminosäuren und Aminosäurederivaten aufgebaute Polymere unter dem Begriff Proteinhydrolysate verstanden. Zu letzteren sind beispielsweise Polyalanin, Polyasparagin, Polyserin etc. zu zählen. Weitere Beispiele für erfindungsgemäß einsetzbare Verbindungen sind L-Alanyl-L- prolin, Polyglycin, Glycyl-L-glutamin oder D/L-Methionin-S-Methylsulfoniumchlorid. Selbstverständlich können erfindungsgemäß auch ß-Aminosäuren und deren Derivate wie ß-Alanin, Anthranilsäure oder Hippursäure eingesetzt werden. Das Molgeweicht der erfindungsgemäß einsetzbaren Proteinhydrolysate liegt zwischen 75, dem Molgewicht für Glycin, und 200000, bevorzugt beträgt das Molgewicht 75 bis 50000 und ganz besonders bevorzugt 75 bis 20000 Dalton. Erfindungsgemäß können Proteinhydrolysate sowohl pflanzlichen als auch tierischen oder marinen oder synthetischen Ursprungs eingesetzt werden.
Tierische Proteinhydrolysate sind beispielsweise Elastin-, Kollagen-, Keratin-, Seiden- und Milcheiweiß-Proteinhydrolysate, die auch in Form von Salzen vorliegen können. Solche Produkte werden beispielsweise unter den Warenzeichen Dehylan® (Cognis), Promois® (Interorgana), Collapuron® (Cognis), Nutrilan® (Cognis), Gelita-Sol® (Deutsche Gelatine Fabriken Stoess & Co), Lexein® (Inolex) und Kerasol® (Croda) vertrieben.
Erfindungsgemäß bevorzugt ist die Verwendung von Proteinhydrolysaten pflanzlichen Ursprungs, z. B. Soja-, Mandel-, Erbsen-, Kartoffel- und Weizenproteinhydrolysate. Solche Produkte sind beispielsweise unter den Warenzeichen Gluadin® (Cognis), DiaMin® (Diamalt), Lexein® (Inolex), Hydrosoy® (Croda), Hydrolupin® (Croda), Hydrosesame® (Croda), Hydrotritium® (Croda) und Crotein® (Croda) erhältlich.
Wenngleich der Einsatz der Proteinhydrolysate als solche bevorzugt ist, können an deren Stelle gegebenenfalls auch anderweitig erhaltene Aminosäuregemische eingesetzt werden. Ebenfalls möglich ist der Einsatz von Derivaten der Proteinhydrolysate, beispielsweise in Form ihrer Fettsäure-Kondensationsprodukte. Solche Produkte werden beispielsweise unter den Bezeichnungen Lamepon® (Cognis), Lexein® (Inolex), Crolastin® (Croda) oder Crotein® (Croda) vertrieben.
Die Proteinhydrolysate oder deren Derivate sind in den erfindungsgemäß verwendeten Zubereitungen bevorzugt in Mengen von 0,1 bis 10 Gew.-%, bezogen auf das gesamte Mittel, enthalten. Mengen von 0,1 bis 5 Gew.-% sind besonders bevorzugt.
Schließlich können in den erfindungsgemäßen Haut- und Haarbehandlungsmitteln Pflanzenextrakte eingesetzt werden. Üblicherweise werden diese Extrakte durch Extraktion der gesamten Pflanze hergestellt. Es kann aber in einzelnen Fällen auch bevorzugt sein, die Extrakte ausschließlich aus Blüten und/oder Blättern der Pflanze herzustellen.
Hinsichtlich der erfindungsgemäß verwendbaren Pflanzenextrakte wird insbesondere auf die Extrakte hingewiesen, die in der auf Seite 44 der 3. Auflage des Leitfadens zur Inhaltsstoffdeklaration kosmetischer Mittel, herausgegeben vom Industrieverband Körperpflege- und Waschmittel e.V. (IKW), Frankfurt, beginnenden Tabelle aufgeführt sind.
Erfindungsgemäß sind vor allem die Extrakte aus Grünem Tee, Eichenrinde, Brennessel, Hamamelis, Hopfen, Henna, Kamille, Klettenwurzel, Schachtelhalm, Weißdorn, Lindenblüten, Mandel, Aloe Vera, Fichtennadel, Roßkastanie, Sandelholz, Wacholder, Kokosnuß, Mango, Aprikose, Limone, Weizen, Kiwi, Melone, Orange, Grapefruit, Salbei, Rosmarin, Birke, Malve, Wiesenschaumkraut, Quendel, Schafgarbe, Thymian, Melisse, Hauhechel, Huflattich, Eibisch, Meristem, Ginseng und Ingwerwurzel bevorzugt.
Besonders bevorzugt sind die Extrakte aus Grünem Tee, Eichenrinde, Brennessel, Hamamelis, Hopfen, Kamille, Klettenwurzel, Schachtelhalm, Lindenblüten, Mandel, Aloe Vera, Kokosnuss, Mango, Aprikose, Limone, Weizen, Kiwi, Melone, Orange, Grapefruit, Salbei, Rosmarin, Birke, Wiesenschaumkraut, Quendel, Schafgarbe, Hauhechel, Meristem, Ginseng und Ingwerwurzel.
Ganz besonders für die erfindungsgemäße Verwendung geeignet sind die Extrakte aus Grünem Tee, Mandel, Aloe Vera, Kokosnuß, Mango, Aprikose, Limone, Weizen, Kiwi und Melone.
Als Extraktionsmittel zur Herstellung der genannten Pflanzenextrakte können Wasser, Alkohole sowie deren Mischungen verwendet werden. Unter den Alkoholen sind dabei niedere Alkohole wie Ethanol und Isopropanol, insbesondere aber mehrwertige Alkohole wie Ethylenglykol und Propylenglykol, sowohl als alleiniges Extraktionsmittel als auch in Mischung mit Wasser, bevorzugt. Pflanzenextrakte auf Basis von Wasser/Propylenglykol im Verhältnis 1 :10 bis 10:1 haben sich als besonders geeignet erwiesen.
Die Pflanzenextrakte können erfindungsgemäß sowohl in reiner als auch in verdünnter Form eingesetzt werden. Sofern sie in verdünnter Form eingesetzt werden, enthalten sie üblicherweise ca. 2 - 80 Gew.-% Aktivsubstanz und als Lösungsmittel das bei ihrer Gewinnung eingesetzte Extraktionsmittel oder Extraktionsmittelgemisch.
Weiterhin kann es bevorzugt sein, in den erfindungsgemäßen Mitteln Mischungen aus mehreren, insbesondere aus zwei, verschiedenen Pflanzenextrakten einzusetzen.
Die Einsatzmenge der Pflanzenextrakte in den erfindungsgemäß verwendeten Mitteln beträgt üblicherweise 0,01 - 50 Gew.%, bezogen auf das gesamte Mittel, bevorzugt 0,1 - 30 Gew.-%, und insbesondere 0,1 - 20 Gew.-%.
Als Perlglanzwachse kommen beispielsweise in Frage: Alkylenglycolester; Fettsäurealkanolamide; Partialglyceride; Ester von mehrwertigen, gegebenenfalls hydroxysubstituierte Carbonsäuren mit Fett-alkoholen mit 6 bis 22 Kohlenstoffatomen; Fettstoffe, wie beispielsweise Fettalkohole, Fettketone, Fettaldehyde, Fettether und Fettcarbonate, die in Summe mindestens 24 Kohlenstoffatome aufweisen; Ringöffnungsprodukte von Olefinepoxiden mit 12 bis 22 Kohlenstoffatomen mit Fettalkoholen mit 12 bis 22 Kohlenstoffatomen und/oder Polyolen mit 2 bis 15 Kohlenstoffatomen und 2 bis 10 Hydroxylgruppen sowie deren Mischungen.
In einer bevorzugten Ausführungsform der Erfindung enthalten die Haut- und Haarbehandlungsmittel weiterhin Menthol oder Mentholderivate, beispielsweise Menthone Glycerin Acetal, Menthoxypropanediol oder Campher. Die bevorzugte Einsatzmenge des Menthols oder eines seiner Derivate liegt bei 0,005 bis 1 Gew.- %, insbesondere bei 0,01 bis 0,2 Gew.-%, jeweils bezogen auf das Gesamtgewicht des Mittels. Die erfindungsgemäßen Mittel können weiterhin pflanzliche, mineralische oder synthetische Öle, sowie Gemische dieser Komponenten enthalten.
Als natürliche (pflanzliche) Öle werden üblicherweise Triglyceride und Mischungen von Triglyceriden eingesetzt. Bevorzugte natürliche Öle im Sinne der Erfindung sind Kokosnussöl, (süßes) Mandelöl, Walnussöl, Pfirsichkernöl, Avocadoöl, Teebaumöl (Tea Tree Oil), Sojaöl, Sesamöl, Sonnenblumenöl, Tsubakiöl, Nachtkerzenöl, Reiskleieöl, Palmkernöl, Mangokemöl, Wiesenschaumkrautöl, Distelöl, Macadamianussöl, Traubenkernöl, Aprikosenkemöl, Babssuöl, Olivenöl, Weizenkeimöl, Kürbiskemöl, Malvenöl, Haselnussöl, Safloröl, Canolaöl, Sasanquaöl, Jojobaöl und Shea-Butter.
Als mineralische Öle kommen insbesondere Mineralöle, Paraffin- und
Isoparaffinöle sowie synthetische Kohlenwasserstoffe zum Einsatz. Ein erfindungsgemäß einsetzbarer Kohlenwasserstoff ist beispielsweise das als Handelsprodukt erhältliche 1 ,3-Di-(2-ethyIhexyl)-cycIohexan (Cetiol® S).
Als synthetische Öle kommen Dimere, Telomere und Polymere von Olefinen und Silikonverbindungen, insbesondere Dialkyl- und Alkylarylsilikone, wie beispielsweise Dimethylpolysiloxan und Methylphenylpolysiloxan, sowie deren hydroxy-terminierte, alkoxylierte und quaternierte Analoga in Betracht. Beispiele für solche Silikone sind die von Dow Corning unter den Bezeichnungen DC 190, DC 200, DC 344 und DC 345 (Cyclomethicone) vertriebenen Produkte.
Beispiele für bevorzugte Dimere, Telomere und Polymere von Olefinen sind erfindungsgemäß insbesondere aus niedermolekularen Olefinen wie Ethylen, Propylen, Butylen, Isobutylen, Penten, Cyclopenten, Isopentenen oder 1-Decen aufgebaute Dimere, Telomere und Polymere, welche gegebenenfalls noch hydriert sein können. Derartige Produkte können beispielsweise unter den Handelsbezeichnungen Nexbase®, Permethyl®, beispielsweise Permethyl® 102A, Gulftene®, zum Beispiel Gulftene® 10 oder Gulftene® 12, Arlamol® PA01 , Paradecinol®, wie beispielsweise insbesondere Paradecinol® FV 16-18, oder Indopol® käuflich erworben werden.
Zu den erfindungsgemäß verwendbaren Ölen zählen weiterhin Dialkylether. Erfindungsgemäß einsetzbare Dialkylether sind insbesondere Di-n-alkylether mit insgesamt zwischen 12 bis 36 C-Atomen, insbesondere 12 bis 24 C-Atomen, wie beispielsweise Di-n-octylether, Di-n-decylether, Di-n-nonylether, Di-n- undecylether, Di-n-dodecylether, n-Hexyl-n-octylether, n-Octyl-n-decylether, n- Decyl-n-undecylether, n-Undecyl-n-dodecylether und n-Hexyl-n-undecylether sowie Di-tert.-butylether, Di-iso-pentylether, Di-3-ethyldecylether, tert.-Butyl-n- octylether, iso-Pentyl-n-octylether und 2-Methylpentyl-n-octylether.
Die erfindungsgemäßen Haut- und Haarbehandlungsmittel enthalten die wasserunlösliche Ölkomponente üblicherweise in einem Mengenbereich von 0,01 bis 5 Gew.-%, insbesondere von 0,1 bis 3 Gew.-%, bezogen auf das Gesamtgewicht des Mittels.
In einer weiteren bevorzugten Ausführungsform der Erfindung kann die Wirkung der erfindungsgemäßen Wirkstoffkombination durch weitere Fettstoffe noch weiter optimiert werden. Unter weiteren Fettstoffen sind zu verstehen Fettsäuren, Fettalkohole sowie natürliche und synthetische Wachse, welche sowohl in fester Form als auch flüssig in wässriger Dispersion vorliegen können.
Als Fettsäuren können eingesetzt werden lineare und/oder verzweigte, gesättigte und/oder ungesättigte Fettsäuren mit 6 - 30 Kohlenstoffatomen. Bevorzugt sind Fettsäuren mit 10 - 22 Kohlenstoffatomen. Hierunter wären beispielsweise zu nennen die Isostearinsäuren, wie die Handelsprodukte Emersol® 871 und Emersol® 875, und Isopalmitinsäuren wie das Handelsprodukt Edenor® IP 95, sowie alle weiteren unter den Handelsbezeichnungen Edenor® (Cognis) vertriebenen Fettsäuren. Weitere typische Beispiele für solche Fettsäuren sind Capronsäure, Caprylsäure, 2-Ethylhexansäure, Caprinsäure, Laurinsäure, Isotridecansäure, Myristinsäure, Palmitinsäure, Palmitoleinsäure, Stearinsäure, Isostearinsäure, Ölsäure, Elaidinsäure, Petroselinsäure, Linolsäure, Linolensäure, Elaeostearinsäure, Arachinsäure, Gadoleinsäure, Behensäure und Erucasäure sowie deren technische Mischungen, die z.B. bei der Druckspaltung von natürlichen Fetten und Ölen, bei der Oxidation von Aldehyden aus der Roelen'schen Oxosynthese oder der Dimerisierung von ungesättigten Fettsäuren anfallen. Besonders bevorzugt sind üblicherweise die Fettsäureschnitte, welche aus Cocosöl oder Palmöl erhältlich sind; insbesondere bevorzugt ist in der Regel der Einsatz von Stearinsäure.
Die Einsatzmenge beträgt dabei 0,1 - 15 Gew.%, bezogen auf das gesamte Mittel. In einer bevorzugten Ausführungsform beträgt die Menge 0,5 - 10 Gew.%, wobei ganz besonders vorteilhaft Mengen von 1 - 5 Gew.% sind.
Als Fettalkohole können eingesetzt werden gesättigte, ein- oder mehrfach ungesättigte, verzweigte oder unverzweigte Fettalkohole mit C@ - C30-, bevorzugt C10 - C22- und ganz besonders bevorzugt Cι2 - C22- Kohlenstoffatomen. Einsetzbar im Sinne der Erfindung sind beispielsweise Decanol, Octanol, Octenol, Dodecenol, Decenol, Octadienol, Dodecadienol, Decadienol, Oleylalkohol, Erucaalkohol, Ricinolalkohol, Stearylalkohol, Isostearylalkohol, Cetylalkohol, Laurylalkohol, Myristylalkohol, Arachidylalkohol, Caprylalkohol, Caprinalkohol, Linoleylalkohol, Linolenylalkohol und Behenylalkohol, sowie deren Guerbetalkohole, wobei diese Aufzählung beispielhaften und nicht limitierenden Charakter haben soll. Die Fettalkohole stammen jedoch von bevorzugt natürlichen Fettsäuren ab, wobei üblicherweise von einer Gewinnung aus den Estern der Fettsäuren durch Reduktion ausgegangen werden kann. Erfindungsgemäß einsetzbar sind ebenfalls solche Fettalkoholschnitte, die durch Reduktion natürlich vorkommender Triglyceride wie Rindertalg, Palmöl, Erdnußöl, Rüböl, Baumwollsaatöl, Sojaöl, Sonnenblumenöl und Leinöl oder aus deren Umesterungsprodukten mit entsprechenden Alkoholen entstehenden Fettsäureestern erzeugt werden, und somit ein Gemisch von unterschiedlichen Fettalkoholen darstellen. Solche Substanzen sind beispielsweise unter den Bezeichnungen Stenol®, z.B. Stenol® 1618 oder Lanette®, z.B. Lanette® O oder Lorol®, z.B. Lorol® C8, Lorol® C14, Lorol® C18, Lorol® C8-18, HD-Ocenol®, Crodacol®, z.B. Crodacol® CS, Novol®, Eutanol® G, Guerbitol® 16, Guerbitol® 18, Guerbitol® 20, Isofol® 12, Isofol® 16, Isofol® 24, Isofol® 36, Isocarb® 12, Isocarb® 16 oder Isocarb® 24 käuflich zu erwerben. Selbstverständlich können erfindungsgemäß auch Wollwachsalkohole, wie sie beispielsweise unter den Bezeichnungen Corona®, White Swan®, Coronet® oder Fluilan® käuflich zu erwerben sind, eingesetzt werden.
Die Fettalkohole werden in Mengen von 0,1 - 20 Gew.-%, bezogen auf die gesamte Zubereitung, bevorzugt in Mengen von 0,1 - 10 Gew.-% eingesetzt.
Als natürliche oder synthetische Wachse können erfindungsgemäß eingesetzt werden feste Paraffine oder Isoparaffine, Camaubawachse, Bienenwachse, Candelillawachse, Ozokerite, Ceresin, Walrat, Sonnenblumenwachs, Fruchtwachse wie beispielsweise Apfelwachs oder Citruswachs, Microwachse aus PE- oder PP. Derartige Wachse sind beispielsweise erhältlich über die Fa. Kahl & Co., Trittau.
Weitere Fettstoffe sind beispielsweise
- Esteröle. Unter Esterölen sind zu verstehen die Ester von C6 - C30 - Fettsäuren mit C2 - C30 - Fettalkoholen. Bevorzugt sind die Monoester der Fettsäuren mit Alkoholen mit 2 bis 24 C-Atomen. Beispiele für eingesetzte Fettsäu renanteile in den Estern sind Cäpronsäure, Caprylsäure, 2-EthyIhexansäure, Caprinsäure, Laurinsäure, Isotridecansäure, Myristinsäure, Palmitinsäure, Palmitoleinsäure, Stearinsäure, Isostearinsäure, Ölsäure, Elaidinsäure, Petroselinsäure, Li- nolsäure, Linolensäure, Elaeostearinsäure, Arachinsäure, Gadoleinsäure, Behensäure und Erucasäure sowie deren technische Mischungen, die z.B. bei der Druckspaltung von natürlichen Fetten und Ölen, bei der Oxidation von Aldehyden aus der Roelen'schen Oxosynthese oder der Dimerisierung von ungesättigten Fettsäuren anfallen. Beispiele für die Fettalkoholanteile in den Esterölen sind Isopropylalkohol, Capronalkohol, Caprylalkohol, 2- Ethylhexylalkohol, Caprinalkohol, Laurylalkohol, Isotridecylalkohol, My- ristylalkohol, Cetylalkohol, Palmoleylalkohol, Stearylalkohol, Isostearylalkohol, Oleylalkohol, Elaidylalkohol, Petroselinylalkohol, Linolylalkohol, Linolenylalkohol, Elaeostearylalkohol, Arachylalkohol, Gadoleylalkohol, Behe- nylalkohol, Erucylalkohol und Brassidylalkohol sowie deren technische Mischungen, die z.B. bei der Hochdruckhydrierung von technischen Methylestern auf Basis von Fetten und Ölen oder Aldehyden aus der Roelen'schen Oxosynthese sowie als Monomerfraktion bei der Dimerisierung von ungesättigten Fettalkoholen anfallen. Erfindungsgemäß besonders bevorzugt sind Isopropylmyristat (Rilanit® IPM), lsononansäure-C16-18-alkylester (Cetiol® SN), 2-Ethylhexylpalmitat (Cegesoft® 24), Stearinsäure-2-ethylhexylester (Cetiol® 868), Cetyloleat, Glycerintricaprylat, KokosfettalkohoI-caprinatV-caprylat (Cetiol® LC), n-Butylstearat, Oleylerucat (Cetiol® J 600), Isopropylpalmitat (Rilanit® IPP), Oleyl Oleate (Cetiol®), Laurinsäurehexylester (Cetiol® A), Di-n- butyladipat (Cetiol® B), Myristylmyristat (Cetiol® MM), Cetearyl Isononanoate (Cetiol® SN), Ölsäuredecylester (Cetiol® V).
- Dicarbonsäureester wie Di-n-butyladipat, Di-(2-ethylhexyl)-adipat, Di-(2- ethylhexyl)-succinat und Di-isotridecylacelaat sowie Diolester wie Ethylenglykol-dioleat, Ethylenglykol-di-isotridecanoat, Propylenglykol-di(2- ethylhexanoat), Propylenglykol-di-isostearat, Propylenglykol-di-pelargonat, Butandiol-di-isostearat, Neopentylglykoldicaprylat,
- symmetrische, unsymmetrische oder cyclische Ester der Kohlensäure mit Fettalkoholen, beispielsweise beschrieben in der DE-OS 197 56 454, Glycerincarbonat oder Dicaprylylcarbonat (Cetiol® CC),
- ethoxylierte oder nicht ethoxylierte Mono,- Di- und Trifettsäureester von gesättigten und/oder ungesättigten linearen und/oder verzweigten Fettsäuren mit Glycerin mit einem Ethoxylierungsgrad von 0 - 60, wie beispielsweise Monomuls® 90-018, Monomuls® 90-L12, Cetiol®HE oder Cutina® MD.
Cetiol® HE und Monomuls® 90-O18 sind besonders bevorzugte Fettstoffkomponenten im Sinne der Erfindung.
Die Einsatzmenge der weiteren Fettstoffe beträgt 0,1 - 50 Gew.% bezogen auf das gesamte Mittel, bevorzugt 0,1 - 20 Gew.% und besonders bevorzugt 0,1 - 15 Gew.%» bezogen auf das gesamte Mittel. Vorteilhaft im Sinne der Erfindung können zusätzlich kurzkettige Carbonsäuren (N) eingesetzt werden. Unter kurzkettigen Carbonsäuren und deren Derivaten im Sinne der Erfindung werden Carbonsäuren verstanden, welche gesättigt oder ungesättigt und/oder geradkettig oder verzweigt oder cyclisch und/oder aromatisch und/oder heterocyclisch sein können und ein Molekulargewicht kleiner 750 aufweisen. Bevorzugt im Sinne der Erfindung können gesättigte oder ungesättigte geradkettigte oder verzweigte Carbonsäuren mit einer Kettenlänge von 1 bis zu 16 C-Atomen in der Kette sein, ganz besonders bevorzugt sind solche mit einer Kettenlänge von 1 bis zu 12 C - Atomen in der Kette.
Die kurzkettigen Carbonsäuren im Sinne der Erfindung können ein, zwei, drei oder mehr Carboxygruppen aufweisen. Bevorzugt im Sinne der Erfindung sind Carbonsäuren mit mehreren Carboxygruppen, insbesondere Di- und Tricarbonsäuren. Die Carboxygruppen können ganz oder teilweise als Ester, Säureanhydrid, Lacton, Amid, Imidsäure, Lactam, Lactim, Dicarboximid, Carbohydrazid, Hydrazon, Hydroxam, Hydroxim, Amidin, Amidoxim, Nitril, Phosphon- oder Phosphatester vorliegen. Die erfindungsgemäßen Carbonsäuren können selbstverständlich entlang der Kohlenstoffkette oder des Ringgerüstes substituiert sein. Zu den Substituenten der erfindungsgemäßen Carbonsäuren sind beispielsweise zu zählen C1-C8-Alkyl-, C2-C8-Alkenyl-, Aryl-, Aralkyl- und Aralkenyl-, Hydroxymethyl-, C2-C8-Hydroxyalkyl-,C2-C8-Hydroxyalkenyl-, Aminomethyl-, C2-C8-Aminoalkyl-, Cyano-, Formyl-, Oxo-, Thioxo-, Hydroxy-, Mercapto-, Amino-, Carboxy- oder Iminogruppen. Bevorzugte Substituenten sind C1-C8-Alkyl-, Hydroxymethyl-, Hydroxy-, Amino- und Carboxygruppen. Besonders bevorzugt sind Substituenten in α - Stellung. Ganz besonders bevorzugte Substituenten sind Hydroxy-, Alkoxy- und Aminogruppen, wobei die Aminofunktion gegebenenfalls durch Alkyl-, Aryl-, Aralkyl- und/oder Alkenylreste weiter substituiert sein kann. Weiterhin sind ebenfalls bevorzugte Carbonsäurederivate die Phosphon- und Phosphatester.
Als Beispiele für erfindungsgemäße Carbonsäuren seien genannt Ameisensäure, Essigsäure, Propionsäure, Buttersäure, Isobuttersäure, Valeriansäure, Isovaleriansäure, Pivalinsäure, Oxalsäure, Malonsäure, Bernsteinsäure, Glutarsäure, Glycerinsäure, Glyoxylsäure, Adipinsäure, Pimelinsäure, Korksäure, Azelainsäure, Sebacinsäure, Propiolsäure, Crotonsäure, Isocrotonsäure, Elaidinsäure, Maleinsäure, Fumarsäure, Muconsäure, Citraconsäure, Mesaconsäure, Camphersäure, Benzoesäure, o,m,p-Phthalsäure, Naphthoesäure, Toluoylsäure, Hydratropasäure, Atropasäure, Zimtsäure, Isonicotinsäure, Nicotinsäure, Bicarbaminsäure, 4,4'-Dicyano-6,6'-binicotinsäure, 8-
Carbamoyloctansäure, 1 ,2,4-Pentantricarbonsäure, 2-Pyrrolcarbonsäure, 1 ,2,4,6,7-Napthalinpentaessigsäure, Malonaldehydsäure, 4-Hydroxy- phthalamidsäure, 1-Pyrazolcarbonsäure, Gallussäure oder Propantricarbonsäure, eine Dicarbonsäure ausgewählt aus der Gruppe, die gebildet wird durch Verbindungen der allgemeinen Formel (N-l),
Z— V(CnH2n)— COOH (N-l)
X Y
in der Z steht für eine lineare oder verzweigte Alkyl- oder Alkenylgruppe mit 4 bis 12 Kohlenstoffatomen, n für eine Zahl von 4 bis 12 sowie eine der beiden Gruppen X und Y für eine COOH-Gruppe und die andere für Wasserstoff oder einen Methyl- oder Ethylrest, Dicarbonsäuren der allgemeinen Formel (N-l), die zusätzlich noch 1 bis 3 Methyl- oder Ethylsubstituenten am Cyclohexenring tragen sowie Dicarbonsäuren, die aus den Dicarbonsäuren gemäß Formel (N-l) formal durch Anlagerung eines Moleküls Wasser an die Doppelbindung im Cyclohexenring entstehen.
Dicarbonsäuren der Formel (N-l) sind in der Literatur bekannt.
Ein Herstellungsverfahren ist beispielsweise der US-Patentschrift 3,753,968 zu entnehmen.
Die Dicarbonsäuren der Formel (N-l) können beispielsweise durch Umsetzung von mehrfach ungesättigten Dicarbonsäuren mit ungesättigten Monocarbonsäuren in Form einer Diels-Alder-Cyclisierung hergestellt werden. Üblicherweise wird man von einer mehrfach ungesättigten Fettsäure als Dicarbonsäurekomponente ausgehen. Bevorzugt ist die aus natürlichen Fetten und Ölen zugängliche Linolsäure. Als Monocarbonsäurekomponente sind insbesondere Acrylsäure, aber auch z.B. Methacrylsäure und Crotonsäure bevorzugt. Üblicherweise entstehen bei Reaktionen nach Diels-Alder Isomerengemische, bei denen eine Komponente im Überschuss vorliegt. Diese Isomerengemische können erfindungsgemäß ebenso wie die reinen Verbindungen eingesetzt werden.
Erfindungsgemäß einsetzbar neben den bevorzugten Dicarbonsäuren gemäß Formel (N-l) sind auch solche Dicarbonsäuren, die sich von den Verbindungen gemäß Formel (N-l) durch 1 bis 3 Methyl- oder Ethyl-Substituenten am Cyclo- hexylring unterscheiden oder aus diesen Verbindungen formal durch Anlagerung von einem Molekül Wasser an die Doppelbildung des Cyclohexenrings gebildet werden.
Als erfindungsgemäß besonders vorteilhaft hat sich die Dicarbonsäure(-mischung) erwiesen, die durch Umsetzung von Linolsäure mit Acrylsäure entsteht. Es handelt sich dabei um eine Mischung aus 5- und 6-Carboxy-4-hexyl-2-cyclohexen-1- octansäure. Solche Verbindungen sind kommerziell unter den Bezeichnungen Westvaco Diaeid® 1550 und Westvaco Diaeid® 1595 (Hersteller: Westvaco) erhältlich.
Neben den zuvor beispielhaft aufgeführten erfindungsgemäßen kurzkettigen Carbonsäuren selbst können auch deren physiologisch verträgliche Salze erfindungsgemäß eingesetzt werden. Beispiele für solche Salze sind die Alkali-, Erdalkali-, Zinksalze sowie Ammoniumsalze, worunter im Rahmen der vorliegenden Anmeldung auch die Mono-, Di- und Trimethyl-, -ethyl- und - hydroxyethyl-Ammoniumsalze zu verstehen sind. Ganz besonders bevorzugt können im Rahmen der Erfindung jedoch mit alkalisch reagierenden Aminosäuren, wie beispielsweise Arginin, Lysin, Omithin und Histidin, neutralisierte Säuren eingesetzt werden. Weiterhin kann es aus Formulierungsgründen bevorzugt sein, die Carbonsäure aus den wasserlöslichen Vertretern, insbesondere den wasserlöslichen Salzen, auszuwählen. Weiterhin ist es erfindungsgemäß bevorzugt, Hydroxycarbonsäuren und hierbei wiederum insbesondere die Dihydroxy-, Trihydroxy- und
Polyhydroxycarbonsäuren sowie die Dihydroxy-, Trihydroxy- und Polyhydroxy- di-, tri- und polycarbonsäuren einzusetzen. Hierbei hat sich gezeigt, daß neben den Hydroxycarbonsäuren auch die Hydroxycarbonsäureester sowie die Mischungen aus Hydroxycarbonsäuren und deren Estern als auch polymere Hydroxycarbonsäuren und deren Ester ganz besonders bevorzugt sein können. Bevorzugte Hydroxycarbonsäureester sind beispielsweise Vollester der Glycolsäure, Milchsäure, Äpfelsäure, Weinsäure oder Citronensäure. Weitere grundsätzlich geeignete Hydroxycarbonsäureester sind Ester der ß- Hydroxypropionsäure, der Tartronsäure, der D-Gluconsäure, der Zuckersäure, der Schleimsäure oder der Glucuronsäure. Als Alkoholkomponente dieser Ester eignen sich primäre, lineare oder verzweigte aliphatische Alkohole mit 8 - 22 C- Atomen, also z.B. Fettalkohole oder synthetische Fettalkohole. Dabei sind die Ester von C12-C15-Fettalkoholen besonders bevorzugt. Ester dieses Typs sind im Handel erhältlich, z.B. unter dem Warenzeichen Cosmacol® der EniChem, Augusta Industriale. Besonders bevorzugte Polyhydroxypolycarbonsäuren sind Polymilchsäure und Polyweinsäure sowie deren Ester.
Weiterhin sind als konditionierende Wirkstoffe geeignet Silikonöle und Silikon- Gums, insbesondere Dialkyl- und Alkylarylsiloxane, wie beispielsweise Dimethylpolysiloxan und Methylphenylpolysiloxan, sowie deren alkoxylierte und quaternierte Analoga. Beispiele für solche Silikone sind die von Dow Corning unter den Bezeichnungen DC 190, DC 200 und DC 1401 vertriebenen Produkte sowie das Handelsprodukt Fancorsil® L1M-1.
Erfindungsgemäß als konditionierende Wirkstoffe ebenfalls geeignet sind kationische Silikonöle wie beispielsweise die im Handel erhältlichen Produkte Q2- 7224 (Hersteller: Dow Corning; ein stabilisiertes Trimethylsilylamodimethicon), Dow Corning® 939 Emulsion (enthaltend ein hydroxyl-amino-modifiziertes Silicon, das auch als Amodimethicone bezeichnet wird), SM-2059 (Hersteller: General Electric), SLM-55067 (Hersteller: Wacker) sowie Abil®-Quat 3270 und 3272 (Her- steller: Th. Goldschmidt; diquaternäre Polydimethylsiloxane, Quaternium-80). Ein geeignetes anionisches Silikonöl ist das Produkt Dow Corning®1784.
Weitere Wirk-, Hilfs- und Zusatzstoffe sind beispielsweise
- Verdickungsmittel wie Agar-Agar, Guar-Gum, Alginate, Xanthan-Gum, Gummi arabicum, Karaya-Gummi, Johannisbrotkernmehl, Leinsamengummen, Dextrane, Cellulose-Derivate, z. B. Methylcellulose, Hydroxyalkylcellulose und Carboxymethylcellulose, Stärke-Fraktionen und Derivate wie Amylose, Amylopektin und Dextrine, Tone wie z. B. Bentonit oder vollsynthetische Hydrokolloide wie z. B. Polyvinylalkohol,
- haarkonditionierende Verbindungen wie Phospholipide, beispielsweise Sojalecithin, Ei-Lecitin und Kephaline, sowie Silikonöle,
- Parfümöle, Dimethylisosorbid und Cyclodextrine,
- Lösungsmittel und -Vermittler wie Ethanol, Isopropanol, Ethylenglykol, Propylenglykol, Glycerin und Diethylenglykol,
- faserstrukturverbessemde Wirkstoffe, insbesondere Mono-, Di- und Oligosaccharide, wie beispielsweise Glucose, Galactose, Fructose, Fruchtzucker und Lactose,
- Entschäumer wie Silikone,
- Farbstoffe zum Anfärben des Mittels,
- Antischuppenwirkstoffe wie Piroctone Olamine, Zink Omadine und Climbazol,
- Wirkstoffe wie Allantoin und Bisabolol, Cholesterin,
- Konsistenzgeber wie Zuckerester, Polyolester oder Polyolalkylether,
- Fette und Wachse wie Walrat, Bienenwachs, Montanwachs und Paraffine,
- Fettsäurealkanolamide,
- Komplexbildner wie EDTA, NTA, ß-Alanindiessigsäure und Phosphonsäuren,
- Quell- und Penetrationsstoffe wie primäre, sekundäre und tertiäre Phosphate,
- Trübungsmittel wie Latex, Styrol/PVP- und Styrol/Acrylamid-Copolymere,
- Perlglanzmittel wie Ethylenglykolmono- und -distearat sowie PEG-3-distearat,
- Pigmente,
- Treibmittel wie Propan-Butan-Gemische, N2O, Dimethylether, CO2 und Luft,
- Konservierungsmittel wie Benzoesäure oder Salicylsäure, - anorganische Salze ein- oder mehrwertiger Kationen, beispielsweise Natriumchlorid,
- Antioxidantien.
Bezüglich weiterer fakultativer Komponenten sowie die eingesetzten Mengen dieser Komponenten wird ausdrücklich auf die dem Fachmann bekannten einschlägigen Handbücher, z. B. die Monographie von K. H. Schrader, Grundlagen und Rezepturen der Kosmetika, 2. Auflage, Hüthig Buch Verlag Heidelberg, 1989, verwiesen.
Die erfindungsgemäßen Mittel unterliegen hinsichtlich ihrer Konfektionierungsform keinerlei Beschränkungen und können als Emulsion, Creme, Lösung, Gel oder Mousse formuliert werden.
Ein zweiter Gegenstand der Erfindung ist ein Verfahren zur Reinigung und Pflege von Haut und Haaren, bei dem die erfindungsgemäße Zusammensetzung auf die Haut und/oder das Haar aufgetragen, verteilt und mit Wasser wieder ausgespült wird.
Ein dritter Gegenstand der Erfindung ist die Verwendung der erfindungsgemäßen Zusammensetzung zur Reinigung und Pflege von Haut und Haaren.
Die folgenden Beispiele sollen die Erfindung näher erläutern, ohne ihn darauf zu beschränken - alle Gewichtsangaben beziehen sich auf Gew.% Aktivsubstanz:
O 2005/115328
34
Beispiele Duschgel
Figure imgf000035_0001

Claims

Patentansprüche
1. Mittel zur Reinigung und Pflege von Haut und Haaren, enthaltend a) mindestens eine Waschbase, b) mindestens ein kationisches Polymer und c) mindestens einen Polyglycerinfettsäureester und/oder ein Polyglycerinfettsäureestergemisch.
2. Mittel nach Anspruch 1 , dadurch gekennzeichnet, dass die Waschbase ausgewählt ist aus anionischen, amphoteren- oder zwitterionischen und nichtionischen Tensiden, oder aus Gemischen dieser Tensidklassen.
3. Mittel nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass die Waschbase ein Gemisch aus mindestens einem anionischen und mindestens einem zwitterionischen oder amphoteren Tensid umfasst.
4. Mittel nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Gesamttensidgehalt in dem Mittel 5 bis 25 Gew.-% beträgt.
5. Mittel nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das kationische Polymer ausgewählt ist aus kationischen Guar-Derivaten, kationischen Cellulose-Derivaten, Homopolymeren des Dimethyldiallyl- ammoniumchlorids oder Copolymeren des Dimethyldiallylammoniumchlorids mit Acrylamid.
6. Mittel nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das kationische Polymer Polyquatemium-7, Polyquatemium-10 oder Guarhydroxypropyltrimonium Chloride ist.
7. Mittel nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass es 0,01 bis 10 Gew.-% des kationischen Polymers, bezogen auf das Gesamtgewicht des Mittels, enthält.
8. Mittel nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Komponente c) Ester des Polyglycerins mit C6-Cι4-Fettsäuren umfasst.
9. Mittel nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Komponente c) Polyglyceryl-3-Caprat und/oder PoIyglyceryl-4-Caprat ist.
10. Mittel nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass es .0,01 bis 3 Gew.-% der Komponente c), bezogen auf das Gesamtgewicht des Mittels, enthält.
11. Mittel nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass es weiterhin einen oder mehrere Vertreter aus der Gruppe der Vitamine, der Proteinhydrolysate, der Pflanzenextrakte oder der Perlglanzstoffe enthält.
12. Mittel nach einem der Ansprüche 1 bis 11 , dadurch gekennzeichnet, dass es weiterhin Menthol oder Mentholderivate wie Menthone Glycerin Acetal, Menthoxypropanediol oder Campher enthält.
13. Verfahren zur Reinigung und Pflege von Haut und Haaren, dadurch gekennzeichnet, dass ein Mittel nach einem der Ansprüche 1 bis 12 auf die Haut und/oder das Haar aufgetragen, verteilt und mit Wasser wieder ausgespült wird.
14. Verwendung einer Körperreinigungs- und Pflegezusammensetzung nach einem der Ansprüche 1 bis 12 zur Reinigung und Pflege von Haut und Haaren.
PCT/EP2005/003544 2004-05-19 2005-04-05 Haut- und haarbehandlungsmittel mit verbessertem leistungsprofil WO2005115328A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004025287.4 2004-05-19
DE200410025287 DE102004025287A1 (de) 2004-05-19 2004-05-19 Haut- und Haarbehandlungsmittel mit verbessertem Leistungsprofil

Publications (1)

Publication Number Publication Date
WO2005115328A1 true WO2005115328A1 (de) 2005-12-08

Family

ID=34964129

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/003544 WO2005115328A1 (de) 2004-05-19 2005-04-05 Haut- und haarbehandlungsmittel mit verbessertem leistungsprofil

Country Status (2)

Country Link
DE (1) DE102004025287A1 (de)
WO (1) WO2005115328A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011098311A1 (en) 2010-02-12 2011-08-18 Evonik Goldschmidt Gmbh Cosmetic composition containing polyglycerol partial ester
WO2011098313A1 (en) 2010-02-12 2011-08-18 Evonik Goldschmidt Gmbh Cosmetic composition containing polyglycerol partial ester

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007022693A1 (de) * 2007-05-11 2009-01-15 Evonik Stockhausen Gmbh Haut- und Händereinigungsmittel mit hydrophilen Emollients
MX352379B (es) 2013-04-05 2017-11-17 Procter & Gamble Composicion para el cuidado personal que comprende una formulacion preemulsionada.
US10806688B2 (en) 2014-10-03 2020-10-20 The Procter And Gamble Company Method of achieving improved volume and combability using an anti-dandruff personal care composition comprising a pre-emulsified formulation
US9993404B2 (en) 2015-01-15 2018-06-12 The Procter & Gamble Company Translucent hair conditioning composition
CN116831927A (zh) 2016-01-20 2023-10-03 宝洁公司 包含单烷基甘油基醚的毛发调理组合物

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0499700A1 (de) * 1991-02-20 1992-08-26 Deutsche Solvay-Werke Gesellschaft mit beschränkter Haftung Polyglycerinfettsäureestergemisch
JPH11148099A (ja) * 1997-11-14 1999-06-02 Lion Corp 中性液体洗浄剤組成物
DE19917745A1 (de) * 1998-09-24 2000-03-30 Cognis Deutschland Gmbh Milde wäßrige Zubereitungen
JP2001311099A (ja) * 2000-04-28 2001-11-09 Lion Corp 洗浄剤組成物及び洗浄剤組成物の製造方法
JP2003104852A (ja) * 2001-09-28 2003-04-09 Lion Corp 毛髪用洗浄剤組成物

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0499700A1 (de) * 1991-02-20 1992-08-26 Deutsche Solvay-Werke Gesellschaft mit beschränkter Haftung Polyglycerinfettsäureestergemisch
JPH11148099A (ja) * 1997-11-14 1999-06-02 Lion Corp 中性液体洗浄剤組成物
DE19917745A1 (de) * 1998-09-24 2000-03-30 Cognis Deutschland Gmbh Milde wäßrige Zubereitungen
JP2001311099A (ja) * 2000-04-28 2001-11-09 Lion Corp 洗浄剤組成物及び洗浄剤組成物の製造方法
JP2003104852A (ja) * 2001-09-28 2003-04-09 Lion Corp 毛髪用洗浄剤組成物

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 1999, no. 11 30 September 1999 (1999-09-30) *
PATENT ABSTRACTS OF JAPAN vol. 2002, no. 03 3 April 2002 (2002-04-03) *
PATENT ABSTRACTS OF JAPAN vol. 2003, no. 08 6 August 2003 (2003-08-06) *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011098311A1 (en) 2010-02-12 2011-08-18 Evonik Goldschmidt Gmbh Cosmetic composition containing polyglycerol partial ester
WO2011098313A1 (en) 2010-02-12 2011-08-18 Evonik Goldschmidt Gmbh Cosmetic composition containing polyglycerol partial ester
EP2359802A1 (de) 2010-02-12 2011-08-24 Evonik Goldschmidt GmbH Kosmetikzusammensetzung mit Polyglycerolpartialester
EP2359803A1 (de) 2010-02-12 2011-08-24 Evonik Goldschmidt GmbH Kosmetikzusammensetzung mit Polyglycerolpartialester
US8703159B2 (en) 2010-02-12 2014-04-22 Evonik Goldschmidt Gmbh Cosmetic composition containing polyglycerol partial ester

Also Published As

Publication number Publication date
DE102004025287A1 (de) 2005-12-08

Similar Documents

Publication Publication Date Title
EP1594448B1 (de) Haarbehandlungsmittel mit tensidmischungen
EP1838833B1 (de) Tensidhaltiges reinigungsmittel mit speziellen proteinen
EP2328544B1 (de) Tensidhaltige zusammensetzung mit spezieller emulgatormischung
EP1812117A1 (de) Verfahren zur restrukturierung keratinischer fasern
WO2005115328A1 (de) Haut- und haarbehandlungsmittel mit verbessertem leistungsprofil
EP1404286B2 (de) Haarbehandlungsmittel mit carnitintartrat
EP2248509A2 (de) Haar- und kopfhautschonende Shampoos und Conditioner
DE102015222976A1 (de) Haarpflegemittel enthaltend Caseinhydrolysat zur Verbesserung der Haarstruktur
DE10243626A1 (de) Haarbehandlungsmittel enthaltend eine Wirkstoffkombination mit Liposomen
EP1430884B1 (de) Ölduschbad mit spezieller Tensidkombination
DE10309180A1 (de) Haut- und Haarbehandlungsmittel
DE102009045856A1 (de) Verwendung kationischer Polymere in Haut- und Haarreinigungsmitteln
EP1363586B1 (de) Verfahren zur dauerhaften verformung keratinischer fasern und mittel
DE102009026899A1 (de) Kosmetisches Reinigungsmittel mit Deo-Effekt
DE10258394A1 (de) Tücher zur Pflege keratinischer Fasern
EP2238966A2 (de) Kopfhautschonende Shampoos und Conditioner
WO2010127918A2 (de) Kopfhautschonende und kopfhautberuhigende shampoos und conditioner
DE102009028085A1 (de) Verwendung von Olivenöl und Proteinhydrolysaten in der Haarpflege
DE102009045605A1 (de) Versprühbares Haarreinigungsmittel
DE10309178A1 (de) System zur Viskositätsregulierung
DE10258395A1 (de) Reinigungstücher zur Reinigung keratinischer Fasern

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase