EP1569603A1 - Tücher zur pflege keratinischer fasern - Google Patents

Tücher zur pflege keratinischer fasern

Info

Publication number
EP1569603A1
EP1569603A1 EP03789137A EP03789137A EP1569603A1 EP 1569603 A1 EP1569603 A1 EP 1569603A1 EP 03789137 A EP03789137 A EP 03789137A EP 03789137 A EP03789137 A EP 03789137A EP 1569603 A1 EP1569603 A1 EP 1569603A1
Authority
EP
European Patent Office
Prior art keywords
acid
preferred
alkyl
fatty
alcohol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03789137A
Other languages
English (en)
French (fr)
Inventor
Erik Schulze Zur Wiesche
Miriam Mende
Detlef Hollenberg
Susanne Schmarje
Elisabeth Poppe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Publication of EP1569603A1 publication Critical patent/EP1569603A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/0208Tissues; Wipes; Patches
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/34Alcohols
    • A61K8/345Alcohols containing more than one hydroxy group
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/36Carboxylic acids; Salts or anhydrides thereof
    • A61K8/365Hydroxycarboxylic acids; Ketocarboxylic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/40Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing nitrogen
    • A61K8/41Amines
    • A61K8/416Quaternary ammonium compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair

Definitions

  • the invention relates to care wipes that are treated with a special solution, and the use of these wipes for the care of keratin fibers.
  • Cosmetic products for the care and maintenance of the natural functions of skin and hair are becoming increasingly important.
  • the changed consumer habits and fashion trends contribute to this.
  • the intensive use of tanning salons has a lasting impact on the structure of skin and hair by UV light.
  • These impairments are shown on the skin and hair, for example, by a loss of elasticity.
  • the hair is treated with special active ingredients, for example quaternary ammonium salts or special polymers.
  • special active ingredients for example quaternary ammonium salts or special polymers.
  • this treatment improves the combability, hold and fullness of the hair and reduces the split rate.
  • these preparations additionally contain active ingredients which were formerly reserved for the hair aftertreatment agents.
  • the consumer thus saves one application step; At the same time, the packaging effort is reduced because one product is used less.
  • the active substances available both for separate aftertreatment agents and for combination preparations generally act preferentially on the hair surface.
  • Hair care products are known which give the hair shine, hold, fullness, better wet or dry combability or prevent split ends.
  • the internal structural cohesion of the hair fibers can be greatly influenced in particular in oxidative and reductive processes such as coloring and perms.
  • emulsions for skin care were further optimized in terms of their irritant potential by selecting suitable emulsifiers.
  • Mild surfactants are used to clean skin and hair used so as not to put additional strain on skin and hair.
  • Refatting substances are used to avoid stimulating sebum production during cleaning.
  • UV protection agents and vitamins such as vitamin E are said to reduce the adverse effects of UV light.
  • Protein hydrolyzates are used to balance the internal structure of the skin and hair. With plant and algae extracts, for example, the moisture balance of skin and hair can be influenced.
  • paper or cloth is understood to mean approximately 3000 different types and articles, some of which can differ considerably in their areas of application and their nature. A number of additives are required for their manufacture, of which fillers (eg chalk or Kaolin) and binders (eg starch) are among the most important ones.
  • fillers eg chalk or Kaolin
  • binders eg starch
  • tissue papers which contains an anhydrous emulsifier (be For example, petrolatum), a carrier (fatty alcohols, fatty acids or fatty alcohol ethoxylates each with 12 to 22 carbon atoms in the fat residue) and surfactants with an HLB value of 4 to 20.
  • anhydrous emulsifier be For example, petrolatum
  • a carrier fatty alcohols, fatty acids or fatty alcohol ethoxylates each with 12 to 22 carbon atoms in the fat residue
  • surfactants with an HLB value of 4 to 20.
  • International patent application WO 95/35412 discloses similar tissue papers, water-free mixtures of (a) mineral oils, (b) fatty alcohols or fatty acids and (c) fatty alcohol ethoxylates being used as softeners.
  • the international patent application WO 95/16824 relates to tissue papers which Contain mineral oil, fatty alcohol ethoxylates and non-ionic surfactants (sorbitan esters, glucamides). Furthermore, in the international patent application WO 97/30216 softening agents for paper handkerchiefs are described which contain (a) long-chain fatty alcohols, (b) wax esters, (c) nonionic emulsifiers and (d) mineral oil.
  • softening agents for paper handkerchiefs which contain (a) long-chain fatty alcohols, (b) wax esters, (c) nonionic emulsifiers and (d) mineral oil.
  • tissue towels it is particularly important to improve the soft feel and the sensor technology of the tissue towels and to give these tissue towels a gentle, that is to say non-degreasing but at the same time conditioning and nourishing cleaning performance for keratin fibers.
  • tissue papers and / or tissue tissues and / or tissue towels can be constructed in one or more layers.
  • the papers have a weight per square meter of 10 to 65, preferably 15 to 30 g and a density of 0.6 g / cm 3 and less.
  • tissue papers are toilet paper, paper tissues, facial cleaning tissues, make-up removing tissues, refreshing tissues, household tissues and the like.
  • the wipes can contain special active ingredients, for example moisturizers, insect repellents (after-sun wipes), dihydroxyacetone, deodorant active ingredients, surfactants (facial cleansing wipes), nourishing oils, anti-inflammatory active ingredients (baby wipes) and the like.
  • appropriate tissue fabrics made from fiber or fleece can also be used.
  • the tissue papers can be treated with the cosmetic preparations in a manner known per se, the solution being applied to at least one side of the papers. Basically, all relevant known methods are suitable for this, with the help of which liquids or melts can be applied to more or less solid surfaces, such as spraying, printing (eg flexographic printing), coating (gravure coating), extrusion and combinations of these processes. It it is also possible to soak the cloths with the preparations. After the preparations have been applied, a short drying step can follow. Methods for treating tissue papers with cosmetic preparations are described in detail in the documents WO 95/35411 and WO 97/30216 already mentioned at the outset, to which reference is hereby expressly made.
  • An object of the present invention was therefore to provide wet wipes using special surfactants which are free from the problems described.
  • the use of concentrates for the preparation of the impregnation solutions for the wet wipes is advantageous.
  • the disadvantage is that the concentrates often show a tendency to foam when diluted.
  • gel phases can form, which leads to an increased expenditure of time in the preparation of the potion solutions. In both cases, throughput in production is reduced.
  • cationic substances especially cationic surfactants, in particular of the esterquat type and / or cationized protein hydrolyzate and / or cationic polymer in combination with polyhydroxy compounds, perform the complex task in an excellent manner.
  • Impregnating agents based on this combination of active ingredients prove to be low-viscosity and foam-free during the impregnation process in the manufacture of the wipes.
  • the wet wipes impregnated with this active ingredient solution leave very well-maintained and protected and still unaffected keratin fibers.
  • the invention relates to care wipes for the care of keratin fibers, which are distinguished in that they are treated with a combination (W) of a) cationic substances (A) and b) polyhydroxy compounds (B).
  • keratin fibers are understood to mean furs, wool, feathers and in particular human hair.
  • Multi-layer tissue towels are preferred according to the invention.
  • those tissue towels are preferred according to the invention which have an impermeable and / or partially permeable barrier layer between the individual layers.
  • the partially permeable barrier layer can be designed, for example, as a semipermeable membrane.
  • two or more impregnation solutions can be applied to one wipe. This can be very particularly preferred in order to effect conditioning on one side of the wet wipes by means of the composition applied to the wipe. The other side can then be rubbed, for example, to dry.
  • a further care and / or fixing, fixing impregnation solution can also preferably be applied to the second side.
  • the wipes consist of at least 3 layers of impregnated tissue wipes. It is then advantageous for each layer of cloth to be formed as a semipermeable membrane between at least two layers of impregnated cloth.
  • the semipermeable membrane is permeable in the direction of at least one of the outer layers of cloth.
  • an impregnation solution can be applied to the innermost layer, which is either immiscible and / or not stable with the outer impregnation solution. This makes it possible to offer "two in one wipes" for cleaning and care and / or for care and for styling.
  • a layer of wipes which is preferably on the outside, is moistened with a nurturing wetting solution.
  • This wetting solution contains at least other components a cationic substance, fatty substances and / or care substances such as proteins and amino acids and, if appropriate, their derivatives, vitamins and Vitamin precursors and plant extracts. These ingredients are described in detail below.
  • this embodiment contains active ingredients known to those skilled in the art with repair effects. This includes on the one hand the substance classes mentioned above, but also polyhydroxy compounds such as polyhydroxy acids and saccharides, which are also described below.
  • This preferred embodiment can be designed according to the invention in such a way that the cloth is constructed in one layer.
  • the cloth is heated to temperatures of 20 to 50 ° C., preferably to 25 to 40 ° C., immediately before or during use.
  • the cloth can be heated before use, for example by means of a commercially available hair dryer, a commercially available drying hood, a microwave or other methods of heating.
  • a hair dryer or a drying hood is preferably used to heat the cloth lying on the hair or wrapped around individual strands of hair. With the help of the added heat, a more effective effect on the hair is achieved.
  • the cloth can remain on the hair for a few seconds up to 10 minutes even without applying heat, or the hair can only be brought into contact with the cloth by repeated wiping.
  • a second preferred embodiment is the configuration as a multi-layer cloth.
  • a layer of the cloth is built up with an impregnation solution as described above.
  • Another layer of cloth is preferably treated with a second impregnation solution.
  • this second impregnation solution contains at least one cationic polymer and at least one further polymer, the further polymer preferably being a silicone compound and / or a film-forming polymer.
  • it can also be preferred to heat this cloth as described above.
  • the particular advantage of this embodiment is that care and the keratin fibers regenerating substances are introduced on and into the fiber with one side.
  • the invention includes the different color design of the fabric layers.
  • teaching according to the invention also includes the construction of the wipes from several materials, in particular with regard to the absorbency and permeability of the different wipe layers.
  • the active ingredient combination according to the invention contains a cationic compound (A) as the first mandatory component.
  • Cationic compounds are to be understood as: cationic surfactants (AI) and cationic polymers (A2).
  • cationic surfactants can be used particularly preferably as the first class of compounds of the cationic compounds.
  • Typical examples of preferred cationic surfactants are especially quaternary ammonium compounds such as tetraalkylammonium compounds, ammonium halides, especially chlorides and bromides, such as alkyltrimethylammonium chlorides, dialkyldimethylammonium chlorides and trialkylmethylammonium chlorides, e.g.
  • the long alkyl chains of the above-mentioned surfactants preferably have 8 to 30 carbon atoms.
  • Hydroxyethyl hydroxycetyl dimmonium chlorides (Dehyquart E) or esterquats can also be used according to the invention as cationic surfactants. The latter are, for example, quaternized fatty acid triethanolamine ester salts of the formula (E5-I),
  • R 1 CO for an acyl radical with 6 to 22 carbon atoms
  • R 15 and R 1 independently of one another for hydrogen or R 14 CO
  • ml, m2 and m3 in total for 0 or numbers from 1 to 12, m4 for numbers from 1 to 12 and Y for halide, alkyl sulfate or alkyl phosphate.
  • ester quats which can be used in the context of the invention are products based on caproic acid, caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, isostearic acid, stearic acid, oleic acid, elaidic acid, arachic acid, behenic acid and erucic acid and their technical mixtures, such as they occur, for example, in the pressure splitting of natural fats and oils.
  • the fatty acids and the triethanolamine can be used in a molar ratio of 1.1: 1 to 3: 1 to produce the quaternized esters.
  • an application ratio of 1.2: 1 to 2.2: 1, preferably 1.5: 1 to 1.9: 1 has proven to be particularly advantageous.
  • the preferred esterquats are technical mixtures of mono-, di- and triesters with an average degree of esterification of 1.5 to 1.9 and are derived from technical Ci 6 / ß ⁇ -tallow or palm fatty acid (iodine number 0 to 40).
  • quaternized fatty acid triethanolamine ester salts of the formula (E5-I) have proven to be particularly advantageous in which R I4 CO for an acyl radical having 16 to 18 carbon atoms, R 15 for R 15 CO, R 16 for hydrogen, R 17 for a methyl group , ml, m2 and m3 for 0 and Y for methyl sulfate.
  • quaternized ester salts of fatty acids with diethanolalkylamines of the formula (E5-II) are also suitable as ester quats.
  • R 18 CO for an acyl radical with 6 to 22 carbon atoms
  • R 19 for hydrogen or R CO
  • R and R independently of one another for alkyl radicals with 1 to 4 carbon atoms
  • m5 and m6 in total for 0 or numbers from 1 to 12
  • Y again represents halide, alkyl sulfate or alkyl phosphate.
  • ester quats are the quaternized ester salts of fatty acids with 1,2-dihydroxypropyl dialkylamines of the formula (E5-III)
  • R CO represents an acyl radical with 6 to 22 carbon atoms
  • R represents hydrogen or R 22 CO
  • R 24 , R 25 and R 26 independently of one another for alkyl radicals having 1 to 4 carbon atoms, m7 and m8 in total for 0 or numbers of 1 to 12
  • X again represents halide, alkyl sulfate or alkyl phosphate.
  • esterquats are substances in which the ester bond is replaced by an amide bond and which preferably follow the formula (E5-IV) based on diethylenetriamine, R 29
  • R CO, R and R independently of one another represent alkyl radicals having 1 to 4 carbon atoms and Y again represents halide, alkyl sulfate or alkyl phosphate.
  • amide ester quats are available on the market, for example, under the Incroquat® (Croda) brand.
  • esterquats examples are the products sold under the trademark Stepantex ® , Dehyquart ® and Armocare ® .
  • the products Armocare ® VGH-70, a N, N-bis (2-palmitoyloxyethyl) dimethylammonium chloride, and D Deehhyyqquuaartrt ®® FF - 7755 ,, DDeehhyyqquuaarrtt ®® CC - 44046, Dehyquart ® L80 and Dehyquart ® AU-35 are individual representatives of these types.
  • Preferred ester quats are quaternized ester salts of fatty acids with triethanolamine, quaternized ester salts of fatty acids with diethanolalkylamines and quaternized ester salts of fatty acids with 1,2-dihydroxypropyldialkylamines.
  • alkylamidoamines are usually produced by amidation of natural or synthetic fatty acids and fatty acid cuts with dialkylaminoamines.
  • An inventively particularly suitable compound from this group is that available under the name Tegoamid ® S 18 commercially stearamidopropyl dimethylamine.
  • the cationic surfactants (AI) are preferably present in the compositions used according to the invention in amounts of 0.05 to 10% by weight, based on the total composition. Amounts of 0.1 to 5% by weight are particularly preferred. Furthermore, cationic polymers are to be counted among the cationic compounds.
  • Cationic polymers (A2) are understood to mean polymers which have a group in the main and / or side chain which can be “temporary” or “permanent” cationic. According to the invention, “permanently cationic” means those polymers which have a cationic group irrespective of the pH of the agent. These are generally polymers which contain a quaternary nitrogen atom, for example in the form of an ammonium group.
  • Preferred cationic groups are quaternary ammonium groups
  • Polymers in which the quaternary ammonium group is bonded via a Cl-4 hydrocarbon group to a polymer main chain composed of acrylic acid, methacrylic acid or their derivatives have proven to be particularly suitable.
  • R -H or -CH 3
  • R, R and R are independently selected from Cl-4-alkyl, alkenyl or hydroxyalkyl groups
  • m 1, 2, 3 or 4
  • n is a natural number
  • X is a physiologically compatible organic or inorganic anion, as well as copolymers consisting essentially of the monomer units listed in formula (Gl-I) and nonionic monomer units, are particularly preferred cationic polymers.
  • R 1 stands for a methyl group
  • R 2 R 3 and R 4 stand for methyl groups
  • m has the value 2.
  • Suitable physiologically acceptable counterions X " are, for example, halide ions, sulfate ions, phosphate ions, methosulfate ions and organic ions such as lactate, citrate, tartrate and acetate ions.
  • halide ions in particular chloride, are preferred.
  • a particularly suitable homopolymer is, if desired crosslinked, poly (methacryloyloxyethyltrimethylammonium chloride) with the INCI name Polyquaternium-37.
  • the crosslinking can be carried out with the aid of polyolefinically unsaturated compounds, for example divinylbenzene, tetraallyloxyethane, methylene bisacrylamide, diallyl ether, polyallyl polyglyceryl ether, or AUyl ether of sugars or sugar derivatives such as erythritol, pentaerythritol, arabitol, mannitol, sorbitol, sucrose or glucose.
  • Methylene bisacrylamide is a preferred crosslinking agent.
  • the homopolymer is preferably used in the form of a non-aqueous polymer dispersion which should not have a polymer content below 30% by weight.
  • a non-aqueous polymer dispersion which should not have a polymer content below 30% by weight.
  • Such polymer dispersions are available under the names Salcare ® SC 95 (approx. 50% polymer content, further components: mineral oil (INCI name: Mineral Oil) and tridecyl-polyoxypropylene-polyoxyethylene ether (INCI name: PPG-1-Trideceth- 6)) and Salcare ® SC 96 (approx.
  • Copolymers with monomer units according to formula (Gl-I) preferably contain acrylamide, methacrylamide, acrylic acid C ⁇ as nonionic monomer units. 4 alkyl ester and methacrylic acid -C -4 alkyl ester. Among these nonionic monomers, acrylamide is particularly preferred. As in the case of the homopolymers described above, these copolymers can also be crosslinked. A preferred copolymer according to the invention is the crosslinked acrylamide-methacryloyloxyethyltrimethylammonium chloride copolymer. Such copolymers in which the monomers are in a weight ratio of about 20:80 are available commercially as an approximately 50% non-aqueous polymer dispersion under the name Salcare ® SC 92.
  • Celquat ® and Polymer JR ® are commercially available under the names Celquat ® and Polymer JR ® .
  • the compounds Celquat ® H 100, Celquat ® L 200 and Polymer JR ® 400 are preferred quaternized cellulose derivatives, cationic alkyl polyglycosides according to DE-PS 44 13 686, cationized honey, for example the commercial product Honeyquat ® 50,
  • cationic guar derivatives such as, in particular, the products marketed under the trade names Cosmedia Guar and Jaguar ® ,
  • Copolymers of vinylpyrrolidone with quaternized derivatives of dialkylaminoalkyl acrylate and methacrylate such as, for example, vinylpyrrolidone-dimethylaminoethyl methacrylate copolymers quaternized with diethyl sulfate.
  • Such compounds are commercially available under the names Gafquat ® 734 and Gafquat ® 755,
  • Vinylpyrrolidone-vinylimidazolium methochloride copolymers as are available under the names Luviquat ® FC 370, FC 550, FC 905 and HM 552, quaternized polyvinyl alcohol, as well as the polymers known under the names Polyquatemium 2, Polyquatemium 17, Polyquatemium 18 and Polyquatemium 27 with quaternary nitrogen atoms in the main polymer chain.
  • cationic polymers of the invention are the "temporarily cationic" polymers. These polymers usually contain an amino group present at certain pH values as a quaternary ammonium group and thus cationic are preferred, for example, chitosan and its derivatives, such as, for example, under the trade designations Hydagen ®. CMF, Hydagen ® HCMF, Kytamer ® PC and Chitolam ® NB / 101 are commercially available.
  • preferred cationic polymers are cationic cellulose derivatives and chitosan and its derivatives, in particular the commercial products Polymer JR 400, Hydagen ® HCMF and Kytamer ® PC, cationic guar derivatives, cationic honey derivatives, in particular the commercial product Honeyquat ® 50, cationic Alkylpolyglycodside according DE-PS 44 13 686, polymers of the type Po ⁇ yquaternium-37 as well as polysiloxanes having quaternary groups such as Abil ® -Quat - types, the types known as amodimethicone and Quaternium-80th
  • cationized protein hydrolyzates are to be counted among the cationic polymers, the underlying protein hydrolyzate being derived from animals, for example from collagen, milk or keratin, from plants, for example from wheat, corn, rice, potatoes, soy or almonds, from marine life forms, for example from fish collagen or algae, or biotechnologically obtained protein hydrolyzates.
  • the the Protein hydrolysates on which cationic derivatives according to the invention are based can be obtained from the corresponding proteins by chemical, in particular alkaline or acidic hydrolysis, by enzymatic hydrolysis and / or a combination of both types of hydrolysis.
  • the hydrolysis of proteins usually results in a protein hydrolyzate with a molecular weight distribution of approximately 100 daltons up to several thousand daltons.
  • Preferred cationic protein hydrolyzates are those whose underlying protein content has a molecular weight of 100 to 25,000 Daltons, preferably 250 to 5000 Daltons.
  • Cationic protein hydrolyzates also include quaternized amino acids and their mixtures. The quaternization of the protein hydrolyzates or the amino acids is often carried out using quaternary ammonium salts such as, for example, N, N-dimethyl-N- (n-alkyl) -N- (2-hydroxy-3-chloro-n-propyl) ammonium halides.
  • the cationic protein hydrolyzates can also be further derivatized.
  • Typical examples of the cationic protein hydrolyzates and derivatives according to the invention are those under the INCI names in the "International Cosmetic Ingredient Dictionary and Handbook" (seventh edition 1997, The Cosmetic, Toiletry, and Fragrance Association 1 101 17 th Street, NW, Suite 300, Washington, DC 20036-4702) and commercially available products: Cocodimonium Hydroxypropyl Hydrolyzed Collagen, Cocodimopnium Hydroxypropyl Hydrolyzed Casein, Cocodimonium Hydroxypropyl Hydrolyzed Collagen, Cocodimonium Hydroxypropyl Hydrolyzed Hair Keratin, Cocodimonium Hydroxypropyl Hydrolyzed Keratin, Cocodimonium Hydroxypropyl Hydrolyzed Protein Hydroxypropyl Hydrolyzed Silk, Cocodimonium Hydroxypropyl Hydrolyzed Soy Protein, Cocodimonium Hydroxypropyl Hydrolyzed Wheat Protein, Cocodi
  • the plant-based cationic protein hydrolyzates and derivatives are very particularly preferred.
  • the teaching according to the invention also includes the use of several cationic compounds (A). It is preferred if such mixtures each originate from at least one cationic substance from the class of the cationic surfactants and the class of the cationic polymers. Of course, two or more cationic surfactants can also be used together with one or more cationic polymers.
  • the second mandatory component is selected from the polyhydroxy compounds.
  • Polyhydroxy compounds in the sense of the invention are understood to mean all substances which meet the definition in Römpp's Lexikon der Chemie, Version 2.0 of the CD-ROM edition of 1999, published by Georg Thieme. Accordingly, polyhydroxy bonds to understand organic compounds with at least two hydroxy groups. For the purposes of the present invention, this includes in particular:
  • monosaccharides, disaccharides, trisaccharides and oligosaccharides these also in the form of aldoses, ketoses and / or lactoses, and protected by customary and -NH - protective groups known in the literature, such as the triflate group, the trimethylsilyl group or Acyl groups and also in the form of methyl ethers and as phosphate esters,
  • monosaccharides with 3 to 8 carbon atoms such as, for example, trioses, tetroses, pentoses, hexoses, heptoses and octoses, these also being in the form of aldoses, ketoses and / or lactoses and protected by customary -OH known in the literature - and -NH - protective groups, such as, for example, the triflate group, the trimethylsilyl group or acyl groups, and furthermore in the form of the methyl ether and as a phosphate ester,
  • oligosaccharides with up to 50 monomer units these also in the form of aldoses, ketoses and / or lactoses and protected by customary OH and NH protecting groups known in the literature, such as the triflate group, the trimethylsilyl group or acyl groups as well as in the form of the methyl ether and as a phosphate ester.
  • Very particularly preferred polyols of the present invention are polyols having 2 to 12 carbon atoms in the molecular structure. These polyols can be straight-chain, branched, cyclic and / or unsaturated.
  • the hydroxyl groups are very particularly preferably adjacent at the end or separated from one another by the rest of the chain.
  • polystyrene resin examples include polyethylene glycol up to a molecular weight of up to 1000 daltons, neopentyl glycol, partial glycerol ether with a molecular weight of up to 1000 daltons, 1,2-propanediol, 1,3-propanediol, glycerol, 1,2-butanediol , 1,3-butanediol, 1,4-butanediol, 1,2,3-butanetriol, 1,2,4-butanetriol, pentanediols, for example 1,2-pentanediol, 1,5-pentanediol, hexanediols, 1,2- Hexanediol, 1,6-hexanediol, 1, 2,6-hexanetriol, 1, 4-cyclo-hexanediol, 1, 2-cyclo-hexanediol, heptaned
  • Sorbitol, inositol, mannitol, tetrites, pentites, hexites, threitols, erythritol, adonites, arabitol, xylitol, dulcitol, erythrose, threose, arabinose, ribose, xylose, lyxose, glucose, galactose, mannose are further examples of the polyols according to the invention.
  • teaching according to the invention includes all isomeric forms, such as eis-trans isomers, diastereomers, epimers, anomers and chiral isomers.
  • polyols (B) are in the compositions in concentrations of from 0.01% by weight to 20% by weight, preferably from 0.05% by weight to 15% by weight and very particularly preferably in amounts of 0.1 % By weight up to 10% by weight.
  • the action of the active compound combination (W) according to the invention can be further increased by fatty substances (D).
  • Fat substances are to be understood as meaning fatty acids, fatty alcohols, natural and synthetic waxes, which can be present both in solid form and in liquid form in aqueous dispersion, and natural and synthetic cosmetic oil components.
  • Linear and / or branched, saturated and / or unsaturated fatty acids having 6 to 30 carbon atoms can be used as fatty acids (DI).
  • Fatty acids with 10-22 carbon atoms are preferred. These include, for example, the isostearic acids, such as the commercial products Emersol 871 and Emersol ® 875, and
  • Isopalmitic acids such as the commercial product Edenor IP 95, as well as all other fatty acids sold under the trade names Edenor ® (Cognis). Further typical examples of such fatty acids are caproic acid, caprylic acid, 2-ethylhexanoic acid, capric acid, lauric acid, isotridecanoic acid, myristic acid, palmitic acid, palmitoleic acid, stearic acid, isostearic acid, oleic acid, elaidic acid, petroselinic acid, linoleic acid, linolenic acid, gadacholeic acid, araoleoleic acid, elaoleoleic acid and erucic acid and their technical mixtures, which are obtained, for example, in the pressure splitting of natural fats and oils, in the oxidation of aldehydes from Roelen's oxosynthesis or in the dimerization of unsaturated fatty acids.
  • the fatty acid cuts which are
  • the amount used is 0.1-15% by weight, based on the total agent.
  • the amount is preferably 0.5-10% by weight, with amounts of 1-5% by weight being very particularly advantageous.
  • fatty alcohols (D2) can be used saturated, mono- or polyunsaturated, branched or unbranched fatty alcohols with C 6 -C 30, preferably C 0 -C 22 and very particularly preferably C 12 -C 22 carbon atoms.
  • the fatty alcohols derive from preferably natural fatty acids, and it can usually be assumed that they are obtained from the esters of the fatty acids by reduction.
  • those fatty alcohol cuts which are produced by reducing naturally occurring triglycerides such as beef tallow, palm oil, peanut oil, rapeseed oil, cottonseed oil, soybean oil, sunflower oil and linseed oil or fatty acid esters formed from their transesterification products with corresponding alcohols, and thus represent a mixture of different fatty alcohols.
  • Such substances are, for example, under the names Stenol ® , for example Stenol 1618 or Lanette, for example Lanette ® O or Lorol ® , for example Lorol ® C8, Lorol ® C14, Lorol ® C18, Lorol ® C8-18, HD-Ocenol ® , Crodacol ® , e.g.
  • the invention also wool wax alcohols, as are commercially available, for example under the names of Corona ®, White Swan ®, Coronet or Fluilan be used.
  • the fatty alcohols are used in amounts of 0.1-30% by weight, based on the entire preparation, preferably in amounts of 0.1-20% by weight.
  • Solid paraffins or isoparaffins, carnauba waxes, beeswaxes, candelilla waxes, ozokerites, ceresin, walnut, sunflower wax, fruit waxes such as apple wax or citrus wax, microwaxes made of PE or PP can be used according to the invention as natural or synthetic waxes (D3).
  • Such waxes are available, for example, from Kahl & Co., Trittau.
  • the amount used is 0.1-50% by weight, based on the total agent, preferably 0.1
  • the natural and synthetic cosmetic oil bodies (D4) which can increase the effect of the active ingredient according to the invention include, for example:
  • oils examples include sunflower oil, olive oil, soybean oil, rapeseed oil, almond oil, jojoba oil, orange oil, wheat germ oil, peach seed oil and the liquid components of coconut oil.
  • Other triglyceride oils such as the liquid portions of beef tallow and synthetic triglyceride oils are also suitable.
  • the compounds are available as commercial products l, 3-di- (2-ethyl-hexyl) -cyclohexane (Cetiol S) and di-n-octyl ether (Cetiol ® OE) may be preferred.
  • Ester oils are understood to be the esters of C 6 -C 30 fatty acids with C 2 -C 30 fatty alcohols.
  • the monoesters of fatty acids with alcohols having 2 to 24 carbon atoms are preferred.
  • Examples of fatty acid moieties in the esters are caproic acid, caprylic acid, 2-ethylhexanoic acid, capric acid, lauric acid, Isotridecan- acid, myristic acid, palmitic acid, palmitoleic acid, stearic acid, isostearic acid, oleic acid, elaidic acid, petroselinic acid, linoleic acid, linolenic acid, elaeostearic acid, arachidic acid, gadoleic acid, Behenic acid and erucic acid and their technical mixtures, which are obtained, for example, in the decomposition of natural fats and oils, in the oxidation of aldehydes from Roelen's oxo
  • fatty alcohol components in the ester oils are isopropyl alcohol, capron alcohol, caprylic alcohol, 2-ethylhexyl alcohol, capric alcohol, lauryl alcohol, isotridecyl alcohol, myristyl alcohol, cetyl alcohol, palmoleyl alcohol, stearyl alcohol, isostearyl alcohol, oleyl alcohol, elaidyl Petroselinyl alcohol, linolyl alcohol, linolenyl alcohol, elaeostearyl alcohol, arachyl alcohol, gadoleyl alcohol, behenyl alcohol, emcyl alcohol and brassidyl alcohol and their technical mixtures, which are used, for example, in the high-pressure hydrogenation of technical methyl esters based on fats and oils or aldehydes from Roelen's monomer synthesis as a monomer synthet the dimerization of unsaturated fatty alcohols.
  • isopropyl myristate IPM Rilanit ®
  • isononanoic acid C16-18 alkyl ester Cetiol ® SN
  • 2-ethylhexyl palmitate Cegesoft ® 24
  • stearic acid-2-ethylhexyl ester Cetiol ® 868
  • cetyl oleate glycerol triesters caprylate
  • coconut fatty alcohol caprinate / caprylate Cetiol ® LC
  • n-butyl stearate Oleyle cat
  • isopropyl palmitate Rosanit ® IPP
  • Oleyl Oleate Cetiol ®
  • lauric acid hexyl ester Cetiol ® A
  • di- n-butyl adipate Cetiol ® B
  • myristyl myristate IPM Rilanit ®
  • Dicarboxylic acid esters such as di-n-butyl adipate, di- (2-ethylhexyl) adipate, di- (2-ethylhexyl) succinate and di-isotridecylacelate as well as diol esters such as ethylene glycol dioleate, ethylene glycol di-isotridecanoate, propylene glycol di (2 -ethylhexanoate), propylene glycol di-isostearate, propylene glycol di-pelargonate, butanediol di-isostearate, neopentyl glycol dicaprylate, symmetrical, asymmetrical or cyclic esters of carbonic acid with fatty alcohols, for example described in DE-OS 197 56 454, glycerol carbonate or Dicaprylyl carbonate (Cetiol ® CC),
  • the amount of natural and synthetic cosmetic oil bodies used in the agents used according to the invention is usually 0.1-30% by weight, based on the total agent, preferably 0.1-20% by weight, and in particular 0.1-15% by weight. -%.
  • a very particularly preferred group of fatty substances (D) are the fatty acid partial glycerides (D5). These fatty acid partial glycerides are monoglycerides, diglycerides and their technical mixtures. When using technical products may also contain small amounts of triglycerides due to the manufacturing process.
  • the partial glycerides preferably follow the formula (DV),
  • R 4 , R 5 and R independently of one another represent hydrogen or a linear or branched, saturated and / or unsaturated acyl radical having 6 to 22, preferably 12 to 18, carbon atoms, with the proviso that at least one of these groups represents an acyl radical and at least one of these groups represents hydrogen.
  • the sum (m + n + q) represents 0 or numbers from 1 to 100, preferably 0 or 5 to 25.
  • R 4 preferably represents an acyl radical and R 5 and R 6 represents hydrogen and the sum (m + n + q) is 0.
  • Typical examples are mono- and / or diglycerides based on caproic acid, caprylic acid, 2-ethylhexanoic acid, capric acid, lauric acid, isotridecanoic acid, myristic acid, palmitic acid, palmoleic acid, stearic acid, isostearic acid, oleic acid, elaidic acid, petroselinic acid, linoleic acid , Linolenic acid, elaeostearic acid, arachic acid, gadoleic acid, behenic acid and erucic acid and their technical mixtures. Oleic acid monoglycerides are preferably used.
  • the fatty acid partial glyceride is preferably present in the agents used according to the invention in amounts of 0.1-20% by weight, in particular 0.1-10% by weight, based on the total agent.
  • the total amount of oil and fat components in the agents according to the invention is usually 0.5-75% by weight, based on the total agent. Quantities of 0.5-35% by weight are preferred according to the invention.
  • the combination of the active ingredient (W) with surfactants (E) has also proven to be advantageous.
  • the agents used according to the invention contain surfactants.
  • surfactants is understood to mean surface-active substances which form adsorption layers on surfaces and interfaces or which can aggregate in volume phases to form micelle colloids or lyotropic mesophases.
  • anionic surfactants consisting of a hydrophobic residue and a negatively charged hydrophilic head group
  • amphoteric surfactants which carry both a negative and a compensating positive charge
  • cationic surfactants which in addition to a hydrophobic residue have a positively charged hydrophilic group
  • nonionic surfactants which have no charges but strong dipole moments and are highly hydrated in aqueous solution.
  • Suitable anionic surfactants (El) in preparations according to the invention are all anionic surface-active substances suitable for use on the human body. These are characterized by a water-solubilizing, anionic group such as a carboxylate, sulfate, sulfonate or phosphate group and a lipophilic alkyl group with about 8 to 30 carbon atoms.
  • the molecule can contain glycol or polyglycol ether groups, ester, ether and amide groups and hydroxyl groups.
  • anionic surfactants are, in each case in the form of the physiologically tolerable salts or the free acids, for example sodium, potassium, magnesium, zinc, calcium, aluminum and ammonium as well as the mono-, di- and trialkanol- ammonium salts with 2 to 4 carbon atoms in the alkanol group, linear and branched fatty acids with 8 to 30 carbon atoms (soaps), ether carboxylic acids of the formula RO- (CH2-CH2 ⁇ ) ⁇ -CH2-COOH, in which R is a linear one
  • Alkyl group with 8 to 30 carbon atoms and x 0 or 1 to 16, - acyl sarcosides with 8 to 24 carbon atoms in the acyl group, acyl taurides with 8 to 24 carbon atoms in the acyl group, acyl isethionates with 8 to 24 carbon atoms Atoms in the acyl group, Sulphosuccinic acid mono- and dialkyl esters with 8 to 24 carbon atoms in the alkyl g ppe and sulfosuccinic acid mono-alkyl polyoxyethyl esters with 8 to 24 carbon atoms in the alkyl group and 1 to 6 oxyethyl groups, linear alkane sulfonates with 8 to 24 carbon atoms, linear alpha Olefin sulfonates with 8 to 24 carbon atoms,
  • Alkyl sulfates and alkyl polyglycol ether sulfates of the formula RO (CH 2 -CH 2 O) x -OSO 3 H, in which R is a preferably linear alkyl group with 8 to 30 C atoms and x 0 or 1 to 12,
  • Esters of tartaric acid and citric acid with alcohols which are adducts of about 2-15 molecules of ethylene oxide and / or propylene oxide with fatty alcohols having 8 to 22 carbon atoms,
  • R 1 is preferably an aliphatic hydrocarbon radical having 8 to 30 carbon atoms
  • R 2 is hydrogen
  • R 8 CO stands for a linear or branched acyl radical with 6 to 22 carbon atoms, x, y and z in total for 0 or for numbers from 1 to 30, preferably 2 to 10, and X stands for an alkali or alkaline earth metal.
  • Typical examples of monoglyceride (ether) sulfates which are suitable for the purposes of the invention are the reaction products of lauric acid monoglyceride, coconut fatty acid monoglyceride, palmitic acid monoglyceride, stearic acid monoglyceride, oleic acid monoglyceride and tallow fatty acid monoglyceride as well as their ethylene oxide adducts or their formulas with sulfuric acid trioxide with sulfuric acid trioxide or their sulfuric acid adducts with sodium sulfate trichloride.
  • Monoglyceride sulfates of the formula (III) are preferably used, in which R 8 CO represents a linear acyl radical having 8 to 18 carbon atoms, as described, for example, in EP-Bl 0 561 825, EP-Bl 0 561 999, DE -Al 42 04 700 or by AKBiswas et al. in J.Am.Oil.Chem.Soc. 37, 171 (1960) and FUAhmed in J.Am.Oil.Chem.Soc. 67, 8 (1990),
  • Preferred anionic surfactants are alkyl sulfates, alkyl polyglycol ether sulfates and ether carboxylic acids with 10 to 18 carbon atoms in the alkyl group and up to 12 glycol ether groups in the molecule, sulfosuccinic acid and dialkyl esters with 8 to 18 carbon atoms in the alkyl group and sulfosuccinic acid monoalkyl polyoxy with 8 to 18 C- Atoms in the alkyl group and 1 to 6 oxyethyl groups, monoglycer disulfates, alkyl and alkenyl ether phosphates as well as protein fatty acid condensates.
  • Zwitterionic surfactants are those surface-active compounds which carry at least one quaternary ammonium group and at least one -COO (_) - or -S ⁇ 3 H group in the molecule.
  • Particularly suitable zwitterionic surfactants are the so-called betaines such as the N-alkyl-N, N-dimethylammonium glycinate, for example the coconut alkyl dimethylammonium glycinate, N-acylaminopropyl-N, N-dimethylammonium glycinate, for example the coconut acylaminopropyl dimethylammonium glycinate, and 2 -Alkyl-3-carboxymethyl-3-hydroxyethyl-imidazolines each having 8 to 18 carbon atoms in the alkyl or acyl group as well as the cocoacylaminoethylhydroxyethylcarboxymethylglycinate.
  • a preferred zwitterionic surfactant is the fatty acid
  • Ampholytic surfactants (E3) are understood to mean those surface-active compounds which, in addition to a C 8 -C 24 alkyl or acyl group, contain at least one free amino group and at least one -COOH or -SOsH group in the molecule and are capable of forming internal salts are.
  • suitable ampholytic surfactants are N-alkylglycine, N-alkylpropionic acid, N-alkylaminobutyric acid, N- alkyliminodipropionic acid, N-hydroxyethyl-N-alkylamidopropylglycine, N-
  • Alkyltaurines N-alkyl sarcosines, 2-alkylaminopropionic acids and alkylaminoacetic acids, each with about 8 to 24 carbon atoms in the alkyl group.
  • Particularly preferred ampholytic surfactants are the N-coconut alkyl aminopropionate, the coconut acylaminoethyl amino propionate and the C 1 -C 8 -acyl sarcosine.
  • Nonionic surfactants (E4) contain e.g. one polyol, one
  • Polyalkylene glycol ether group or a combination of polyol and polyglycol ether groups are, for example
  • R represents hydrogen or methyl
  • R represents linear or branched alkyl radicals having 1 to 4 carbon atoms and w represents numbers from 1 to 20,
  • Hydroxy mixed ethers as described, for example, in DE-OS 19738866, sorbitan fatty acid esters and additive products of ethylene oxide with sorbitan fatty acid esters such as, for example, the polysorbates,
  • the preferred nonionic surfactants are the alkylene oxide investment products of saturated linear fatty alcohols and fatty acids, each with 2 to 30 moles of ethylene oxide Mole of fatty alcohol or fatty acid has been proven. Preparations with excellent properties are also obtained if they contain fatty acid esters of ethoxylated glycerol as nonionic surfactants.
  • the alkyl radical R contains 6 to 22 carbon atoms and can be either linear or branched. Primary linear and methyl-branched aliphatic radicals in the 2-position are preferred. Such alkyl radicals are, for example, 1-octyl, 1-decyl, 1-lauryl, 1-myristyl, 1-cetyl and 1-stearyl. 1-Octyl, 1-decyl, 1-lauryl, 1-myristyl are particularly preferred. When using so-called "oxo alcohols" as starting materials, compounds with an odd number of carbon atoms in the alkyl chain predominate.
  • sugar surfactants are an alkyl or alkenyl oligoglycoside. These sugar surfactants are known nonionic surfactants according to formula (E4-II),
  • R 1 is an alkyl or alkenyl radical having 4 to 22 carbon atoms
  • G is a sugar radical having 5 or 6 carbon atoms
  • p is a number from 1 to 10.
  • the alkyl and alkenyl oligoglycosides can be derived from aldoses or ketoses with 5 or 6 carbon atoms, preferably from glucose.
  • the preferred alkyl and / or alkenyl oligoglycosides are thus alkyl and / or alkenyl oligoglucosides.
  • the index number p in the general formula (I) indicates the degree of oligomerization (DP), ie the distribution of mono- and oligoglycosides, and stands for a number between 1 and 10.
  • the value p for a specific alkyl oligoglycoside is an analytically determined arithmetic parameter, which usually represents a fractional number.
  • Alkyl and / or alkenyl oligoglycosides with an average degree of oligomerization p of 1.1 to 3.0 are preferably used. From an application point of view, preference is given to those alkyl and / or alkenyl oligoglycosides whose degree of oligomerization is less than 1.7 and is in particular between 1.2 and 1.4.
  • the alkyl or alkenyl radical R 1 can be derived from primary alcohols having 4 to 11, preferably 8 to 10, carbon atoms. Typical examples are butanol, capronic alcohol, caprylic alcohol, capric alcohol and undecyl alcohol and their technical mixtures, such as are obtained, for example, in the hydrogenation of technical fatty acid methyl esters or in the course of the hydrogenation of aldehydes from Roelen's oxosynthesis.
  • the alkyl or alkenyl radical R 1 can also be derived from primary alcohols having 12 to 22, preferably 12 to 14, carbon atoms.
  • Typical examples are lauryl alcohol, myristyl alcohol, cetyl alcohol, palmoleyl alcohol, stearyl alcohol, isostearyl alcohol, oleyl alcohol, elaidyl alcohol, petroselinyl alcohol, arachyl alcohol, gadoleyl alcohol, behenyl alcohol, erucyl alcohol, brassidyl alcohol and their technical mixtures, which can be obtained as described above.
  • sugar surfactants are fatty acid N-alkylpolyhydroxyalkylamides, nonionic surfactants of the formula (E4-III),
  • the fatty acid N-alkyl polyhydroxyalkylamides are known substances which can usually be obtained by reductive amination of a reducing sugar with ammonia, an alkylamine or an alkanolamine and subsequent acylation with a fatty acid, a fatty acid alkyl ester or a fatty acid chloride.
  • a reducing sugar with ammonia, an alkylamine or an alkanolamine
  • subsequent acylation with a fatty acid, a fatty acid alkyl ester or a fatty acid chloride With regard to the processes for their production, reference is made to US Pat. Nos. 1,985,424, 2,016,962 and 2,703,798 and international patent application WO 92/06984. An overview of this topic by H. Kelkenberg can be found in Tens. Surf. Det. 25, 8 (1988).
  • the fatty acid N-alkylpolyhydroxyalkylamides are preferably derived from reducing sugars with 5 or 6 carbon atoms, in particular from glucose.
  • the preferred fatty acid N-alkylpolyhydroxyalkylamides are therefore fatty acid N-alkylglucamides, as represented by the formula (E4-IV):
  • the preferred fatty acid N-alkylpolyhydroxyalkylamides used are glucamides of the formula (E4-IV) in which R represents hydrogen or an alkyl group and R CO represents the acyl radical of caproic acid, caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, palmoleic acid, Stearic acid, isostearic acid, oleic acid, elaidic acid, petroselinic acid, linoleic acid, linolenic acid, arachic acid, gadoleic acid, behenic acid or emcasic acid or their technical mixtures.
  • Fatty acid are particularly preferred N-alkyl glucamides (E4-IV) / ⁇ by reductive amination of glucose with methylamine and subsequent acylation with lauric acid or C ⁇ 2 4 coconut oil fatty acid or a corresponding derivative is obtained.
  • the polyhydroxyalkylamides can also be derived from maltose and palatinose.
  • the sugar surfactant is preferably contained in the agents used according to the invention in amounts of 0.1-30% by weight, based on the total agent. Amounts of 0.1-15% by weight are particularly preferred. Of course, it is also possible according to the invention to use several sugar surfactants.
  • the compounds with alkyl groups used as the surfactant can each be uniform substances. However, it is generally preferred to start from natural vegetable or animal raw materials in the production of these substances, so that substance mixtures with different alkyl chain lengths depending on the respective raw material are obtained.
  • both products with a "normal” homolog distribution and those with a narrow homolog distribution can be used.
  • “Normal” homolog distribution is understood to mean mixtures of homologs which are obtained as catalysts from the reaction of fatty alcohol and alkylene oxide using alkali metals, alkali metal hydroxides or alkali metal alcoholates.
  • narrow homolog distributions are obtained if, for example, hydrotalcites, alkaline earth metal salts of ether carboxylic acids, alkaline earth metal oxides, hydroxides or alcoholates are used as catalysts. The use of products with a narrow homolog distribution can be preferred.
  • the surfactants (E) are used in amounts of 0.1-45% by weight, preferably 0.5-30% by weight and very particularly preferably 0.5-25% by weight, based on the total agent used according to the invention. used.
  • anionic, nonionic, zwitterionic and / or amphoteric surfactants and mixtures thereof can be preferred according to the invention.
  • the action of the active compound combination (W) according to the invention can be increased by emulsifiers (F).
  • Emulsifiers cause water or oil-stable adsorption layers to form at the phase interface, which protect the dispersed droplets against coalescence and thus stabilize the emulsion.
  • emulsifiers are therefore made up of a hydrophobic and a hydrophilic part of the molecule. Hydrophilic emulsifiers preferably form O / W emulsions and hydrophobic emulsifiers preferably form W / O emulsions.
  • An emulsion is to be understood as a droplet-like distribution (dispersion) of a liquid in another liquid with the use of energy to create stabilizing phase interfaces by means of surfactants.
  • the selection of these emulsifying surfactants or emulsifiers is based on the substances to be dispersed and the particular external phase as well as the fine particle size of the emulsion. Further definitions and properties of emulsifiers can be found in “H.-D. Dörfler, interfacial and colloid chemistry, VCH Verlagsgesellschaft mbH. Weinheim, 1994 ".
  • Emulsifiers which can be used according to the invention are, for example
  • alkyl (oligo) glucosides and fatty alcohols for example the commercially available product Montanov ® 68, investment products of 5 to 60 moles of ethylene oxide in castor oil and hardened castor oil,
  • Sterols are understood to mean a group of steroids which carry a hydroxyl group on the C atom 3 of the steroid structure and are isolated both from animal tissue (zoosterols) and from vegetable fats (phytosterols). Examples for zoosterols are cholesterol and lanosterol. Examples of suitable phytosters are ergosterol, stigmasterol and sitosterol. Sterols, the so-called mycosterols, are also isolated from mushrooms and yeasts.
  • Phospholipids include primarily the glucose phospholipids, e.g. as lecithins or phosphididylcholines from e.g. Egg yolks or plant seeds (e.g. soybeans) are understood.
  • Polyglycerols and polyglycerol derivatives such as, for example, polyglycerol poly-12-hydroxystearate (commercial product Dehymuls PGPH),
  • Linear and branched fatty acids with 8 to 30 C atoms and their Na, K, ammonium, Ca, Mg and Zn salts.
  • compositions according to the invention preferably contain the emulsifiers in amounts of 0.1 to 25% by weight, in particular 0.5 to 15% by weight, based on the total composition.
  • compositions according to the invention can preferably contain at least one non-ionic emulsifier with an HLB value of 5 to 18, according to the 10th edition, Georg Thieme Verlag Stuttgart, New in the Rompp-Lexikon Chemie (Ed. J. Falbe, M. Regitz) York, (1997), page 1764.
  • Nonionic emulsifiers with an HLB value of 5-15 can be particularly preferred according to the invention.
  • polymers (G) can support the action of the active compound mixture (W) according to the invention.
  • polymers are therefore added to the compositions used according to the invention, both cationic, anionic, amphoteric and nonionic polymers having proven to be effective.
  • the anionic polymers (G2) which can support the action of the active compound combination (W) according to the invention are anionic polymers, which have carboxylate and / or sulfonate groups.
  • anionic monomers from which such polymers can consist are acrylic acid, methacrylic acid, crotonic acid, maleic anhydride and 2-acrylamido-2-methylpropanesulfonic acid.
  • the acid groups can be present in whole or in part as sodium, potassium, ammonium, mono- or triethanolammonium salt.
  • Preferred monomers are 2-acrylamido-2-methylpropanesulfonic acid and acrylic acid.
  • Anionic polymers which contain 2-acrylamido-2-methylpropanesulfonic acid as the sole or co-monomer have proven to be very particularly effective, it being possible for the sulfonic acid group to be present in whole or in part as a sodium, potassium, ammonium, mono- or triethanolammonium salt ,
  • the homopolymer of 2-acrylamido-2-methyl propane sulfonic acid which is available for example under the name Rheothik ® l 1-80 is commercially.
  • copolymers of at least one anionic monomer and at least one nonionic monomer are preferred.
  • anionic monomers reference is made to the substances listed above.
  • Preferred nonionic monomers are acrylamide, methacrylamide, acrylic acid ester, methacrylic acid ester, vinyl pyrrolidone, vinyl ether and vinyl ester.
  • Preferred anionic copolymers are acrylic acid-acrylamide copolymers and in particular polyacrylamide copolymers with monomers containing sulfonic acid groups.
  • a particularly preferred anionic copolymer consists of 70 to 55 mol% of acrylamide and 30 to 45 mol% of 2-acrylamido-2-methylpropanesulfonic acid, the sulfonic acid group being wholly or partly as sodium, potassium, ammonium, mono- or triethanolammonium Salt is present.
  • This copolymer can also be crosslinked, the preferred crosslinking agents being polyolefinically unsaturated compounds such as tetraallyloxyethane, allyl sucrose, allylpentaerythritol and methylene bisacrylamide.
  • Such a polymer is contained in the commercial product Sepigel ® 305 from SEPPIC.
  • the use of this compound, which in addition to the polymer component Contains hydrocarbon mixture (C ⁇ -C ⁇ -isoparaffin) and a nonionic emulsifier (Laureth-7) has proven to be particularly advantageous in the context of the teaching according to the invention.
  • the sodium acryloyldimethyltaurate copolymers sold under the name Simulgel 600 as a compound with isohexadecane and polysorbate-80 have also proven to be particularly effective according to the invention.
  • anionic homopolymers are uncrosslinked and crosslinked polyacrylic acids. Allyl ethers of pentaerythritol, sucrose and propylene can be preferred crosslinking agents. Such compounds are for example available under the trademark Carbopol ® commercially.
  • Copolymers of maleic anhydride and methyl vinyl ether, especially those with crosslinks, are also color-preserving polymers.
  • a maleic acid-methyl vinyl ether copolymer crosslinked with 1,9-decadiene is commercially available under the name Stabileze QM.
  • amphoteric polymers (G3) can be used as polymers to increase the effect of the active ingredient combination (W) according to the invention.
  • amphoteric polymers includes both those polymers which contain both free amino groups and free -COOH or SOsH groups in the molecule and are capable of forming internal salts, and also zwitterionic polymers which contain quaternary ammonium groups and -COO " - or -S ⁇ 3 _ -Gmppen contain, and summarized those polymers which contain -COOH or SOsH groups and quaternary ammonium groups.
  • amphopolymer which can be used according to the invention is the acrylic resin obtainable under the name amphomer, which is a copolymer of tert-butylaminoethyl methacrylate, N- (1,1,3,3-tetramethylbutyl) acrylamide and two or more monomers from the group acrylic acid , Methacrylic acid and their simple esters.
  • Further amphoteric polymers which can be used according to the invention are the compounds mentioned in British Patent Application 2 104 091, European Patent Application 47 714, European Patent Application 217 274, European Patent Application 283 817 and German Patent Application 28 17 369.
  • Amphoteric polymers which are preferably used are those polymers which essentially consist of one another
  • A is the anion of an organic or inorganic acid
  • these compounds can be used both directly and in salt form, which is obtained by neutralizing the polymers, for example with an alkali metal hydroxide.
  • an alkali metal hydroxide for example, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium carbonate, sodium sulfate, sodium sulfate, sodium sulfate, sodium sulfate ion, are very particularly preferred ; Acrylamido-propyl-trimethyl-ammonium chloride is a particularly preferred monomer (a).
  • Acrylic acid is preferably used as monomer (b) for the polymers mentioned.
  • compositions according to the invention can contain nonionic polymers (G4).
  • Suitable nonionic polymers are for example:
  • Vinylester vinyl pyrrolidone copolymers as are marketed, for example under the trademark Luviskol ® (BASF).
  • Luviskol ® VA 64 and Luviskol ® VA 73, each vinylpyrrolidone / vinyl acetate copolymers, are also preferred nonionic polymers.
  • Cellulose ethers such as hydroxypropyl cellulose, hydroxyethyl cellulose and methyl hydroxypropylcellulose, as they are for example sold under the trademark Culminal® ® and Benecel ® (AQUALON). shellac
  • Polyvinylpyrrolidones as, for example, sold under the name Luviskol ® (BASF).
  • Siloxanes These siloxanes can be both water-soluble and water-insoluble. Both volatile and non-volatile siloxanes are suitable, non-volatile siloxanes being understood to mean those compounds whose boiling point is above 200 ° C. at normal pressure.
  • Preferred siloxanes are polydialkylsiloxanes, such as, for example, polydimethylsiloxane, polyalkylarylsiloxanes, such as, for example, polyphenylmethylsiloxane, ethoxylated polydialkylsiloxanes and polydialkylsiloxanes which contain amine and / or hydroxyl groups. Glycosidically substituted silicones according to EP 0612759 Bl.
  • the preparations used contain several, in particular two different polymers of the same charge and / or each contain an ionic and an amphoteric and / or non-ionic polymer.
  • the polymers (G) are preferably present in the compositions used according to the invention in amounts of 0.05 to 10% by weight, based on the total agent. Amounts from 0.1 to 5, in particular from 0.1 to 3% by weight are particularly preferred.
  • Protein hydrolyzates and / or amino acids and their derivatives may also be present in the preparations used according to the invention.
  • Protein hydrolyzates are product mixtures that are acidic, basic or enzymatic catalytic lysed degradation of proteins (proteins) can be obtained.
  • protein hydrolyzates also means total hydrolyzates and individual amino acids and their derivatives, as well as mixtures of different amino acids.
  • polymers constructed from amino acids and amino acid derivatives are understood to be protein hydrolyzates. The latter include, for example, polyalanine, polyasparagine, polyserine, etc.
  • L-alanyl-L-proline polyglycine, glycyl-L-glutamine or D / L-methionine-S-methylsulfonium chloride.
  • ß-amino acids and their derivatives such as ß-alanine, anthranilic acid or hippuric acid can also be used according to the invention.
  • the molecular weight of the protein hydrolyzates which can be used according to the invention is between 75, the molecular weight for glycine, and 200,000, preferably the molecular weight is 75 to 50,000 and very particularly preferably 75 to 20,000 daltons.
  • protein hydrolysates can be used both in plant and in animal or marine or synthetic origin.
  • Animal protein hydrolyzates are, for example, elastin, collagen, keratin, silk and milk protein protein hydrolyzates, which can also be in the form of salts.
  • Such products are, for example, under the trademarks Dehylan (Cognis), Promois ® (Interorgana), Collapuron ® (Cognis), Nutrilan ® (Cognis), Gelita-Sol ® (Deutsche Gelatine Fabriken Stoess & Co), Lexein ® (Inolex) and Kerasol (Croda) distributed.
  • protein hydrolysates of vegetable origin e.g. B. soy, almond, pea, potato and wheat protein hydrolyzates.
  • Such products are, for example, under the trademarks Gluadin ® (Cognis), DiaMin ® (Diamalt), Lexein ® (Inolex), Hydrosoy ® (Croda), Hydrolupin ® (Croda), Hydrosesame ® (Croda), Hydrotritium ® (Croda) and Crotein ® (Croda) available.
  • amino acid mixtures obtained in some other way can optionally be used in their place. It is also possible to use derivatives of the protein hydrolyzates, for example in the form of their fatty acid condensation products. Such products are sold for example under the names Lamepon® ® (Cognis), Lexein ® (Inolex), Crolastin ® (Croda) or crotein ® (Croda).
  • the protein hydrolyzates or their derivatives are contained in the agents used according to the invention preferably in amounts of 0.1 to 10% by weight, based on the agent as a whole. Amounts of 0.1 to 5% by weight are particularly preferred.
  • the action of the active ingredient combination (W) can be increased by UV filters (I).
  • the UV filters to be used according to the invention are not subject to any general restrictions with regard to their structure and their physical properties. Rather, all UV filters that can be used in the cosmetics sector are suitable, the absorption maximum of which lies in the UVA (315-400 nm), in the UVB (280-315 nm) or in the UVC ( ⁇ 280 nm) range. UV filters with an absorption maximum in the UVB range, in particular in the range from approximately 280 to approximately 300 nm, are particularly preferred.
  • the UV filters used according to the invention can be selected, for example, from substituted benzophenones, p-aminobenzoic acid esters, diphenylacrylic acid esters, cinnamic acid esters, salicylic acid esters, benzimidazoles and o-aminobenzoic acid esters.
  • UV filters which can be used according to the invention are 4-amino-benzoic acid, N, N, N-trimethyl-4- (2-oxobom-3-ylidenemethyl) aniline-methyl sulfate, 3,3,5-trimethyl-cyclohexyl-salicylate (homosalates ), 2-Hydroxy-4-methoxy-benzophenone (Benzophenone-3; Uvinul ® M 40, Uvasorb ® MET, Neo Heliopan ® BB, Eusolex ® 4360), 2-phenylbenzimidazole-5-sulfonic acid and its potassium, sodium - and triethanolamine salts (phenylbenzimidazole sulfonic acid; Parsol ® HS; Neo Heliopan ® Hydro), 3,3 '- (1,4-phenylenedimethylene) -bis (7,7-dimethyl-2-oxo-bicyclo- [2.2.1] hept-l-yl-methane-s
  • 4-Amino-benzoic acid, N, N, N-trimethyl-4- (2-oxobom-3-ylidenemethyl) aniline methyl sulfate, 3,3,5-trimethyl-cyclohexylsalicylate, 2-hydroxy-4-methoxy-benzophenone are preferred , 2-phenylbenzimidazole-5-sulfonic acid and its potassium, sodium and triethanolamine salts, 3,3 '- (1,4-phenylenedimethylene) -bis (7,7-dimethyl-2-oxobicyclo- [2.2.
  • Preferred UV filters are those whose molar extinction coefficient at the absorption maximum is above 15,000, in particular above 20,000.
  • the water-insoluble compound has, in the context of the teaching according to the invention, the higher activity compared to those water-soluble compounds which differ from it by one or more additional ionic groups.
  • water-insoluble are those UV filters which do not dissolve in water at 20 ° C. to an extent of more than 1% by weight, in particular not more than 0.1% by weight.
  • these compounds should be at least 0.1, in particular at least 1% by weight> soluble in conventional cosmetic oil components at room temperature). The use of water-insoluble UV filters can therefore be preferred according to the invention.
  • those UV filters are preferred which have a cationic group, in particular a quaternary ammonium group.
  • UV filters have the general structure U - Q.
  • the structural part U stands for a group that absorbs UV rays.
  • This group can in principle be derived from the known UV filters mentioned above, which can be used in the cosmetics sector, in which a group, usually a hydrogen atom, of the UV filter is replaced by a cationic group Q, in particular with a quaternary amino function. is replaced.
  • Compounds from which the structural part U can be derived are, for example, substituted benzophenones, p-aminobenzoic acid esters,
  • Structural parts U which are derived from cinnamic acid amide or from N, N-dimethylamino-benzoic acid amide are preferred according to the invention.
  • the structure parts U can in principle be selected so that the absorption maximum of the UV filter can be in the UVA (315-400 nm) - as well as in the UVB (280-315nm) - or in the UVC ( ⁇ 280 nm) range.
  • UV filters with an absorption maximum in the UVB range in particular in the range from approximately 280 to approximately 300 nm, are particularly preferred.
  • the structural part U is preferably chosen so that the molar extinction coefficient of the UV filter at the absorption maximum is above 15,000, in particular above 20,000.
  • the structural part Q preferably contains a quaternary ammonium group as the cationic group.
  • this quaternary ammonium group can be directly connected to the structural part U, so that the structural part U represents one of the four substituents of the positively charged nitrogen atom.
  • one of the four substituents on the positively charged nitrogen atom is preferably a group, in particular an alkylene group having 2 to 6 carbon atoms, which functions as a connection between the structural part U and the positively charged nitrogen atom.
  • the group Q has the general structure - (CH 2 ) ⁇ -N + R'R 2 R 3 X " , in which x stands for an integer from 1 to 4, R 1 and R 2 independently of one another stand for Ci 4 -alkyl groups, R stands for a C ⁇ -2 - alkyl group or a benzyl group and X " for a physiologically acceptable anion.
  • x preferably represents the number 3, R and R each represent a methyl group and R either for a methyl group or a saturated or unsaturated, linear or branched hydrocarbon chain with 8 to 22, in particular 10 to 18, carbon atoms.
  • Physiologically compatible anions are, for example, inorganic anions such as halides, in particular chloride, bromide and fluoride, sulfate ions and phosphate ions, and organic anions such as lactate, citrate, acetate, tartrate, methosulfate and tosylate.
  • inorganic anions such as halides, in particular chloride, bromide and fluoride, sulfate ions and phosphate ions
  • organic anions such as lactate, citrate, acetate, tartrate, methosulfate and tosylate.
  • Two preferred UV filters with cationic groups are the commercially available compounds cinnamic acid amidopropyl trimethylammonium chloride (Incrocat ® UV-283) and dodecyl dimethylaminobenzamidopropyl dimethylammonium tosylate (Escalol ® HP 610).
  • the teaching of the invention also includes the use of a combination of several UV filters.
  • the combination of at least one water-insoluble UV filter with at least one UV filter with a cationic group is preferred.
  • the UV filters (I) are usually present in the agents used according to the invention in amounts of 0.1-5% by weight, based on the total agent. Amounts of 0.4-2.5% by weight are preferred.
  • the effect of the active ingredient combination (W) according to the invention can be further increased by a 2-pyrrolidinone-5-carboxylic acid and its derivatives (J).
  • Another object of the invention is therefore the use of the active ingredient in combination with derivatives of 2-pyrrolidinone-5-carboxylic acid.
  • the sodium, potassium, calcium, magnesium or ammonium salts are preferred, in which the ammonium ion carries one to three C 1 -C 4 -alkyl groups in addition to hydrogen.
  • the sodium salt is very particularly preferred.
  • the amounts used in the agents according to the invention are 0.05 to 10% by weight, based on the total agent, particularly preferably 0.1 to 5 and in particular 0.1 to 3% by weight.
  • the combination of the active ingredient combination (W) with vitamins, provitamins and vitamin precursors and their derivatives (K) has also proven to be advantageous.
  • Vitamins, pro-vitamins and vitamin precursors which are usually assigned to groups A, B, C, E, F and H are preferred according to the invention.
  • vitamin A includes retinol (vitamin Ai) and 3,4-didehydroretinol (vitamin A 2 ).
  • the ß-carotene is the provitamin of retinol.
  • vitamin A acid and its esters, vitamin A aldehyde and vitamin A alcohol and its esters such as palmitate and acetate come into consideration as vitamin A components.
  • the preparations used according to the invention preferably contain the vitamin A component in amounts of 0.05-1% by weight, based on the entire preparation.
  • the vitamin B group or the vitamin B complex include u. a. Vitamin Bi (thiamine)
  • Vitamin B 2 (riboflavin)
  • Vitamin B 3 The compounds nicotinic acid and nicotinamide (niacinamide) are often listed under this name. According to the invention, preference is given to nicotinic acid amide, which is preferably present in the agents used according to the invention in amounts of 0.05 to 1% by weight, based on the total agent.
  • panthenol pantothenic acid, panthenol and pantolactone. Panthenol and / or pantolactone are preferably used in this group.
  • Derivatives of panthenol which can be used according to the invention are, in particular, the esters and ethers of panthenol and cationically derivatized panthenols. Individual representatives are, for example, panthenol triacetate, panthenol monoethyl ether and its monoacetate and the cationic panthenol derivatives disclosed in WO 92/13829.
  • the compounds of the vitamin B 5 type mentioned are preferably present in the agents used according to the invention in amounts of 0.05-10% by weight, based on the total agent. Amounts of 0.1-5% by weight are particularly preferred.
  • - Vitamin B 6 pyridoxine, pyridoxamine and pyridoxal).
  • Vitamin C (ascorbic acid). Vitamin C is preferably used in the agents used according to the invention in amounts of 0.1 to 3% by weight, based on the total agent. Use in the form of the palmitic acid ester, the glucosides or phosphates can be preferred. Use in combination with tocopherols may also be preferred.
  • Vitamin E tocopherols, especially ⁇ -tocopherol.
  • Tocopherol and its derivatives which include in particular the esters such as acetate, nicotinate, phosphate and succinate, are preferably present in the agents used according to the invention in amounts of 0.05-1% by weight, based on the total agent ,
  • Vitamin F usually means essential fatty acids, in particular linoleic acid, linolenic acid and arachidonic acid.
  • Vitamin H The compound (3aS, 4S, 6a ⁇ ) -2-oxohexa- hydrothienol [3,4- ⁇
  • Biotin is contained in the agents used according to the invention preferably in amounts of 0.0001 to 1.0% by weight, in particular in amounts of 0.001 to 0.01% by weight.
  • the agents used according to the invention preferably contain vitamins, provitamins and vitamin precursors from groups A, B, E and H.
  • Panthenol, pantolactone, pyridoxine and its derivatives as well as nicotinamide and biotin are particularly preferred.
  • the effect of the active ingredient mixture (W) can also be increased by the combined use with plant extracts (L).
  • These extracts are usually produced by extracting the entire plant. In individual cases, however, it may also be preferred to produce the extracts exclusively from flowers and / or leaves of the plant.
  • the extracts from green tea, almond, aloe vera, coconut, mango, apricot, lime, wheat, kiwi and melon are particularly suitable for the use according to the invention.
  • Alcohols and mixtures thereof can be used as extractants for the production of the plant extracts mentioned.
  • the alcohols are lower alcohols such as ethanol and isopropanol, but especially polyhydric alcohols such as ethylene glycol and propylene glycol, both as the sole extractant and in Mix with water, preferred.
  • Plant extracts based on water / propylene glycol in a ratio of 1:10 to 10: 1 have proven to be particularly suitable.
  • the plant extracts can be used both in pure and in diluted form. If they are used in diluted form, they usually contain about 2 to 80% by weight of active substance and, as a solvent, the extractant or mixture of extractants used in their extraction.
  • mixtures of several, in particular two, different plant extracts in the agents according to the invention may be preferred.
  • penetration aids and / or swelling agents include, for example, urea and urea derivatives, guanidine and its derivatives, arginine and its derivatives, water glass, imidazole and its derivatives, histidine and its derivatives, benzyl alcohol, carbonates, hydrogen carbonates, monohydrogen phosphates, dihydrogen phosphates or phosphates.
  • short-chain carboxylic acids can additionally support the active ingredient combination (W).
  • Short-chain carboxylic acids and their derivatives in the context of the invention are understood to mean carboxylic acids which can be saturated or unsaturated and / or straight-chain or branched or cyclic and / or aromatic and / or heterocyclic and have a molecular weight of less than 750.
  • preferred are saturated or unsaturated straight-chain or branched carboxylic acids with a chain length of 1 to 16 carbon atoms in the chain, very particularly preferred are those with a chain length of 1 to 12 carbon atoms in the chain.
  • the short-chain carboxylic acids in the context of the invention can have one, two, three or more carboxy groups.
  • carboxylic acids having several carboxy groups preference is given to carboxylic acids having several carboxy groups, in particular di- and tricarboxylic acids.
  • the carboxy groups can be present in whole or in part as an ester, acid anhydride, lactone, amide, imidic acid, lactam, lactim, dicarboximide, carbohydrazide, hydrazone, hydroxam, hydroxim, amidine, amidoxime, nitrile, phosphonic or phosphate ester.
  • the carboxylic acids according to the invention can of course be substituted along the carbon chain or the ring structure.
  • the substituents of the carboxylic acids according to the invention include, for example, Cl-C8-alkyl, C2-C8-alkenyl, aryl, aralkyl and aralkenyl, hydroxymethyl, C2-C8-hydroxyalkyl, C2-C8-hydroxyalkenyl, Aminomethyl, C2-C8 aminoalkyl, cyano, formyl, oxo, thioxo, hydroxy, mercapto, amino, carboxy or imino groups.
  • Preferred substituents are C1-C8-alkyl, hydroxymethyl, hydroxyl, amino and carboxy groups. Substituents in the ⁇ position are particularly preferred.
  • substituents are hydroxyl, alkoxy and amino groups, where the amino function can optionally be further substituted by alkyl, aryl, aralkyl and / or alkenyl radicals.
  • preferred carboxylic acid derivatives are the phosphonic and phosphate esters.
  • carboxylic acids are formic acid, acetic acid, propionic acid, butyric acid, isobutyric acid, valeric acid, isovaleric acid, pivalic acid, oxalic acid, malonic acid, succinic acid, glutaric acid, glyceric acid, glyoxylic acid, adipic acid, pimelic acid, suberic acid, propelaconic acid, sebacic acid, sebacic acid, sebacic acid - acid, isocrotonic acid, elaidic acid, maleic acid, fumaric acid, muconic acid, citraconic acid, mesaconic acid, camphoric acid, benzoic acid, o, m, p-phthalic acid, naphthoic acid, toluoyl acid, hydratropic acid, atropic acid, cinnamic acid, isonicotinic acid, nicotinic acid, bicarbamic acid, bicarbamic acid, Dicyan
  • n a number from 4 to 12 and one of the two groups X and Y for a COOH group and the other for hydrogen or a methyl or Ethyl radical
  • dicarboxylic acids of the general formula (NI) which additionally carry 1 to 3 methyl or ethyl substituents on the cyclohexene ring
  • Dicarboxylic acids of the formula (N-I) are known in the literature. A manufacturing process can be found, for example, in US Pat. No. 3,753,968.
  • the dicarboxylic acids of the formula (N-I) can be prepared, for example, by reacting polyunsaturated dicarboxylic acids with unsaturated monocarboxylic acids in the form of a Diels-Alder cyclization.
  • a polyunsaturated fatty acid is usually used as the dicarboxylic acid component.
  • the linoleic acid accessible from natural fats and oils is preferred.
  • Diels-Alder reactions usually produce mixtures of isomers in which one component is present in excess. According to the invention, these isomer mixtures can be used just like the pure compounds.
  • those dicarboxylic acids which differ from the compounds of the formula (NI) by 1 to 3 methyl or ethyl substituents on the cyclohexyl ring or from can be used according to the invention these compounds are formally formed by the addition of one molecule of water to the double formation of the cyclohexene ring.
  • the dicarboxylic acid (mixture) which results from the reaction of linoleic acid with acrylic acid has proven to be particularly effective according to the invention. It is a mixture of 5- and 6-carboxy-4-hexyl-2-cyclohexen-l-octanoic acid.
  • Such compounds are commercially available under the designations Westvaco Diacid 1550 Westvaco Diacid 1595 ® (manufacturer: Westvaco).
  • hydroxycarboxylic acids and in this case in particular the dihydroxy, trihydroxy and polyhydroxycarboxylic acids as well as the dihydroxy, trihydroxy and polyhydroxydi, tri and polycarboxylic acids together with the active ingredient combination (W).
  • W active ingredient combination
  • the hydroxycarboxylic acid esters and the mixtures of hydroxycarboxylic acids and their esters as well as polymeric hydroxycarboxylic acids and their esters can be very particularly preferred.
  • Preferred hydroxycarboxylic acid esters are, for example, full esters of glycolic acid, lactic acid, malic acid, tartaric acid or citric acid.
  • hydroxycarboxylic acid esters are esters of ⁇ -hydroxypropionic acid, tartronic acid, D-gluconic acid, sugar acid, mucic acid or glucuronic acid.
  • Suitable alcohol components of these esters are primary, linear or branched aliphatic alcohols with 8 - 22 carbon atoms, e.g. fatty alcohols or synthetic fatty alcohols.
  • the esters of C12-C15 fatty alcohols are particularly preferred. Esters of this type are commercially available, e.g.
  • polyhydroxypolycarboxylic acids are polylactic acid and poly-tartaric acid and their esters.
  • these preparations can in principle contain all further components known to those skilled in the art for such cosmetic compositions.
  • non-ionic polymers such as, for example, vinyl pyrrolidone / vinyl acrylate copolymers, polyvinyl pyrrolidone and vinyl pyrrolidone / vinyl acetate copolymers and polysiloxanes,
  • - Thickeners such as agar agar, guar gum, alginates, xanthan gum, gum arabic, karaya gum, locust bean gum, linseed gums, dextrans, cellulose derivatives, for.
  • methyl cellulose, hydroxyalkyl cellulose and carboxymethyl cellulose starch fractions and derivatives such as amylose, amylopectin and dextrins, clays such as.
  • B. bentonite or fully synthetic hydrocolloids such.
  • hair-conditioning compounds such as phospholipids, for example soy lecithin, egg lecithin and cephalins, and silicone oils,
  • - Solvents and mediators such as ethanol, isopropanol, ethylene glycol, propylene glycol, glycerin and diethylene glycol, symmetrical and asymmetrical, linear and branched dialkyl ethers with a total of between 12 to 36 carbon atoms, in particular 12 to 24 carbon atoms, such as, for example, n-octyl ether, di-n-decyl ether, di-n-nonyl ether, di-n-undecyl ether and di-n-dodecyl ether, n-hexyl-n-octyl ether, n-octyl-n-decyl ether, n-decyl-n- undecyl ether, n-undecyl-n-dodecyl ether and n-hexyl-n-undecyl ether as well as di-tert- butyl ether,
  • Fatty alcohols in particular linear and / or saturated fatty alcohols with 8 to 30 carbon atoms,
  • Monoesters of C8 to C30 - fatty acids with alcohols with 6 to 24 carbon atoms include active ingredients that improve fiber structure, in particular mono-, di- and oligosaccharides, such as, for example, glucose, galactose, fatty acids, lactose and lactose, conditioning agents such as paraffin oils, vegetable oils, e.g. , B. sunflower oil,
  • Phospholipids for example soy lecithin, egg lecithin and cephalins, quaternized amines such as methyl l-alkylamidoethyl-2-alkylimidazolinium methosulfate,
  • Anti-dandruff agents such as piroctone olamine, zinc omadine and climbazole,
  • Consistency agents such as sugar esters, polyol esters or polyol alkyl ethers,
  • Swelling and penetration substances such as primary, secondary and tertiary phosphates, opacifiers such as latex, styrene / PVP and styrene / acrylamide copolymers pearlescent agents such as ethylene glycol mono- and distearate and PEG-3 distearate,
  • Reducing agents such as B. thioglycolic acid and its derivatives, thiolactic acid, cytamine, thio malic acid and ⁇ -mercaptoethanesulfonic acid,
  • formulations include, for example, creams, lotions, solutions, water, emulsions such as W / O, O / W, PIT emulsions (emulsions based on the teaching of phase inversion, PIT), microemulsions and multiple emulsions, gels, sprays, Suitable aerosols and foam aerosols.
  • the pH of these preparations can in principle be between 2 and 11. It is preferably between 5 and 11, values from 6 to 10 being particularly preferred. Virtually any acid or base that can be used for cosmetic purposes can be used to adjust this pH.
  • Food acids are usually used as acids.
  • Edible acids are understood to mean those acids that are ingested as part of normal food intake and have positive effects on the human organism. Edible acids are, for example, acetic acid, lactic acid, tartaric acid, citric acid, malic acid, ascorbic acid and gluconic acid. In the context of the invention, the use of citric acid and lactic acid is particularly preferred.
  • Preparations remaining on the skin and hair have proven to be particularly effective and can therefore represent preferred embodiments of the teaching according to the invention. Remaining on the skin and hair according to the invention are understood to mean those preparations which are not rinsed off or rinsed out of the skin or from the hair again in the course of the treatment after a period of from a few seconds to an hour using water or an aqueous solution , Rather, the preparations remain on the skin or hair until the next wash.
  • microemulsions are also understood to be so-called “P ⁇ T” emulsions.
  • P ⁇ T oil-in-water
  • these emulsions are systems with the 3 components water, oil and emulsifier, which are present at room temperature as an oil-in-water (O ⁇ V) emulsion.
  • O ⁇ V oil-in-water
  • microemulsions form in a certain temperature range (usually referred to as phase inversion temperature or “PIT”), which convert to water-in-oil (W / O) emulsions when heated further.
  • PIT phase inversion temperature
  • O / W emulsions are formed, which are also present at room temperature as microemulsions with an average particle diameter of less than 400 nm, in particular with a particle diameter of about 100-300 nm. Details regarding these very stable, low-viscosity systems, for which the term " PIT emulsions "has generally been adopted, can be found in a large number of publications, for which the publications in Angew. Chem. 97, 655-669 (1985) and Adv. Colloid Interface Sci 58, 119-149 (1995).
  • those micro- or “PIT” emulsions can be preferred which have an average particle diameter of approximately 200 nm.
  • the microemulsions according to the invention can be produced, for example, by first determining the phase inversion temperature of the system by heating a sample of the emulsion prepared in the customary manner and using a conductivity meter to determine the temperature at which the conductivity decreases sharply.
  • the decrease in the specific conductivity of the O / W emulsion initially present generally decreases over a temperature range of 2 to 8 ° C from originally more than 1 mS / cm to values below 0.1 mS / cm. This temperature range then corresponds to the phase inversion temperature range.
  • the emulsion initially produced as usual, from the oil component, nonionic emulsifier, at least parts of the water and, if appropriate, further components can be heated to a temperature which is within or above the phase inversion temperature range, then cooled and optionally add other components as well as the remaining water.
  • the microemulsion can also be produced directly at a temperature which is within or above the Phase inversion temperature range. The microemulsion thus produced is then cooled to a temperature below the phase inversion temperature range, usually room temperature.
  • a 12.5 cm 2 piece of MD 2000 fiber fleece (order number El 8 A 40 from Corovin) is sprayed with 1.0 g of the following formulation 1:
  • Another damaged strand of hair was treated with the formulation as a conditioner in a conventional manner.
  • the strand of hair was treated with 1 g of the formulation for 1 minute and rinsed under running water for 30 seconds. After drying and conditioning (24 h at room temperature and approx. 50% relative air humidity), the two strands of hair were compared with one another.
  • This formulation can be applied to both polypropylene fibers and viscose fibers. To use the care cloth is repeatedly stroked, in particular over the keratin fibers.
  • the keratin fibers are wrapped in the area of the hair tips with the cloth and heated with a hair dryer.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Birds (AREA)
  • Epidemiology (AREA)
  • Emergency Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Cosmetics (AREA)

Abstract

Vorgeschlagen werden Tücher zur Pflege von keratinischen Fasern. Die Tücher sind mit einer Zusammensetzung enthaltend kationische Verbindungen und Polyole sowie gegebenenfalls weiteren Wirk- und Hilfsstoffe behandelt.

Description

,Tücher zur Pflege keratinischer Fasern'
Die Erfindung betrifft Pflegetücher, die mit einer speziellen Lösung behandelt sind, sowie die Verwendung dieser Tücher zur Pflege keratinischer Fasern.
Kosmetische Mittel zur Pflege und zum Erhalt der natürlichen Funktionen von Haut und Haar gewinnen mehr und mehr an Bedeutung. Dazu tragen unter anderem die veränderten Verbrauchergewohnheiten und Modetrends bei. So werden beispielsweise durch das intensive Nutzen von Sonnenstudios Haut und Haar in ihrer Struktur stärker durch UV- Licht nachhaltig beeinträchtigt. Diese Beeinträchtigungen zeigen sich auf der Haut wie dem Haar beispielsweise durch einen Verlust der Elastizität.
Weiterhin führt die ausgiebige körperliche Betätigung in der Freizeit zu einer häufigen intensiven Reinigung von Haut und Haar. Dadurch kann der Schutzfilm aus Talg, welcher kontinuierlich von den zahlreichen Talgdrüsen produziert wird, oder aber die Sebum- produktion der Talgdrüsen selbst stark beeinträchtigt werden. Als Folge stellen sich eine fettige Haut und fettiges Haar ein. Weiterhin werden aus dem an sich gesunden Haar wesentliche Teile der natürlichen Lipidschicht herausgelöst.
Modetrends mit aktuellen Farben für „make-up", Lippenstifte zum Färben der Lippen und Maskara sowie Haarfärbe- und Wellmittel tragen bei beanspruchter Haut und vorbelastetem Haar ein übriges zur Beeinträchtigung des natürlichen Zustandes von Haut und Haar bei. Es ist daher nicht erstaunlich, wenn der Anteil der Verbraucher mit empfindlicher, wenig elastischer, spröder und gereizt reagierender Haut sowie einem in der Kämmbarkeit, der Splißrate, dem Glanz, der Elastizität, der Sprödigkeit und der Höchstreißkraft beeinträchtigtem Haar stark zunimmt.
Nicht zuletzt durch die starke Beanspruchung der Haare, beispielsweise durch das Färben oder Dauerwellen als auch durch die Reinigung der Haare mit Shampoos und durch Umweltbelastungen, nimmt die Bedeutung von Pflegeprodukten mit möglichst langanhaltender Wirkung zu. Derartige Pflegemittel beeinflussen die natürliche Struktur und die Eigenschaften der Haare. So können anschließend an solche Behandlungen beispielsweise die Naß- und Trockenkämmbarkeit des Haares, der Halt und die Fülle des Haares optimiert sein oder die Haare vor einer erhöhten Splißrate geschützt sein.
Es ist daher seit langem üblich, die Haare einer speziellen Nachbehandlung zu unterziehen. Dabei werden, üblicherweise in Form einer Spülung, die Haare mit speziellen Wirkstoffen, beispielsweise quaternären Ammoniumsalzen oder speziellen Polymeren, behandelt. Durch diese Behandlung werden je nach Formulierung die Kämmbarkeit, der Halt und die Fülle der Haare verbessert und die Splißrate verringert.
Weiterhin wurden in jüngster Zeit sogenannte Kombinationspräparate entwickelt, um den Aufwand der üblichen mehrstufigen Verfahren, insbesondere bei der direkten Anwendung durch Verbraucher, zu verringern.
Diese Präparate enthalten neben den üblichen Komponenten, beispielsweise zur Reinigung der Haare, zusätzlich Wirkstoffe, die früher den Haarnachbehandlungsmitteln vorbehalten waren. Der Konsument spart somit einen Anwendungsschritt; gleichzeitig wird der Verpackungsaufwand verringert, da ein Produkt weniger gebraucht wird.
Die zur Verfügung stehenden Wirkstoffe sowohl für separate Nachbehandlungsmittel als auch für Kombinationspräparate wirken im allgemeinen bevorzugt an der Haaroberfläche. So sind Haarpflegemittel bekannt, welche dem Haar Glanz, Halt, Fülle, bessere Naß- oder Trockenkämmbarkeiten verleihen oder dem Spliß vorbeugen. Genauso bedeutend wie das äußere Erscheinungsbild der Haare ist jedoch der innere strukturelle Zusammenhalt der Haarfasern, der insbesondere bei oxidativen und reduktiven Prozessen wie Färbung und Dauerwellen stark beeinflußt werden kann.
Es hat daher nicht an Versuchen gefehlt, diese Mißstände zu beheben. Dabei wurden u.a. Emulsionen zur Hautpflege bezüglich ihres Reizpotentiales durch die Auswahl geeigneter Emulgatoren weiter optimiert. Zur Reinigung von Haut und Haar werden milde Tenside eingesetzt, um Haut und Haar nicht zusätzlich zu belasten. Mit rückfettenden Substanzen wird versucht, die Anregung der Sebumproduktion bei der Reinigung zu vermeiden. UV- Schutzmittel und Vitamine wie beispielsweise Vitamin E sollen die nachteiligen Auswirkungen des UV-Lichtes mindern. Proteinhydrolysate werden zum Ausgleich der inneren Struktur von Haut und Haar eingesetzt. Mit Pflanzen- und Algenextrakten kann beispielsweise der Feuchtehaushalt von Haut- und Haar beeinflußt werden.
All diese Verbesserungen haben jedoch immer noch nicht zu Produkten geführt, welche sowohl den veränderten Lebensgewohnheiten als auch den Verbraucheransprüchen nach einem gepflegten und gesundem Haar Rechnung tragen. Überraschenderweise hat sich jedoch gezeigt, daß unter Verwendung von speziellen Pflegetüchern das Haar schnell und anhaltend gepflegt, regeneriert und sogar gestylt werden kann.
Unter dem Oberbegriff „Papier bzw. Tuch" werden ca. 3000 verschiedene Sorten und Artikel verstanden, die sich in ihren Anwendungsgebieten und ihrer Beschaffenheit zum Teil erheblich unterscheiden können. Zu ihrer Herstellung werden eine Reihe von Zusatzstoffen benötigt, von denen Füllstoffe (z.B. Kreide oder Kaolin) und Bindemittel (z.B. Stärke) zu den wichtigsten zählen. Für den Bereich der Tissue- und Hygienepapiere und-tücher, die in engeren Kontakt mit der menschlichen Haut gebracht werden, besteht ein besonderes Bedürfnis nach einem angenehmen Weichgriff, der dem Papier üblicherweise durch eine sorgfältige Auswahl der Faserstoffe und insbesondere einen hohen Anteil an frischem Holzschliff oder Cellulose verliehen wird. In der Vergangenheit hat es daher nicht an Versuchen gemangelt, Tissuepapiere so zu behandeln, daß ein angenehmerer Weichgriff resultiert. Gegenstand der internationalen Patentanmeldung WO 95/35411 sind Tissuepapiere, welche einen wasserfreien Emulgator (beispielweise Petrolatum), einen Träger (Fettalkohole, Fettsäuren oder Fettalkoholethoxylate mit jeweils 12 bis 22 Kohlenstoffatomen im Fettrest) sowie Tenside mit einem HLB-Wert von 4 bis 20 enthalten. Die internationale Patentanmeldung WO 95/35412 offenbart ähnliche Tissuepapiere, wobei als Softener wasserfreie Mischungen von (a) Mineralölen, (b) Fettalkoholen oder Fettsäuren und (c) Fettalkoholethoxylaten zum Einsatz kommen. Gegenstand der intenationalen Patentanmeldung WO 95/16824 sind Tissuepapiere, die Mineralöl, Fettalkoholethoxylate und nichtionische Tenside (Sorbitanester, Glucamide) enthalten. Des weiteren werden in der internationalen Patentanmeldung WO 97/30216 Avivagemittel für Papiertaschentücher beschrieben, die (a) langkettige Fettalkohole, (b) Wachsester, (c) nichtionische Emulgatoren und (d) Mineralöl enthalten. In all diesen Schriften findet sich jedoch nicht der geringste Hinweis auf eine Pflege keratinischer Fasern. Es besteht daher weiterhin das Bedürfnis die Wirkungsweise von Tissuepapieren und damit die Zugänglichkeit von kosmetischen Zubereitungen bei ihrer Anwendung zu verbessern. Vom anwendungstechnischen Standpunkt aus gilt es besonders den Weichgriff und die Sensorik der Tissuetücher zu verbessern und diesen Tissuetüchern eine schonende, das heißt nicht entfettende gleichzeitig jedoch konditionierende und pflegende Reinigungsleistung für keratinische Fasern zu verleihen.
Tissupapiere und/oder Tissuegewebe und/oder Tissuetücher (im weiteren mit Tissuepapieren bezeichnet), auf die sich die vorliegende Erfindung bezieht, können ein- oder mehrlagig aufgebaut sein. In der Regel weisen die Papiere ein Quadratmetergewicht von 10 bis 65, vorzugsweise 15 bis 30 g und eine Dichte von 0,6 g/cm3 und weniger auf. Beispiele für Tissuepapiere sind Toilettenpapiere, Papiertaschentücher, Gesichtsreinigungstücher, Abschminktücher, Erfrischungstücher, Haushaltstücher und dergleichen. Je nach Anwendung können die Tücher besondere Wirkstoffe enthalten, beispielsweise Feuchtigkeitsspender, Insektenrepellents (After- Sun-Tücher), Dihydroxyaceton, Deowirkstoffe, Tenside (Gesichtsreinigungstücher), pflegende Öle, antiinflammatorische Wirkstoffe (Babytücher) und dergleichen. Neben den papierbasierten Tissues kommen auch entsprechende Tissuegewebe in Frage, die aus Faser- oder Fleecestoff hergestellt werden.
Die Behandlung der Tissuepapiere mit den kosmetischen Zubereitungen kann in an sich bekannter Weise erfolgen, wobei die Lösung mindestens auf eine Seite der Papiere aufgetragen wird. Hierzu eignen sich grundsätzlich alle einschlägig bekannten Methoden, mit deren Hilfe man Flüssigkeiten oder Schmelzen auf mehr oder weniger feste Oberflächen auftragen kann, wie z.B. Versprühen, Drucken (z.B. Flexodruck), Beschichten (Gravurbeschichtung), Extrusion sowie Kombinationen dieser Verfahren. Es ist ebenso möglich, die Tücher mit den Zubereitungen zu tränken. Nach dem Auftragen der Zubereitungen kann sich ein kurzer Trockenschritt anschließen. Ausführlich werden Verfahren zum Behandeln von Tissuepapieren mit kosmetischen Zubereitungen in den schon eingangs genannten Schriften WO 95/35411 und WO 97/30216 beschrieben, auf die hiermit ausdrücklich Bezug genommen wird.
Um das Gewebe oder Tissuepapier mit der Pflegelösung zu tränken, wird es entweder mit ihr besprüht oder in sie eingetaucht, wobei es in beiden Fällen gegebenfalls durch Schaumbildung oder eine zu geringe Benetzung zu einer Verminderung des Durchsatzes in der Produktion kommen kann. Eine Aufgabe der vorliegenden Erfindung hat somit darin bestanden, Feuchttücher unter Verwendung spezieller Tenside zur Verfügung zu stellen, welche frei sind von den geschilderten Problemen.
Aus logistischen Gründen ist die Verwendung von Konzentraten zur Herstellung der Imprägnierlösungen für die Feuchttücher vorteilhaft. Nachteilig ist, dass die Konzentrate beim Verdünnen vielfach die Tendenz zur Schaumbildung zeigen. Außerdem kann es zur Ausbildung von Gelphasen kommen, was zu einem erhöhten Zeitaufwand bei der Herstellung der Tranklösungen führt. In beiden Fällen wird der Durchsatz in der Produktion reduziert.
Überraschenderweise wurde gefunden, dass kationische Substanzen, besonders kationische Tenside, insbesondere vom Typ der Esterquats und/oder kationisierten Proteinhydrolysate und/oder kationische Polymere in Kombination mit Polyhydroxyverbindungen die komplexe Aufgabe in ausgezeichneter Weise erfüllen. Imprägniermittel auf der Basis dieser Wirkstoffkombination erweisen sich als niedrigviskos und schaumfrei während des Imprägnierprozesses bei der Herstellung der Tücher, in der Anwendung hinterlassen die mit dieser Wirkstofflösung getränkten Feuchttücher sehr gut gepflegte und geschützte und weiterhin nicht beeinträchtigte keratinische Fasern. Gegenstand der Erfindung sind Pflegetücher zur Pflege keratinischer Fasern, die sich dadurch auszeichnen, dass sie mit einer Kombination (W) aus a) kationischen Substanzen (A) und b) Polyhydroxyverbindungen (B) behandelt sind.
Unter keratinischen Fasern werden erfindungsgemäß Pelze, Wolle, Federn und insbesondere menschliche Haare verstanden.
Erfindungsgemäß bevorzugt sind mehrlagige Tissuetücher. Insbesondere sind erfindungsgemäß solche Tissuetücher bevorzugt, welche zwischen den einzelnen Lagen eine undurchlässige und/oder teildurchlässige Sperrschicht haben. Die teildurchlässige Sperrschicht kann beispielsweise als semipermeable Membran ausgebildet sein. Bei derartigen Tüchern können zwei oder mehrere Tränklösungen auf ein Tuch aufgebracht werden. Dies kann ganz besonders bevorzugt sein, um mit der einen Seite der Feuchttücher eine Konditionierung mittels der auf das Tuch aufgebrachten Zusammensetzung zu bewirken. Mit der anderen Seite kann dann beispielsweise zum Trocknen nachgerieben werden. Es kann aber auch bevorzugt auf der zweiten Seite eine weitere pflegende und/oder festigende, fixierende Tränklösung aufgebracht sein.
Weiterhin kann es erfindungsgemäß ganz besonders bevorzugt sein, wenn die Tücher aus mindestens 3 Lagen getränkten Tissuetuches bestehen. Vorteilhaft ist dann zwischen mindestens 2 Lagen getränktem Tuch jeweils 1 Lage Tuch als semipermeable Membran ausgebildet. Die semipermeable Membran ist dabei in Richtung mindestens einer der äußeren Tuchlagen durchlässig. Dadurch kann beispielsweise eine Tränklösung auf die innerste Schicht aufgebracht werden, welche entweder nicht mischbar und/oder nicht stabil mit der äußeren Tränklösung ist. Hierdurch wird es möglich „two in one Tücher" zur Reinigung und Pflege und/oder zur Pflege und zum Stylen anzubieten. In einer bevorzugten Ausfuhrungsform ist eine Tuchlage, welche bevorzugt außen liegt, mit einer pflegenden Tränklösung befeuchtet. Diese Tränklösung enthält neben weiteren Bestandteilen mindestens eine kationische Substanz, Fettstoffe und/oder Pflegestoffe wie Proteine und Aminosäuren sowie gegebenenfalls deren Derivate, Vitamine und Vitaminvorstufen und Pflanzenextrakte. Diese Inhaltsstoffe werden im folgenden detailliert beschrieben. Insbesondere sind in dieser Ausführungsform dem Fachmann bekannte Wirkstoffe mit Repaireffekten enthalten. Hierunter fallen einerseits die zuvor genannten Substanzklassen, aber auch Polyhydroxyverbindungen wie Polyhydroxysäuren und Saccharide, welche ebenfalls im folgenden beschrieben werden. Diese bevorzugte Ausführungsform kann erfindungsgemäß derart ausgestaltet sein, daß das Tuch einlagig aufgebaut ist. In der Ausgestaltung des einlagigen Tuches ist es ganz besonders bevorzugt, wenn das Tuch unmittelbar vor oder während der Anwendung auf Temperaturen von 20 bis 50 °C, bevorzugt auf 25 bis 40 °C erwärmt wird. Die Erwärumg des Tuches vor der Anwendung kann beispielsweise mittels eines handelsüblichen Fönes, einer handelsüblichen Trockenhaube, einer Mikrowelle oder anderen Verfahren zur Erwärmung erfolgen. Bevorzugt wird ein Fön oder eine Trockenhaube benutzt, um das Tuch, welches auf dem Haar liegt oder um einzelne Haarsträhnen gewickelt wurde, zu erwärmen. Mit Hilfe der zugeführten Wärme wird eine effektivere Wirkung am Haar erreicht. Selbstverständlich kann das Tuch auch ohne Wärmezuführung für wenige Sekunden bis zu 10 Minuten auf dem Haar verbleiben oder das Haar nur durch wiederholtes Wischen mit dem Tuch in Kontakt gebracht werden.
Eine zweite bevorzugte Ausführungsform ist die Ausgestaltung als mehrlagiges Tuch. In dieser Ausgestaltungsform ist eine Lage des Tuches mit einer Tränklösung wie zuvor beschrieben aufgebaut. Eine weitere Lage Tuch ist demgegenüber bevorzugt mit einer zweiten Tränklösung behandelt. Diese zweite Tränklösung enthält neben weiteren Bestandteilen mindestens ein kationisches Polymer und mindestens ein weiteres Polymer, wobei das weitere Polymer bevorzugt eine Silikonverbindung und/oder ein filmbildendes Polymer ist. In dieser Ausgestaltungsform kann es ebenfalls bevorzugt sein, dieses Tuch wie zuvor beschrieben zu erwärmen. Der besondere Vorteil dieser Ausgestaltungsform ist, daß mit einer Seite Pflege- und die keratinische Fasern regenerierende Substanzen auf und in die Faser eingebracht werden. Anschließend werden ohne einen Spülprozeß durch einfaches Wenden des Tuches mit der Anwendung der zweiten Seite die regenerierten Fasern versiegelt. Selbstverständlich umfaßt die Erfindung die unterschiedliche farbliche Gestaltung der Tuchlagen. Weiterhin umfaßt die erfindungsgemäße Lehre auch den Aufbau der Tücher aus mehreren Materialien, insbesondere in Bezug auf die Saugfähigkeit und Durchlässigkeit der unterschiedlichen Tuchlagen.
Die erfindungsgemäße Wirkstoffkombination enthält als erste zwingende Komponente eine kationische Verbindung (A). Unter kationischer Verbindung sind zu verstehen: kationische Tenside (AI) und kationische Polymere (A2).
Als erste Verbindungsklasse der kationischen Verbindungen können erfindungsgemäß besonders bevorzugt kationische Tenside (AI) verwendet werden.
Typische Beispiele für bevorzugte kationische Tenside sind insbesondere quaternäre Ammoniumverbindungen wie Tetraalkylammoniumverbindungen, Ammoniumhalogenide, insbesondere Chloride und Bromide, wie Alkyltrimethylammonium- chloride, Dialkyldimethylammoniumchloride und Trialkylmethylammoniumchloride, z.B. Cetyltrimethylammoniumchlorid, Stearyltrimethylammoniumchlorid, Distearyldimethyl- ammoniumchlorid, Lauryldimethylammoniumchlorid, Lauryldimethylbenzylammonium- chlorid und Tricetylmethylammoniumchlorid, sowie die unter den INCI-Bezeichnungen Quaternium-27 und Quaternium-83 bekannten Imidazolium- Verbindungen. Die langen Alkylketten der oben genannten Tenside weisen bevorzugt 8 bis 30 Kohlenstoffatome auf. Weiterhin sind als kationische Tenside erfindungsgemäß Hydroxyethyl Hydroxycetyl Dimmonium Chloride (Dehyquart E) oder aber Esterquats verwendbar. Bei letzteren handelt es sich beispielsweise um quatemierte Fettsäuretriethanolaminestersalze der Formel (E5-I),
R 16
[R14CO-(OCH2CH2)mιOCH2CH2-N+-CH2CH2O-(CH2CH2θ)m2R15] Y" (E5-I)
CH2CH2θ(CH2CH2O)m3R17 in der R1 CO für einen Acylrest mit 6 bis 22 Kohlenstoffatomen, R15 und R1 unabhängig voneinander für Wasserstoff oder R14CO, R15 für einen Alkylrest mit 1 bis 4 Kohlenstoffatomen oder eine (CH2CH2O)m4H-Gruppe, ml, m2 und m3 in Summe für 0 oder Zahlen von 1 bis 12, m4 für Zahlen von 1 bis 12 und Y für Halogenid, Alkylsulfat oder Alkylphosphat steht. Typische Beispiele für Esterquats, die im Sinne der Erfindung Verwendung finden können, sind Produkte auf Basis von Capronsäure, Caprylsäure, Caprinsäure, Laurinsäure, Myristinsäure, Palmitinsäure, Isostearinsäure, Stearinsäure, Ölsäure, Elaidinsäure, Arachinsäure, Behensäure und Erucasäure sowie deren technische Mischungen, wie sie beispielsweise bei der Druckspaltung natürlicher Fette und Öle anfallen. Vorzugsweise werden technische Cι2/ι8-Kokosfettsäuren und insbesondere teilgehärtete C16/ι8-Talg- bzw. Palmfettsäuren sowie elaidinsäurereiche Cι6/ι8-Fett- säureschnitte eingesetzt. Zur Herstellung der quatemierten Ester können die Fettsäuren und das Triethanolamin im molaren Verhältnis von 1,1 : 1 bis 3 : 1 eingesetzt werden. Im Hinblick auf die anwendungstechnischen Eigenschaften der Esterquats hat sich ein Einsatzverhältnis von 1,2 : 1 bis 2,2 : 1, vorzugsweise 1,5 : 1 bis 1,9 : 1 als besonders vorteilhaft erwiesen. Die bevorzugten Esterquats stellen technische Mischungen von Mono-, Di- und Triestem mit einem durchschnittlichen Veresterungsgrad von 1 ,5 bis 1 ,9 dar und leiten sich von technischer Ci6/ιβ- Talg- bzw. Palmfettsäure (Iodzahl 0 bis 40) ab. Aus anwendungstechnischer Sicht haben sich quatemierte Fettsäuretriethanolaminestersalze der Formel (E5-I) als besonders vorteilhaft erwiesen, in der RI4CO für einen Acylrest mit 16 bis 18 Kohlenstoffatomen, R15 für R15CO, R16 für Wasserstoff, R17 für eine Methylgruppe, ml, m2 und m3 für 0 und Y für Methylsulfat steht.
Neben den quatemierten Fettsäuretriethanolaminestersalzen kommen als Esterquats femer auch quatemierte Estersalze von Fettsäuren mit Diethanolalkylaminen der Formel (E5-II) in Betracht, R20
I
[R18CO-(OCH2CH2)m5OCH2CH2-N+-CH2CH2θ-(CH2CH2O)m6R19] Y* (E5-II)
R 21
in der R18CO für einen Acylrest mit 6 bis 22 Kohlenstoffatomen, R19 für Wasserstoff oder R CO, R und R unabhängig voneinander für Alkylreste mit 1 bis 4 Kohlenstoffatomen, m5 und m6 in Summe für 0 oder Zahlen von 1 bis 12 und Y wieder für Halo- genid, Alkylsulfat oder Alkylphosphat steht.
Als weitere Gruppe geeigneter Esterquats sind schließlich die quatemierten Estersalze von Fettsäuren mit 1,2-Dihydroxypropyldialkylaminen der Formel (E5-III) zu nennen,
R25 O-(CH2CH2O)m8OCR22
[R24-N+-CH2CHCH2O-(CH2CH2O)m7R23] X- (E5-III)
R 26
in der R CO für einen Acylrest mit 6 bis 22 Kohlenstoffatomen, R für Wasserstoff oder R22CO, R24, R25 und R26 unabhängig voneinander für Alkylreste mit 1 bis 4 Kohlenstoffatomen, m7 und m8 in Summe für 0 oder Zahlen von 1 bis 12 und X wieder für Halo- genid, Alkylsulfat oder Alkylphosphat steht.
Schließlich kommen als Esterquats noch Stoffe in Frage, bei denen die Ester- durch eine Amidbindung ersetzt ist und die vorzugsweise basierend auf Diethylentriamin der Formel (E5-IV) folgen, R29
[R27CO-NH-CH2CH2-N+-CH2CH2-NH-R28] Y' (E5-IV)
R 30
77 7R in der R CO für einen Acylrest mit 6 bis 22 Kohlenstoffatomen, R für Wasserstoff oder
77 7Q *X(\
R CO, R und R unabhängig voneinander für Alkylreste mit 1 bis 4 Kohlenstoffatomen und Y wieder für Halogenid, Alkylsulfat oder Alkylphosphat steht. Derartige Amidesterquats sind beispielsweise unter der Marke Incroquat® (Croda) im Markt erhältlich.
Beispiele für kommerziell erhältliche Esterquats sind die unter den Warenzeichen Stepantex®, Dehyquart® und Armocare® vertriebenen Produkte. Die Produkte Armocare® VGH-70, ein N,N-Bis(2-Palmitoyloxyethyl)dimethylammoniumchlorid, sowie D Deehhyyqquuaartrt®® FF--7755,, DDeehhyyqquuaarrtt®® CC--44046, Dehyquart® L80 und Dehyquart® AU-35 sind einzelne Stellvertreter dieser Typen.
Bevorzugte Esterquats sind quaternierte Estersalze von Fettsäuren mit Triethanolamin, quatemierte Estersalze von Fettsäuren mit Diethanolalkylaminen und quatemierten Estersalzen von Fettsäuren mit 1,2-Dihydroxypropyldialkylaminen.
Die Alkylamidoamine werden üblicherweise durch Amidierung natürlicher oder synthetischer Fettsäuren und Fettsäureschnitte mit Dialkylaminoaminen hergestellt. Eine erfindungsgemäß besonders geeignete Verbindung aus dieser Substanzgruppe stellt das unter der Bezeichnung Tegoamid® S 18 im Handel erhältliche Stearamidopropyl-dimethylamin dar.
Die kationischen Tenside (AI) sind in den erfindungsgemäß verwendeten Zusammensetzungen bevorzugt in Mengen von 0,05 bis 10 Gew.-%, bezogen auf das gesamte Mittel, enthalten. Mengen von 0,1 bis 5 Gew.-% sind besonders bevorzugt. Weiterhin sind zu den kationischen Verbindungen kationische Polymere zu rechnen. Unter kationischen Polymeren (A2) sind Polymere zu verstehen, welche in der Haupt- und/oder Seitenkette eine Gruppe aufweisen, welche „temporär" oder „permanent" kationisch sein kann. Als „permanent kationisch" werden erfindungsgemäß solche Polymere bezeichnet, die unabhängig vom pH-Wert des Mittels eine kationische Gruppe aufweisen. Dies sind in der Regel Polymere, die ein quartäres Stickstoffatom, beispielsweise in Form einer Ammoniumgruppe, enthalten. Bevorzugte kationische Gruppen sind quartäre Ammoniumgruppen. Insbesondere solche Polymere, bei denen die quartäre Ammoniumgruppe über eine Cl-4-Kohlenwasserstoffgruppe an eine aus Acrylsäure, Methacryl säure oder deren Derivaten aufgebaute Polymerhauptkette gebunden sind, haben sich als besonders geeignet erwiesen.
Homopolymere der allgemeinen Formel (Gl-I), R1
I -[CH2-C-]n X- (Gl-I)
CO-O-(CH2)m-N+R2R3R4
in der R = -H oder -CH3 ist, R , R und R unabhängig voneinander ausgewählt sind aus Cl-4-Alkyl-, -Alkenyl- oder -Hydroxyalkylgruppen, m = 1, 2, 3 oder 4, n eine natürliche Zahl und X" ein physiologisch verträgliches organisches oder anorganisches Anion ist, sowie Copolymere, bestehend im wesentlichen aus den in Formel (Gl-I) aufgeführten Monomereinheiten sowie nichtionogenen Monomereinheiten, sind besonders bevorzugte kationische Polymere. Im Rahmen dieser Polymere sind diejenigen erfindungsgemäß bevorzugt, für die mindestens eine der folgenden Bedingungen gilt: R1 steht für eine Methylgruppe R2, R3 und R4 stehen für Methylgruppen m hat den Wert 2. Als physiologisch verträgliches Gegenionen X" kommen beispielsweise Halogenidionen, Sulfationen, Phosphationen, Methosulfationen sowie organische Ionen wie Lactat-, Citrat-, Tartrat- und Acetationen in Betracht. Bevorzugt sind Halogenidionen, insbesondere Chlorid.
Ein besonders geeignetes Homopolymer ist das, gewünschtenfalls vernetzte, Poly(methacryloyloxyethyltrimethylammoniumchlorid) mit der INCI-Bezeichnung Polyquaternium-37. Die Vernetzung kann gewünschtenfalls mit Hilfe mehrfach olefinisch ungesättigter Verbindungen, beispielsweise Divinylbenzol, Tetraallyloxyethan, Methylen- bisacrylamid, Diallylether, Polyallylpolyglycerylether, oder AUylethem von Zuckern oder Zuckerderivaten wie Erythritol, Pentaerythritol, Arabitol, Mannitol, Sorbitol, Sucrose oder Glucose erfolgen. Methylenbisacrylamid ist ein bevorzugtes Vemetzungsagens.
Das Homopolymer wird bevorzugt in Form einer nichtwäßrigen Polymerdispersion, die einen Polymeranteil nicht unter 30 Gew.-% aufweisen sollte, eingesetzt. Solche Polymerdispersionen sind unter den Bezeichnungen Salcare® SC 95 (ca. 50 % Polymeranteil, weitere Komponenten: Mineralöl (INCI-Bezeichnung: Mineral Oil) und Tridecyl-polyoxypro- pylen-polyoxyethylen-ether (INCI-Bezeichnung: PPG-l-Trideceth-6)) und Salcare® SC 96 (ca. 50 % Polymeranteil, weitere Komponenten: Mischung von Diestem des Propylengly- kols mit einer Mischung aus Capryl- und Caprinsäure (INCI-Bezeichnung: Propylene Gly- col Dicaprylate/Dicaprate) und Tridecyl-polyoxypropylen-polyoxyethylen-ether (INCI- Bezeichnung: PPG-l-Trideceth-6)) im Handel erhältlich.
Copolymere mit Monomereinheiten gemäß Formel (Gl-I) enthalten als nichtionogene Monomereinheiten bevorzugt Acrylamid, Methacrylamid, Acrylsäure-Cι.4-alkylester und Methacrylsäure-Cι-4-alkylester. Unter diesen nichtionogenen Monomeren ist das Acrylamid besonders bevorzugt. Auch diese Copolymere können, wie im Falle der Homopo- lymere oben beschrieben, vernetzt sein. Ein erfindungsgemäß bevorzugtes Copolymer ist das vernetzte Acrylamid-Methacryloyloxyethyltrimethylammoniumchlorid-Copolymer. Solche Copolymere, bei denen die Monomere in einem Gewichtsverhältnis von etwa 20:80 vorliegen, sind im Handel als ca. 50 %ige nichtwäßrige Polymerdispersion unter der Bezeichnung Salcare® SC 92 erhältlich.
Weitere bevorzugte kationische Polymere sind beispielsweise
- quaternisierte Cellulose-Derivate, wie sie unter den Bezeichnungen Celquat® und Polymer JR® im Handel erhältlich sind. Die Verbindungen Celquat® H 100, Celquat® L 200 und Polymer JR®400 sind bevorzugte quatemierte Cellulose-Derivate, kationische Alkylpolyglycoside gemäß der DE-PS 44 13 686, kationiserter Honig, beispielsweise das Handelsprodukt Honeyquat® 50,
- kationische Guar-Derivate, wie insbesondere die unter den Handelsnamen Cosme- dia Guar und Jaguar® vertriebenen Produkte,
- Polysiloxane mit quatemären Gruppen, wie beispielsweise die im Handel erhältlichen Produkte Q2-7224 (Hersteller: Dow Coming; ein stabilisiertes Trimethylsilylamo- dimethicon), Dow Coming® 929 Emulsion (enthaltend ein hydroxyl-amino-modifϊ- ziertes Silicon, das auch als Amodimethicone bezeichnet wird), SM-2059 (Hersteller: General Electric), SLM-55067 (Hersteller: Wacker) sowie Abil®-Quat 3270 und 3272 (Hersteller: Th. Goldschmidt), diquatemäre Polydimethylsiloxane, Quaternium-80),
- polymere Dimethyldiallylammoniumsalze und deren Copolymere mit Estem und Amiden von Acrylsäure und Methacryl säure. Die unter den Bezeichnungen Mer- quat®100 (Poly(dimethyldiallylammoniumchlorid)) und Merquat®550 (Dimethyl- diallylammoniumchlorid-Acrylamid-Copolymer) im Handel erhältlichen Produkte sind Beispiele für solche kationischen Polymere,
Copolymere des Vinylpyrrolidons mit quatemierten Derivaten des Dialkylamino- alkylacrylats und -methacrylats, wie beispielsweise mit Diethylsulfat quatemierte Vinylpyrrolidon-Dimethylaminoethylmethacrylat-Copolymere. Solche Verbindungen sind unter den Bezeichnungen Gafquat®734 und Gafquat®755 im Handel erhältlich,
- Vinylpyrrolidon-Vinylimidazoliummethochlorid-Copolymere, wie sie unter den Bezeichnungen Luviquat® FC 370, FC 550, FC 905 und HM 552 angeboten werden, quaternierter Polyvinylalkohol, sowie die unter den Bezeichnungen Polyquatemium 2, Polyquatemium 17, Polyquatemium 18 und Polyquatemium 27 bekannten Polymeren mit quartären Stickstoffatomen in der Polymerhauptkette.
Gleichfalls als kationische Polymere eingesetzt werden können die unter den Bezeichnungen Polyquaternium-24 (Handelsprodukt z. B. Quatrisoft® LM 200), bekannten Polymere. Ebenfalls erfindungsgemäß verwendbar sind die Copolymere des Vinylpyrrolidons, wie sie als Handelsprodukte Copolymer 845 (Hersteller: ISP), Gaffix® VC 713 (Hersteller: ISP), Gafquat®ASCP 1011, Gafquat®HS 110, Luviquat®8155 und Luviquat® MS 370 erhältlich sind.
Weitere erfindungsgemäße kationische Polymere sind die sogenannten „temporär kationischen" Polymere. Diese Polymere enthalten üblicherweise eine Aminogruppe, die bei bestimmten pH-Werten als quartäre Ammoniumgruppe und somit kationisch vorliegt. Bevorzugt sind beispielsweise Chitosan und dessen Derivate, wie sie beispielsweise unter den Handelsbezeichnungen Hydagen® CMF, Hydagen® HCMF, Kytamer® PC und Chitolam® NB/101 im Handel frei verfügbar sind.
Erfindungsgemäß bevorzugte kationische Polymere sind kationische Cellulose-Derivate und Chitosan und dessen Derivate, insbesondere die Handelsprodukte Polymer JR 400, Hydagen® HCMF und Kytamer® PC, kationische Guar-Derivate, kationische Honig-Derivate, insbesondere das Handelsprodukt Honeyquat® 50, kationische Alkylpolyglycodside gemäß der DE-PS 44 13 686, Polymere vom Typ Poιyquaternium-37 sowie Polysiloxane mit quatemären Gruppen wie die Abil®-Quat - Typen, die als Amodimethicone bezeichneten Typen und Quaternium-80.
Weiterhin sind kationiserte Proteinhydrolysate zu den kationischen Polymeren zu zählen, wobei das zugrunde liegende Proteinhydrolysat vom Tier, beispielsweise aus Collagen, Milch oder Keratin, von der Pflanze, beispielsweise aus Weizen, Mais, Reis, Kartoffeln, Soja oder Mandeln, von marinen Lebensformen, beispielsweise aus Fischcollagen oder Algen, oder biotechnologisch gewonnenen Proteinhydrolysaten, stammen kann. Die den erfmdungsgemäßen kationischen Derivaten zugrunde liegenden Proteinhydrolysate können aus den entsprechenden Proteinen durch eine chemische, insbesondere alkalische oder saure Hydrolyse, durch eine enzymatische Hydrolyse und/oder einer Kombination aus beiden Hydrolysearten gewonnen werden. Die Hydrolyse von Proteinen ergibt in der Regel ein Proteinhydrolysat mit einer Molekulargewichtsverteilung von etwa 100 Dalton bis hin zu mehreren tausend Dalton. Bevorzugt sind solche kationischen Proteinhydrolysate, deren zugrunde liegender Proteinanteil ein Molekulargewicht von 100 bis zu 25000 Dalton, bevorzugt 250 bis 5000 Dalton aufweist. Weiterhin sind unter kationischen Proteinhydrolysaten quatemierte Aminosäuren und deren Gemische zu verstehen. Die Quaternisierung der Proteinhydrolysate oder der Aminosäuren wird häufig mittels quartemären Ammoniumsalzen wie beispielsweise N,N-Dimethyl-N-(n-Alkyl)-N- (2-hydroxy-3-chloro-n-propyl)-ammoniumhalogeniden durchgeführt. Weiterhin können die kationischen Proteinhydrolysate auch noch weiter derivatisiert sein. Als typische Beispiele für die erfindungsgemäßen kationischen Proteinhydrolysate und -derivate seien die unter den INCI - Bezeichnungen im „International Cosmetic Ingredient Dictionary and Handbook", (seventh edition 1997, The Cosmetic, Toiletry, and Fragrance Association 1 101 17th Street, N.W., Suite 300, Washington, DC 20036-4702) genannten und im Handel erhältlichen Produkte genannt: Cocodimonium Hydroxypropyl Hydrolyzed Collagen, Cocodimopnium Hydroxypropyl Hydrolyzed Casein, Cocodimonium Hydroxypropyl Hydrolyzed Collagen, Cocodimonium Hydroxypropyl Hydrolyzed Hair Keratin, Cocodimonium Hydroxypropyl Hydrolyzed Keratin, Cocodimonium Hydroxypropyl Hydrolyzed Rice Protein, Cocodimonium Hydroxypropyl Hydrolyzed Silk, Cocodimonium Hydroxypropyl Hydrolyzed Soy Protein, Cocodimonium Hydroxypropyl Hydrolyzed Wheat Protein, Cocodimonium Hydroxypropyl Silk Amino Acids, Hydroxypropyl Arginine Lauryl/Myristyl Ether HC1, Hydroxypropyltrimonium Gelatin, Hydroxypropyltrimonium Hydrolyzed Casein, Hydroxypropyltrimonium Hydrolyzed Collagen, Hydroxypropyltrimonium Hydrolyzed Conchiolin Protein, Hydroxypropyltrimonium Hydrolyzed Keratin, Hydroxypropyltrimonium Hydrolyzed Rice Bran Protein, Hydroxyproypltrimonium Hydrolyzed Silk, Hydroxypropyltrimonium Hydrolyzed Soy Protein, Hydroxypropyl Hydrolyzed Vegetable Protein, Hydroxypropyltrimonium Hydrolyzed Wheat Protein, Hydroxypropyltrimonium Hydrolyzed Wheat Pro- tein/Siloxysilicate, Laurdimonium Hydroxypropyl Hydrolyzed Soy Protein, Laurdimonium Hydroxypropyl Hydrolyzed Wheat Protein, Laurdimonium Hydroxypropyl Hydrolyzed Wheat Protein/Siloxysilicate, Lauryldimonium Hydroxypropyl Hydrolyzed Casein, Lauryldimonium Hydroxypropyl Hydrolyzed Collagen, Lauryldimonium Hydroxypropyl Hydrolyzed Keratin, Lauryldimonium Hydroxypropyl Hydrolyzed Silk, Lauryldimonium Hydroxypropyl Hydrolyzed Soy Protein, Steardimonium Hydroxypropyl Hydrolyzed Casein, Steardimonium Hydroxypropyl Hydrolyzed Collagen, Steardimonium Hydroxypropyl Hydrolyzed Keratin, Steardimonium Hydroxypropyl Hydrolyzed Rice Protein, Steardimonium Hydroxypropyl Hydrolyzed Silk, Steardimonium Hydroxypropyl Hydrolyzed Soy Protein, Steardimonium Hydroxypropyl Hydrolyzed Vegetable Protein, Steardimonium Hydroxypropyl Hydrolyzed Wheat Protein, Steartrimonium Hydroxyethyl Hydrolyzed Collagen, Quaternium-76 Hydrolyzed Collagen, Quaternium-79 Hydrolyzed Collagen, Quaternium-79 Hydrolyzed Keratin, Quaternium-79 Hydrolyzed Milk Protein, Quaternium-79 Hydrolyzed Silk, Quaternium-79 Hydrolyzed Soy Protein, Quaternium-79 Hydrolyzed Wheat Protein.
Ganz besonders bevorzugt sind die kationischen Proteinhydrolysate und -derivate auf pflanzlicher Basis.
Selbstverständlich umfaßt die erfindungsgemäße Lehre auch die Verwendung von mehreren kationaktiven Verbindungen (A). Dabei ist es bevozugt, wenn derartige Mischungen jeweils mindestens eine kationaktive Substanz aus der Klasse der kationischen Tenside und der Klasse der kationischen Polymere stammt. Selbstverständlich können auch zwei oder mehr kationische Tenside mit einem oder mehreren kationischen Polymeren gemeinsam verwendet werden.
Die zweite zwingende Komponente ist ausgewählt aus den Polyhydroxyverbindungen. Unter Polyhydroxyverbindungen im Sinne der Erfindung werden alle Substanzen verstanden, welche die Definition in Römpp's Lexikon der Chemie, Version 2.0 der CD - ROM Ausgabe von 1999, Verlag Georg Thieme, erfüllen. Demnach sind unter Polyhydroxyver- bindungen organische Verbindungen mit mindestens zwei Hydroxygmppen zu verstehen. Insbesondere sind im Sinne der vorliegenden Erfindung hierunter zu verstehen:
- Polyole mit mindestens zwei Hydroxygruppen, und mit einer Kohlenstoffkette von 2 bis 30 Kohlenstoffatomenwie beispielsweise Trimethylolpropan,
- Ethoxilate und/oder Propoxylate mit 1 bis 50 Mol Ethylenoxid und oder Propylenoxid der zuvor genannten Polyole,
- Kohlenhydrate, Zuckeralkohole und Zucker sowie deren Salze,
- insbesondere Monosaccharide, Disaccharide, Trisaccharide und Oligosaccharide, wobei diese auch in Form von Aldosen, Ketosen und/oder Lactosen, sowie geschützt durch übliche und in der Literatur bekannte -OH - und -NH - Schutzgruppen, wie beispielsweise die Triflatgruppe, die Trimethylsilylgruppe oder Acylgruppen sowie weiterhin in Form der Methylether und als Phosphatester, vorliegen können,
- Aminodesoxyzucker, Desoxyzucker, Thiozucker, wobei diese auch in Form von Aldosen, Ketosen und/oder Lactosen, sowie geschützt durch übliche und in der Literatur bekannte -OH - und -NH - Schutzgruppen, wie beispielsweise die Triflatgruppe, die Trimethylsilylgruppe oder Acylgruppen sowie weiterhin in Form der Methylether und als Phosphatester, vorliegen können,
Bevorzugt sind hierunter Monosaccharide mit 3 bis 8 C - Atomen, wie beispielsweise Triosen, Tetrosen, Pentosen, Hexosen, Heptosen und Octosen, wobei diese auch in Form von Aldosen, Ketosen und/oder Lactosen sowie geschützt durch übliche und in der Literatur bekannte -OH - und -NH - Schutzgruppen, wie beispielsweise die Triflatgruppe, die Trimethylsilylgruppe oder Acylgruppen sowie weiterhin in Form der Methylether und als Phosphatester, vorliegen können,
Weiterhin sind bevorzugt Oligosaccharide mit bis zu 50 Monomereinheiten, wobei diese auch in Form von Aldosen, Ketosen und/oder Lactosen sowie geschützt durch übliche und in der Literatur bekannte -OH - und -NH - Schutzgruppen, wie beispielsweise die Triflatgruppe, die Trimethylsilylgruppe oder Acylgruppen sowie weiterhin in Form der Methylether und als Phosphatester, vorliegen können. Ganz besonders bevorzugte Polyole der vorliegenden Erfindung sind Polyole mit 2 bis 12 C-Atomen im Molekülgerüst. Diese Polyole können geradkettig, verzweigt, cyclisch und/oder ungesättigt sein. Die Hydroxygruppen sind dabei ganz besonders bevorzugt endständig benachbart oder endständig durch den Rest der Kette voneinander getrennt. Als Beispiele für diese Polyole seien genannt: Glykol, Polyethylenglykol bis zu einem Molgewicht bis zu 1000 Dalton, Neopentylglykol, Partialglycerinether mit einem Molgewicht bis zu 1000 Dalton, 1,2-Propandiol, 1,3-Propandiol, Glycerin, 1 ,2-Butandiol, 1,3-Butandiol, 1 ,4-Butandiol, 1,2,3-Butantriol, 1 ,2,4-Butantriol, Pentandiole, beispielsweise 1 ,2-Pentandiol, 1,5-Pentandiol, Hexandiole, 1 ,2-Hexandiol, 1,6-Hexandiol, 1 ,2,6-Hexantriol, 1 ,4-cyclo-Hexandiol, 1 ,2-cyclo-Hexandiol, Heptandiole, 1,2- Heptandiol, 1 ,7-Heptandiol, Oktandiole, 1,2-Oktandiol, 1,8-Oktandiol, 2-Ethyl-l,3- hexandiol, Octadienole, Decadienole, Dodekandiole, 1,2-Dodekandiol, 1,12-Dodekandiol, 1,12-Dodekandiol mit 10 Mol EO, Dodecadienole.
Weiterhin beispielhaft für die erfindungsgemäßen Polyole seien erwähnt Sorbit, Inosit, Mannit, Tetrite, Pentite, Hexite, Threit, Erythrit, Adonit, Arabit, Xylit, Dulcit, Erythrose, Threose, Arabinose, Ribose, Xylose, Lyxose, Glucose, Galactose, Mannose, Allose, Altrose, Gulose, Idose, Talose, Fructose, Sorbose, Psicose, Tegatose, Desoxyribose, Glu- cosamin, Galaktosamin, Rhamnose, Digitoxose, Thioglucose, Saccharose, Lactose, Treha- lose, Maltose, Cellobiose, Melibiose, Gestiobiose, Rutinose, Raffinose sowie Cellotriose. Weiterhin sei auf die einschlägige Fachliteratur wie beispielsweise Beyer- Walter, Lehrbuch der organischen Chemie, S. Hirzel Verlag Stuttgart, 19. Auflage, Abschnitt III, Seiten 393 und folgende verwiesen.
Selbstverständlich umfaßt die erfindungsgemäße Lehre alle isomeren Formen, wie eis - trans - Isomere, Diastereomere, Epimere, Anomere und chirale Isomere.
Erfindungsgemäß ist es auch möglich, eine Mischung aus mehreren Polyolen (B) einzusetzen. Die erfindungsgemäßen Polyole (B) sind in den Mitteln in Konzentrationen von 0,01 Gew.% bis zu 20 Gew.%, vorzugsweise von 0,05 Gew.% bis zu 15 Gew.% und ganz besonders bevorzugt in Mengen von 0,1 Gew.% bis zu 10 Gew.% enthalten.
In einer weiteren bevorzugten Ausführungsform der Erfindung kann die Wirkung der erfindungsgemäßen Wirkstoffkombination (W) durch Fettstoffe (D) weiter gesteigert werden. Unter Fettstoffen sind zu verstehen Fettsäuren, Fettalkohole, natürliche und synthetische Wachse, welche sowohl in fester Form als auch flüssig in wäßriger Dispersion vorliegen können, und natürliche und synthetische kosmetische Ölkomponenten zu verstehen.
Als Fettsäuren (Dl) können eingesetzt werden lineare und/oder verzweigte, gesättigte und/oder ungesättigte Fettsäuren mit 6 - 30 Kohlenstoffatomen. Bevorzugt sind Fettsäuren mit 10 - 22 Kohlenstoffatomen. Hierunter wären beispielsweise zu nennen die Isostearinsäuren, wie die Handelsprodukte Emersol 871 und Emersol® 875, und
(R)
Isopalmitinsäuren wie das Handelsprodukt Edenor IP 95, sowie alle weiteren unter den Handelsbezeichnungen Edenor® (Cognis) vertriebenen Fettsäuren. Weitere typische Beispiele für solche Fettsäuren sind Capronsäure, Caprylsäure, 2-Ethylhexansäure, Caprinsäure, Laurinsäure, Isotridecansäure, Myristinsäure, Palmitinsäure, Palmitoleinsäure, Stearinsäure, Isostearinsäure, Ölsäure, Elaidinsäure, Petroselinsäure, Li- nolsäure, Linolensäure, Elaeostearinsäure, Arachinsäure, Gadoleinsäure, Behensäure und Erucasäure sowie deren technische Mischungen, die z.B. bei der Druckspaltung von natürlichen Fetten und Ölen, bei der Oxidation von Aldehyden aus der Roelen'schen Oxosynthese oder der Dimerisierung von ungesättigten Fettsäuren anfallen. Besonders bevorzugt sind üblicherweise die Fettsäureschnitte, welche aus Cocosöl oder Palmöl erhältlich sind; insbesondere bevorzugt ist in der Regel der Einsatz von Stearinsäure.
Die Einsatzmenge beträgt dabei 0,1 - 15 Gew.%, bezogen auf das gesamte Mittel. Bevorzugt beträgt die Menge 0,5 - 10 Gew.%, wobei ganz besonders vorteilhaft Mengen von 1 - 5 Gew.% sein können. Als Fettalkohole (D2) können eingesetzt werden gesättigte, ein- oder mehrfach ungesättigte, verzweigte oder un verzweigte Fettalkohole mit C6 - C30-, bevorzugt Cι0 - C22- und ganz besonders bevorzugt C12 - C22- Kohlenstoffatomen. Einsetzbar im Sinne der Erfindung sind beispielsweise Decanol, Octanol, Octenol, Dodecenol, Decenol, Octadienol, Dodecadienol, Decadienol, Oleylalkohol, Erucaalkohol, Ricinolalkohol, Stearylalkohol, Isostearylalkohol, Cetylalkohol, Laurylalkohol, Myristylalkohol, Arachidylalkohol, Caprylalkohol, Caprinalkohol, Linoleylalkohol, Linolenylalkohol und Behenylalkohol, sowie deren Guerbetalkohole, wobei diese Aufzählung beispielhaften und nicht limitierenden Charakter haben soll. Die Fettalkohole stammen jedoch von bevorzugt natürlichen Fettsäuren ab, wobei üblicherweise von einer Gewinnung aus den Estem der Fettsäuren durch Reduktion ausgegangen werden kann. Erfindungsgemäß einsetzbar sind ebenfalls solche Fettalkoholschnitte, die durch Reduktion natürlich vorkommender Triglyceride wie Rindertalg, Palmöl, Erdnußöl, Rüböl, Baumwollsaatöl, Sojaöl, Sonnenblumenöl und Leinöl oder aus deren Umesterungsprodukten mit entsprechenden Alkoholen entstehenden Fettsäureestern erzeugt werden, und somit ein Gemisch von unterschiedlichen Fettalkoholen darstellen. Solche Substanzen sind beispielsweise unter den Bezeichnungen Stenol®, z.B. Stenol 1618 oder Lanette , z.B. Lanette® O oder Lorol®, z.B. Lorol® C8, Lorol® C14, Lorol® C18, Lorol® C8-18, HD- Ocenol®, Crodacol®, z.B. Crodacol® CS, Novol®, Eutanol® G, Guerbitol® 16, Guerbitol® 18, Guerbitol® 20, Isofol® 12, Isofol® 16, Isofol® 24, Isofol® 36, Isocarb® 12, Isocarb® 16 oder Isocarb® 24 käuflich zu erwerben. Selbstverständlich können erfindungsgemäß auch Wollwachsalkohole, wie sie beispielsweise unter den Bezeichnungen Corona®, White Swan®, Coronet oder Fluilan käuflich zu erwerben sind, eingesetzt werden. Die Fettalkohole werden in Mengen von 0,1 - 30 Gew.-%, bezogen auf die gesamte Zubereitung, bevorzugt in Mengen von 0,1 - 20 Gew.-% eingesetzt.
Als natürliche oder synthetische Wachse (D3) können erfindungsgemäß eingesetzt werden feste Paraffine oder Isoparaffine, Carnaubawachse, Bienenwachse, Candelillawachse, Ozokerite, Ceresin, Walrat, Sonnenblumenwachs, Fruchtwachse wie beispielsweise Apfelwachs oder Citruswachs, Microwachse aus PE- oder PP. Derartige Wachse sind beispielsweise erhältlich über die Fa. Kahl & Co., Trittau. Die Einsatzmenge beträgt 0,1 - 50 Gew.%> bezogen auf das gesamte Mittel, bevorzugt 0,1
- 20 Gew.%o und besonders bevorzugt 0,1 - 15 Gew.% bezogen auf das gesamte Mittel.
Zu den natürlichen und synthetischen kosmetischen Olkörpem (D4), welche die Wirkung des erfindungsgemäßen Wirkstoffes steigern können, sind beispielsweise zu zählen:
- pflanzliche Öle. Beispiele für solche Öle sind Sonnenblumenöl, Olivenöl, Sojaöl, Rapsöl, Mandelöl, Jojobaöl, Orangenöl, Weizenkeimöl, Pfirsichkernöl und die flüssigen Anteile des Kokosöls. Geeignet sind aber auch andere Triglyceridöle wie die flüssigen Anteile des Rindertalgs sowie synthetische Triglyceridöle. flüssige Paraffinöle, Isoparaffinöle und synthetische Kohlenwasserstoffe sowie Di-n- alkylether mit insgesamt zwischen 12 bis 36 C-Atomen, insbesondere 12 bis 24 C- Atomen, wie beispielsweise Di-n-ocrylether, Di-n-decylether, Di-n-nonylether, Di-n- undecylether, Di-n-dodecylether, n-Hexyl-n-octylether, n-Octyl-n-decylether, n-Decyl- n-undecylether, n-Undecyl-n-dodecylether und n-Hexyl-n-Undecylether sowie Di-tert- butylether, Di-iso-pentylether, Di-3-ethyldecylether, tert.-Butyl-n-octylether, iso- Pentyl-n-octylether und 2-Methyl-pentyl-n-octylether. Die als Handelsprodukte erhältlichen Verbindungen l,3-Di-(2-ethyl-hexyl)-cyclohexan (Cetiol S) und Di-n-octyl- ether (Cetiol® OE) können bevorzugt sein.
Esteröle. Unter Esterölen sind zu verstehen die Ester von C6 - C30 - Fettsäuren mit C2 - C30 - Fettalkoholen. Bevorzugt sind die Monoester der Fettsäuren mit Alkoholen mit 2 bis 24 C-Atomen. Beispiele für eingesetzte Fettsäurenanteile in den Estem sind Capronsäure, Caprylsäure, 2-Ethylhexansäure, Caprinsäure, Laurinsäure, Isotridecan- säure, Myristinsäure, Palmitinsäure, Palmitoleinsäure, Stearinsäure, Isostearinsäure, Ölsäure, Elaidinsäure, Petroselinsäure, Linolsäure, Linolensäure, Elaeostearinsäure, Arachinsäure, Gadoleinsäure, Behensäure und Erucasäure sowie deren technische Mischungen, die z.B. bei der Dmckspaltung von natürlichen Fetten und Ölen, bei der Oxidation von Aldehyden aus der Roelen'schen Oxosynthese oder der Dimerisierung von ungesättigten Fettsäuren anfallen. Beispiele für die Fettalkoholanteile in den Esterölen sind Isopropylalkohol, Capronalkohol, Caprylalkohol, 2-Ethylhexylalkohol, Caprinalkohol, Laurylalkohol, Isotridecylalkohol, Myristylalkohol, Cetylalkohol, Palmoleylalkohol, Stearylalkohol, Isostearylalkohol, Oleylalkohol, Elaidylalkohol, Petroselinylalkohol, Linolylalkohol, Linolenylalkohol, Elaeostearylalkohol, Arachylal- kohol, Gadoleylalkohol, Behenylalkohol, Emcylalkohol und Brassidylalkohol sowie deren technische Mischungen, die z.B. bei der Hochdruckhydrierung von technischen Methylestern auf Basis von Fetten und Ölen oder Aldehyden aus der Roelen'schen Oxosynthese sowie als Monomerfraktion bei der Dimerisierung von ungesättigten Fettalkoholen anfallen. Erfindungsgemäß besonders bevorzugt sind Isopropylmyristat (Rilanit® IPM), Isononansäure-C16-18-alkylester (Cetiol® SN), 2-Ethylhexylpalmitat (Cegesoft® 24), Stearinsäure-2-ethylhexylester (Cetiol® 868), Cetyloleat, Glycerintri- caprylat, Kokosfettalkohol-caprinat/-caprylat (Cetiol® LC), n-Butylstearat, Oleyle cat (Cetiol® J 600), Isopropylpalmitat (Rilanit® IPP), Oleyl Oleate (Cetiol®), Laurinsäure- hexylester (Cetiol® A), Di-n-butyladipat (Cetiol® B), Myristylmyristat (Cetiol® MM), Cetearyl Isononanoate (Cetiol® SN), Ölsäuredecylester (Cetiol® V).
- Dicarbonsäureester wie Di-n-butyladipat, Di-(2-ethylhexyl)-adipat, Di-(2-ethylhexyl)- succinat und Di-isotridecylacelaat sowie Diolester wie Ethylenglykol-dioleat, Ethylenglykol-di-isotridecanoat, Propylenglykol-di(2-ethylhexanoat), Propylenglykol- di-isostearat, Propylenglykol-di-pelargonat, Butandiol-di-isostearat, Neopentylgly- koldicaprylat, symmetrische, unsymmetrische oder cyclische Ester der Kohlensäure mit Fettalkoholen, beispielsweise beschrieben in der DE-OS 197 56 454, Glycerincarbonat oder Dicaprylylcarbonat (Cetiol® CC),
- Trifettsäureester von gesättigten und/oder ungesättigten linearen und/oder verzweigten Fettsäuren mit Glycerin
Die Einsatzmenge der natürlichen und synthetischen kosmetischen Ölkörper in den erfindungsgemäß verwendeten Mitteln beträgt üblicherweise 0,1 - 30 Gew.%, bezogen auf das gesamte Mittel, bevorzugt 0,1 - 20 Gew.-%, und insbesondere 0,1 - 15 Gew.-%.
Eine ganz besonders bevorzugte Gmppe von Fettstoffen (D) sind die Fettsäurepartialglyceride (D5). Diese Fettsäurepartialglyceride sind Monoglyceride, Diglyceride und deren technische Gemische. Bei der Verwendung technischer Produkte können herstellungsbedingt noch geringe Mengen Triglyceride enthalten sein. Die Partialglyceride folgen vorzugsweise der Formel (D-V),
CH2O(CH2CH2O)mR4
CHO(CH2CH2O)nR5 (D-V)
CH20(CH2CH2O)qR6
in der R4, R5 und R unabhängig voneinander für Wasserstoff oder für einen linearen oder verzweigten, gesättigten und/oder ungesättigten Acylrest mit 6 bis 22, vorzugsweise 12 bis 18, Kohlenstoffatomen stehen mit der Maßgabe, daß mindestens eine dieser Gmppen für einen Acylrest und mindestens eine dieser Gmppen für Wasserstoff steht. Die Summe (m+n+q) steht für 0 oder Zahlen von 1 bis 100, vorzugsweise für 0 oder 5 bis 25. Bevorzugt steht R4 für einen Acylrest und R5 und R6 für Wasserstoff und die Summe (m+n+q) ist 0. Typische Beispiele sind Mono- und/oder Diglyceride auf Basis von Capronsäure, Caprylsäure, 2-Ethylhexansäure, Caprinsäure, Laurinsäure, Isotridecansäure, Myristin- säure, Palmitinsäure, Palmoleinsäure, Stearinsäure, Isostearinsäure, Ölsäure, Elaidinsäure, Petroselinsäure, Linolsäure, Linolensäure, Elaeostearinsäure, Arachinsäure, Gadoleinsäure, Behensäure und Erucasäure sowie deren technische Mischungen. Vorzugsweise werden Ölsäuremonoglyceride eingesetzt.
Das Fettsäurepartialglycerid ist in den erfindungsgemäß verwendeten Mitteln bevorzugt in Mengen von 0,1 - 20 Gew.-%, insbesondere 0,1 - 10 Gew.-%, bezogen auf das gesamte Mittel enthalten.
Die Gesamtmenge an Öl- und Fettkomponenten in den erfindungsgemäßen Mitteln beträgt üblicherweise 0,5 - 75 Gew.-%, bezogen auf das gesamte Mittel. Mengen von 0,5 - 35 Gew.-% sind erfindungsgemäß bevorzugt. Ebenfalls als vorteilhaft hat sich die Kombination des Wirkstoffes (W) mit Tensiden (E) erwiesen. In einer weiteren bevorzugten Ausfühmngsform enthalten die erfindungsgemäß verwendeten Mittel Tenside. Unter dem Begriff Tenside werden grenzflächenaktive Substanzen, die an Ober- und Grenzflächen Adsorptionsschichten bilden oder in Volumenphasen zu Mizellkolloiden oder lyotropen Mesophasen aggregieren können, verstanden. Man unterscheidet Aniontenside bestehend aus einem hydrophoben Rest und einer negativ geladenen hydrophilen Kopfgruppe, amphotere Tenside, welche sowohl eine negative als auch eine kompensierende positive Ladung tragen, kationische Tenside, welche neben einem hydrophoben Rest eine positiv geladene hydrophile Gmppe aufweisen, und nichtionische Tenside, welche keine Ladungen sondern starke Dipolmomente aufweisen und in wäßriger Lösung stark hydratisiert sind. Weitergehende Definitionen und Eigenschaften von Tensiden finden sich in „H.-D. Dörfler, Grenzflächen- und Kolloidchemie, VCH Verlagsgesellschaft mbH. Weinheim, 1994". Die zuvor wiedergegebene Begriffsbestimmung findet sich ab S. 190 in dieser D ckschrift.
Als anionische Tenside (El) eignen sich in erfindungsgemäßen Zubereitungen alle für die Verwendung am menschlichen Körper geeigneten anionischen oberflächenaktiven Stoffe. Diese sind gekennzeichnet durch eine wasserlöslich machende, anionische Gmppe wie z.B. eine Carboxylat-, Sulfat-, Sulfonat- oder Phosphat-Gruppe und eine lipophile Alkyl- gruppe mit etwa 8 bis 30 C-Atomen. Zusätzlich können im Molekül Glykol- oder Poly- glykolether-Gruppen, Ester-, Ether- und Amidgruppen sowie Hydroxylgruppen enthalten sein. Beispiele für geeignete anionische Tenside sind, jeweils in Form der physiologisch verträglichen Salze oder der freien Säuren beispielsweise Natrium-, Kalium-, Magnesium- , Zink-, Calcium-, Aluminium-, und Ammonium- sowie der Mono-, Di- und Trialkanol- ammoniumsalze mit 2 bis 4 C-Atomen in der Alkanolgruppe, lineare und verzweigte Fettsäuren mit 8 bis 30 C-Atomen (Seifen), Ethercarbonsäuren der Formel R-O-(CH2-CH2θ)χ-CH2-COOH, in der R eine lineare
Alkylgruppe mit 8 bis 30 C-Atomen und x = 0 oder 1 bis 16 ist, - Acylsarcoside mit 8 bis 24 C-Atomen in der Acylgmppe, Acyltauride mit 8 bis 24 C-Atomen in der Acylgmppe, Acylisethionate mit 8 bis 24 C-Atomen in der Acylgmppe, Sulfobemsteinsäuremono- und -dialkylester mit 8 bis 24 C-Atomen in der Alkyl- g ppe und Sulfobernsteinsäuremono-alkylpolyoxyethylester mit 8 bis 24 C-Atomen in der Alkylgruppe und 1 bis 6 Oxyethylgruppen, lineare Alkansulfonate mit 8 bis 24 C-Atomen, lineare Alpha-Olefinsulfonate mit 8 bis 24 C-Atomen,
- Alpha-Sulfofettsäuremethylester von Fettsäuren mit 8 bis 30 C-Atomen,
- Alkylsulfate und Alkylpolyglykolethersulfate der Formel R-O(CH2-CH2O)x-OSO3H, in der R eine bevorzugt lineare Alkylgruppe mit 8 bis 30 C-Atomen und x = 0 oder 1 bis 12 ist,
Gemische oberflächenaktiver Hydroxysulfonate gemäß DE-A-37 25 030, sulfatierte Hydroxyalkylpolyethylen- und/oder Hydroxyalkylenpropylenglykolether gemäß DE-A-37 23 354,
Sulfonate ungesättigter Fettsäuren mit 8 bis 24 C-Atomen und 1 bis 6 Doppelbindungen gemäß DE-A-39 26 344,
- Ester der Weinsäure und Zitronensäure mit Alkoholen, die Anlagerungsprodukte von etwa 2-15 Molekülen Ethylenoxid und/oder Propylenoxid an Fettalkohole mit 8 bis 22 C-Atomen darstellen,
- Alkyl- und/oder Alkenyletherphosphate der Formel (El-I),
O
II
R1(OCH2CH2)n— O — P — OR2 (El-I)
OX
in der R1 bevorzugt für einen aliphatischen Kohlenwasserstoffrest mit 8 bis 30 Kohlenstoffatomen, R2 für Wasserstoff, einen Rest (C^C^O^R1 oder X, n für Zahlen von 1 bis 10 und X für Wasserstoff, ein Alkali- oder Erdalkalimetall oder NR3R4R5R6, mit R3 bis R6 unabhängig voneinander stehend für Wasserstoff oder einen C 1 bis C4 - Kohlenwasserstoffrest, steht, sulfatierte Fettsäurealkylenglykolester der Formel (El -II) R7CO(AlkO)nSO3M (El -II) in der R7CO- für einen linearen oder verzweigten, aliphatischen, gesättigten und/oder ungesättigten Acylrest mit 6 bis 22 C-Atomen, Alk für CH2CH2, CHCH3CH2 und/oder CH2CHCH3, n für Zahlen von 0,5 bis 5 und M für ein Kation steht, wie sie in der DE-OS 197 36 906.5 beschrieben sind,
- Monoglyceridsulfate und Monoglyceridethersulfate der Formel (El -III)
CH2O(CH2CH2O)x— COR8
I
CHO(CH2CH2O)vH (E 1 -HI)
I CH2O(CH2CH2O)2 — SO3X
in der R8CO für einen linearen oder verzweigten Acylrest mit 6 bis 22 Kohlenstoffatomen, x, y und z in Summe für 0 oder für Zahlen von 1 bis 30, vorzugsweise 2 bis 10, und X für ein Alkali- oder Erdalkalimetall steht. Typische Beispiele für im Sinne der Erfindung geeignete Monoglycerid(ether)sulfate sind die Umsetzungsprodukte von Laurinsäuremonoglycerid, Kokosfettsäuremonoglycerid, Palmitinsäuremonogly- cerid, Stearinsäuremonoglycerid, Ölsäuremonoglycerid und Talgfettsäuremonogly- cerid sowie deren Ethylenoxidaddukte mit Schwefeltrioxid oder Chlorsulfonsäure in Form ihrer Natriumsalze. Vorzugsweise werden Monoglyceridsulfate der Formel (El- III) eingesetzt, in der R8CO für einen linearen Acylrest mit 8 bis 18 Kohlenstoffatomen steht, wie sie beispielsweise in der EP-Bl 0 561 825, der EP-Bl 0 561 999, der DE-Al 42 04 700 oder von A.K.Biswas et al. in J.Am.Oil.Chem.Soc. 37, 171 (1960) und F.U.Ahmed in J.Am.Oil.Chem.Soc. 67, 8 (1990) beschrieben worden sind,
- Amidethercarbonsäuren wie sie in der EP 0 690 044 beschrieben sind,
- Kondensationsprodukte aus C - C30 - Fettalkoholen mit Proteinhydrolysaten und/oder Aminosäuren und deren Derivaten,welche dem Fachmann als Eiweissfettsäurekondensate bekannt sind, wie beispielsweise die Lamepon® - Typen, Gluadin® - Typen, Hostapon® KCG oder die Amisoft® - Typen.
Bevorzugte anionische Tenside sind Alkylsulfate, Alkylpolyglykolethersulfate und Ether- carbonsäuren mit 10 bis 18 C-Atomen in der Alkylgmppe und bis zu 12 Glykolether- gruppen im Molekül, Sulfobemsteinsäuremono- und -dialkylester mit 8 bis 18 C-Atomen in der Alkylgmppe und Sulfobemsteinsäuremono-alkylpolyoxyethylester mit 8 bis 18 C- Atomen in der Alkylgmppe und 1 bis 6 Oxyethylgruppen, Monoglycerdisulfate, Alkyl- und Alkenyletherphosphate sowie Eiweissfettsäurekondensate.
Als zwitterionische Tenside (E2) werden solche oberflächenaktiven Verbindungen bezeichnet, die im Molekül mindestens eine quartäre Ammoniumgruppe und mindestens eine -COO(_) - oder -Sθ3 H -Gmppe tragen. Besonders geeignete zwitterionische Tenside sind die sogenannten Betaine wie die N-Alkyl-N,N-dimethylammonium-glycinate, beispielsweise das Kokosalkyl-dimethylammoniumglycinat, N-Acyl-aminopropyl-N,N- dimethylammoniumglycinate, beispielsweise das Kokosacylaminopropyl-dimethyl- ammoniumglycinat, und 2-Alkyl-3-carboxymethyl-3-hydroxyethyl-imidazoline mit jeweils 8 bis 18 C-Atomen in der Alkyl- oder Acylgmppe sowie das Kokosacylamino- ethylhydroxyethylcarboxymethylglycinat. Ein bevorzugtes zwitterionisches Tensid ist das unter der INCI-Bezeichnung Cocamidopropyl Betaine bekannte Fettsäureamid-Derivat.
Unter ampholytischen Tensiden (E3) werden solche oberflächenaktiven Verbindungen verstanden, die außer einer C8 - C24 - Alkyl- oder -Acylgmppe im Molekül mindestens eine freie Aminogruppe und mindestens eine -COOH- oder -SOsH-Gruppe enthalten und zur Ausbildung innerer Salze befähigt sind. Beispiele für geeignete ampholytische Tenside sind N-Alkylglycine, N-Alkylpropionsäuren, N-Alkylaminobuttersäuren, N- Alkyliminodipropionsäuren, N-Hydroxyethyl-N-alkylamidopropylglycine, N-
Alkyltaurine, N-Alkylsarcosine, 2-Alkylaminopropionsäuren und Alkylaminoessigsäuren mit jeweils etwa 8 bis 24 C-Atomen in der Alkylgmppe. Besonders bevorzugte ampholytische Tenside sind das N-Kokosalkylaminopropionat, das Kokosacylaminoethylamino- propionat und das Cι2 - Cι8 - Acylsarcosin.
Nichtionische Tenside (E4) enthalten als hydrophile Gmppe z.B. eine Polyolgmppe, eine
Polyalkylenglykolethergruppe oder eine Kombination aus Polyol- und Polyglykolether- gmppe. Solche Verbindungen sind beispielsweise
- Anlagerungsprodukte von 2 bis 50 Mol Ethylenoxid und/oder 0 bis 5 Mol Propylen- oxid an lineare und verzweigte Fettalkohole mit 8 bis 30 C-Atomen, an Fettsäuren mit 8 bis 30 C-Atomen und an Alkylphenole mit 8 bis 15 C-Atomen in der Alkylgmppe, - mit einem Methyl- oder C2 - C6 - Alkylrest endgmppenverschlossene Anlagerungsprodukte von 2 bis 50 Mol Ethylenoxid und/oder 0 bis 5 Mol Propylenoxid an lineare und verzweigte Fettalkohole mit 8 bis 30 C-Atomen, an Fettsäuren mit 8 bis 30 C-Atomen und an Alkylphenole mit 8 bis 15 C-Atomen in der Alkylgmppe, wie beispielsweise die unter den Verkaufsbezeichnungen Dehydol® LS, Dehydol® LT (Cognis) erhältlichen Typen,
2-C3o-Fettsäuremono- und -diester von Anlagerungsprodukten von 1 bis 30 Mol Ethylenoxid an Glycerin,
Anlagemngsprodukte von 5 bis 60 Mol Ethylenoxid an Rizinusöl und gehärtetes Rizinusöl,
- Polyolfettsäureester, wie beispielsweise das Handelsprodukt Hydagen® HSP (Cognis) oder Sovermol - Typen (Cognis), alkoxilierte Triglyceride,
- alkoxilierte Fettsäurealkylester der Formel (E4-I)
R1CO-(OCH2CHR2)wOR3 (E4-I)
in der R*CO für einen linearen oder verzweigten, gesättigten und/oder ungesättigten
7
Acylrest mit 6 bis 22 Kohlenstoffatomen, R für Wasserstoff oder Methyl, R für lineare oder verzweigte Alkylreste mit 1 bis 4 Kohlenstoffatomen und w für Zahlen von 1 bis 20 steht,
- Aminoxide,
- Hydroxymischether, wie sie beipielsweise in der DE-OS 19738866 beschrieben sind, Sorbitanfettsäureester und Anlagemngeprodukte von Ethylenoxid an Sorbitanfettsäureester wie beispielsweise die Polysorbate,
- Zuckerfettsäureester und Anlagemngsprodukte von Ethylenoxid an Zuckerfettsäureester,
- Anlagemngsprodukte von Ethylenoxid an Fettsäurealkanolamide und Fettamine,
Als bevorzugte nichtionische Tenside haben sich die Alkylenoxid-Anlagemngsprodukte an gesättigte lineare Fettalkohole und Fettsäuren mit jeweils 2 bis 30 Mol Ethylenoxid pro Mol Fettalkohol bzw. Fettsäure erwiesen. Zubereitungen mit hervorragenden Eigenschaften werden ebenfalls erhalten, wenn sie als nichtionische Tenside Fettsäureester von ethoxyliertem Glycerin enthalten.
Diese Verbindungen sind durch die folgenden Parameter gekennzeichnet. Der Alkylrest R enthält 6 bis 22 Kohlenstoffatome und kann sowohl linear als auch verzweigt sein. Bevorzugt sind primäre lineare und in 2-Stellung methylverzweigte aliphatische Reste. Solche Alkylreste sind beispielsweise 1-Octyl, 1-Decyl, 1-Lauryl, 1-Myristyl, 1-Cetyl und 1-Stea- ryl. Besonders bevorzugt sind 1-Octyl, 1-Decyl, 1-Lauryl, 1-Myristyl. Bei Verwendung sogenannter "Oxo-Alkohole" als Ausgangsstoffe überwiegen Verbindungen mit einer ungeraden Anzahl von Kohlenstoffatomen in der Alkylkette.
Weitere banz besonders bevorzugte nicht-ionische Tenside stellen die sogenannten Zuckertenside Bei Zuckertensiden handelt es sich einmal um ein Alkyl- oder Alkenyloligoglykosid. Diese Zuckertenside stellen bekannte nichtionische Tenside gemäß Formel (E4-II) dar,
in der R1 für einen Alkyl- oder Alkenylrest mit 4 bis 22 Kohlenstoffatomen, G für einen Zuckerrest mit 5 oder 6 Kohlenstoffatomen und p für Zahlen von 1 bis 10 steht. Sie können nach den einschlägigen Verfahren der präparativen organischen Chemie erhalten werden. Stellvertretend für das umfangreiche Schrifttum sei hier auf die Übersichtsarbeit von Biermann et al. in Starch/Stärke 45, 281 (1993), B. Salka in Cosm.Toil. 108, 89 (1993) sowie J. Kahre et al. in SÖFW- Journal Heft 8, 598 (1995) verwiesen.
Die Alkyl- und Alkenyloligoglykoside können sich von Aldosen bzw. Ketosen mit 5 oder 6 Kohlenstoffatomen, vorzugsweise von Glucose, ableiten. Die bevorzugten Alkyl- und/oder Alkenyloligoglykoside sind somit Alkyl- und/oder Alkenyloligoglucoside. Die Indexzahl p in der allgemeinen Formel (I) gibt den Oligomerisierungsgrad (DP), d. h. die Verteilung von Mono- und Oligoglykosiden an und steht für eine Zahl zwischen 1 und 10. Während p im einzelnen Molekül stets ganzzahlig sein muß und hier vor allem die Werte p = 1 bis 6 annehmen kann, ist der Wert p für ein bestimmtes Alkyloligoglykosid eine analytisch ermittelte rechnerische Größe, die meistens eine gebrochene Zahl darstellt. Vorzugsweise werden Alkyl- und/oder Alkenyloligoglykoside mit einem mittleren Oligo- merisierungsgrad p von 1,1 bis 3,0 eingesetzt. Aus anwendungstechnischer Sicht sind solche Alkyl- und/oder Alkenyloligoglykoside bevorzugt, deren Oligomerisierungsgrad kleiner als 1,7 ist und insbesondere zwischen 1,2 und 1,4 liegt. Der Alkyl- bzw. Alkenylrest R1 kann sich von primären Alkoholen mit 4 bis 11, vorzugsweise 8 bis 10 Kohlenstoffatomen ableiten. Typische Beispiele sind Butanol, Capronalkohol, Caprylalkohol, Caprinalkohol und Undecylalkohol sowie deren technische Mischungen, wie sie beispielsweise bei der Hydrierung von technischen Fettsäuremethylestem oder im Verlauf der Hydrierung von Aldehyden aus der Roelen'schen Oxosynthese erhalten werden. Bevorzugt sind Alkyloligoglucoside der Kettenlänge C8-Cιo (DP = 1 bis 3), die als Vorlauf bei der destillativen Auftrennung von technischem C8-Cι8-Kokosfettalkohol anfallen und mit einem Anteil von weniger als 6 Gew.-%> C12-Alkohol vemnreinigt sein können sowie Alkyloligoglucoside auf Basis technischer C9/π-Oxoalkohole (DP = 1 bis 3). Der Alkyl- bzw. Alkenylrest R1 kann sich femer auch von primären Alkoholen mit 12 bis 22, vorzugsweise 12 bis 14 Kohlenstoffatomen ableiten. Typische Beispiele sind Laurylalkohol, Myristylalkohol, Cetylalkohol, Palmoleylalkohol, Stearylalkohol, Isostearylalkohol, Oleylalkohol, Elaidylalkohol, Petroselinylalkohol, Arachylalkohol, Gadoleylalkohol, Behenylalkohol, Erucylalkohol, Brassidylalkohol sowie deren technische Gemische, die wie oben beschrieben erhalten werden können. Bevorzugt sind Alkyloligoglucoside auf Basis von gehärtetem Cι2/ι4-Kokosalkohol mit einem DP von 1 bis 3.
Weitere Zuckertenside sind erfindungsgemäß Fettsäure-N-alkylpolyhydroxyalkylamide, nichtionische Tenside der Formel (E4-III),
R2CO-NR3-[Z] (E4-III) 7 • 1 in der R CO für einen aliphatischen Acylrest mit 6 bis 22 Kohlenstoffatomen, R für Wasserstoff, einen Alkyl- oder Hydroxyalkylrest mit 1 bis 4 Kohlenstoffatomen und [Z] für einen linearen oder verzweigten Polyhydroxyalkylrest mit 3 bis 12 Kohlenstoffatomen und 3 bis 10 Hydroxylgruppen steht.
Bei den Fettsäure-N-alkylpolyhydroxyalkylamiden handelt es sich um bekannte Stoffe, die üblicherweise durch reduktive Aminierung eines reduzierenden Zuckers mit Ammoniak, einem Alkylamin oder einem Alkanolamin und nachfolgende Acylierung mit einer Fettsäure, einem Fettsäurealkylester oder einem Fettsäurechlorid erhalten werden können. Hinsichtlich der Verfahren zu ihrer Herstellung sei auf die US-Patentschriften US 1,985,424, US 2,016,962 und US 2,703,798 sowie die Internationale Patentanmeldung WO 92/06984 verwiesen. Eine Übersicht zu diesem Thema von H.Kelkenberg findet sich in Tens. Surf. Det. 25, 8 (1988). Vorzugsweise leiten sich die Fettsäure-N-alkylpolyhy- droxyalkylamide von reduzierenden Zuckern mit 5 oder 6 Kohlenstoffatomen, insbesondere von der Glucose ab. Die bevorzugten Fettsäure-N-alkylpolyhydroxyalkylamide stellen daher Fettsäure-N-alkylglucamide dar, wie sie durch die Formel (E4-IV) wiedergegeben werden:
R2CO-NR3-CH2-(CHOH)4-CH2OH (E4-IV)
Vorzugsweise werden als Fettsäure-N-alkylpolyhydroxyalkylamide Glucamide der For- mel (E4-IV) eingesetzt, in der R für Wasserstoff oder eine Alkylgruppe steht und R CO für den Acylrest der Capronsäure, Caprylsäure, Caprinsäure, Laurinsäure, Myristinsäure, Palmitinsäure, Palmoleinsäure, Stearinsäure, Isostearinsäure, Ölsäure, Elaidinsäure, Petro- selinsäure, Linolsäure, Linolensäure, Arachinsäure, Gadoleinsäure, Behensäure oder Emcasäure bzw. derer technischer Mischungen steht. Besonders bevorzugt sind Fettsäure- N-alkylglucamide der Formel (E4-IV), die durch reduktive Aminierung von Glucose mit Methylamin und anschließende Acylierung mit Laurinsäure oder Cι2/ι4-Kokosfettsäure bzw. einem entsprechenden Derivat erhalten werden. Weiterhin können sich die Polyhy- droxyalkylamide auch von Maltose und Palatinose ableiten. Das Zuckertensid ist in den erfindungsgemäß verwendeten Mitteln bevorzugt in Mengen von 0,1 - 30 Gew.-%, bezogen auf das gesamte Mittel, enthalten. Mengen von 0,1 - 15 Gew.-% sind besonders bevorzugt. Selbstverständlich ist es erfindungsgemäß auch möglich mehrere Zuckertenside zu verwenden.
Bei den als Tensid eingesetzten Verbindungen mit Alkyl gmppen kann es sich jeweils um einheitliche Substanzen handeln. Es ist jedoch in der Regel bevorzugt, bei der Herstellung dieser Stoffe von nativen pflanzlichen oder tierischen Rohstoffen auszugehen, so daß man Substanzgemische mit unterschiedlichen, vom jeweiligen Rohstoff abhängigen Alkyl- kettenlängen erhält.
Bei den Tensiden, die Anlage ngsprodukte von Ethylen- und/oder Propylenoxid an Fettalkohole oder Derivate dieser Anlagemngsprodukte darstellen, können sowohl Produkte mit einer "normalen" Homologenverteilung als auch solche mit einer eingeengten Homologenverteilung verwendet werden. Unter "normaler" Homologenverteilung werden dabei Mischungen von Homologen verstanden, die man bei der Umsetzung von Fettalkohol und Alkylenoxid unter Verwendung von Alkalimetallen, Alkalimetallhydroxiden oder Alkalimetallalkoholaten als Katalysatoren erhält. Eingeengte Homologenverteilungen werden dagegen erhalten, wenn beispielsweise Hydrotalcite, Erdalkalimetallsalze von Ethercarbonsäuren, Erdalkalimetalloxide, -hydroxide oder -alkoholate als Katalysatoren verwendet werden. Die Verwendung von Produkten mit eingeengter Homologenverteilung kann bevorzugt sein.
Die Tenside (E) werden in Mengen von 0,1 - 45 Gew.%, bevorzugt 0,5 - 30 Gew.%» und ganz besonders bevorzugt von 0,5 - 25 Gew.%, bezogen auf das gesamte erfindungsgemäß verwendete Mittel, eingesetzt.
Anionische, nichtionische, zwitterionische und/oder amphotere Tenside sowie deren Mischungen können erfindungsgemäß bevorzugt sein. In einer weiteren bevorzugten Ausfühmngsform kann die Wirkung der erfindungsgemäßen Wirkstoffkombination (W) durch Emulgatoren (F) gesteigert werden. Emulgatoren bewirken an der Phasengrenzfläche die Ausbildung von wasser- bzw. ölstabilen Adsorptionsschichten, welche die dispergierten Tröpfchen gegen Koaleszenz schützen und damit die Emulsion stabilisieren. Emulgatoren sind daher wie Tenside aus einem hydrophoben und einem hydrophilen Molekülteil aufgebaut. Hydrophile Emulgatoren bilden bevorzugt O/W - Emulsionen und hydrophobe Emulgatoren bilden bevorzugt W/O - Emulsionen. Unter einer Emulsion ist eine tröpfchenförmige Verteilung (Dispersion) einer Flüssigkeit in einer anderen Flüssigkeit unter Aufwand von Energie zur Schaffung von stabilisierenden Phasengrenzflächen mittels Tensiden zu verstehen. Die Auswahl dieser emulgierenden Tenside oder Emulgatoren richtet sich dabei nach den zu dispergierenden Stoffen und der jeweiligen äußeren Phase sowie der Feinteiligkeit der Emulsion. Weiterführende Definitionen und Eigenschaften von Emulgatoren finden sich in „H.-D. Dörfler, Grenzflächen- und Kolloidchemie, VCH Verlagsgesellschaft mbH. Weinheim, 1994". Erfindungsgemäß verwendbare Emulgatoren sind beispielsweise
Anlagemngsprodukte von 4 bis 30 Mol Ethylenoxid und/oder 0 bis 5 Mol Propylen- oxid an lineare Fettalkohole mit 8 bis 22 C-Atomen, an Fettsäuren mit 12 bis 22 C- Atomen und an Alkylphenole mit 8 bis 15 C-Atomen in der Alkylgruppe, Cι2-C 2-Fettsäuremono- und -diester von Anlagerungsprodukten von 1 bis 30 Mol Ethylenoxid an Polyole mit 3 bis 6 Kohlenstoffatomen, insbesondere an Glycerin, Ethylenoxid- und Polyglycerin-Anlagerungsprodukte an Methylglucosid-Fettsäure- ester, Fettsäurealkanolamide und Fettsäureglucamide,
Gemische aus Alkyl-(oligo)-glucosiden und Fettalkoholen zum Beispiel das im Handel erhältliche Produkt Montanov®68, - Anlagemngsprodukte von 5 bis 60 Mol Ethylenoxid an Rizinusöl und gehärtetes Rizinusöl,
Partialester von Polyolen mit 3-6 Kohlenstoffatomen mit gesättigten Fettsäuren mit 8 bis 22 C-Atomen,
Sterine. Als Sterine wird eine Gmppe von Steroiden verstanden, die am C-Atom 3 des Steroid-Gerüstes eine Hydroxylgruppe tragen und sowohl aus tierischem Gewebe (Zoosterine) wie auch aus pflanzlichen Fetten (Phytosterine) isoliert werden. Beispiele f r Zoosterine sind das Cholesterin und das Lanosterin. Beispiele geeigneter Phyto- sterine sind Ergosterin, Stigmasterin und Sitosterin. Auch aus Pilzen und Hefen werden Sterine, die sogenannten Mykosterine, isoliert.
Phospholipide. Hierunter werden vor allem die Glucose-Phospolipide, die z.B. als Lecithine bzw. Phospahtidylcholine aus z.B. Eidotter oder Pflanzensamen (z.B. Sojabohnen) gewonnen werden, verstanden. Fettsäureester von Zuckern und Zuckeralkoholen, wie Sorbit,
Polyglycerine und Polyglycerinderivate wie beispielsweise Polyglycerinpoly-12-hy- droxystearat (Handelsprodukt Dehymuls PGPH),
Lineare und verzweigte Fettsäuren mit 8 bis 30 C - Atomen und deren Na-, K-, Ammonium-, Ca-, Mg- und Zn - Salze.
Die erfindungsgemäßen Mittel enthalten die Emulgatoren bevorzugt in Mengen von 0, 1 - 25 Gew.-%, insbesondere 0,5 - 15 Gew.-%, bezogen auf das gesamte Mittel.
Bevorzugt können die erfindungsgemäßen Zusammensetzungen mindestens einen nichtio- nogenen Emulgator mit einem HLB-Wert von 5 bis 18, gemäß den im Römpp-Lexikon Chemie (Hrg. J. Falbe, M.Regitz), 10. Auflage, Georg Thieme Verlag Stuttgart, New York, (1997), Seite 1764, aufgeführten Definitionen enthalten. Nichtionogene Emulgatoren mit einem HLB-Wert von 5 - 15 können erfindungsgemäß besonders bevorzugt sein.
Als weiterhin vorteilhaft hat es sich gezeigt, daß Polymere (G) die Wirkung der erfindungsgemäßen Wirkstoffmischung (W) unterstützen können. In einer bevorzugten Ausfühmngsform werden den erfindungsgemäß verwendeten Zusammensetzungen daher Polymere zugesetzt, wobei sich sowohl kationische, anionische, amphotere als auch nichtionische Polymere als wirksam erwiesen haben.
Bei den anionischen Polymeren (G2), welche die Wirkung der erfindungsgemäßen Wirkstoffkombination (W) unterstützen können, handelt es sich um anionische Polymere, welche Carboxylat- und/oder Sulfonatgmppen aufweisen. Beispiele für anionische Monomere, aus denen derartige Polymere bestehen können, sind Acrylsäure, Methacrylsäure, Crotonsäure, Maleinsäureanhydrid und 2-Acrylamido-2- methylpropansulfonsäure. Dabei können die sauren Gmppen ganz oder teilweise als Natrium-, Kalium-, Ammonium-, Mono- oder Triethanolammonium-Salz vorliegen. Bevorzugte Monomere sind 2-Acrylamido-2-methylpropansulfonsäure und Acrylsäure.
Als ganz besonders wirkungsvoll haben sich anionische Polymere erwiesen, die als alleiniges oder Co-Monomer 2-Acrylamido-2-methylpropansulfonsäure enthalten, wobei die Sulfonsäuregmppe ganz oder teilweise als Natrium-, Kalium-, Ammonium-, Mono- oder Triethanolammonium-Salz vorliegen kann.
Besonders bevorzugt ist das Homopolymer der 2-Acrylamido-2-methylpropansulfonsäure, das beispielsweise unter der Bezeichnung Rheothik®l 1-80 im Handel erhältlich ist.
Innerhalb dieser Ausführungsform kann es bevorzugt sein, Copolymere aus mindestens einem anionischen Monomer und mindestens einem nichtionogenen Monomer einzusetzen. Bezüglich der anionischen Monomere wird auf die oben aufgeführten Substanzen verwiesen. Bevorzugte nichtionogene Monomere sind Acrylamid, Methacrylamid, Acrylsäureester, Methacrylsäureester, Vinylpyrrolidon, Vinylether und Vinylester.
Bevorzugte anionische Copolymere sind Acrylsäure-Acrylamid-Copolymere sowie insbesondere Polyacrylamidcopolymere mit Sulfonsäuregruppen-haltigen Monomeren. Ein besonders bevorzugtes anionisches Copolymer besteht aus 70 bis 55 Mol-% Acrylamid und 30 bis 45 Mol-% 2-Acrylamido-2-methylpropansulfonsäure, wobei die Sulfonsäuregmppe ganz oder teilweise als Natrium-, Kalium-, Ammonium-, Mono- oder Triethanolammonium-Salz vorliegt. Dieses Copolymer kann auch vernetzt vorliegen, wobei als Vernet- zungsagentien bevorzugt polyolefmisch ungesättigte Verbindungen wie Tetraallyl- oxyethan, Allylsucrose, Allylpentaerythrit und Methylen-bisacrylamid zum Einsatz kommen. Ein solches Polymer ist in dem Handelsprodukt Sepigel®305 der Firma SEPPIC enthalten. Die Verwendung dieses Compounds, das neben der Polymerkomponente eine Kohlenwasserstoffmischung (Cπ-Cπ-Isoparaffin) und einen nichtionogenen Emulgator (Laureth-7) enthält, hat sich im Rahmen der erfindungsgemäßen Lehre als besonders vorteilhaft erwiesen.
Auch die unter der Bezeichnung Simulgel 600 als Compound mit Isohexadecan und Polysorbat-80 vertriebenen Natriumacryloyldimethyltaurat-Copolymere haben sich als erfindungsgemäß besonders wirksam erwiesen.
Ebenfalls bevorzugte anionische Homopolymere sind unvernetzte und vernetzte Polyacrylsäuren. Dabei können Allylether von Pentaerythrit, von Sucrose und von Propylen bevorzugte Vemetzungsagentien sein. Solche Verbindungen sind beispielsweise unter dem Warenzeichen Carbopol® im Handel erhältlich.
Copolymere aus Maleinsäureanhydrid und Methylvinylether, insbesondere solche mit Vernetzungen, sind ebenfalls farberhaltende Polymere. Ein mit 1 ,9-Decadiene vemetztes Maleinsäure-Methylvinylether-Copolymer ist unter der Bezeichnungg Stabileze QM im Handel erhältlich.
Weiterhin können als Polymere zur Steigerung der Wirkung der erfindungsgemäßen Wirkstoffkombination (W) amphotere Polymere (G3) verwendet werden. Unter dem Begriff amphotere Polymere werden sowohl solche Polymere, die im Molekül sowohl freie Aminogmppen als auch freie -COOH- oder SOsH-Gruppen enthalten und zur Ausbildung innerer Salze befähigt sind, als auch zwitterionische Polymere, die im Molekül quartäre Ammoniumgruppen und -COO"- oder -Sθ3 _-Gmppen enthalten, und solche Polymere zusammengefaßt, die -COOH- oder SOsH-Gruppen und quartäre Ammoniumgruppen enthalten.
Ein Beispiel für ein erfindungsgemäß einsetzbares Amphopolymer ist das unter der Bezeichnung Amphomer erhältliche Acrylharz, das ein Copolymeres aus tert.-Butylamino- ethylmethacrylat, N-(1,1,3,3-Tetramethylbutyl)acrylamid sowie zwei oder mehr Monomeren aus der Gmppe Acrylsäure, Methacrylsäure und deren einfachen Estem darstellt. Weitere erfindungsgemäß einsetzbare amphotere Polymere sind die in der britischen Offenlegungsschrift 2 104 091, der europäischen Offenlegungsschrift 47 714, der europäischen Offenlegungsschrift 217 274, der europäischen Offenlegungsschrift 283 817 und der deutschen Offenlegungsschrift 28 17 369 genannten Verbindungen.
Bevorzugt eingesetzte amphotere Polymere sind solche Polymerisate, die sich im wesentlichen zusammensetzen aus
(a) Monomeren mit quartären Ammoniumgmppen der allgemeinen Formel (G3-I), R1-CH=CR2-CO-Z-(CnH2n)-N(+)R3R4R5 Aω (G3-I) in der R1 und R2 unabhängig voneinander stehen für Wasserstoff oder eine Methylgmppe und R3, R4 und R5 unabhängig voneinander für Alkylgruppen mit 1 bis 4 Kohlenstoffatomen, Z eine NH-Gmppe oder ein Sauerstoffatom, n eine ganze Zahl von 2 bis 5 und
A das Anion einer organischen oder anorganischen Säure ist, und
(b) monomeren Carbonsäuren der allgemeinen Formel (G3-II), R6-CH=CR7-COOH (G3-II) in denen R unabhängig voneinander Wasserstoff oder Methylgmppen sind.
Diese Verbindungen können sowohl direkt als auch in Salzform, die durch Neutralisation der Polymerisate, beispielsweise mit einem Alkalihydroxid, erhalten wird, erfindungsgemäß eingesetzt werden. Bezüglich der Einzelheiten der Herstellung dieser Polymerisate wird ausdrücklich auf den Inhalt der deutschen Offenlegungsschrift 39 29 973 Bezug genommen. Ganz besonders bevorzugt sind solche Polymerisate, bei denen Monomere des Typs (a) eingesetzt werden, bei denen R3, R4 und R5 Methylgmppen sind, Z eine NH- Gmppe und AH ein Halogenid-, Methoxysulfat- oder Ethoxysulfat-Ion ist; Acrylamido- propyl-trimethyl-ammoniumchlorid ist ein besonders bevorzugtes Monomeres (a). Als Monomeres (b) für die genannten Polymerisate wird bevorzugt Acrylsäure verwendet.
Die erfindungsgemäßen Zusammensetzungen können in einer weiteren Ausführungsform nichtionogene Polymere (G4) enthalten. Geeignete nichtionogene Polymere sind beispielsweise:
Vinylpyrrolidon Vinylester-Copolymere, wie sie beispielsweise unter dem Warenzeichen Luviskol® (BASF) vertrieben werden. Luviskol® VA 64 und Luviskol® VA 73, jeweils Vinylpyrrolidon/Vinylacetat-Copolymere, sind ebenfalls bevorzugte nichtionische Polymere.
Celluloseether, wie Hydroxypropylcellulose, Hydroxyethylcellulose und Methyl- hydroxypropylcellulose, wie sie beispielsweise unter den Warenzeichen Culminal® und Benecel® (AQUALON) vertrieben werden. Schellack
Polyvinylpyrrolidone, wie sie beispielsweise unter der Bezeichnung Luviskol® (BASF) vertrieben werden.
Siloxane. Diese Siloxane können sowohl wasserlöslich als auch wasserunlöslich sein. Geeignet sind sowohl flüchtige als auch nichtflüchtige Siloxane, wobei als nichtflüchtige Siloxane solche Verbindungen verstanden werden, deren Siedepunkt bei Normaldruck oberhalb von 200 °C liegt. Bevorzugte Siloxane sind Polydialkylsiloxane, wie beispielsweise Polydimethylsiloxan, Polyalkylarylsiloxane, wie beispielsweise Poly- phenylmethylsiloxan, ethoxylierte Polydialkylsiloxane sowie Polydialkylsiloxane, die Amin- und/oder Hydroxy-Gruppen enthalten. Glycosidisch substituierte Silicone gemäß der EP 0612759 Bl .
Es ist erfindungsgemäß auch möglich, daß die verwendeten Zubereitungen mehrere, insbesondere zwei verschiedene Polymere gleicher Ladung und/oder jeweils ein ionisches und ein amphoteres und/oder nicht ionisches Polymer enthalten.
Die Polymere (G) sind in den erfindungsgemäß verwendeten Zusammensetzungen bevorzugt in Mengen von 0,05 bis 10 Gew.-%, bezogen auf das gesamte Mittel, enthalten. Mengen von 0,1 bis 5, insbesondere von 0,1 bis 3 Gew.-%, sind besonders bevorzugt.
Weiterhin können in den erfindungsgemäß verwendeten Zubereitungen Proteinhydrolysate und/oder Aminosäuren und deren Derivate (H) enthalten sein. Proteinhydrolysate sind Produktgemische, die durch sauer, basisch oder enzymatisch kata- lysierten Abbau von Proteinen (Eiweißen) erhalten werden. Unter dem Begriff Proteinhydrolysate werden erfindungsgemäß auch Totalhydrolysate sowie einzelne Aminosäuren und deren Derivate sowie Gemische aus verschiedenen Aminosäuren verstanden. Weiterhin werden erfindungsgemäß aus Aminosäuren und Aminosäurederivaten aufgebaute Polymere unter dem Begriff Proteinhydrolysate verstanden. Zu letzteren sind beispielsweise Polyalanin, Polyasparagin, Polyserin etc. zu zählen. Weitere Beispiele für erfindungsgemäß einsetzbare Verbindungen sind L-Alanyl- L-prolin, Polyglycin, Glycyl-L-glutamin oder D/L-Methionin-S-Methylsulfoniumchlorid. Selbstverständlich können erfindungsgemäß auch ß-Aminosäuren und deren Derivate wie ß-Alanin, Anthranilsäure oder Hippursäure eingesetzt werden. Das Molgeweicht der erfindungsgemäß einsetzbaren Proteinhydrolysate liegt zwischen 75, dem Molgewicht für Glycin, und 200000, bevorzugt beträgt das Molgewicht 75 bis 50000 und ganz besonders bevorzugt 75 bis 20000 Dalton.
Erfindungsgemäß können Proteinhydrolysate sowohl pflanzlichen als auch tierischen oder marinen oder synthetischen Urspmngs eingesetzt werden.
Tierische Proteinhydrolysate sind beispielsweise Elastin-, Kollagen-, Keratin-, Seiden- und Milcheiweiß-Proteinhydrolysate, die auch in Form von Salzen vorliegen können. Solche Produkte werden beispielsweise unter den Warenzeichen Dehylan (Cognis), Promois® (Interorgana), Collapuron® (Cognis), Nutrilan® (Cognis), Gelita-Sol® (Deutsche Gelatine Fabriken Stoess & Co), Lexein® (Inolex) und Kerasol (Croda) vertrieben.
Erfindungsgemäß bevorzugt ist die Verwendung von Proteinhydrolysaten pflanzlichen Urspmngs, z. B. Soja-, Mandel-, Erbsen-, Kartoffel- und Weizenproteinhydrolysate. Solche Produkte sind beispielsweise unter den Warenzeichen Gluadin® (Cognis), DiaMin® (Diamalt), Lexein® (Inolex), Hydrosoy® (Croda), Hydrolupin® (Croda), Hydrosesame® (Croda), Hydrotritium® (Croda) und Crotein® (Croda) erhältlich.
Wenngleich der Einsatz der Proteinhydrolysate als solche bevorzugt ist, können an deren Stelle gegebenenfalls auch anderweitig erhaltene Aminosäuregemische eingesetzt werden. Ebenfalls möglich ist der Einsatz von Derivaten der Proteinhydrolysate, beispielsweise in Form ihrer Fettsäure-Kondensationsprodukte. Solche Produkte werden beispielsweise unter den Bezeichnungen Lamepon® (Cognis), Lexein® (Inolex), Crolastin® (Croda) oder Crotein® (Croda) vertrieben.
Die Proteinhydrolysate oder deren Derivate sind in den erfϊndungsgemäß verwendeten Mitteln bevorzugt in Mengen von 0,1 bis 10 Gew.-%, bezogen auf das gesamte Mittel, enthalten. Mengen von 0,1 bis 5 Gew.-% sind besonders bevorzugt.
Weiterhin kann in einer bevorzugten Ausfühmngsform der Erfindung die Wirkung der Wirkstoffkombination (W) durch UV - Filter (I) gesteigert werden. Die erfindungsgemäß zu verwendenden UV-Filter unterliegen hinsichtlich ihrer Stmktur und ihrer physikalischen Eigenschaften keinen generellen Einschränkungen. Vielmehr eignen sich alle im Kosmetikbereich einsetzbaren UV-Filter, deren Absorptionsmaximum im UVA(315-400 nm)-, im UVB(280-315nm)- oder im UVC(<280 nm)-Bereich liegt. UV- Filter mit einem Absorptionsmaximum im UVB-Bereich, insbesondere im Bereich von etwa 280 bis etwa 300 nm, sind besonders bevorzugt.
Die erfindungsgemäß verwendeten UV -Filter können beispielsweise ausgewählt werden aus substituierten Benzophenonen, p-Aminobenzoesäureestern, Diphenylacrylsäureestern, Zimtsäureestern, Salicylsäureestern, Benzimidazolen und o-Aminobenzoesäureestern.
Beispiele für erfindungsgemäß verwendbar UV -Filter sind 4-Amino-benzoesäure, N,N,N- Trimethyl-4-(2-oxobom-3-ylidenmethyl)anilin-methylsulfat, 3,3,5-Trimethyl-cyclohexyl- salicylat (Homosalate), 2-Hydroxy-4-methoxy-benzophenon (Benzophenone-3; Uvinul®M 40, Uvasorb®MET, Neo Heliopan®BB, Eusolex®4360), 2-Phenylbenzimidazol-5-sulfon- säure und deren Kalium-, Natrium- und Triethanolaminsalze (Phenylbenzimidazole sulfonic acid; Parsol®HS; Neo Heliopan®Hydro), 3,3'-(l,4-Phenylendimethylen)-bis(7,7- dimethyl-2-oxo-bicyclo-[2.2.1]hept-l-yl-methan-sulfonsäure) und deren Salze, l-(4-tert.- Butylphenyl)-3 -(4-methoxyphenyl)-propan- 1 ,3 -dion (Butyl methoxydibenzoylmethane; Parsol®! 789, Eusolex®9020), α-(2-Oxoborn-3-yliden)-toluol-4-sulfonsäure und deren Salze, ethoxylierte 4-Aminobenzoesäure-ethylester (PEG-25 PABA; Uvinul®P 25), 4-Di- methylaminobenzoesäure-2-ethylhexylester (Octyl Dimethyl PABA; Uvasorb®DMO, Escalol®507, Eusolex®6007), Salicylsäure-2-ethylhexylester (Octyl Salicylat; Esca- lol®587, Neo Heliopan®OS, Uvinul®O18), 4-Methoxyzimtsäure-isopentylester (Isoamyl p-Methoxycinnamate; Neo Heliopan®E 1000), 4-Methoxyzimtsäure-2-ethylhexyl-ester (Octyl Methoxycinnamate; Parsol®MCX, Escalol®557, Neo Heliopan®AV), 2-Hydroxy-4- methoxybenzophenon-5-sulfonsäure und deren Natriumsalz (Benzophenone-4; Uvinul®MS 40; Uvasorb®S 5), 3-(4'-Methylbenzyliden)-D,L-Campher (4-Methylbenzyli- dene camphor; Parsol®5000, Eusolex®6300), 3-Benzyliden-campher (3-Benzylidene cam- phor), 4-Isopropylbenzylsalicylat, 2,4,6-Trianilino-(p-carbo-2'-ethylhexyl-l '-oxi)-l,3,5- triazin, 3-Imidazol-4-yl-acrylsäure und deren Ethylester, Polymere des N-{(2 und 4)-[2- oxobom-3 -ylidenmethyljbenzyl } -acrylamids, 2,4-Dihydroxybenzophenon (Benzophe- none-1; Uvasorb®20 H, Uvinul®400), l, -Diphenylacrylonitrilsäure-2-ethylhexyl-ester (Octocrylene; Eusolex®OCR, Neo Heliopan®Type 303, Uvinul®N 539 SG), o-Aminoben- zoesäure-menthylester (Menthyl Anthranilate; Neo Heliopan®MA), 2,2',4,4'-Tetrahy- droxybenzophenon (Benzophenone-2; Uvinul®D-50), 2,2'-Dihydroxy-4,4'-dimethoxy- benzophenon (Benzophenone-6), 2,2'-Dihydroxy-4,4'-dimethoxybenzophenon-5-natrium- sulfonat und 2-Cyano-3,3-diphenylacrylsäure-2'-ethylhexylester. Bevorzugt sind 4- Amino-benzoesäure, N,N,N-Trimethyl-4-(2-oxobom-3-ylidenmethyl)anilin-methylsulfat, 3,3,5-Trimethyl-cyclohexylsalicylat, 2-Hydroxy-4-methoxy-benzophenon, 2-Phenylben- zimidazol-5-sulfonsäure und deren Kalium-, Natrium- und Triethanolaminsalze, 3,3'-(l,4- Phenylendimethylen)-bis(7,7-dimethyl-2-oxo-bicyclo-[2.2.1]hept-l-yl-methan-sulfon- säure) und deren Salze, l-(4-tert.-Butylphenyl)-3-(4-methoxyphenyl)-propan-l,3-dion, α- (2-Oxobom-3-yliden)-toluol-4-sulfonsäure und deren Salze, ethoxylierte 4-Aminobenzoe- säure-ethylester, 4-Dimethylaminobenzoesäure-2-ethylhexylester, Salicylsäure-2-ethyl- hexylester, 4-Methoxyzimtsäure-isopentylester, 4-Methoxyzimtsäure-2-ethylhexyl-ester, 2-Hydroxy-4-methoxybenzophenon-5-sulfonsäure und deren Natriumsalz, 3-(4'-Methyl- benzyliden)-D,L-Campher, 3-Benzyliden-campher, 4-Isopropylbenzylsalicylat, 2,4,6-Tri- anilino-(p-carbo-2'-ethylhexyl- -oxi)-l,3,5-triazin, 3-Imidazol-4-yl-acrylsäure und deren Ethylester, Polymere des N-{(2 und 4)-[2-oxobom-3-ylidenmethyl]benzyl}-acrylamid. Erfindungsgemäß ganz besonders bevorzugt sind 2-Hydroxy-4-methoxy-benzophenon, 2- Phenylbenzimidazol-5-sulfonsäure und deren Kalium-, Natrium- und Triet- hanolaminsalze, 1 -(4-tert.-Butylphenyl)-3-(4-methoxyphenyl)-propan- 1 ,3-dion, 4-Me- thoxyzimtsäure-2-ethylhexyl-ester und 3-(4'-Methylbenzyliden)-D,L-Campher.
Bevorzugt sind solche UV -Filter, deren molarer Extinktionskoeffizient am Absorptionsmaximum oberhalb von 15 000, insbesondere oberhalb von 20000, liegt.
Weiterhin wurde gefunden, daß bei stmkturell ähnlichen UV-Filtem in vielen Fällen die wasserunlösliche Verbindung im Rahmen der erfindungsgemäßen Lehre die höhere Wirkung gegenüber solchen wasserlöslichen Verbindungen aufweist, die sich von ihr durch eine oder mehrere zusätzlich ionische Gmppen unterscheiden. Als wasserunlöslich sind im Rahmen der Erfindung solche UV-Filter zu verstehen, die sich bei 20 °C zu nicht mehr als 1 Gew.-%>, insbesondere zu nicht mehr als 0,1 Gew.-%, in Wasser lösen. Weiterhin sollten diese Verbindungen in üblichen kosmetischen Ölkomponenten bei Raumtemperatur zu mindestens 0,1, insbesondere zu mindestens 1 Gew.-%> löslich sein). Die Verwendung wasserunlöslicher UV-Filter kann daher erfindungsgemäß bevorzugt sein.
Gemäß einer weiteren Ausfühmngsform der Erfindung sind solche UV-Filter bevorzugt, die eine kationische Gmppe, insbesondere eine quartäre Ammoniumgruppe, aufweisen.
Diese UV -Filter weisen die allgemeine Struktur U - Q auf.
Der Strukturteil U steht dabei für eine UV-Strahlen absorbierende Gruppe. Diese Gmppe kann sich im Prinzip von den bekannten, im Kosmetikbereich einsetzbaren, oben genannten UV-Filtem ableiten, in dem eine Gmppe, in der Regel ein Wasserstoffatom, des UV-Filters durch eine kationische Gmppe Q, insbesondere mit einer quartären Amino- funktion, ersetzt wird. Verbindungen, von denen sich der Strukturteil U ableiten kann, sind beispielsweise substituierte Benzophenone, p-Aminobenzoesäureester,
Diphenylacrylsäureester, Zimtsäureester, Salicylsäureester, Benzimidazole und o-Aminobenzoesäureester.
Strukturteile U, die sich vom Zimtsäureamid oder vom N,N-Dimethylamino-benzoesäu- reamid ableiten, sind erfindungsgemäß bevorzugt.
Die Stmkturteile U können prinzipiell so gewählt werden, daß das Absoφtionsmaximum der UV-Filter sowohl im UVA(315-400 nm)-, als auch im UVB(280-315nm)- oder im UVC(<280 nm)-Bereich liegen kann. UV-Filter mit einem Absoφtionsmaximum im UVB-Bereich, insbesondere im Bereich von etwa 280 bis etwa 300 nm, sind besonders bevorzugt.
Weiterhin wird der Strukturteil U, auch in Abhängigkeit von Strukturteil Q, bevorzugt so gewählt, daß der molare Extinktionskoeffizient des UV-Filters am Absoφtionsmaximum oberhalb von 15 000, insbesondere oberhalb von 20000, liegt.
Der Strukturteil Q enthält als kationische Gmppe bevorzugt eine quartäre Ammoniumgruppe. Diese quartäre Ammoniumgmppe kann prinzipiell direkt mit dem Strukturteil U verbunden sein, so daß der Strukturteil U einen der vier Substituenten des positiv geladenen Stickstoffatomes darstellt. Bevorzugt ist jedoch einer der vier Substituenten am positiv geladenen Stickstoffatom eine Gruppe, insbesondere eine Alkylengruppe mit 2 bis 6 Kohlenstoffatomen, die als Verbindung zwischen dem Strukturteil U und dem positiv geladenen Stickstoffatom fungiert.
Vorteilhafterweise hat die Gmppe Q die allgemeine Stmktur -(CH2)χ-N+R'R2R3 X", in der x steht für eine ganze Zahl von 1 bis 4, R1 und R2 unabhängig voneinander stehen für Ci- 4-Alkylgruppen, R steht für eine Cι-2 - Alkylgruppe oder eine Benzylgmppe und X" für ein physiologisch verträgliches Anion. Im Rahmen dieser allgemeinen Stmktur steht x bevorzugt für die die Zahl 3, R und R jeweils für eine Methylgmppe und R entweder für eine Methylgmppe oder eine gesättigte oder ungesättigte, lineare oder verzweigte Kohlenwasserstoffkette mit 8 bis 22, insbesondere 10 bis 18, Kohlenstoffatomen.
Physiologisch verträgliche Anionen sind beispielsweise anorganische Anionen wie Halogenide, insbesondere Chlorid, Bromid und Fluorid, Sulfationen und Phosphationen sowie organische Anionen wie Lactat, Citrat, Acetat, Tartrat, Methosulfat und Tosylat.
Zwei bevorzugte UV-Filter mit kationischen Gmppen sind die als Handel sprodukte erhältlichen Verbindungen Zimtsäureamidopropyl-trimethylammoniumchlorid (Incro- quat®UV-283) und Dodecyl-dimethylaminobenzamidopropyl-dimethylammoniumtosylat (Escalol® HP 610).
Selbstverständlich umfaßt die erfindungsgemäße Lehre auch die Verwendung einer Kombination von mehreren UV-Filtem. Im Rahmen dieser Ausführungsform ist die Kombination mindestens eines wasserunlöslichen UV-Filters mit mindestens einem UV-Filter mit einer kationischen Gmppe bevorzugt.
Die UV-Filter (I) sind in den erfindungsgemäß verwendeten Mitteln üblicherweise in Mengen 0,1-5 Gew.-%, bezogen auf das gesamte Mittel, enthalten. Mengen von 0,4-2,5 Gew.-% sind bevorzugt.
Die Wirkung der erfindungsgemäßen Wirkstoffkombination (W) kann weiterhin durch eine 2-Pyrrolidinon-5-carbonsäure und deren Derivate (J) gesteigert werden. Ein weiterer Gegenstand der Erfindung ist daher die Verwendung des Wirkstoffes in Kombination mit Derivaten der 2-Pyrrolidinon-5-carbonsäure. Bevorzugt sind die Natrium-, Kalium-, Calcium-, Magnesium- oder Ammoniumsalze, bei denen das Ammoniumion neben Wasserstoff eine bis drei Ci- bis C4-Alkylgruppen trägt. Das Natriumsalz ist ganz besonders bevorzugt. Die eingesetzten Mengen in den erfϊndungsgemäßen Mitteln betragen 0,05 bis 10 Gew.%, bezogen auf das gesamte Mittel, besonders bevorzugt 0,1 bis 5, und insbesondere 0,1 bis 3 Gew.%. Ebenfalls als vorteilhaft hat sich die Kombination der Wirkstoffkombination (W) mit Vitaminen, Provitaminen und Vitaminvorstufen sowie deren Derivaten (K) erwiesen.
Dabei sind erfindungsgemäß solche Vitamine, Pro-Vitamine und Vitaminvorstufen bevorzugt, die üblicherweise den Gmppen A, B, C, E, F und H zugeordnet werden.
Zur Gmppe der als Vitamin A bezeichneten Substanzen gehören das Retinol (Vitamin Ai) sowie das 3,4-Didehydroretinol (Vitamin A2). Das ß-Carotin ist das Provitamin des Re- tinols. Als Vitamin A-Komponente kommen erfϊndungsgemäß beispielsweise Vitamin A- Säure und deren Ester, Vitamin A- Aldehyd und Vitamin A- Alkohol sowie dessen Ester wie das Palmitat und das Acetat in Betracht. Die erfindungsgemäß verwendeten Zubereitungen enthalten die Vitamin A-Komponente bevorzugt in Mengen von 0,05-1 Gew.-%, bezogen auf die gesamte Zubereitung.
Zur Vitamin B-Gruppe oder zu dem Vitamin B-Komplex gehören u. a. Vitamin Bi (Thiamin)
- Vitamin B2 (Riboflavin)
Vitamin B3. Unter dieser Bezeichnung werden häufig die Verbindungen Nicotinsäure und Nicotinsäureamid (Niacinamid) geführt. Erfindungsgemäß bevorzugt ist das Nicotinsäureamid, das in den erfindungsgemäß verwendetenen Mitteln bevorzugt in Mengen von 0,05 bis 1 Gew.-%, bezogen auf das gesamte Mittel, enthalten ist.
- Vitamin B5 (Pantothensäure, Panthenol und Pantolacton). Im Rahmen dieser Gmppe wird bevorzugt das Panthenol und/oder Pantolacton eingesetzt. Erfindungsgemäß einsetzbare Derivate des Panthenols sind insbesondere die Ester und Ether des Panthenols sowie kationisch derivatisierte Panthenole. Einzelne Vertreter sind beispielsweise das Panthenoltriacetat, der Panthenolmonoethylether und dessen Monoacetat sowie die in der WO 92/13829 offenbarten kationischen Panthenolderivate. Die genannten Verbindungen des Vitamin B5-Typs sind in den erfindungsgemäß verwendeten Mitteln bevorzugt in Mengen von 0,05 - 10 Gew.-%, bezogen auf das gesamte Mittel, enthalten. Mengen von 0,1 - 5 Gew.-% sind besonders bevorzugt. - Vitamin B6 (Pyridoxin sowie Pyridoxamin und Pyridoxal).
Vitamin C (Ascorbinsäure). Vitamin C wird in den erfindungsgemäß verwendeten Mitteln bevorzugt in Mengen von 0,1 bis 3 Gew.-%, bezogen auf das gesamte Mittel eingesetzt. Die Verwendung in Form des Palmitinsäureesters, der Glucoside oder Phosphate kann bevorzugt sein. Die Verwendung in Kombination mit Tocopherolen kann ebenfalls bevorzugt sein.
Vitamin E (Tocopherole, insbesondere α-Tocopherol). Tocopherol und seine Derivate, worunter insbesondere die Ester wie das Acetat, das Nicotinat, das Phosphat und das Succinat fallen, sind in den erfindungsgemäß verwendeten Mitteln bevorzugt in Mengen von 0,05-1 Gew.-%, bezogen auf das gesamte Mittel, enthalten.
Vitamin F. Unter dem Begriff „Vitamin F" werden üblicherweise essentielle Fettsäuren, insbesondere Linolsäure, Linolensäure und Arachidonsäure, verstanden.
Vitamin H. Als Vitamin H wird die Verbindung (3aS,4S, 6aÄ)-2-Oxohexa- hydrothienol[3,4-< |-imidazol-4-valeriansäure bezeichnet, für die sich aber inzwischen der Trivialname Biotin durchgesetzt hat. Biotin ist in den erfindungsgemäß verwendeten Mitteln bevorzugt in Mengen von 0,0001 bis 1,0 Gew.-%, insbesondere in Mengen von 0,001 bis 0,01 Gew.-% enthalten.
Bevorzugt enthalten die erfindungsgemäß verwendeten Mittel Vitamine, Provitamine und Vitaminvorstufen aus den Gmppen A, B, E und H.
Panthenol, Pantolacton, Pyridoxin und seine Derivate sowie Nicotinsäureamid und Biotin sind besonders bevorzugt.
Schließlich läßt sich die Wirkung der Wirkstoffmischung (W) auch durch den kombinierten Einsatz mit Pflanzenextrakten (L) steigern. Üblicherweise werden diese Extrakte durch Extraktion der gesamten Pflanze hergestellt. Es kann aber in einzelnen Fällen auch bevorzugt sein, die Extrakte ausschließlich aus Blüten und/oder Blättern der Pflanze herzustellen.
Hinsichtlich der erfindungsgemäß verwendbaren Pflanzenextrakte wird insbesondere auf die Extrakte hingewiesen, die in der auf Seite 44 der 3. Auflage des Leitfadens zur Inhaltsstoffdeklaration kosmetischer Mittel, herausgegeben vom Industrieverband Köφeφflege- und Waschmittel e.V. (IKW), Frankfurt, beginnenden Tabelle aufgeführt sind.
Erfindungsgemäß sind vor allem die Extrakte aus Grünem Tee, Eichenrinde, Brennessel, Hamamelis, Hopfen, Henna, Kamille, Klettenwurzel, Schachtelhalm, Weißdom, Lindenblüten, Mandel, Aloe Vera, Fichtennadel, Roßkastanie, Sandelholz, Wacholder, Kokosnuß, Mango, Aprikose, Limone, Weizen, Kiwi, Melone, Orange, Grapefruit, Salbei, Rosmarin, Birke, Malve, Wiesenschaumkraut, Quendel, Schafgarbe, Thymian, Melisse, Hauhechel, Huflattich, Eibisch, Meristem, Ginseng und Ingwerwurzel bevorzugt.
Besonders bevorzugt sind die Extrakte aus Grünem Tee, Eichenrinde, Brennessel, Hamamelis, Hopfen, Kamille, Klettenwurzel, Schachtelhalm, Lindenblüten, Mandel, Aloe Vera, Kokosnuß, Mango, Aprikose, Limone, Weizen, Kiwi, Melone, Orange, Grapefruit, Salbei, Rosmarin, Birke, Wiesenschaumkraut, Quendel, Schafgarbe, Hauhechel, Meristem, Ginseng und Ingwerwurzel.
Ganz besonders für die erfindungsgemäße Verwendung geeignet sind die Extrakte aus Grünem Tee, Mandel, Aloe Vera, Kokosnuß, Mango, Aprikose, Limone, Weizen, Kiwi und Melone.
Als Extraktionsmittel zur Herstellung der genannten Pflanzenextrakte können Wasser, Alkohole sowie deren Mischungen verwendet werden. Unter den Alkoholen sind dabei niedere Alkohole wie Ethanol und Isopropanol, insbesondere aber mehrwertige Alkohole wie Ethylenglykol und Propylenglykol, sowohl als alleiniges Extraktionsmittel als auch in Mischung mit Wasser, bevorzugt. Pflanzenextrakte auf Basis von Wasser/Propylenglykol im Verhältnis 1:10 bis 10:1 haben sich als besonders geeignet erwiesen.
Die Pflanzenextrakte können erfindungsgemäß sowohl in reiner als auch in verdünnter Form eingesetzt werden. Sofern sie in verdünnter Form eingesetzt werden, enthalten sie üblicherweise ca. 2 - 80 Gew.-%> Aktivsubstanz und als Lösungsmittel das bei ihrer Gewinnung eingesetzte Extraktionsmittel oder Extraktionsmittelgemisch.
Weiterhin kann es bevorzugt sein, in den erfindungsgemäßen Mitteln Mischungen aus mehreren, insbesondere aus zwei, verschiedenen Pflanzenextrakten einzusetzen.
Zusätzlich kann es sich als vorteilhaft erweisen, wenn neben der erfindungsgemäßen Wirkstoffmischung (W) Penetrationshilfsstoffe und/ oder Quellmittel (M) enthalten sind. Hierzu sind beispielsweise zu zählen Harnstoff und Harnstoffderivate, Guanidin und dessen Derivate, Arginin und dessen Derivate, Wasserglas, Imidazol und dessen Derivate, Histidin und dessen Derivate, Benzylalkohol, Carbonate, Hydrogencarbonate, Monohydrogenphosphate, Dihydrogenphosphate oder Phosphate.
Vorteilhaft im Sinne der Erfindung können zusätzlich kurzkettige Carbonsäuren (N) die Wirkstoffkombination (W) unterstützen. Unter kurzkettigen Carbonsäuren und deren Derivaten im Sinne der Erfindung werden Carbonsäuren verstanden, welche gesättigt oder ungesättigt und/oder geradkettig oder verzweigt oder cyclisch und/oder aromatisch und/oder heterocyclisch sein können und ein Molekulargewicht kleiner 750 aufweisen. Bevorzugt im Sinne der Erfindung können gesättigte oder ungesättigte geradkettigte oder verzweigte Carbonsäuren mit einer Kettenlänge von 1 bis zu 16 C-Atomen in der Kette sein, ganz besonders bevorzugt sind solche mit einer Kettenlänge von 1 bis zu 12 C - Atomen in der Kette.
Die kurzkettigen Carbonsäuren im Sinne der Erfindung können ein, zwei, drei oder mehr Carboxygruppen aufweisen. Bevorzugt im Sinne der Erfindung sind Carbonsäuren mit mehreren Carboxygruppen, insbesondere Di- und Tricarbonsäuren. Die Carboxygruppen können ganz oder teilweise als Ester, Säureanhydrid, Lacton, Amid, Imidsäure, Lactam, Lactim, Dicarboximid, Carbohydrazid, Hydrazon, Hydroxam, Hydroxim, Amidin, Amidoxim, Nitril, Phosphon- oder Phosphatester vorliegen. Die erfindungsgemäßen Carbonsäuren können selbstverständlich entlang der Kohlenstoffkette oder des Ringgerüstes substituiert sein. Zu den Substituenten der erfindungsgemäßen Carbonsäuren sind beispielsweise zu zählen Cl-C8-Alkyl-, C2-C8-Alkenyl-, Aryl-, Aralkyl- und Aralkenyl-, Hydroxymethyl-, C2-C8-Hydroxyalkyl-,C2-C8-Hydroxyalkenyl-, Aminomethyl-, C2-C8- Aminoalkyl-, Cyano-, Formyl-, Oxo-, Thioxo-, Hydroxy-, Mercapto-, Amino-, Carboxy- oder Iminogruppen. Bevorzugte Substituenten sind Cl-C8-Alkyl-, Hydroxymethyl-, Hydroxy-, Amino- und Carboxygruppen. Besonders bevorzugt sind Substituenten in α - Stellung. Ganz besonders bevorzugte Substituenten sind Hydroxy-, Alkoxy- und Aminogmppen, wobei die Aminofunktion gegebenenfalls durch Alkyl-, Aryl-, Aralkyl- und/oder Alkenylreste weiter substituiert sein kann. Weiterhin sind ebenfalls bevorzugte Carbonsäurederivate die Phosphon- und Phosphatester.
Als Beispiele für erfindungsgemäße Carbonsäuren seien genannt Ameisensäure, Essigsäure, Propionsäure, Buttersäure, Isobuttersäure, Valeriansäure, Isovaleriansäure, Pivalin- säure, Oxalsäure, Malonsäure, Bernsteinsäure, Glutarsäure, Glycerinsäure, Glyoxylsäure, Adipinsäure, Pimelinsäure, Korksäure, Azelainsäure, Sebacinsäure, Propiolsäure, Croton- säure, Isocrotonsäure, Elaidinsäure, Maleinsäure, Fumarsäure, Muconsäure, Citraconsäure, Mesaconsäure, Camphersäure, Benzoesäure, o,m,p-Phthalsäure, Naphthoesäure, Toluoylsäure, Hydratropasäure, Atropasäure, Zimtsäure, Isonicotinsäure, Nicotinsäure, Bicarbaminsäure, 4,4'-Dicyano-6,6'-binicotinsäure, 8-
Carbamoyloctansäure, 1,2,4-Pentantricarbonsäure, 2-Pyrrolcarbonsäure, 1,2,4,6,7- Napthalinpentaessigsäure, Malonaldehydsäure, 4-Hydroxy-phthalamidsäure, 1- Pyrazolcarbonsäure, Gallussäure oder Propantricarbonsäure, eine Dicarbonsäure ausgewählt aus der Gmppe, die gebildet wird durch Verbindungen der allgemeinen Formel (N-I),
in der Z steht für eine lineare oder verzweigte Alkyl- oder Alkenylgruppe mit 4 bis 12 Kohlenstoffatomen, n für eine Zahl von 4 bis 12 sowie eine der beiden Gmppen X und Y für eine COOH-Gruppe und die andere für Wasserstoff oder einen Methyl- oder Ethylrest, Dicarbonsäuren der allgemeinen Formel (N-I), die zusätzlich noch 1 bis 3 Methyl- oder Ethylsubstituenten am Cyclohexenring tragen sowie Dicarbonsäuren, die aus den Dicarbonsäuren gemäß Formel (N-I) formal durch Anlagemng eines Moleküls Wasser an die Doppelbindung im Cyclohexenring entstehen.
Dicarbonsäuren der Formel (N-I) sind in der Literatur bekannt. Ein Herstellungsverfahren ist beispielsweise der US-Patentschrift 3,753,968 zu entnehmen.
Die Dicarbonsäuren der Formel (N-I) können beispielsweise durch Umsetzung von mehrfach ungesättigten Dicarbonsäuren mit ungesättigten Monocarbonsäuren in Form einer Diels-Alder-Cyclisierung hergestellt werden. Üblicherweise wird man von einer mehrfach ungesättigten Fettsäure als Dicarbonsäurekomponente ausgehen. Bevorzugt ist die aus natürlichen Fetten und Ölen zugängliche Linolsäure. Als Monocarbonsäurekomponente sind insbesondere Acrylsäure, aber auch z.B. Methacrylsäure und Crotonsäure bevorzugt. Üblicherweise entstehen bei Reaktionen nach Diels-Alder Isomerengemische, bei denen eine Komponente im Überschuß vorliegt. Diese Isomerengemische können erfindungsgemäß ebenso wie die reinen Verbindungen eingesetzt werden.
Erfindungsgemäß einsetzbar neben den bevorzugten Dicarbonsäuren gemäß Formel (N-I) sind auch solche Dicarbonsäuren, die sich von den Verbindungen gemäß Formel (N-I) durch 1 bis 3 Methyl- oder Ethyl-Substituenten am Cyclohexylring unterscheiden oder aus diesen Verbindungen formal durch Anlagerung von einem Molekül Wasser an die Doppelbildung des Cyclohexenrings gebildet werden.
Als erfindungsgemäß besonders wirksam hat sich die Dicarbonsäure(-mischung) erwiesen, die durch Umsetzung von Linolsäure mit Acrylsäure entsteht. Es handelt sich dabei um eine Mischung aus 5- und 6-Carboxy-4-hexyl-2-cyclohexen-l-octansäure. Solche Verbindungen sind kommerziell unter den Bezeichnungen Westvaco Diaeid 1550 und Westvaco Diaeid® 1595 (Hersteller: Westvaco) erhältlich.
Neben den zuvor beispielhaft aufgeführten erfindungsgemäßen kurzkettigen Carbonsäuren selbst können auch deren physiologisch verträgliche Salze erfindungsgemäß eingesetzt werden. Beispiele für solche Salze sind die Alkali-, Erdalkali- , Zinksalze sowie Ammoniumsalze, womnter im Rahmen der vorliegenden Anmeldung auch die Mono-, Di- und Trimethyl-, -ethyl- und -hydroxyethyl-Ammoniumsalze zu verstehen sind. Ganz besonders bevorzugt können im Rahmen der Erfindung jedoch mit alkalisch reagierenden Aminosäuren, wie beispielsweise Arginin, Lysin, Omithin und Histidin, neutralisierte Säuren eingesetzt werden. Weiterhin kann es aus Formuliemngsgründen bevorzugt sein, die Carbonsäure aus den wasserlöslichen Vertretern, insbesondere den wasserlöslichen Salzen, auszuwählen.
Weiterhin ist es erfindungsgemäß bevorzugt, Hydroxycarbonsäuren und hierbei wiederum insbesondere die Dihydroxy-, Trihydroxy- und Polyhydroxycarbonsäuren sowie die Dihydroxy-, Trihydroxy- und Polyhydroxy- di-, tri- und polycarbonsäuren gemeinsam mit der Wirkstoffkombination (W) einzusetzen. Hierbei hat sich gezeigt, daß neben den Hydroxycarbonsäuren auch die Hydroxycarbonsäureester sowie die Mischungen aus Hydroxycarbonsäuren und deren Estem als auch polymere Hydroxycarbonsäuren und deren Ester ganz besonders bevorzugt sein können. Bevorzugte Hydroxycarbonsäureester sind beispielsweise Vollester der Glycolsäure, Milchsäure, Äpfelsäure, Weinsäure oder Citronensäure. Weitere grundsätzlich geeigneten Hydroxycarbonsäureester sind Ester der ß-Hydroxypropionsäure, der Tartronsäure, der D-Gluconsäure, der Zuckersäure, der Schleimsäure oder der Glucuronsäure. Als Alkoholkomponente dieser Ester eignen sich primäre, lineare oder verzweigte aliphatische Alkohole mit 8 - 22 C-Atomen, also z.B. Fettalkohole oder synthetische Fettalkohole. Dabei sind die Ester von C12-C15- Fettalkoholen besonders bevorzugt. Ester dieses Typs sind im Handel erhältlich, z.B.
(ß unter dem Warenzeichen Cosmacol der EniChem, Augusta Industriale. Besonders bevorzugte Polyhydroxypolycarbonsäuren sind Polymilchsäure und Polyweinsäure sowie deren Ester.
Neben der erfindungsgemäß zwingend erforderlichen Wirkstoffmischung (W) und den weiteren, oben genannten bevorzugten Komponenten können diese Zubereitungen prinzipiell alle weiteren, dem Fachmann für solche kosmetischen Mittel bekannten Komponenten enthalten.
Weitere Wirk-, Hilfs- und Zusatzstoffe sind beispielsweise
- nichtionische Polymere wie beispielsweise Vinylpyrrolidon/Vinylacrylat-Copolymere, Polyvinylpyrrolidon und Vinylpyrrolidon/Vinylacetat-Copolymere und Polysiloxane,
- Verdickungsmittel wie Agar-Agar, Guar-Gum, Alginate, Xanthan-Gum, Gummi ara- bicum, Karaya-Gummi, Johannisbrotkernmehl, Leinsamengummen, Dextrane, Cellulose-Derivate, z. B. Methylcellulose, Hydroxyalkylcellulose und Carboxymethylcellu- lose, Stärke-Fraktionen und Derivate wie Amylose, Amylopektin und Dextrine, Tone wie z. B. Bentonit oder vollsynthetische Hydrokolloide wie z. B. Polyvinylalkohol,
- haarkonditionierende Verbindungen wie Phospholipide, beispielsweise Sojalecithin, Ei-Lecitin und Kephaline, sowie Silikonöle,
- Parfümöle, Dimethylisosorbid und Cyclodextrine,
- Lösungsmittel und -Vermittler wie Ethanol, Isopropanol, Ethylenglykol, Propylengly- kol, Glycerin und Diethylenglykol, symmetrische und unsymmetrische, lineare und verzweigte Dialkylether mit insgesamt zwischen 12 bis 36 C-Atomen, insbesondere 12 bis 24 C-Atomen, wie beispielsweise Di-n-octylether, Di-n-decylether, Di-n-nonylether, Di-n-undecylether und Di-n-dodecylether, n-Hexyl-n-octylether, n-Octyl-n-decylether, n-Decyl-n- undecylether, n-Undecyl-n-dodecylether und n-Hexyl-n-Undecylether sowie Di-tert- butylether, Di-iso-pentylether, Di-3-ethyldecylether, tert.-Butyl-n-octylether, iso- Pentyl-n-octylether und 2-Methyl-pentyl-n-octylether,
- Fettalkohole, insbesondere lineare und/oder gesättigte Fettalkohole mit 8 bis 30 C- Atomen,
Monoester von C8 bis C30 - Fettsäuren mit Alkoholen mit 6 bis 24 C-Atomen, faserstrukturverbessemde Wirkstoffe, insbesondere Mono-, Di- und Oligosaccharide, wie beispielsweise Glucose, Galactose, Fmctose, Fmchtzucker und Lactose, konditionierende Wirkstoffe wie Paraffmöle, pflanzliche Öle, z. B. Sonnenblumenöl,
Orangenöl, Mandelöl, Weizenkeimöl und Pfirsichkernöl sowie
Phospholipide, beispielsweise Sojalecithin, Ei-Lecithin und Kephaline, quatemierte Amine wie Methyl- l-alkylamidoethyl-2-alkylimidazolinium-methosulfat,
Entschäumer wie Silikone,
Farbstoffe zum Anfärben des Mittels,
Antischuppenwirkstoffe wie Piroctone Olamine, Zink Omadine und Climbazol,
- Wirkstoffe wie Allantoin und Bisabolol,
- Cholesterin,
Konsistenzgeber wie Zuckerester, Polyolester oder Polyolalkylether,
- Fette und Wachse wie Walrat, Bienenwachs, Montanwachs und Paraffine,
- Fettsäurealkanolamide,
- Komplexbildner wie EDTA, NTA, ß-Alanindiessigsäure und Phosphonsäuren,
- Quell- und Penetrationsstoffe wie primäre, sekundäre und tertiäre Phosphate, Trübungsmittel wie Latex, Styrol/PVP- und Styrol/Acrylamid-Copolymere Perlglanzmittel wie Ethylenglykolmono- und -distearat sowie PEG-3-distearat,
- Pigmente,
Reduktionsmittel wie z. B. Thioglykolsäure und deren Derivate, Thiomilchsäure, Cy- steamin, Thioäpfelsäure und α-Mercaptoethansulfonsäure,
- Treibmittel wie Propan-Butan-Gemische, N2O, Dimethylether, CO2 und Luft, Antioxidantien. Bezüglich weiterer fakultativer Komponenten sowie die eingesetzten Mengen dieser Komponenten wird ausdrücklich auf die dem Fachmann bekannten einschlägigen Handbücher, z. B. die oben genannte Monographie von Kh. Schrader verwiesen.
Als Konfektioniemng dieser Zubereitungen sind beispielsweise Cremes, Lotionen, Lösungen, Wässer, Emulsionen wie W/O-, O/W-, PIT-Emulsionen (Emulsionen nach der Lehre der Phaseninversion, PIT genannt), Mikroemulsionen und multiple Emulsionen, Gele, Sprays, Aerosole und Schaumaerosole geeignet. Der pH- Wert dieser Zubereitungen kann prinzipiell bei Werten von 2 - 11 liegen. Er liegt bevorzugt zwischen 5 und 11, wobei Werte von 6 bis 10 besonders bevorzugt sind. Zur Einstellung dieses pH- Wertes kann praktisch jede für kosmetische Zwecke verwendbare Säure oder Base verwendet werden. Üblicherweise werden als Säuren Genußsäuren verwendet. Unter Genußsäuren werden solche Säuren verstanden, die im Rahmen der üblichen Nahrungsaufnahme aufgenommen werden und positive Auswirkungen auf den menschlichen Organismus haben. Genußsäuren sind beispielsweise Essigsäure, Milchsäure, Weinsäure, Zitronensäure, Äpfelsäure, Ascorbinsäure und Gluconsäure. Im Rahmen der Erfindung ist die Verwendung von Zitronensäure und Milchsäure besonders bevorzugt.
Auf der Haut und dem Haar verbleibende Zubereitungen haben sich als besonders wirksam erwiesen und können daher bevorzugte Ausführungsformen der erfindungsgemäßen Lehre darstellen. Unter auf der Haut und dem Haar verbleibend werden erfindungsgemäß solche Zubereitungen verstanden, die nicht im Rahmen der Behandlung nach einem Zeitraum von wenigen Sekunden bis zu einer Stunde mit Hilfe von Wasser oder einer wäßrigen Lösung wieder von der Haut ab- oder aus dem Haar ausgespült werden. Vielmehr verbleiben die Zubereitungen bis zur nächsten Wäsche auf der Haut oder dem Haar.
In einer besonderen Ausfühmngsform der erfindungsgemäßen Mittel kann es bevorzugt sein, wenn die Mittel als Mikroemulsion vorliegen. Unter Mikroemulsionen werden im Rahmen der Erfindung ebenfalls sogenannte „PιT"-Emulsionen verstanden. Bei diesen Emulsionen handelt es sich im Prinzip um Systeme mit den 3 Komponenten Wasser, Öl und Emulgator, die bei Raumtemperatur als Öl-in- Wasser (OΛV)-Emulsion vorliegen. Beim Erwärmen dieser Systeme bilden sich in einem bestimmten Temperaturbereich (üblicherweise als Phaseninversiontemperatur oder „PIT" bezeichnet) Mikroemulsionen aus, die sich bei weiterer Erwärmung in Wasser-in-Öl(W/O)-Emulsionen umwandeln. Bei anschließendem Abkühlen werden wieder O/W-Emulsionen gebildet, die aber auch bei Raumtemperatur als Mikroemulsionen mit einem mittleren Teilchendurchmesser von kleiner als 400 nm, insbesondere mit einem Teilchendurchmesser von etwa 100-300 nm, vorliegen. Einzelheiten bezüglich dieser sehr stabilen, niedrigviskosen Systeme, für die sich die Bezeichnung „PIT-Emulsionen" allgemein durchgesetzt hat, sind einer Vielzahl von Druckschriften zu entnehmen, für die stellvertretend die Veröffentlichungen in Angew. Chem. 97, 655-669 (1985) und Adv. Colloid Interface Sei 58, 119-149 (1995) genannt werden.
Erfindungsgemäß können solche Mikro- oder „PIT" -Emulsionen bevorzugt sein, die einen mittleren Teilchendurchmesser von etwa 200 nm aufweisen.
Die Herstellung der erfindungsgemäßen Mikroemulsionen kann beispielsweise in der Art erfolgen, daß zunächst die Phaseninversionstemperatur des Systems bestimmt wird, indem man eine Probe der auf übliche Weise hergestellten Emulsion erhitzt und unter Verwendung eines Leitfähigkeitsmeßgerätes die Temperatur bestimmt, bei der die Leitfähigkeit stark abnimmt. Die Abnahme der spezifischen Leitfähigkeit der zunächst vorhandenen O/W-Emulsion nimmt dabei in der Regel über einen Temperaturbereich von 2 bis 8 °C von ursprünglich mehr als 1 mS/cm auf Werte unterhalb von 0,1 mS/cm ab. Dieser Temperaturbereich entspricht dann dem Phaseninversions-Temperaturbereich. Nachdem somit der Phaseninversions-Temperaturbereich bekannt ist, kann man die zunächst wie üblich hergestellte Emulsion aus Ölkomponente, nichtionogenem Emulgator, zumindest Teilen des Wassers sowie gegebenenfalls weiteren Komponenten auf eine Temperatur erhitzen, die innerhalb oder oberhalb des Phaseninversions- Temperaturbereiches liegt, sodann abkühlen und gegebenenfalls weitere Komponenten sowie das restliche Wasser hinzufügen. Alternativ kann auch die Herstellung der Mikroemulsion direkt bei einer Temperatur erfolgen, die innerhalb oder oberhalb des Phaseninversions-Temperaturbereiches liegt. Die so hergestellte Mikroemulsion wird dann auf eine Temperatur unterhalb des Phaseninversions-Temperaturbereiches, üblicherweise Raumtemperatur, abgekühlt.
Beispiele
Alle Mengenangaben sind soweit nicht anders angegeben in Gew.%.
1. Wirkungsnachweis
Alle Mengenangaben sind soweit nicht anders vermerkt in Gew.%.
Ein 12,5 cm2 großes Stück Faserflies MD 2000 (Bestellnr. El 8 A 40 der Fa. Corovin) wird mit 1 ,0 g der folgenden Rezeptur 1 besprüht:
Stenol® 1618 Cetearyl Alcohol (Cognis) 0,75%
Eumulgin® B2 Ceteareth-20 (Cognis) 0, 15%
Dehyquart® A-CA Cetrimoniumchlorid (Cognis, 25 Gew.%) 0,75%
Glycerin 0,75%
Wasser, Konservierung, Parfüm ad 100 pH - Wert 3,5
Eine Haarsträhne vom Typ Fischbach und Miller 6933 von 2g Gewicht wurde mit einer handelsüblichen Dauerwelle (Poly Lock Extra Stark) 3 mal kaltgewellt. Die so vorgeschädigte Haarsträhne wurde 24 h bei Raumtemperatur und ca. 50 % rel. Luftfeuchte konditioniert. Anschließend wurde diese Haarsträhne mit Hilfe des wie zuvor hergestellten Tuches behandelt.
Eine weitere wie zuvor dargestellte geschädigte Haarsträhne wurde mit der Rezeptur als Konditioner in konventioneller Weise behandelt. Dazu wurde die Haarsträhne mit lg der Rezeptur 1 Minute behandelt und unter fließendem Wasser 30 Sekunden ausgespült. Nach dem Trocknen und Konditionieren (24 h bei Raumtemperatur und ca. 50 % relativer Luftfeuchte) wurden die beiden Haarsträhnen gegeneinander verglichen.
30 geschulte Probanden verglichen die Haarsträhne in bezug auf ihren Griff und die Kämmbarkeit. 28 der 30 Personen befanden beide Haarsträhnen als absolut gleich. 2 der Personen befanden die nur mit dem Konditioniertuch behandelte Haarsträhne sogar als angenehmer im Griff und leichter kämmbar. Alle Personen beurteielten den Zeitvorteil und die einfache Handhabung eines ansonsten konventionell aufgebauten Konditioners als hervorragend.
2. Weitere Anwendungsbeispiele
2.1 Pflegetuch gegen Haarspliß
Abu Quat® 3270 (Degussa) Quaternium-80 4,0%
Brij® 30 (ICI) Laureth-4 1,5%
Natrosol® 250 HR (Hercules) Hydroxyethylcellulose 1,0%
Salcare® SC96 (Clariant) 0,5%
DC 1501® (Dow Coming) Cyclopentasiloxane (and) Dimethiconol 50,0
Polymer JR® 400 (Ucar) Polyquatemium- 10 0,2
Panthenol 75 0,2
Glycerinsäure 0,2
Wasser, Konservierung, Parfüm, Farbstoff ad 100 pH - Wert 3,0
Diese Formuliemng kann sowohl auf Polypropylenfasem als auch auf Viskosefasern aufgetragen werden. Zur Anwendung wird das Pflegetuch wiederholt insbesondere über die keratinischen Fasern gestrichen.
In einer weiteren Anwendungsform werden die keratinischen Fasern im Bereich der Haarspitzen mit dem Tuch umwickelt und mit einem Fön erwärmt.
2.2 Zweilagiges Pflegetuch
Mit 2,0 g der Rezeptur 1 aus dem zuvor beschriebenen Wirkungsnachweis wird eine Seite eines 100 cm2 großen zweilagigen Vliesstoffes aus Viskose beschichtet. Anschließend wird die zweite Seite desselben Gewebes mit 2,0 g der Rezeptur gemäß Beispiel 2.1 befeuchtet. Auf diese Art wird ein konditionierendes und restrukturierendes Pflegetuch erhalten.

Claims

P a t e n t a n s p r ü c h e
1. Pflegetücher, dadurch gekennzeichnet, daß sie mit einer Lösung enthaltend eine Kombination (W) aus a) kationischen Verbindungen (A) und b) Polyhydroxyverbindungen (B) behandelt sind.
2. Pflegetücher nach Anspmch 1, dadurch gekennzeichnet, daß sie als kationische Verbindungen kationische Tenside (AI) enthalten.
3. Pflegetücher nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß die Polyhydroxyverbindungen (B) ausgewählt sind aus den Polyolen mit mindestens 2 bis 12 Kohlenstoffatomen und mindestens 2 Hydroxygmppen.
4. Pflegetücher nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß zusätzlich weitere anionische und/oder amphotere bzw. zwitterionische Tenside enthalten sind.
5. Pflegetücher nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß zusätzlich nichtionische und/oder anionische und/oder amphotere Polymere enthalten sind.
6. Pflegetücher nach Ansprüche 5, dadurch gekennzeichnet, daß die Polymeren ausgewählt sind aus nicht-ionischen und/oder amphoteren Polymeren.
7. Verwendung von Pflegetücher nach einem der Ansprüche 1 bis 6 zur Pflege von keratinischen Fasern.
8. Verfahren zur Pflege von keratinischen Fasern, dadurch gekennzeichnet, daß ein Pflegetuch gemäß einem der Ansprüche 1 bis 6 mit den keratinischen Fasern in Kontakt gebracht wird, ohne daß anschließend die keratinischen Fasem zusätzlich mit Wasser gespült werden.
EP03789137A 2002-12-12 2003-12-05 Tücher zur pflege keratinischer fasern Withdrawn EP1569603A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10258394 2002-12-12
DE2002158394 DE10258394A1 (de) 2002-12-12 2002-12-12 Tücher zur Pflege keratinischer Fasern
PCT/EP2003/013745 WO2004052322A1 (de) 2002-12-12 2003-12-05 Tücher zur pflege keratinischer fasern

Publications (1)

Publication Number Publication Date
EP1569603A1 true EP1569603A1 (de) 2005-09-07

Family

ID=32336315

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03789137A Withdrawn EP1569603A1 (de) 2002-12-12 2003-12-05 Tücher zur pflege keratinischer fasern

Country Status (3)

Country Link
EP (1) EP1569603A1 (de)
DE (1) DE10258394A1 (de)
WO (1) WO2004052322A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004030886A1 (de) * 2004-06-25 2006-02-09 Henkel Kgaa Haarkonditionierende Mittel mit aminofunktionellen Siliconen
US10975338B2 (en) * 2017-05-16 2021-04-13 The Procter & Gamble Company Active agent-containing three-dimensional articles
US10975339B2 (en) * 2017-05-16 2021-04-13 The Procter & Gamble Company Active agent-containing articles
US10975340B2 (en) * 2017-05-16 2021-04-13 The Procter & Gamble Company Active agent-containing fibrous structure articles

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19961358A1 (de) * 1999-12-17 2001-06-21 Cognis Deutschland Gmbh Verfahren zur kosmetischen Behandlung der menschlichen Haut
DE10102543A1 (de) * 2001-01-19 2002-07-25 Cognis Deutschland Gmbh Emulsionen auf Basis spezieller Emulgatoren
DE10117502A1 (de) * 2001-04-07 2002-10-17 Cognis Deutschland Gmbh Kosmetiktücher zur Haarpflege
DE10117500A1 (de) * 2001-04-07 2002-10-17 Cognis Deutschland Gmbh Reinigungstücher zur Haarpflege
US20030091617A1 (en) * 2001-06-07 2003-05-15 Mrozinski James S. Gel-coated oil absorbing skin wipes
DE10162184A1 (de) * 2001-10-26 2003-05-08 Cognis Deutschland Gmbh Imprägnierlösung für Kosmetiktücher

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2004052322A1 *

Also Published As

Publication number Publication date
WO2004052322A1 (de) 2004-06-24
DE10258394A1 (de) 2004-06-24

Similar Documents

Publication Publication Date Title
EP2020227B1 (de) Kationische Cellulosederivate in Kosmetika
WO2002032383A2 (de) Neue verwendung von kurzkettigen carbonsäuren
EP2328544B1 (de) Tensidhaltige zusammensetzung mit spezieller emulgatormischung
WO2005115314A1 (de) Verfahren zur restrukturierung keratinischer fasern
EP1232739A1 (de) Wirkstoffkombination aus Kohlenwasserstoffen und Ölen in kosmetischen Mitteln
EP1404286B2 (de) Haarbehandlungsmittel mit carnitintartrat
DE102004030886A1 (de) Haarkonditionierende Mittel mit aminofunktionellen Siliconen
WO2002045665A1 (de) Neue verwendung von polyhydroxyverbindungen
DE102009002881A1 (de) Haar- und kopfhautschonende Shampoos und Conditioner
DE10163860A1 (de) Verwendung von ausgewählten kurzkettigen Carbonsäuren
DE102006002767A1 (de) Kosmetische Mittel enthaltend ein Polysiloxan und ein Esteröl und weitere Wirkstoffe
EP1569603A1 (de) Tücher zur pflege keratinischer fasern
DE102009026775A1 (de) Tensidhaltiges kosmetisches Reinigungsmittel mit Gelee Royale
DE102005029534A1 (de) Kosmetische Mittel enthaltend eine Polyammonium-Polysiloxan Verbindung und weitere Wirkstoffe
DE102009045856A1 (de) Verwendung kationischer Polymere in Haut- und Haarreinigungsmitteln
WO2007048486A1 (de) Haarbehandlungsmittel mit verbesserter pflegeleistung sowie verfahren zur applikation des mittels
EP1430884A1 (de) Ölduschbad mit spezieller Tensidkombination
EP1569605B1 (de) Reinigungstücher zur reinigung keratinischer fasern
WO2003035018A1 (de) Neue verwendung von zuckertensiden und fettsäurepartialglyceriden in farbverändernden mitteln
WO2002045664A1 (de) Verwendung von phospholipiden in haarbehandlungsmitteln
DE102009028085A1 (de) Verwendung von Olivenöl und Proteinhydrolysaten in der Haarpflege
WO2006021259A1 (de) Verfahren zur pflege keratinischer fasern
DE102009002883A1 (de) Kopfhautschonende und kopfhautberuhigende Shampoons und Conditioner
WO2006066641A1 (de) Mittel zur behandlung von grün-stichigem blonden haar
EP1669109A1 (de) Pflegende Haarbehandlungsmittel mit keratinreduzierenden Substanzen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050421

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SCHULZE ZUR WIESCHE, ERIK

Inventor name: POPPE, ELISABETH

Inventor name: SCHMARJE, SUSANNE

Inventor name: MENDE, MIRIAM

Inventor name: HOLLENBERG, DETLEF

17Q First examination report despatched

Effective date: 20080423

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HENKEL AG & CO. KGAA

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20100701